WO2007108319A1 - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
WO2007108319A1
WO2007108319A1 PCT/JP2007/054405 JP2007054405W WO2007108319A1 WO 2007108319 A1 WO2007108319 A1 WO 2007108319A1 JP 2007054405 W JP2007054405 W JP 2007054405W WO 2007108319 A1 WO2007108319 A1 WO 2007108319A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
side heat
indoor
heating operation
Prior art date
Application number
PCT/JP2007/054405
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Kasahara
Takahiro Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2007228237A priority Critical patent/AU2007228237B2/en
Priority to CN2007800081990A priority patent/CN101395435B/en
Priority to EP07737919.6A priority patent/EP1998123B1/en
Priority to ES07737919.6T priority patent/ES2671446T3/en
Priority to US12/224,720 priority patent/US20090019879A1/en
Publication of WO2007108319A1 publication Critical patent/WO2007108319A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to a refrigeration apparatus that enables individual heating operations with a plurality of usage-side heat exchangers, and particularly relates to measures against refrigerant stagnation in a dormant usage-side heat exchanger.
  • a refrigeration apparatus that performs a refrigeration cycle by circulating a refrigerant is widely applied to air conditioners and the like.
  • this air conditioner there is a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to an outdoor unit.
  • the air conditioner of Patent Document 1 includes one outdoor unit having a compressor and an outdoor heat exchanger (heat source side heat exchanger), and an indoor heat exchanger (use side heat exchanger). With two indoor units.
  • the two branch pipes to which the two indoor heat exchangers are connected are each provided with a motor-operated valve so as to correspond to each indoor heat exchanger.
  • the heating operation can be individually performed in each indoor unit by controlling the opening degree of each motor-operated valve. Specifically, for example, when performing heating operation simultaneously with two indoor units, both motor-operated valves are opened at a predetermined opening, and refrigerant is actively sent to both indoor heat exchangers. . As a result, heat is released from the refrigerant flowing through the indoor heat exchangers to the indoor air, and each room is heated.
  • the motor-operated valve corresponding to the indoor unit on the operation side is opened while the motor-operated valve corresponding to the indoor unit on the pause side is closed. As a result, the refrigerant is sent only to the indoor heat exchanger of the indoor unit on the operation side, and the refrigerant in the indoor heat exchanger radiates heat to the indoor air.
  • Patent Document 1 JP-A-8-159590
  • the present invention has been made in view of the strong point, and an object of the present invention is to prevent the stagnation of the refrigerant in the use side heat exchanger on the dormant side.
  • the first invention relates to a heat source side circuit (21) having a compressor (22) and a heat source heat exchanger (23), with respect to the use side heat exchanger (33a, 33b) and the use side heat.
  • a refrigerant circuit (10) configured by connecting a plurality of use side circuits (31a, 31b) each having a motorized valve (34a, 34b) corresponding to the exchanger (33a, 33b) in parallel; It is premised on a refrigeration system that enables individual heat exchangers (33a, 33b) to perform heating operations that also release heat from the refrigerant in the heat exchangers (33a, 33b).
  • the refrigeration apparatus is characterized in that the refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher.
  • an operation in which all the use side heat exchangers (33a, 33b) perform a heating operation and a part of the use side heat exchangers (33b) ) Is stopped, and at the same time, the operation (hereinafter referred to as “partial operation”) in which the remaining usage-side heat exchanger (33a) performs the heating operation becomes possible.
  • all the above-described operations can be performed by opening the motor-operated valves (34a, 34b) corresponding to the use side heat exchangers (33a, 33b) to a predetermined opening degree. That is, in full operation, the refrigerant discharged from the compressor (22) flows through each use side heat exchanger (33a, 33b). As a result, heat is also released from the refrigerants flowing through the use side heat exchangers (33a, 33b), and heating operations are performed in the use side heat exchangers (33a, 33b). As a result, for example, each room is heated by each use side heat exchanger (33a, 33b).
  • the usage side heat exchanger (33b) Use side heat exchange with heating operation at the same time that the opening of the motorized valve (3 4b) corresponding to the The opening degree of the motor-operated valve (34a) corresponding to the container (33a) is opened at a predetermined opening degree.
  • the refrigerant substantially flows only through the use side heat exchanger (33a) on the heating operation side, and the heating operation is not performed on the use side heat exchanger (33b) on the dormant side.
  • the opening of the rest-side motor-operated valve (34b) is reduced, and the rest-side use-side heat exchanger (33b)
  • the refrigerant accumulates in the tank.
  • the use side heat exchanger (33b) As the ambient temperature also decreases, the refrigerant in the idle-side heat exchanger (33b) gradually condenses.
  • the refrigerant discharged from the compressor (22) is set to a critical pressure or higher in order to prevent the refrigerant from stagnation in the idle-side use-side heat exchanger (33b). That is, in the refrigerant circuit (10) of the refrigeration apparatus of the present invention, a refrigeration cycle (so-called supercritical cycle) in which the refrigerant is at a critical pressure or higher is performed. As a result, since the refrigerant in the critical state is stored in the idle side use side heat exchanger (33b) during partial operation, the refrigerant does not condense in the use side heat exchanger (33b).
  • the refrigerant in the idle side use side heat exchanger (33b) of the present invention, does not change phase, so the use side heat exchanger ( The speed of stagnation of the refrigerant in 33b) is reduced.
  • the second aspect of the present invention is the first aspect of the present invention, in performing the operation in which the use side heat exchanger (33a) performing the heating operation and the dormant use side heat exchanger (33b) coexist. And a control means (51) that fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b).
  • the control means (51) when performing the partial operation described above, the control means (51) fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b). As a result, the refrigerant accumulates in the idle side use side heat exchanger (33b), but the supercritical cycle is performed as described above. The amount of refrigerant stagnation in the side heat exchanger (33b) is greatly reduced.
  • the motor-operated valve (34b) is completely closed as described above, the refrigerant flows only through the use side heat exchanger (33a) on the heating operation side. That is, the refrigerant does not flow through the use side heat exchanger (33b) on the dormant side, and wasteful heat radiation is not performed from the use side heat exchanger (33b).
  • control means (51) fully closes the motor-operated valve (34b) corresponding to the idle side use-side heat exchanger (33b).
  • the motor-operated valve (34b) is temporarily opened for a second specified time t2.
  • the control means (51) opens the motor-operated valve (34b) at a predetermined opening (a relatively small opening is preferred). In other words, when a part of the operation is continuously performed for a long period of time, even if the supercritical cycle as described above is performed, the refrigerant gradually enters the idle side use side heat exchanger (33b). May fall asleep.
  • the motor-operated valve (34b) is forcibly opened when the first specified time tl elapses, and the idle side use side heat exchanger (for the second specified time t2) ( The refrigerant is allowed to flow in 33b).
  • the refrigerant in the idle side use side heat exchanger (33b) flows during the second specified time t2, so that the temperature of the use side heat exchanger (33b) and its surroundings rises and the refrigerant stagnates. Is resolved. Thereafter, when the second specified time t2 elapses, the motor-operated valve (34b) is fully closed again.
  • each of the use side heat exchangers (33a, 33b) is configured to be disposed indoors and release the heat of the refrigerant to the indoor air.
  • indoor temperature sensors (44, 45) for detecting the indoor temperature corresponding to the respective use side heat exchangers (33a, 33b) are provided, respectively.
  • the correcting means (52) determines the first specified time tl and the first time based on the room temperature detected by the room temperature sensor (45) of the dormant use side heat exchanger (33b). 2 One specified time t2 Correct one or both.
  • the refrigerant stagnation in the use side heat exchanger (33b) can be performed by correcting the first specified time tl to be shorter or the second specified time t2 to be longer. It can be avoided in advance.
