JP2004232905A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004232905A
JP2004232905A JP2003019754A JP2003019754A JP2004232905A JP 2004232905 A JP2004232905 A JP 2004232905A JP 2003019754 A JP2003019754 A JP 2003019754A JP 2003019754 A JP2003019754 A JP 2003019754A JP 2004232905 A JP2004232905 A JP 2004232905A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
use side
side heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019754A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Sadahiro Takizawa
禎大 滝澤
Hajime Mutsukawa
元 六川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003019754A priority Critical patent/JP2004232905A/en
Publication of JP2004232905A publication Critical patent/JP2004232905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of accurately controlling flow division to respective use side heat exchangers even when use side units have different use side temperatures. <P>SOLUTION: The use side heat exchanger 6 is provided in a heat source side unit 1 equipped with a compressor and a heat source side heat exchanger, a plurality of the use side units 5, 10 and 20 having the different use side temperature of the use side heat exchanger are connected in parallel through a refrigerant pipe, and a refrigerant of which high pressure side is a supercritical pressure during operation is sealed in the refrigerant pipe. The refrigerator 30 is provided with flow division control means 8, 17 and 27 for varying a refrigerant inflow amount to the respective use side units in accordance with the load of the respective use side units. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、利用側温度の異なる複数台の利用側ユニットを備えた冷凍装置の各利用側ユニットへの分流制御技術に関する。
【0002】
【従来の技術】
一般に、圧縮機及び熱源側熱交換器を備えた熱源側ユニットに、利用側熱交換器を備えた複数台の利用側ユニットを、冷媒配管を介して並列に接続した冷凍装置が知られている(特許文献1参照)。この種のものでは、それぞれの利用側ユニットに、冷媒を適正に分流させる必要がある。この場合の分流制御では、利用側熱交換器を有効利用するため、この利用側熱交換器の中間部分での飽和温度もしくは他の代表温度と、この利用側熱交換器の出口部分での温度との差ΔTを検出して、この熱交換器が凝縮器として作用する場合、この差ΔTを根拠にサブクール(SC)制御を行い、それが蒸発器として作用する場合、この差ΔTを根拠にスーパヒート(SH)制御を行い、或いは、各利用側熱交換器の出口温度がほぼ等しくなるように、各利用側熱交換器の出口側に接続された電子制御弁の弁開度を適正開度に制御するのが一般的である。なお、本明細書において、冷凍装置は、ヒートポンプを含むものとする。
【0003】
【特許文献1】
特許2804527号公報。
【0004】
【発明が解決しようとする課題】
しかし、従来の分流制御技術を、超臨界冷媒(「運転中に高圧側が超臨界圧力となる冷媒」)を使用した冷凍装置に用いた場合、複数台の利用側ユニットの利用側温度が異なるとき、各利用側熱交換器の出口温度がまちまちとなって、正確な分流制御を行うことができないという問題がある。
【0005】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、利用側ユニットの利用側温度が異なる場合であっても、各利用側熱交換器への正確な分流制御を行うことができる冷凍装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットに、利用側熱交換器を備え、利用側熱交換器の利用側温度が互いに異なる複数台の利用側ユニットを、冷媒配管を介して並列に接続し、運転中に高圧側が超臨界圧力となる冷媒を上記冷媒配管内に封入した冷凍装置において、各利用側ユニットの負荷に応じて各利用側ユニットへの冷媒流入量を変化させる分流制御手段を備えたことを特徴とする。
【0007】
請求項2記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットに、利用側熱交換器を備え、利用側熱交換器の利用側温度が互いに異なる複数台の利用側ユニットを、冷媒配管を介して並列に接続し、運転中に高圧側が超臨界圧力となる冷媒を上記冷媒配管内に封入した冷凍装置において、各利用側熱交換器の冷媒の出口温度と負荷側の媒体の各利用側熱交換器への入口温度との温度差に応じて各利用側ユニットへの冷媒流入量を変化させる分流制御手段を備えたことを特徴とする。
【0008】
請求項3記載の発明は、請求項1又は2記載のものにおいて、上記利用側ユニットの少なくとも一台が、利用側熱交換器に水配管を介して貯湯タンクを接続した給湯ユニットであることを特徴とする。
【0009】
請求項4記載の発明は、請求項1又は2記載のものにおいて、上記利用側ユニットの少なくとも一台が、利用側熱交換器に水配管を介して床暖房パネルを接続した床暖房ユニットであることを特徴とする。
【0010】
請求項5記載の発明は、請求項1乃至4のいずれか一項記載のものにおいて、上記分流制御手段が冷媒流入量を制御する電子制御弁を含むことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0012】
図1は、本発明に係る冷凍装置の一実施の形態を示す冷媒回路図である。この冷凍装置30は、圧縮機2、熱源側熱交換器3、減圧装置4を備えた熱源側ユニット1と、ガスクーラ11、貯湯タンク13、循環ポンプ15及び電子制御弁17を備えた給湯ユニット10と、ガスクーラ21、床暖房パネル23、循環ポンプ25及び電子制御弁27を備えた床暖房ユニット20と、利用側熱交換器6及び利用側電子制御弁8を備えた空調ユニット5とを有して構成される。
【0013】
貯湯ユニット10では、ガスクーラ11の一端がガス管31に接続され、ガスクーラ11の他端が電子制御弁17を介して液管33に接続される。このガスクーラ11には、水配管16が接続され、この水配管16に、循環ポンプ15を介して、貯湯タンク13が接続される。
【0014】
床暖房ユニット20では、ガスクーラ21の一端がガス管31に接続され、ガスクーラ21の他端が電子制御弁27を介して液管33に接続される。このガスクーラ21には、水配管26が接続され、この水配管26に、循環ポンプ25を介して、床暖房パネル23が接続される。
【0015】
そして、これら熱源側ユニット1と給湯ユニット10と床暖房ユニット20と空調ユニット5とがガス管31と液管33により接続されて、冷凍装置30は、給湯ユニット10と床暖房ユニット20を運転しながら、空調ユニット5を暖房運転可能とする。1Aは熱源側ユニット1の制御装置であり、10Aは給湯ユニット10の制御装置であり、20Aは床暖房ユニット20の制御装置であり、5Aは空調ユニット5の制御装置である。
【0016】
本実施形態では、熱源側ユニット1、給湯ユニット10、床暖房ユニット20、空調ユニット5、ガス管31、並びに液管33内に二酸化炭素冷媒が封入される。上記構成の内、給湯ユニット10、床暖房ユニット20、及び空調ユニット5のそれぞれは利用側ユニットを構成する。
【0017】
二酸化炭素冷媒が封入された場合、図2のエンタルピ・圧力線図に示すように、高圧ガス管31内は運転中に超臨界圧力で運転される。高圧ガス管31内が、超臨界圧力で運転される冷媒には、二酸化炭素冷媒のほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられる。
【0018】
図2では、圧縮機2の出口は状態aで示される。冷媒は、ガスクーラ11,21及び利用側熱交換器6を通って循環し、ガスクーラ21の出口では状態bまで冷却され、熱を循環水に放出し、利用側熱交換器6の出口では状態gまで冷却され、熱を空気に放出し、ガスクーラ11の出口では状態cまで冷却され、熱を循環水に放出する。ついで、冷媒は、減圧装置17,27,8,4での圧力低下により、状態dに至り、ここではガス/液体の2相混合体が形成される。冷媒は、熱源側熱交換器3において、液相の蒸発により熱を吸収する。この熱源側熱交換器3では、状態eを経て、ガス相の冷媒は、熱源側熱交換器3で状態fまで加熱されてから圧縮機2の吸込管に向かう。
【0019】
上記超臨界サイクルにおいて、圧縮機2から吐出される高圧単相ガス冷媒は、凝縮されないが、ガスクーラ11,21及び利用側熱交換器6において温度低下が起こる。図2において、ガスクーラ11,21及び利用側熱交換器6の出口の温度(状態b,g,c)は、それぞれ異なる。
【0020】
つぎに、冷凍装置30の動作を説明する。
【0021】
給湯ユニット10では、圧縮機2の吐出冷媒が、ガス管31を通じてガスクーラ11に導かれ、このガスクーラ11で、水配管16を通る水が加熱されて、高温となった水が貯湯タンク13に貯えられる。
【0022】
二酸化炭素冷媒が使用され、高圧の高い超臨界サイクルとなるため、ガスクーラ11での利用側温度(図2の状態c)を高く設定することが可能になり、ここに貯えられた湯は、約80℃以上の高温になる。この貯湯タンク13に貯えられた湯は、図示を省略した配管を介して各種設備へ送られる。
【0023】
床暖房ユニット20では、圧縮機2の吐出冷媒が、ガス管31を通じてガスクーラ21に導かれ、このガスクーラ21で、水配管26を通る水が加熱されて、高温となった水が床暖房パネル23に供給される。
【0024】
床暖房のため、それ程高いパネル温度は要求されず、ガスクーラ21での利用側温度(図2の状態b)は低く設定される。
【0025】
空調ユニット5では、圧縮機2の吐出冷媒が、ガス管31を通じて利用側熱交換器6に導かれ、この利用側熱交換器6で熱交換して、被調和室が暖房される。この場合、それ程高い空気温度は要求されず、利用側熱交換器6での利用側温度(図2の状態g)は、ガスクーラ21での利用側温度(図2の状態b)よりは高く設定されるものの低く設定される。
【0026】
本実施形態では、熱源側ユニット1から吐出された冷媒の、給湯ユニット10、床暖房ユニット20、空調ユニット5の各利用側ユニットへの分流制御に特徴を有する。この種のものでは、それぞれの利用側ユニットに、冷媒を適正に分流させる必要がある。
【0027】
ここでの分流制御は、それぞれの利用側ユニットの負荷に応じて、各電子制御弁17,27,8の弁開度を制御することにより行われる。各利用側ユニットの負荷は、各利用側ユニットの制御装置に設定された設定目標温度と、実際の測定温度との温度差に従い求められる。給湯ユニット10では、例えば、制御装置10Aに設定された貯湯タンク13内の目標湯温が設定目標温度であり、床暖房ユニット20、空調ユニット5では、例えば、各制御装置20A、5Aに設定された被調和室の目標室温が設定目標温度である。
【0028】