  • a fifth invention comprises refrigerant density detection means (40, 41, 42, 43) for detecting refrigerant density in each use side heat exchanger (33a, 33b), and the control means (51 ) Fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b) on the dormant side, and then the refrigerant density detection means (40, 41, When the detected refrigerant density of 43) becomes larger than the specified refrigerant density, the motor-operated valve (34b) is temporarily opened.
  • the motor-operated valve (34b) corresponding to the idle side use side heat exchanger (33b) is fully closed, and then the idle side use side heat exchange is performed.
  • the refrigerant density in the vessel (33b) is detected by the refrigerant density detecting means (40, 41, 43). That is, the refrigerant detection means (40, 41, 43) indirectly detects the amount of the refrigerant accumulated in the idle side use side heat exchanger (33b) based on the refrigerant density.
  • the control means (51) is operated by the motor operated valve (34b). Is temporarily released. As a result, the stagnation of the refrigerant in the use side heat exchanger (33b) on the dormant side can be avoided beforehand.
  • the sixth invention is characterized in that, in any one of the first to fifth power 4 inventions, the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. .
  • a seventh invention is the invention of any one of the second to fifth powers 4, wherein each use side heat exchanger (33a , 33b) and an opening / closing mechanism that can open and close each of the air outlets, and each of the opening / closing mechanisms includes a blower of the use side heat exchanger (33b) that performs a heating operation.
  • the outlet is configured to be closed while the outlet of the use side heat exchanger (33a) on the dormant side is closed.
  • each air outlet is provided with an opening / closing mechanism for opening or closing the air outlet.
  • the open / close mechanisms of all the air outlets are opened, and the air heated by the respective use side heat exchangers (33a, 33b) is blown out from the air outlets into the room or the like.
  • the opening / closing mechanism of the outlet side of the heating-side heat exchanger (33a) is opened, while the opening / closing mechanism of the outlet-side heat exchanger (33b) is closed. Closed state.
  • the refrigerant discharged from the compressor (22) exceeds the critical pressure.
  • a critical cycle is performed. For this reason, even if the opening degree of the motor-operated valve (34b) on the suspension side is set to a very small opening or a fully closed state during the partial operation described above, the refrigerant will stagnate in the utilization side heat exchanger (33a, 33b) on the suspension side. Become.
  • the rest-side motor operated valve (34b) is fully closed when performing partial operation. Therefore, according to the second aspect of the invention, since all the refrigerant is sent to the heating-side use-side heat exchanger (33a), wasteful heat dissipation is performed by the dormant-side use-side heat exchanger (33b). Can be avoided. Therefore, according to the present invention, it is possible to improve the heating capacity of the use-side heat exchanger (33a) on the heating side, and to improve the COP (coefficient of performance) of this refrigeration apparatus.
  • the motor-operated valve (34b) that is once fully closed when performing a partial operation is opened only during the second specified time t2 after the first specified time tl has elapsed. Yes. Therefore, according to the third aspect of the present invention, it is possible to reliably eliminate the stagnation of the refrigerant in the idle-side heat exchanger (33b) when part of the operation is continued for a long time. The reliability of the refrigeration equipment can be ensured.
  • the fourth invention during the partial operation, the first specified time tl and the second specified time t2 are corrected based on the room temperature around the inactive use side heat exchanger (33b). It is doing so. For this reason, according to the fourth aspect of the invention, it is ensured that the fully closed time of the motor-operated valve (34b) becomes longer than necessary, and the refrigerant stagnates in the idle side use side heat exchanger (33b). Can be avoided. In addition, according to the fourth aspect of the present invention, it is ensured that the open time of the motor-operated valve (34b) becomes longer than necessary, and wasteful heat dissipation is performed in the idle side heat exchanger (33b). Can be avoided.
  • the refrigerant density in the idle-side heat exchanger (33b) is detected during partial operation, and the refrigerant density becomes larger than the specified refrigerant density.
  • the motor-operated valve (34b) that has been fully closed is temporarily opened. That is, in the fifth aspect of the invention, the amount of refrigerant stored in the idle-side use-side heat exchanger (33b) is indirectly obtained, and the motor-operated valve (34b) is opened when the amount of refrigerant increases. Accordingly, it is possible to reliably avoid the stagnation of the refrigerant in the idle side use side heat exchanger (33b).
  • the outlet of the idle side use side heat exchanger (33b) is closed by the opening / closing mechanism during partial operation, the use side heat exchanger The decrease in the ambient temperature of (33b) can be suppressed, and the refrigerant stagnation in the use side heat exchanger (33b) can be more effectively avoided.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to an embodiment.
  • FIG. 2 is a piping system diagram showing the refrigerant flow in the refrigerant circuit during all heating operations.
  • FIG. 3 is a piping diagram showing the refrigerant flow in the refrigerant circuit during partial heating operation.
  • FIG. 4 is a PH diagram (Mollier diagram) of the supercritical cycle according to the embodiment.
  • FIG. 5 is a PH diagram (Mollier diagram) of a refrigeration cycle according to a conventional example.
  • FIG. 6 is a piping diagram showing the refrigerant flow in the refrigerant circuit during partial heating operation of an air conditioner according to a modification.
  • FIG. 7 is a graph showing the behavior of changes in refrigerant density and refrigerant temperature from the inlet to the outlet of the pause-side indoor heat exchanger in the embodiment.
  • FIG. 8 is a graph showing the behavior of changes in the refrigerant density and refrigerant temperature from the inlet to the outlet of the idle indoor heat exchanger in the conventional example.
  • Air conditioner (refrigeration equipment)
  • the refrigeration apparatus constitutes a so-called multi-type air conditioner (1) capable of heating and cooling a room.
  • this air conditioner (1) includes one outdoor unit (20) installed outdoors, and first and second indoor units (30a, 30a, 30) installed in different rooms. 30b).
  • the outdoor unit (20) is provided with an outdoor circuit (21) constituting a heat source side circuit.
  • the first indoor unit (30a) includes a first indoor side circuit (31a) that constitutes a use side circuit
  • the second indoor unit (30b) includes a second indoor side circuit (31b that constitutes a use side circuit).
  • Each indoor circuit (31a, 31b) is connected in parallel to the outdoor circuit (21) via the first connection pipe (11) and the second connection pipe (12).
  • the refrigerant circuit (10) is configured in which the refrigerant circulates and the refrigeration cycle is performed.
  • This refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.
  • the outdoor circuit (21) is provided with a compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25).
  • the compressor (22) is a fully-enclosed high-pressure dome type scroll compressor. Electric power is supplied to the compressor (22) via an inverter. That is, the capacity of the compressor (22) can be changed by changing the rotational speed of the compressor motor by changing the output frequency of the inverter.
  • the outdoor heat exchanger (23) is a cross-fin type fin 'and' tube heat exchanger and constitutes a heat source side heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air.
  • the outdoor expansion valve (24) is an electronic expansion valve whose opening degree can be adjusted.
  • the four-way selector valve (25) has first to fourth ports.
  • the four-way selector valve (25) has a first port connected to the discharge pipe (22a) of the compressor (22), a second port connected to the outdoor heat exchanger (23), and a third port connected to the compressor. It is connected to the suction pipe (22b) of (22), and the fourth port is connected to the first connection pipe (11).
  • the four-way selector valve (25) has a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (indicated by a solid line in FIG. 1), the first port, The second port communicates with each other, and the third port and the fourth port communicate with each other (shown by a broken line in FIG. 1).
  • the first indoor circuit (31a) is provided with a first branch pipe (32a) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side. I'm going.
  • the first branch pipe (32a) is provided with a first indoor heat exchanger (33a) and a first indoor expansion valve (34a).
  • the second chamber inner circuit (31b) is provided with a second branch pipe (32b) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side.