上述したように、給湯ユニット10のガスクーラ11、床暖房ユニット20のガスクーラ21、及び空調ユニット5の利用側熱交換器6、のそれぞれの利用側温度が異なる。この冷凍装置30では、二酸化炭素冷媒が使用されて、高圧の高い超臨界サイクルとなるため、特に、給湯ユニット10のガスクーラ11では、貯えられた湯を約80℃以上の高温にする。そのため、その利用側温度をかなり高く設定される。それに比べ、床暖房ユニット20のガスクーラ21、及び空調ユニット5の利用側熱交換器6では、利用側温度をそれ程高く設定されず、当該利用側温度は、給湯ユニット10のそれよりも低く設定される。この場合、上記ガスクーラ11、21、及び利用側熱交換器6の冷媒の出口温度は等しくならず、まちまちとなる。従って、従来のように、利用側熱交換器の出口温度がほぼ等しくなるように、電子制御弁の弁開度を適正開度に制御するような分流制御では、正確な分流制御を行えない。
【0029】
本実施形態では、それぞれの利用側ユニットの負荷(設定目標温度と、実際の測定温度との温度差に従い求められる。)を検出し、この負荷に応じて、各電子制御弁17,27,8の弁開度を制御する。従って、それぞれに対応するガスクーラ11,21、或いは利用側熱交換器6に、必要量だけ、即ち、適正量の冷媒だけほぼ正確に分流させることができる。
【0030】
つぎに、別の実施形態を説明する。
【0031】
図3は、ガスクーラ11,21、及び利用側熱交換器6の入口から出口に至るまでの冷媒の温度変化を示す。
【0032】
例えば、冷凍サイクルに、相変化する冷媒(フロン系冷媒)が使用された場合、温度変化は曲線L4、或いは曲線L5で示すようになる。分流が正常な場合と、分流不良が発生した場合とでは、熱交換器の中間温度と出口温度との温度差Δに大きな変化が現れる。分流が正常な場合、曲線L4に示すように、熱交換器の中間温度t1と出口温度t2との間には温度差Δ3が現れ、分流不良が発生した場合、曲線L5に示すように、熱交換器の中間温度t1と出口温度t3との間には温度差Δ4が現れる。これによると、温度差Δ3の値と、温度差Δ4の値とに基づいて、分流の正常、不良を正確に判定できる。従って、その判定に応じて、各電子制御弁17,27,8の弁開度を制御することにより、各利用側ユニットの分流制御が可能になる。
【0033】
これに対し、二酸化炭素冷媒等の冷媒は温度勾配を有する。図3中、曲線L1は、温度勾配を有する冷媒が使用されて、分流が正常な場合の温度変化を示し、曲線L2は、同じく温度勾配を有する冷媒が使用されて、分流不良の場合の温度変化を示し、曲線L3は、負荷側の温度変化を示す。分流が正常な場合の熱交換器の中間温度t1’と出口温度t2との温度差Δ1、並びに分流不良が発生した場合の熱交換器の中間温度t1”と出口温度t3との温度差Δ2は、いずれも、その温度差が小さい。従って、熱交換器の中間温度と出口温度との温度差を計測しても、その値はいずれも小さく、この値に基づいて分流の正常、不良を正確に判定することはできない。
【0034】
そこで、上記構成では、温度勾配を有する冷媒が使用された場合、各利用側熱交換器の冷媒の出口温度(t2,t3)と、負荷側の媒体の各利用側熱交換器への入口温度(t0)との温度差Δが検知され、この検知値に基づいて、各電子制御弁17,27,8の弁開度を制御することにより、各利用側ユニットへの分流が実施される。図1を参照し、利用側熱交換器の冷媒の出口温度(t2,t3)は、温度センサ41,43,45により検出され、負荷側の媒体の利用側熱交換器への入口温度(t0)は、温度センサ42,44,46により検出される。温度センサ42,44は、水配管内の水の温度を検出し、温度センサ46は、被調和室の空気温度を検出する。
【0035】
以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではない。
【0036】
【発明の効果】
本発明では、利用側ユニットの利用側温度が異なる場合であっても、各利用側熱交換器への正確な分流制御を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る冷凍装置の一実施の形態を示す冷媒回路図である。
【図2】超臨界サイクルのエンタルピ・圧力線図である。
【図3】熱交換器の温度変化を示す線図である。
【符号の説明】
1 熱源側ユニット
2 圧縮機
3 熱源側熱交換器
5 空調ユニット
6 利用側熱交換器
8,17,27 電子制御弁
10 給湯ユニット
11 ガスクーラ
20 床暖房ユニット
21 ガスクーラ
30 冷凍装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for controlling the flow of water to each use-side unit of a refrigeration system including a plurality of use-side units having different use-side temperatures.
[0002]
[Prior art]
Generally, a refrigerating apparatus is known in which a plurality of use-side units provided with use-side heat exchangers are connected in parallel via a refrigerant pipe to a heat-source-side unit provided with a compressor and a heat-source-side heat exchanger. (See Patent Document 1). In this type, it is necessary to appropriately divert the refrigerant to each use-side unit. In the split flow control in this case, in order to effectively use the use side heat exchanger, the saturation temperature or another representative temperature at the intermediate portion of the use side heat exchanger and the temperature at the outlet portion of the use side heat exchanger. When the heat exchanger acts as a condenser, a subcool (SC) control is performed based on the difference ΔT, and when the heat exchanger acts as an evaporator, the difference ΔT is used based on the difference ΔT. The superheat (SH) control is performed, or the valve opening of the electronic control valve connected to the outlet of each use side heat exchanger is adjusted to an appropriate opening so that the outlet temperature of each use side heat exchanger becomes approximately equal. Is generally controlled. In this specification, the refrigeration apparatus includes a heat pump.
[0003]
[Patent Document 1]
Japanese Patent No. 2804527.
[0004]
[Problems to be solved by the invention]
However, when the conventional branch control technology is used in a refrigeration system using a supercritical refrigerant ("a refrigerant in which the high pressure side has a supercritical pressure during operation"), when the use side temperatures of a plurality of use side units are different. However, there is a problem in that the outlet temperature of each use-side heat exchanger varies, and accurate branch control cannot be performed.
[0005]
Therefore, an object of the present invention is to solve the problems of the above-described conventional technology and to perform accurate branch control to each use-side heat exchanger even when the use-side temperatures of the use-side units are different. It is an object of the present invention to provide a refrigeration apparatus capable of performing the above.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a heat source side unit including a compressor and a heat source side heat exchanger, including a use side heat exchanger, and a plurality of use side units having different use side temperatures of the use side heat exchangers. Are connected in parallel via a refrigerant pipe, and in a refrigeration system in which a refrigerant having a supercritical pressure on the high pressure side during operation is sealed in the refrigerant pipe, each refrigeration unit is connected to each usage-side unit according to the load of each usage-side unit. It is characterized by comprising a branch control means for changing the refrigerant inflow amount.
[0007]
According to a second aspect of the present invention, the heat source side unit including the compressor and the heat source side heat exchanger includes a use side heat exchanger, and a plurality of use side units having different use side temperatures of the use side heat exchangers. Are connected in parallel via a refrigerant pipe, and in a refrigeration system in which a refrigerant having a supercritical pressure on the high pressure side during operation is sealed in the refrigerant pipe, the outlet temperature of the refrigerant of each utilization side heat exchanger and the load side It is characterized by having a branch control means for changing the amount of refrigerant flowing into each use-side unit in accordance with the temperature difference between the medium and the inlet temperature to each use-side heat exchanger.