  • the second branch pipe (32b) Two indoor heat exchangers (33b) and a second indoor expansion valve (34b) are provided.
  • Each indoor heat exchanger (33a, 33b) is a cross-fin type fin-and-tube heat exchanger, and constitutes a use side heat exchanger. In each indoor heat exchanger (33a, 33b), heat is exchanged between the refrigerant and room air.
  • the first indoor expansion valve (34a) and the second indoor expansion valve (34b) are motor-operated valves, and respectively constitute electronic expansion valves whose opening degrees can be adjusted.
  • the first indoor expansion valve (31 ⁇ 2) is provided on the second connecting pipe (12) side of the first branch pipe (32a).
  • the second indoor expansion valve (34b) is provided on the second connecting pipe (12) side of the second branch pipe (32b).
  • the first indoor expansion valve (34a) can adjust the flow rate of the refrigerant flowing through the first indoor heat exchanger (33a), and the second indoor expansion valve (34b) can adjust the second indoor heat exchanger (33b). The flow rate of the refrigerant flowing through can be adjusted.
  • the refrigerant circuit (10) is provided with a high pressure sensor (40), a high pressure temperature sensor (41), a first refrigerant temperature sensor (42), and a second refrigerant temperature sensor (43). .
  • the high pressure sensor (40) detects the pressure of the refrigerant discharged from the compressor (22).
  • the high pressure temperature sensor (41) detects the temperature of the refrigerant discharged from the compressor (22).
  • the first refrigerant temperature sensor (42) is provided at the outlet of the first indoor heat exchanger (33a), and detects the temperature of the refrigerant immediately after flowing out of the first indoor heat exchanger (33a).
  • the second refrigerant temperature sensor (43) is provided at the outlet of the second indoor heat exchanger (33b), and detects the temperature of the refrigerant immediately after flowing out of the second indoor heat exchanger (33b).
  • the first indoor unit (30a) is provided with a first indoor temperature sensor (44) in the vicinity of the first indoor heat exchanger (33a).
  • the first indoor temperature sensor (44) detects the air temperature around the first indoor heat exchanger (33a).
  • the second indoor unit (30b) is provided with a second indoor temperature sensor (45) in the vicinity of the second indoor heat exchanger (33b).
  • the second indoor temperature sensor (45) detects the air temperature around the second indoor heat exchanger (33b).
  • a refrigeration cycle (supercritical cycle) is performed by setting the refrigerant discharged from the compressor (22) to a critical pressure or higher.
  • the first indoor unit (30a) and the second indoor unit (30b) can be operated individually.
  • the first indoor unit (30a) is heated while the second indoor unit (30b) is in a dormant state (hereinafter referred to as partial heating operation).
  • partial heating operation Can be operated in both the first indoor unit (30a) and the second indoor unit (30b) (hereinafter, all referred to as heating operation).
  • the air conditioner (1) is provided with a controller (50) for controlling the opening degree of each indoor expansion valve (34a, 34b) in the partial heating operation.
  • the controller (50) is provided with a control means (51) and a correction means (52). Details of the opening control of the indoor expansion valves (34a, 34b) by the controller (50) will be described later.
  • the air conditioner (1) In the air conditioner (1), it is possible to perform an operation in which heating is performed in each indoor unit (30a, 30b) and an operation in which cooling is performed in each indoor unit (30a, 30b).
  • the heating operation of the air conditioner (1) will be described.
  • the four-way selector valve (25) is set to the state shown in FIGS. 2 and 3, and the above-described full heating operation and partial heating operation are switched.
  • the first indoor expansion valve (34a) and the second indoor expansion valve (34b) are opened at a predetermined opening.
  • the refrigerant compressed to the critical pressure or higher by the compressor (22) passes through the four-way switching valve (25) and the first connection pipe (11), and the first branch pipe (32a) and Split to the second branch pipe (32b).
  • the refrigerant flowing into the first branch pipe (32a) flows through the first indoor heat exchanger (33a).
  • the refrigerant releases heat to the indoor air. That is, in the first indoor heat exchanger (33a), a heating operation for heating the room air is performed, and the room in which the first indoor unit (30a) is installed is heated.
  • the refrigerant flowing out of the first indoor heat exchanger (33a) passes through the first indoor expansion valve (34a) and flows into the second connecting pipe (12).
  • the refrigerant flowing into the second branch pipe (32b) flows through the second indoor heat exchanger (33b).
  • the refrigerant releases heat to the indoor air. That is, in the second indoor heat exchanger (33b), a heating operation for heating the room air is performed, and the room in which the second indoor unit (30b) is installed is heated.
  • the refrigerant flowing out of the second indoor heat exchanger (33b) passes through the second indoor expansion valve (34b) and flows into the second connection pipe (12).
  • the refrigerant joined in the second communication pipe (12) is reduced in pressure when passing through the outdoor expansion valve (24) and flows through the power outdoor heat exchanger (23).
  • the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant flowing out of the outdoor heat exchanger (23) is sucked into the compressor (22) via the four-way switching valve (25). In the compressor (22), this refrigerant is compressed to a critical pressure or higher.
  • the heating operation of the second indoor heat exchanger (33b) is stopped at the same time as the heating operation of the first indoor heat exchanger (33a), or the second indoor heat exchanger (33b) is used.
  • an operation for stopping the heating operation of the first indoor heat exchanger (33a) is performed.
  • the controller (51) of the controller (50) opens the first indoor expansion valve (34a) at a predetermined opening, while the second indoor expansion valve (34b) is fully opened. Set to the closed state.
  • the first indoor expansion valve (34a) is opened, the first indoor heat exchanger (33a) performs the heating operation as described above.
  • the second indoor expansion valve (34b) is fully closed, the refrigerant does not pass through the second indoor expansion valve (34b). Accordingly, the refrigerant does not circulate through the second indoor heat exchanger (33b), and the second indoor heat exchanger (33b) enters a dormant state.
  • the second indoor heat exchanger (33b) When the second indoor heat exchanger (33b) is suspended as described above, the refrigerant gradually accumulates in the second indoor heat exchanger (33b).
  • a supercritical cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher is performed even in the partial heating operation. Therefore, even if the ambient temperature of the second indoor heat exchanger (33b) decreases due to the suspension of the second indoor heat exchanger (33b), the refrigerant in the second indoor heat exchanger (33b) Does not condense. Accordingly, the rate at which the refrigerant stagnates in the second indoor heat exchanger (33b) is significantly slower than that in which a subcritical refrigeration cycle is performed using, for example, HFC.
  • Fig. 4 shows the PH diagram of the supercritical cycle using carbon dioxide of this embodiment
  • Fig. 5 shows the P_H diagram of the subcritical refrigeration cycle using conventional HFC.
  • the pressure of the refrigerant discharged from the compressor becomes smaller than the critical pressure.
  • the refrigerant after compression in this refrigeration cycle has, for example, a pressure of 2.7 MPa, a temperature of 80 ° C., and a refrigerant density p of 85 kg / m 3 .
  • this refrigerant is an indoor heat exchanger
  • the condensed refrigerant When condensed, the condensed refrigerant has a pressure of 2.7 MPa, a temperature of 37 ° C, and a refrigerant density P power of 996 kg / m 3 .
  • the outlet side of the indoor heat exchanger In other words, in the conventional refrigeration cycle, the outlet side of the indoor heat exchanger
  • the density ratio / p) of the refrigerant density P and the refrigerant density p on the inlet side is 11.72.
  • the pressure of the refrigerant discharged from the compressor is equal to or higher than the critical pressure.
  • the refrigerant after compression in this cycle has, for example, a pressure of 10 MPa, a temperature of 80 ° C., and a refrigerant density p force of 21 kgZm 3 .