[0008]
According to a third aspect of the present invention, in the first or second aspect, at least one of the use side units is a hot water supply unit in which a hot water storage tank is connected to a use side heat exchanger via a water pipe. Features.
[0009]
The invention according to claim 4 is the floor heating unit according to claim 1 or 2, wherein at least one of the usage-side units is a floor heating unit in which a floor heating panel is connected to a usage-side heat exchanger via a water pipe. It is characterized by the following.
[0010]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the branch control means includes an electronic control valve for controlling a refrigerant inflow amount.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a refrigerant circuit diagram showing one embodiment of a refrigeration apparatus according to the present invention. The refrigerating device 30 includes a heat source side unit 1 including a compressor 2, a heat source side heat exchanger 3, and a decompression device 4, and a hot water supply unit 10 including a gas cooler 11, a hot water storage tank 13, a circulation pump 15, and an electronic control valve 17. And a floor heating unit 20 including a gas cooler 21, a floor heating panel 23, a circulation pump 25, and an electronic control valve 27, and an air conditioning unit 5 including a use side heat exchanger 6 and a use side electronic control valve 8. It is composed.
[0013]
In hot water storage unit 10, one end of gas cooler 11 is connected to gas pipe 31, and the other end of gas cooler 11 is connected to liquid pipe 33 via electronic control valve 17. A water pipe 16 is connected to the gas cooler 11, and a hot water storage tank 13 is connected to the water pipe 16 via a circulation pump 15.
[0014]
In the floor heating unit 20, one end of the gas cooler 21 is connected to the gas pipe 31, and the other end of the gas cooler 21 is connected to the liquid pipe 33 via the electronic control valve 27. A water pipe 26 is connected to the gas cooler 21, and a floor heating panel 23 is connected to the water pipe 26 via a circulation pump 25.
[0015]
The heat source side unit 1, the hot water supply unit 10, the floor heating unit 20, and the air conditioning unit 5 are connected by the gas pipe 31 and the liquid pipe 33, and the refrigeration apparatus 30 operates the hot water supply unit 10 and the floor heating unit 20. The heating operation of the air conditioning unit 5 is enabled. 1A is a control device of the heat source side unit 1, 10A is a control device of the hot water supply unit 10, 20A is a control device of the floor heating unit 20, and 5A is a control device of the air conditioning unit 5.
[0016]
In the present embodiment, carbon dioxide refrigerant is sealed in the heat source side unit 1, the hot water supply unit 10, the floor heating unit 20, the air conditioning unit 5, the gas pipe 31, and the liquid pipe 33. In the above configuration, each of the hot water supply unit 10, the floor heating unit 20, and the air conditioning unit 5 constitutes a use side unit.
[0017]
When the carbon dioxide refrigerant is charged, the inside of the high-pressure gas pipe 31 is operated at a supercritical pressure during operation, as shown in the enthalpy-pressure diagram of FIG. The refrigerant in which the inside of the high-pressure gas pipe 31 is operated at a supercritical pressure includes, for example, ethylene, diborane, ethane, nitrogen oxide, etc. in addition to the carbon dioxide refrigerant.
[0018]
In FIG. 2, the outlet of the compressor 2 is shown in state a. The refrigerant circulates through the gas coolers 11 and 21 and the use side heat exchanger 6, is cooled to the state b at the outlet of the gas cooler 21, releases heat to the circulating water, and the state g at the outlet of the use side heat exchanger 6. The gas cooler 11 cools to the state c at the outlet of the gas cooler 11 and releases the heat to the circulating water. The refrigerant then reaches state d due to the pressure drop in the decompressors 17, 27, 8, 4 where a gas / liquid two-phase mixture is formed. The refrigerant absorbs heat in the heat source side heat exchanger 3 by evaporating the liquid phase. In the heat source side heat exchanger 3, after passing through the state e, the gas phase refrigerant is heated to the state f by the heat source side heat exchanger 3, and then flows toward the suction pipe of the compressor 2.
[0019]
In the supercritical cycle, the high-pressure single-phase gas refrigerant discharged from the compressor 2 is not condensed, but the temperature of the gas coolers 11, 21 and the use-side heat exchanger 6 decreases. In FIG. 2, the temperatures (states b, g, and c) at the outlets of the gas coolers 11 and 21 and the use-side heat exchanger 6 are different from each other.
[0020]
Next, the operation of the refrigeration apparatus 30 will be described.
[0021]
In the hot water supply unit 10, the refrigerant discharged from the compressor 2 is guided to the gas cooler 11 through the gas pipe 31, and the water passing through the water pipe 16 is heated by the gas cooler 11, and the hot water is stored in the hot water storage tank 13. Can be
[0022]
Since a carbon dioxide refrigerant is used and a high pressure and high supercritical cycle is performed, it is possible to set the use side temperature (state c in FIG. 2) in the gas cooler 11 to be high. The temperature rises to 80 ° C or higher. The hot water stored in the hot water storage tank 13 is sent to various facilities via piping not shown.
[0023]
In the floor heating unit 20, the refrigerant discharged from the compressor 2 is guided to the gas cooler 21 through the gas pipe 31, and the water passing through the water pipe 26 is heated by the gas cooler 21, and the hot water is supplied to the floor heating panel 23. Supplied to
[0024]
Because of the floor heating, not so high panel temperature is required, and the use side temperature (state b in FIG. 2) in the gas cooler 21 is set low.
[0025]
In the air conditioning unit 5, the refrigerant discharged from the compressor 2 is guided to the use side heat exchanger 6 through the gas pipe 31 and exchanges heat with the use side heat exchanger 6 to heat the conditioned room. In this case, a very high air temperature is not required, and the use side temperature in the use side heat exchanger 6 (state g in FIG. 2) is set higher than the use side temperature in the gas cooler 21 (state b in FIG. 2). Is set lower.
[0026]
The present embodiment is characterized in that the refrigerant discharged from the heat source unit 1 is divided into the hot water supply unit 10, the floor heating unit 20, and the air conditioning unit 5. In this type, it is necessary to appropriately divert the refrigerant to each use-side unit.
[0027]
The flow dividing control is performed by controlling the valve opening of each of the electronic control valves 17, 27, and 8 according to the load of each of the use-side units. The load of each usage-side unit is obtained according to the temperature difference between the set target temperature set in the control device of each usage-side unit and the actual measured temperature. In the hot water supply unit 10, for example, the target hot water temperature in the hot water storage tank 13 set in the control device 10A is the set target temperature, and in the floor heating unit 20 and the air conditioning unit 5, for example, each of the control devices 20A and 5A is set. The target room temperature of the conditioned room is the set target temperature.
[0028]
As described above, the use-side temperatures of the gas cooler 11 of the hot water supply unit 10, the gas cooler 21 of the floor heating unit 20, and the use-side heat exchanger 6 of the air conditioning unit 5 are different. In the refrigerating apparatus 30, a carbon dioxide refrigerant is used to form a supercritical cycle with a high pressure and a high pressure. In particular, in the gas cooler 11 of the hot water supply unit 10, the stored hot water is heated to about 80 ° C. or higher. Therefore, the use side temperature is set to be considerably high. In contrast, in the gas cooler 21 of the floor heating unit 20 and the use side heat exchanger 6 of the air conditioning unit 5, the use side temperature is not set so high, and the use side temperature is set lower than that of the hot water supply unit 10. You. In this case, the outlet temperatures of the refrigerants of the gas coolers 11 and 21 and the use-side heat exchanger 6 are not equal and vary. Therefore, in the case of the conventional flow dividing control in which the opening degree of the electronic control valve is controlled to an appropriate opening degree so that the outlet temperature of the use side heat exchanger becomes substantially equal, accurate flow dividing control cannot be performed.
[0029]
In the present embodiment, the load of each usage-side unit (determined according to the temperature difference between the set target temperature and the actual measured temperature) is detected, and each of the electronic control valves 17, 27, 8 is determined according to this load. Of the valve is controlled. Therefore, only the required amount, that is, the appropriate amount of refrigerant can be almost accurately diverted to the corresponding gas coolers 11 and 21 or the use-side heat exchanger 6.
[0030]
Next, another embodiment will be described.
[0031]
FIG. 3 shows a change in temperature of the refrigerant from the inlet to the outlet of the gas coolers 11 and 21 and the use-side heat exchanger 6.
[0032]
For example, when a refrigerant that changes phase (Freon-based refrigerant) is used in the refrigeration cycle, the temperature change is represented by a curve L4 or a curve L5. A large change appears in the temperature difference Δ between the intermediate temperature and the outlet temperature of the heat exchanger between a case where the branch flow is normal and a case where the branch flow failure occurs. When the branch flow is normal, a temperature difference Δ3 appears between the intermediate temperature t1 and the outlet temperature t2 of the heat exchanger as shown by a curve L4. A temperature difference Δ4 appears between the intermediate temperature t1 of the exchanger and the outlet temperature t3. According to this, it is possible to accurately determine whether the flow is normal or defective based on the value of the temperature difference Δ3 and the value of the temperature difference Δ4. Therefore, by controlling the valve opening of each of the electronic control valves 17, 27, and 8 according to the determination, it is possible to control the flow division of each of the use-side units.