  • this refrigerant is released by the indoor heat exchanger.
  • the refrigerant after heat dissipation has a pressure of 10 MPa, a temperature of 35 ° C, and a refrigerant density p of
  • the density ratio of the conventional one is more than three times that of the present embodiment.
  • the refrigerant condenses in the indoor heat exchanger on the dormant side, the refrigerant becomes high density and the volume decreases, so that the refrigerant is successively sent to the indoor heat exchanger. Become. Therefore, in the conventional system, the refrigerant stagnates in the indoor heat exchanger on the pause side, and the speed is relatively high.
  • the control means (51) of the present embodiment starts the partial heating operation and sets the second indoor expansion valve (34b) to the fully closed state, and when the first specified time tl has elapsed, The opening of (34b) is opened at a very small opening for the second specified time t2.
  • the refrigerant flows through the second indoor heat exchanger (33b) at a minute flow rate, and the temperature of the second indoor heat exchanger (33b) and its surroundings are reduced. To rise.
  • the control means (51) again closes the second indoor expansion valve (34b).
  • the amount of the refrigerant that stagnates in the second indoor heat exchanger (33b) dependss on the ambient temperature of the exchanger (33b). In other words, when the temperature of the room where the second indoor heat exchanger (33b) is installed is relatively low, the refrigerant stagnates in the second indoor heat exchanger (33b) and the speed increases. When the room temperature is relatively high, the refrigerant stagnates and the speed decreases. For this reason, the correction means (52) of the controller (50) of the present embodiment detects the room temperature around the pause-side indoor heat exchanger (33b) with the room temperature sensor (45), and this room temperature is detected. Based on this, the first specified time tl and the second specified time t2 are corrected.
  • the correcting means (52) corrects to shorten the first specified time tl. Do. Further, when the detected room temperature of the second room temperature sensor (45) is relatively low when the first specified time tl has elapsed, the correction means (52) performs correction to increase the second specified time t2. As a result, the time for which the second indoor expansion valve (34b) is fully closed is shortened during partial heating operation, so that it is possible to prevent the refrigerant from sleeping in the second indoor heat exchanger (33b). Can be resolved. Note that the correction of the first specified time tl and the second specified time t2 may be either one or both.
  • the correcting means (52) performs a correction to increase the first specified time tl. Further, when the detected room temperature of the second room temperature sensor (45) is relatively high when the first specified time tl has elapsed, the correcting means (52) performs correction to shorten the second specified time t2. As a result, the time required for opening the second indoor expansion valve (34b) in the partial heating operation is shortened, so that wasteful heat radiation is not performed in the second indoor heat exchanger (33b) on the pause side. .
  • the refrigerant discharged from the compressor (22) is set to a critical pressure or higher.
  • the supercritical cycle is performed.
  • the refrigerant will not condense in the inactive indoor heat exchanger (33b) even when the opening of the inactive indoor expansion valve (34b) is fully closed during partial heating operation. Therefore, according to the above-described embodiment, it is possible to drastically reduce the cooling speed when the cooling medium stagnates in the inactive indoor heat exchanger (33b).
  • the shortage of refrigerant in the indoor heat exchanger (33a) during the heating operation can be avoided, and the heating capacity of the indoor heat exchanger (33a) on the heating operation side can be sufficiently obtained.
  • the indoor expansion valve (34b) on the pause side is fully closed when performing a partial heating operation. For this reason, according to the said embodiment, useless heat dissipation in the indoor heat exchanger (33b) of a dormant side can be prevented. Therefore, the COP (performance factor) of the air conditioner (1) can be improved.
  • the indoor expansion valve (34b) which is once fully closed when performing the partial heating operation, is opened only for the second specified time t2 after the first specified time tl has elapsed. ing. Therefore, according to the above-described embodiment, even when partial heating operation is continuously performed for a long period of time, it is possible to reliably eliminate the stagnation of the refrigerant in the inactive indoor heat exchanger (33b). In addition, it is possible to reliably prevent the refrigerant amount from being insufficient in the indoor heat exchanger (33a) during the heating operation.
  • the first specified time tl and the second specified time t2 are corrected based on the room temperature around the inactive indoor heat exchanger (33b). I am doing so. For this reason, according to the above embodiment, it is possible to prevent the indoor expansion valve (34b) from being fully closed longer than necessary, and the refrigerant from sleeping in the inactive indoor heat exchanger (33b). . Further, according to the above embodiment, the open time of the indoor expansion valve (34b) becomes longer than necessary, and heat is discharged wastefully in the refrigerant heat in the indoor heat exchanger (33b) on the pause side. Can be avoided. Therefore, it is possible to further improve the COP of the air conditioner (1).
  • the indoor expansion valves (33a, 33b) on the pause side are fully closed, the indoor expansion valves (33a, 33b) are set based on the first specified time tl and the second specified time t2. 34b) is opened and closed.
  • the opening control of such an indoor expansion valve (34b) instead, the opening degree of the indoor expansion valve (34b) may be controlled as shown in FIG.
  • the refrigerant pressure detected by the high pressure sensor (40), the refrigerant temperature detected by the high pressure sensor (41), and the refrigerant temperature detected by the first refrigerant temperature sensor (42). And the refrigerant temperature detected by the second refrigerant temperature sensor (43) are output to the controller (50). Then, in this controller (50), the density of the refrigerant flowing through the pause-side indoor heat exchanger (33b) in the partial heating operation is determined based on the detection values of these sensors (40, 41, 42, 43). As you ask. That is, each of the sensors (40, 41, 42, 43) constitutes a refrigerant density detecting means for detecting the refrigerant density of the indoor heat exchanger (33b) on the pause side.
  • control means (51) when performing a partial heating operation similar to that in the above embodiment, the control means (51) first sets the opening of the second indoor expansion valve (34b) to a fully closed state. On the other hand, when this partial heating operation is continued for a long period of time, the refrigerant gradually stagnates in the second indoor heat exchanger (33b).
  • the refrigerant density in the second indoor heat exchanger (33b) on the pause side is obtained from the refrigerant pressure and the refrigerant temperature.
  • the refrigerant pressure detected by the controller (50) force high pressure sensor (40) and the high pressure temperature sensor (41) are detected.
  • the refrigerant density in the second indoor heat exchanger (33b) is obtained based on the refrigerant temperature and the refrigerant temperature detected by the second refrigerant temperature sensor (43) on the pause side.
  • the refrigerant pressure detected by the high pressure sensor (40) is substantially the same as the refrigerant pressure in the second indoor heat exchanger (33b).
  • the refrigerant temperature detected by the high-pressure temperature sensor (41) can be regarded as the refrigerant temperature flowing into the second indoor heat exchanger (33b), and the refrigerant temperature detected by the second refrigerant temperature sensor (43). Is the refrigerant temperature flowing out of the second indoor heat exchanger (33b). Therefore, the average temperature of the refrigerant in the indoor heat exchanger (33b) can be obtained from these inflow and outflow refrigerant temperatures. Then, the average refrigerant density of the refrigerant in the second indoor heat exchanger (33b) can be obtained from the average refrigerant temperature and the refrigerant pressure.
  • the refrigerant density obtained as described above serves as an index representing the amount of refrigerant stored in the second indoor heat exchanger (33b).
  • the control means (51) of this modification partly starts the heating operation.
  • the second indoor expansion valve (34b) is fully closed, if the refrigerant density obtained from the detected values of the sensors (40, 41, 43) exceeds the specified refrigerant density, the second indoor heat exchanger (33b )
  • the second indoor expansion valve (34b) is temporarily opened because it is determined that a large amount of refrigerant is stored in the inside. As a result, the stagnation of the refrigerant in the second indoor heat exchanger (33b) is reliably eliminated.