[0033]
In contrast, a refrigerant such as a carbon dioxide refrigerant has a temperature gradient. In FIG. 3, a curve L1 shows a temperature change when the refrigerant having the temperature gradient is used and the branch flow is normal, and a curve L2 shows the temperature when the refrigerant having the same temperature gradient is used and the branch flow is poor. The curve L3 indicates the temperature change on the load side. The temperature difference Δ1 between the intermediate temperature t1 ′ of the heat exchanger and the outlet temperature t2 when the branch flow is normal, and the temperature difference Δ2 between the intermediate temperature t1 ″ and the outlet temperature t3 of the heat exchanger when the branch flow failure occurs. Therefore, even if the temperature difference between the intermediate temperature of the heat exchanger and the outlet temperature is measured, the values are all small, and based on this value, the normal or defective flow can be accurately determined. Cannot be determined.
[0034]
Therefore, in the above configuration, when a refrigerant having a temperature gradient is used, the outlet temperature (t2, t3) of the refrigerant of each use-side heat exchanger and the inlet temperature of the load-side medium to each use-side heat exchanger. The temperature difference Δ from (t0) is detected, and by controlling the valve opening of each of the electronic control valves 17, 27, 8 based on this detected value, the flow to each of the usage-side units is performed. Referring to FIG. 1, the outlet temperature (t2, t3) of the refrigerant of the use side heat exchanger is detected by temperature sensors 41, 43, 45, and the inlet temperature (t0) of the load side medium to the use side heat exchanger. ) Are detected by the temperature sensors 42, 44, 46. The temperature sensors 42 and 44 detect the temperature of the water in the water pipe, and the temperature sensor 46 detects the air temperature of the conditioned room.
[0035]
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to this.
[0036]
【The invention's effect】
According to the present invention, even when the use-side temperatures of the use-side units are different, accurate branch control to each use-side heat exchanger can be performed.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a refrigeration apparatus according to the present invention.
FIG. 2 is an enthalpy-pressure diagram of a supercritical cycle.
FIG. 3 is a diagram showing a temperature change of the heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat source side unit 2 Compressor 3 Heat source side heat exchanger 5 Air conditioning unit 6 User side heat exchanger 8, 17, 27 Electronic control valve 10 Hot water supply unit 11 Gas cooler 20 Floor heating unit 21 Gas cooler 30 Refrigeration device

Claims (5)

圧縮機及び熱源側熱交換器を備えた熱源側ユニットに、利用側熱交換器を備え、利用側熱交換器の利用側温度が互いに異なる複数台の利用側ユニットを、冷媒配管を介して並列に接続し、運転中に高圧側が超臨界圧力となる冷媒を上記冷媒配管内に封入した冷凍装置において、
各利用側ユニットの負荷に応じて各利用側ユニットへの冷媒流入量を変化させる分流制御手段を備えたことを特徴とする冷凍装置。
A heat source side unit provided with a compressor and a heat source side heat exchanger, a use side heat exchanger is provided, and a plurality of use side units having different use side temperatures of the use side heat exchanger are arranged in parallel via refrigerant piping. In a refrigeration system in which a refrigerant whose high pressure side is at a supercritical pressure during operation is sealed in the refrigerant pipe,
A refrigeration apparatus comprising: a diversion control unit that changes a refrigerant inflow amount into each usage-side unit according to a load of each usage-side unit.