  • the high pressure sensor (40), the high pressure sensor ( 41) and the refrigerant density in the first indoor heat exchanger (33a) are obtained based on the detected value of the first refrigerant temperature sensor (42) on the rest side.
  • the first indoor expansion valve (34a) is opened, and the stagnation of the refrigerant in the first indoor heat exchanger (33a) is eliminated.
  • the refrigerant density in the inactive indoor heat exchanger (33b) is detected, and when this refrigerant density becomes greater than the specified refrigerant density, The expansion valve (34b) is temporarily opened. That is, in this modification, the amount of refrigerant stored in the indoor heat exchanger (33b) on the rest side is obtained indirectly, and the indoor expansion valve (34b) is opened when the amount of refrigerant increases. Therefore, it is possible to reliably avoid the stagnation of the refrigerant in the inactive indoor heat exchanger (33b).
  • each indoor heat exchanger (33a, 33b) on the dormant side is operated.
  • the speed at which the refrigerant sleeps can be greatly reduced.
  • the average refrigerant density of (33b) can also be grasped more accurately.
  • the refrigerant density from the inlet to the outlet of a conventional indoor heat exchanger (which performs a refrigeration cycle in which high pressure becomes subcritical pressure) is measured.
  • the change in (refrigerant temperature) the behavior of the change is weak in linearity. This is because in the conventional system, the refrigerant condenses and changes phase in the indoor heat exchanger on the idle side. Therefore, to accurately grasp the amount of refrigerant stored in the indoor heat exchanger, it is necessary to detect the refrigerant density (refrigerant temperature) at multiple locations (for example, three or more points). Too much.
  • the refrigerant density at the inlet and the outlet is obtained as in the above-described modification example, so that the data table stored in the controller (50) in advance (the refrigerant density is related to the behavior of the refrigerant temperature change). Based on data, etc., it is possible to accurately predict the behavior of refrigerant density from the inlet to the outlet of the indoor heat exchanger (33b) to the outlet. Then, based on the refrigerant density thus obtained, the timing of opening the indoor expansion valves (34a, 34b) is determined, so that the stagnation of the refrigerant in the inactive indoor heat exchanger (33b) can be further ensured. It can be avoided.
  • a louver or the like that can freely open and close each outlet is provided at each outlet from which air that has passed through each use-side heat exchanger (33a, 33b) is blown out.
  • An opening / closing mechanism may be provided. Then, during the partial operation as described above, only the outlet corresponding to the use side heat exchanger (33b) on the pause side may be closed by the opening / closing mechanism. In this case, it is possible to suppress the heat of the refrigerant accumulated in the use side heat exchanger (33b) on the dormant side from escaping into the indoor space via the blowout port.
  • a sealing material such as packing is preferably provided around the louver in the opening / closing mechanism such as a louver in order to improve the sealing performance when the outlet is sealed.
  • the present invention is effective as a countermeasure against the stagnation of the refrigerant in the dormant use side heat exchanger in the refrigerating apparatus that can individually perform the heating operation with the plurality of use side heat exchangers. It is for.

Abstract

A refrigerating apparatus including a refrigerant circuit (10) in which such a refrigerating cycle that the pressure of a refrigerant discharged from a compressor (22) is increased to a critical value or higher. When the heating operation is performed in a first indoor heat exchanger (33a) and a second indoor heat exchanger (33b) is stopped to operate, an indoor expansion valve (34b) corresponding to the indoor heat exchanger (33b) being stopped to operate is fully closed.

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、複数の利用側熱交換器で個別に加熱動作を可能とする冷凍装置に関 し、特に休止状態の利用側熱交換器における冷媒の寝込み対策に係るものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a refrigeration apparatus that enables individual heating operations with a plurality of usage-side heat exchangers, and particularly relates to measures against refrigerant stagnation in a dormant usage-side heat exchanger. Background art
[0002] 冷媒を循環させて冷凍サイクルを行う冷凍装置は、空気調和装置等に広く適用さ れている。この空調調和装置として、複数の室内ユニットが室外ユニットに対して並列 に接続される、いわゆるマルチ式空気調和装置がある。  A refrigeration apparatus that performs a refrigeration cycle by circulating a refrigerant is widely applied to air conditioners and the like. As this air conditioner, there is a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to an outdoor unit.
[0003] 例えば特許文献 1の空気調和装置は、圧縮機及び室外熱交換器 (熱源側熱交換 器)を有する 1台の室外ユニットと、各々が室内熱交換器 (利用側熱交換器)を有する 2台の室内ユニットとを備えている。 2つの室内熱交換器がそれぞれ接続される 2本 の分岐配管には、各室内熱交換器に対応するように電動弁がそれぞれ設けられてい る。  [0003] For example, the air conditioner of Patent Document 1 includes one outdoor unit having a compressor and an outdoor heat exchanger (heat source side heat exchanger), and an indoor heat exchanger (use side heat exchanger). With two indoor units. The two branch pipes to which the two indoor heat exchangers are connected are each provided with a motor-operated valve so as to correspond to each indoor heat exchanger.
[0004] この空気調和装置は、各電動弁の開度を制御することで、各室内ユニットで個別に 暖房運転が可能となっている。具体的には、例えば 2台の室内ユニットで同時に暖房 運転を行う場合、両方の電動弁を所定の開度で開放状態とし、両方の室内熱交換器 に冷媒を積極的に送り込むようにしている。その結果、両室内熱交換器を流れる冷 媒から室内空気へ熱が放出され、各室内の暖房が行われる。一方、例えば 1台の室 内ユニットのみで暖房運転を行う場合、運転側の室内ユニットに対応する電動弁を開 放させる一方、休止側の室内ユニットに対応する電動弁を閉じるようにしている。その 結果、運転側の室内ユニットの室内熱交換器のみに冷媒が送られ、この室内熱交換 器内の冷媒が室内空気に放熱する。  [0004] In this air conditioner, the heating operation can be individually performed in each indoor unit by controlling the opening degree of each motor-operated valve. Specifically, for example, when performing heating operation simultaneously with two indoor units, both motor-operated valves are opened at a predetermined opening, and refrigerant is actively sent to both indoor heat exchangers. . As a result, heat is released from the refrigerant flowing through the indoor heat exchangers to the indoor air, and each room is heated. On the other hand, for example, when heating operation is performed with only one indoor unit, the motor-operated valve corresponding to the indoor unit on the operation side is opened while the motor-operated valve corresponding to the indoor unit on the pause side is closed. As a result, the refrigerant is sent only to the indoor heat exchanger of the indoor unit on the operation side, and the refrigerant in the indoor heat exchanger radiates heat to the indoor air.
特許文献 1:特開平 8— 159590号公報  Patent Document 1: JP-A-8-159590
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、上述のように 1台の室内ユニットのみを継続して運転する場合、休止側の 室内熱交換器内の冷媒が凝縮し、冷媒が室内熱交換器内に溜まり込んでしまう、い わゆる冷媒の寝込みが生じてしまうことがある。このように休止側の室内熱交換器内 に冷媒が寝込んでいくと、運転側 (加熱動作側)の室内熱交換器を流れる冷媒量が 不足気味となり、この室内ユニットの暖房能力が低下してしまう。 [0005] By the way, as described above, when only one indoor unit is operated continuously, The refrigerant in the indoor heat exchanger may condense, and the refrigerant may accumulate in the indoor heat exchanger, so-called refrigerant stagnation may occur. Thus, if the refrigerant stagnates in the indoor heat exchanger on the pause side, the amount of refrigerant flowing through the indoor heat exchanger on the operation side (heating operation side) becomes insufficient, and the heating capacity of this indoor unit decreases. End up.
[0006] 本発明は、力かる点に鑑みてなされたものであり、その目的は、休止側の利用側熱 交換器における冷媒の寝込みを防止することである。  [0006] The present invention has been made in view of the strong point, and an object of the present invention is to prevent the stagnation of the refrigerant in the use side heat exchanger on the dormant side.
課題を解決するための手段  Means for solving the problem
[0007] 第 1の発明は、圧縮機 (22)及び熱源熱交換器 (23)を有する熱源側回路 (21)に対 して、利用側熱交換器 (33a,33b)及び該利用側熱交換器 (33a,33b)に対応する電動 弁(34a,34b)をそれぞれ有する複数の利用側回路(31a,31b)が並列に接続されて構 成される冷媒回路(10)を備え、利用側熱交換器 (33a,33b)内の冷媒カも熱を放出す る加熱動作を各利用側熱交換器 (33a,33b)で個別に可能とする冷凍装置を前提とし ている。そして、この冷凍装置は、上記冷媒回路(10)が、圧縮機 (22)の吐出冷媒を 臨界圧力以上とする冷凍サイクルを行うように構成されていることを特徴とするもので ある。 [0007] The first invention relates to a heat source side circuit (21) having a compressor (22) and a heat source heat exchanger (23), with respect to the use side heat exchanger (33a, 33b) and the use side heat. A refrigerant circuit (10) configured by connecting a plurality of use side circuits (31a, 31b) each having a motorized valve (34a, 34b) corresponding to the exchanger (33a, 33b) in parallel; It is premised on a refrigeration system that enables individual heat exchangers (33a, 33b) to perform heating operations that also release heat from the refrigerant in the heat exchangers (33a, 33b). The refrigeration apparatus is characterized in that the refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher.
[0008] 第 1の発明の冷凍装置では、全ての利用側熱交換器 (33a,33b)で加熱動作を行う 運転 (以下、全部運転と称する)と、一部の利用側熱交換器 (33b)の加熱動作を休止 すると同時に残りの利用側熱交換器(33a)で加熱動作を行う運転 (以下、一部運転と 称する)とが可能となる。  [0008] In the refrigeration apparatus according to the first aspect of the present invention, an operation (hereinafter referred to as a full operation) in which all the use side heat exchangers (33a, 33b) perform a heating operation and a part of the use side heat exchangers (33b) ) Is stopped, and at the same time, the operation (hereinafter referred to as “partial operation”) in which the remaining usage-side heat exchanger (33a) performs the heating operation becomes possible.
[0009] 具体的に、各利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ 所定開度に開放することで、上記全部運転が可能となる。即ち、全部運転では、圧縮 機 (22)の吐出冷媒が、各利用側熱交換器 (33a,33b)を流れる。その結果、各利用側 熱交換器 (33a,33b)を流れる冷媒カも熱がそれぞれ放出され、各利用側熱交換器 (3 3a,33b)で加熱動作が行われる。その結果、各利用側熱交換器(33a,33b)によって例 えば各室内の暖房が行われる。  [0009] Specifically, all the above-described operations can be performed by opening the motor-operated valves (34a, 34b) corresponding to the use side heat exchangers (33a, 33b) to a predetermined opening degree. That is, in full operation, the refrigerant discharged from the compressor (22) flows through each use side heat exchanger (33a, 33b). As a result, heat is also released from the refrigerants flowing through the use side heat exchangers (33a, 33b), and heating operations are performed in the use side heat exchangers (33a, 33b). As a result, for example, each room is heated by each use side heat exchanger (33a, 33b).
[0010] 一方、各利用側熱交換器(33a,33b)のうちの一部の利用側熱交換器(33b)の加熱 動作を休止させる場合には、休止させる利用側熱交換器 (33b)に対応する電動弁(3 4b)の開度を微小開度、あるいは全閉とすると同時に、加熱動作させる利用側熱交換 器 (33a)に対応する電動弁(34a)の開度を所定開度で開放させる。その結果、冷媒 は、加熱動作側の利用側熱交換器 (33a)のみを実質的に流れることになり、休止側 の利用側熱交換器 (33b)では加熱動作が行われなレ、。 [0010] On the other hand, when the heating operation of some of the usage side heat exchangers (33a, 33b) is paused, the usage side heat exchanger (33b) Use side heat exchange with heating operation at the same time that the opening of the motorized valve (3 4b) corresponding to the The opening degree of the motor-operated valve (34a) corresponding to the container (33a) is opened at a predetermined opening degree. As a result, the refrigerant substantially flows only through the use side heat exchanger (33a) on the heating operation side, and the heating operation is not performed on the use side heat exchanger (33b) on the dormant side.
[0011] ところで、このような一部運転を行う場合には、休止側の電動弁(34b)の開度が小さ くなることに伴レ、、休止側の利用側熱交換器(33b)内に冷媒が溜まり込んでいく。ここ で、例えば HFC等の冷媒を用いて圧縮機の吐出圧力を亜臨界圧力とする冷凍サイ クルを行う場合、利用側熱交換器 (33b)の休止に伴い該利用側熱交換器 (33b)の周 囲温度も低下すると、休止側の利用側熱交換器 (33b)内の冷媒が徐々に凝縮してい く。その結果、休止側の利用側熱交換器(33b)内に冷媒が寝込んでしまうため、加熱 動作側の利用側熱交換器(33a)を流れる冷媒量が不足してしまうという問題が生じる [0011] By the way, when such partial operation is performed, the opening of the rest-side motor-operated valve (34b) is reduced, and the rest-side use-side heat exchanger (33b) The refrigerant accumulates in the tank. Here, for example, when performing a refrigeration cycle in which the discharge pressure of the compressor is a subcritical pressure using a refrigerant such as HFC, the use side heat exchanger (33b) As the ambient temperature also decreases, the refrigerant in the idle-side heat exchanger (33b) gradually condenses. As a result, the refrigerant stagnates in the use side heat exchanger (33b) on the dormant side, resulting in a problem that the amount of refrigerant flowing through the use side heat exchanger (33a) on the heating operation side is insufficient.
[0012] そこで、本発明では、このような休止側の利用側熱交換器(33b)における冷媒の寝 込みを防止するために、圧縮機 (22)の吐出冷媒を臨界圧力以上としている。つまり、 本発明の冷凍装置の冷媒回路(10)では、冷媒を臨界圧力以上とする冷凍サイクル( いわゆる超臨界サイクル)を行うようにしている。その結果、一部運転時の休止側の利 用側熱交換器 (33b)には臨界状態の冷媒が貯まるため、この冷媒が利用側熱交換 器 (33b)内で凝縮することがない。つまり、 HFC等の冷媒を用いた冷凍サイクルを行 う従来のものと比較すると、本発明の休止側の利用側熱交換器 (33b)では、冷媒が 相変化しないため、利用側熱交換器(33b)内での冷媒の寝込みの速度が遅くなる。 [0012] Therefore, in the present invention, the refrigerant discharged from the compressor (22) is set to a critical pressure or higher in order to prevent the refrigerant from stagnation in the idle-side use-side heat exchanger (33b). That is, in the refrigerant circuit (10) of the refrigeration apparatus of the present invention, a refrigeration cycle (so-called supercritical cycle) in which the refrigerant is at a critical pressure or higher is performed. As a result, since the refrigerant in the critical state is stored in the idle side use side heat exchanger (33b) during partial operation, the refrigerant does not condense in the use side heat exchanger (33b). In other words, compared to the conventional one that performs a refrigeration cycle using a refrigerant such as HFC, in the idle side use side heat exchanger (33b) of the present invention, the refrigerant does not change phase, so the use side heat exchanger ( The speed of stagnation of the refrigerant in 33b) is reduced.