圧縮機及び熱源側熱交換器を備えた熱源側ユニットに、利用側熱交換器を備え、利用側熱交換器の利用側温度が互いに異なる複数台の利用側ユニットを、冷媒配管を介して並列に接続し、運転中に高圧側が超臨界圧力となる冷媒を上記冷媒配管内に封入した冷凍装置において、
各利用側熱交換器の冷媒の出口温度と負荷側の媒体の各利用側熱交換器への入口温度との温度差に応じて各利用側ユニットへの冷媒流入量を変化させる分流制御手段を備えたことを特徴とする冷凍装置。
A heat source side unit provided with a compressor and a heat source side heat exchanger, a use side heat exchanger is provided, and a plurality of use side units having different use side temperatures of the use side heat exchanger are arranged in parallel via refrigerant piping. In a refrigeration system in which a refrigerant whose high pressure side is at a supercritical pressure during operation is sealed in the refrigerant pipe,
Dividing control means for changing the amount of refrigerant flowing into each use-side unit according to the temperature difference between the outlet temperature of the refrigerant of each use-side heat exchanger and the inlet temperature of the load-side medium to each use-side heat exchanger. A refrigeration apparatus comprising:
上記利用側ユニットの少なくとも一台が、利用側熱交換器に水配管を介して貯湯タンクを接続した給湯ユニットであることを特徴とする請求項1又は2記載の冷凍装置。3. The refrigeration system according to claim 1, wherein at least one of the use side units is a hot water supply unit in which a hot water storage tank is connected to the use side heat exchanger via a water pipe. 上記利用側ユニットの少なくとも一台が、利用側熱交換器に水配管を介して床暖房パネルを接続した床暖房ユニットであることを特徴とする請求項1又は2記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein at least one of the use-side units is a floor heating unit in which a floor heating panel is connected to the use-side heat exchanger via a water pipe. 上記分流制御手段が冷媒流入量を制御する電子制御弁を含むことを特徴とする請求項1乃至4のいずれか一項記載の冷凍装置。The refrigeration apparatus according to any one of claims 1 to 4, wherein the branch control means includes an electronic control valve for controlling a refrigerant inflow amount.
JP2003019754A 2003-01-29 2003-01-29 Refrigerator Pending JP2004232905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019754A JP2004232905A (en) 2003-01-29 2003-01-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019754A JP2004232905A (en) 2003-01-29 2003-01-29 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004232905A true JP2004232905A (en) 2004-08-19

Family

ID=32949551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019754A Pending JP2004232905A (en) 2003-01-29 2003-01-29 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004232905A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183045A (en) * 2006-01-06 2007-07-19 Hitachi Appliances Inc Heat pump type air-conditioning equipment
WO2007108319A1 (en) * 2006-03-22 2007-09-27 Daikin Industries, Ltd. Refrigerating apparatus
JP2011163654A (en) * 2010-02-09 2011-08-25 Mitsubishi Heavy Ind Ltd Hot water supply air conditioner
JP2018124037A (en) * 2017-02-03 2018-08-09 株式会社デンソー Heat pump device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183045A (en) * 2006-01-06 2007-07-19 Hitachi Appliances Inc Heat pump type air-conditioning equipment
WO2007108319A1 (en) * 2006-03-22 2007-09-27 Daikin Industries, Ltd. Refrigerating apparatus
JP2007255750A (en) * 2006-03-22 2007-10-04 Daikin Ind Ltd Freezer
US20090019879A1 (en) * 2006-03-22 2009-01-22 Shinichi Kasahara Refrigeration System
AU2007228237B2 (en) * 2006-03-22 2010-08-05 Daikin Industries, Ltd. Refrigeration system
KR100988712B1 (en) * 2006-03-22 2010-10-18 다이킨 고교 가부시키가이샤 Refrigerating apparatus
CN101907366B (en) * 2006-03-22 2012-11-21 大金工业株式会社 Refrigerating apparatus
JP2011163654A (en) * 2010-02-09 2011-08-25 Mitsubishi Heavy Ind Ltd Hot water supply air conditioner
EP2354688A3 (en) * 2010-02-09 2015-03-11 Mitsubishi Heavy Industries, Ltd. Hot water supply air conditioner
JP2018124037A (en) * 2017-02-03 2018-08-09 株式会社デンソー Heat pump device

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
US9593872B2 (en) Heat pump
WO1998006983A1 (en) Air conditioner
JPWO2006057141A1 (en) Air conditioner
JP2006283989A (en) Cooling/heating system
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
EP3228951B1 (en) Refrigeration cycle apparatus
JP5274174B2 (en) Air conditioner
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP6479181B2 (en) Air conditioner
US20170276391A1 (en) Air-conditioning apparatus
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
GB2566381A (en) Refrigeration cycle system
JP6415701B2 (en) Refrigeration cycle equipment
WO2016166801A1 (en) Air conditioning device
US20220090815A1 (en) Air-conditioning apparatus
JP2005214550A (en) Air conditioner
JP2013204851A (en) Heat pump heating device
JP2018021730A (en) Refrigeration cycle device
JP6801873B2 (en) Refrigeration equipment, temperature control equipment and semiconductor manufacturing system
JP2004232905A (en) Refrigerator
JPWO2019155506A1 (en) Air conditioning system
JP2006003023A (en) Refrigerating unit
JP6964241B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP2013124843A (en) Refrigeration cycle system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040819