[0013] 第 2の発明は、第 1の発明において、加熱動作を行う利用側熱交換器 (33a)と休止 状態の利用側熱交換器 (33b)とが共存する運転を行う際、休止側の利用側熱交換 器 (33b)に対応する電動弁(34b)を全閉する制御手段 (51)を備えてレ、ることを特徴と するものである。  [0013] The second aspect of the present invention is the first aspect of the present invention, in performing the operation in which the use side heat exchanger (33a) performing the heating operation and the dormant use side heat exchanger (33b) coexist. And a control means (51) that fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b).
[0014] 第 2の発明では、上述した一部運転を行う際、制御手段 (51)が休止側の利用側熱 交換器 (33b)に対応する電動弁 (34b)を全閉状態とする。その結果、休止側の利用 側熱交換器 (33b)内には冷媒が溜まり込んでレ、くことになるが、本発明では、上述の 如く超臨界サイクルを行っているため、休止側の利用側熱交換器(33b)内における 冷媒の寝込み量は大幅に削減される。 [0015] 一方、このように電動弁(34b)を完全に閉じた状態とすると、冷媒は加熱動作側の 利用側熱交換器 (33a)のみを流れることになる。即ち、休止側の利用側熱交換器(33 b)を冷媒が流れてこの利用側熱交換器 (33b)から無駄な放熱が行われることはない [0014] In the second invention, when performing the partial operation described above, the control means (51) fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b). As a result, the refrigerant accumulates in the idle side use side heat exchanger (33b), but the supercritical cycle is performed as described above. The amount of refrigerant stagnation in the side heat exchanger (33b) is greatly reduced. On the other hand, when the motor-operated valve (34b) is completely closed as described above, the refrigerant flows only through the use side heat exchanger (33a) on the heating operation side. That is, the refrigerant does not flow through the use side heat exchanger (33b) on the dormant side, and wasteful heat radiation is not performed from the use side heat exchanger (33b).
[0016] 第 3の発明は、第 2の発明において、上記制御手段(51)が、休止側の利用側熱交 換器 (33b)に対応する電動弁(34b)を全閉してから第 1規定時間 tlが経過すると、該 電動弁(34b)を第 2規定時間 t2に亘つて一時的に開放することを特徴とするものであ る。 [0016] In a third aspect based on the second aspect, the control means (51) fully closes the motor-operated valve (34b) corresponding to the idle side use-side heat exchanger (33b). When one specified time tl elapses, the motor-operated valve (34b) is temporarily opened for a second specified time t2.
[0017] 第 3の発明では、上記一部運転を行う際に、休止側の利用側熱交換器 (33b)に対 応する電動弁(34b)を全閉とした後、所定の第 1規定時間 tlが経過すると、制御手段 (51)が電動弁 (34b)を所定開度 (比較的微小な開度が好ましレ、)で開放する。即ち、 一部運転を長期間に亘つて継続して行う場合には、上述のような超臨界サイクルを 行っているとしても、休止側の利用側熱交換器(33b)内に徐々に冷媒が寝込んでし まうことがある。このため、本発明の一部運転では、第 1規定時間 tlが経過することで 電動弁 (34b)を強制的に開放し、第 2規定時間 t2の間だけ休止側の利用側熱交換 器 (33b)内に冷媒を流すようにしている。その結果、第 2規定時間 t2の間に休止側の 利用側熱交換器 (33b)内の冷媒が流れることで、利用側熱交換器 (33b)やその周囲 の温度が高くなり、冷媒の寝込みが解消される。そして、その後に第 2規定時間 t2が 経過すると再び電動弁(34b)が全閉となる。  [0017] In the third invention, when the partial operation is performed, the motor-operated valve (34b) corresponding to the idle-side use-side heat exchanger (33b) is fully closed, and then the predetermined first regulation When the time tl has elapsed, the control means (51) opens the motor-operated valve (34b) at a predetermined opening (a relatively small opening is preferred). In other words, when a part of the operation is continuously performed for a long period of time, even if the supercritical cycle as described above is performed, the refrigerant gradually enters the idle side use side heat exchanger (33b). May fall asleep. For this reason, in the partial operation of the present invention, the motor-operated valve (34b) is forcibly opened when the first specified time tl elapses, and the idle side use side heat exchanger (for the second specified time t2) ( The refrigerant is allowed to flow in 33b). As a result, the refrigerant in the idle side use side heat exchanger (33b) flows during the second specified time t2, so that the temperature of the use side heat exchanger (33b) and its surroundings rises and the refrigerant stagnates. Is resolved. Thereafter, when the second specified time t2 elapses, the motor-operated valve (34b) is fully closed again.
[0018] 第 4の発明は、第 3の発明において、上記各利用側熱交換器 (33a,33b)は、室内に 配置されて室内空気へ冷媒の熱を放出するように構成され、各利用側熱交換器 (33a ,33b)の周囲には、該各利用側熱交換器(33a,33b)に対応する室内の温度を検出す る室内温度センサ (44,45)がそれぞれ設けられ、休止側の利用側熱交換器(33b)に 対応する室内温度センサ (45)の検出温度に基づいて上記第 1規定時間 tl及び第 2 規定時間 t2のいずれか一方又は両方を補正する補正手段(52)を備えていることを 特徴とするものである。  [0018] In a fourth invention according to the third invention, each of the use side heat exchangers (33a, 33b) is configured to be disposed indoors and release the heat of the refrigerant to the indoor air. Around the side heat exchangers (33a, 33b), indoor temperature sensors (44, 45) for detecting the indoor temperature corresponding to the respective use side heat exchangers (33a, 33b) are provided, respectively. Correction means (52 for correcting one or both of the first specified time tl and the second specified time t2 based on the detected temperature of the indoor temperature sensor (45) corresponding to the use side heat exchanger (33b) ).
[0019] 第 4の発明では、補正手段(52)が、休止側の利用側熱交換器(33b)の室内温度セ ンサ (45)で検出した室内温度に基づいて第 1規定時間 tl及び第 2規定時間 t2の一 方又は両方の補正を行う。 [0019] In the fourth invention, the correcting means (52) determines the first specified time tl and the first time based on the room temperature detected by the room temperature sensor (45) of the dormant use side heat exchanger (33b). 2 One specified time t2 Correct one or both.
[0020] 具体的に、例えば休止側の利用側熱交換器 (33b)の周囲の室内温度が高い場合 には、休止側の利用側熱交換器(33b)内に冷媒が寝込みに《なる。従って、このよ うな場合には、第 1規定時間 tlを長くしたり、第 2規定時間 t2を短くしたりする補正を 行うことで、電動弁(34b)を全閉する時間を長くとることができる。その結果、休止側の 利用側熱交換器 (33b)で冷媒が無駄に放熱してしまうことを回避できる。  [0020] Specifically, for example, when the room temperature around the hibernation-side use-side heat exchanger (33b) is high, the refrigerant stagnates in the hibernation-side use-side heat exchanger (33b). Therefore, in such a case, it is possible to lengthen the time for fully closing the motor-operated valve (34b) by correcting the first specified time tl to be longer or the second specified time t2 to be shorter. it can. As a result, it is possible to avoid the refrigerant from dissipating heat in the idle side use side heat exchanger (33b).
[0021] 一方、例えば休止側の利用側熱交換器(33b)の周囲の室内温度が低い場合には 、休止側の利用側熱交換器 (33b)内に冷媒が寝込み易くなる。従って、このような場 合には、第 1規定時間 tlを短くしたり、第 2規定時間 t2を長くしたりする補正を行うこと で、利用側熱交換器 (33b)内の冷媒の寝込みを未然に回避することができる。  [0021] On the other hand, for example, when the room temperature around the idle side use side heat exchanger (33b) is low, the refrigerant easily stagnates in the idle side use side heat exchanger (33b). Therefore, in such a case, the refrigerant stagnation in the use side heat exchanger (33b) can be performed by correcting the first specified time tl to be shorter or the second specified time t2 to be longer. It can be avoided in advance.
[0022] 第 5の発明は、各利用側熱交換器 (33a,33b)内の冷媒密度をそれぞれ検出する冷 媒密度検出手段 (40,41,42,43)を備え、上記制御手段 (51)が、休止側の利用側熱交 換器 (33b)に対応する電動弁 (34b)を全閉してから該利用側熱交換器 (33b)に対応 する冷媒密度検知手段 (40,41,43)の検出冷媒密度が規定冷媒密度より大きくなると 、該電動弁(34b)を一時的に開放することを特徴とするものである。  [0022] A fifth invention comprises refrigerant density detection means (40, 41, 42, 43) for detecting refrigerant density in each use side heat exchanger (33a, 33b), and the control means (51 ) Fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b) on the dormant side, and then the refrigerant density detection means (40, 41, When the detected refrigerant density of 43) becomes larger than the specified refrigerant density, the motor-operated valve (34b) is temporarily opened.
[0023] 第 5の発明では、上記一部運転を行う際に休止側の利用側熱交換器 (33b)に対応 する電動弁 (34b)を全閉とした後、休止側の利用側熱交換器 (33b)内の冷媒密度が 冷媒密度検出手段 (40,41,43)によって検出される。つまり、冷媒検出手段 (40,41,43 )は、この冷媒密度に基づき、休止側の利用側熱交換器 (33b)内に溜まり込んだ冷 媒量を間接的に検出している。そして、この検出冷媒密度が規定冷媒密度よりも大き くなると、休止側の利用側熱交換器 (33b)内に多量の冷媒が貯まっているとみなし、 制御手段 (51)が電動弁(34b)を一時的に開放する。その結果、休止側の利用側熱 交換器 (33b)における冷媒の寝込みを未然に回避することができる。  [0023] In the fifth aspect of the invention, when the partial operation is performed, the motor-operated valve (34b) corresponding to the idle side use side heat exchanger (33b) is fully closed, and then the idle side use side heat exchange is performed. The refrigerant density in the vessel (33b) is detected by the refrigerant density detecting means (40, 41, 43). That is, the refrigerant detection means (40, 41, 43) indirectly detects the amount of the refrigerant accumulated in the idle side use side heat exchanger (33b) based on the refrigerant density. When the detected refrigerant density becomes larger than the specified refrigerant density, it is considered that a large amount of refrigerant is stored in the idle-side use-side heat exchanger (33b), and the control means (51) is operated by the motor operated valve (34b). Is temporarily released. As a result, the stagnation of the refrigerant in the use side heat exchanger (33b) on the dormant side can be avoided beforehand.
[0024] 第 6の発明は、第 1乃至第 5のいずれ力 4の発明において、上記冷媒回路(10)には 、冷媒として二酸化炭素が充填されてレ、ることを特徴とするものである。  [0024] The sixth invention is characterized in that, in any one of the first to fifth power 4 inventions, the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. .
[0025] 第 6の発明では、冷媒回路(10)で二酸化炭素を用いた超臨界サイクルが行われる  [0025] In the sixth invention, a supercritical cycle using carbon dioxide is performed in the refrigerant circuit (10).
[0026] 第 7の発明は、第 2乃至第 5のいずれ力 4の発明において、各利用側熱交換器(33a ,33b)を通過した空気がそれぞれ吹き出される吹出口と、該吹出口をそれぞれ開閉 自在な開閉機構とを備え、該各開閉機構は、加熱動作を行う利用側熱交換器 (33b) の吹出口を開放する一方、休止側の利用側熱交換器 (33a)の吹出口を閉鎖するよう に構成されてレ、ることを特徴とするものである。 [0026] A seventh invention is the invention of any one of the second to fifth powers 4, wherein each use side heat exchanger (33a , 33b) and an opening / closing mechanism that can open and close each of the air outlets, and each of the opening / closing mechanisms includes a blower of the use side heat exchanger (33b) that performs a heating operation. The outlet is configured to be closed while the outlet of the use side heat exchanger (33a) on the dormant side is closed.
[0027] 第 7の発明の冷凍装置には、各利用側熱交換器 (33a,33b)に対応して複数の吹出 ロカ待設けられる。また、各吹出口には、該吹出口を開放又は閉鎖する開閉機構が設 けられる。ここで、全部運転では、全ての吹出口の開閉機構が開放状態となり、各利 用側熱交換器 (33a,33b)で加熱された空気は、各吹出口から室内等に吹き出される 。一方、一部運転では、加熱側の利用側熱交換器 (33a)の吹出口の開閉機構が開 放状態となる一方、休止側の利用側熱交換器 (33b)の吹出口の開閉機構が閉鎖状 態となる。その結果、休止側の利用側熱交換器 (33b)では、その内部の冷媒の熱が 吹出口を介して室内等の別の空間に逃げてしまうのを防止できる。このため、休止側 の利用側熱交換器 (33b)の周囲温度の低下を抑制でき、この利用側熱交換器 (33b) についての冷媒の寝込みを効果的に回避できる。 [0027] In the refrigeration apparatus according to the seventh aspect of the present invention, a plurality of blower loca- tions are provided corresponding to each use side heat exchanger (33a, 33b). Each air outlet is provided with an opening / closing mechanism for opening or closing the air outlet. Here, in all operations, the open / close mechanisms of all the air outlets are opened, and the air heated by the respective use side heat exchangers (33a, 33b) is blown out from the air outlets into the room or the like. On the other hand, in the partial operation, the opening / closing mechanism of the outlet side of the heating-side heat exchanger (33a) is opened, while the opening / closing mechanism of the outlet-side heat exchanger (33b) is closed. Closed state. As a result, in the use side heat exchanger (33b) on the dormant side, it is possible to prevent the heat of the refrigerant inside it from escaping to another space such as a room through the blowout port. For this reason, it is possible to suppress a decrease in the ambient temperature of the use side heat exchanger (33b) on the dormant side, and to effectively avoid stagnation of the refrigerant in the use side heat exchanger (33b).
発明の効果  The invention's effect
[0028] 本発明では、複数の利用側熱交換器 (33a,33b)で個別に加熱動作を行うことが可 能な冷凍装置において、圧縮機 (22)の吐出冷媒を臨界圧力以上とする超臨界サイ クルを行うようにしている。このため、上述した一部運転時に休止側の電動弁(34b)の 開度を微小開度又は全閉としても、休止側の利用側熱交換器 (33a,33b)内で冷媒が 寝込みに《なる。従って、本発明によれば、加熱動作側の利用側熱交換器 (33a)を 流れる冷媒量が不足することを解消でき、加熱動作側の利用側熱交換器(33a)の加 熱能力を充分に得ることができる。  [0028] In the present invention, in a refrigeration apparatus capable of individually performing heating operations with a plurality of usage-side heat exchangers (33a, 33b), the refrigerant discharged from the compressor (22) exceeds the critical pressure. A critical cycle is performed. For this reason, even if the opening degree of the motor-operated valve (34b) on the suspension side is set to a very small opening or a fully closed state during the partial operation described above, the refrigerant will stagnate in the utilization side heat exchanger (33a, 33b) on the suspension side. Become. Therefore, according to the present invention, it is possible to eliminate the shortage of the amount of refrigerant flowing through the use side heat exchanger (33a) on the heating operation side, and the heating capability of the use side heat exchanger (33a) on the heating operation side is sufficiently high. Can get to.
[0029] 特に、第 2の発明では、一部運転を行う際に休止側の電動弁(34b)を全閉にしてい る。このため、第 2の発明によれば、全ての冷媒が加熱動作側の利用側熱交換器 (33 a)に送られるので、休止側の利用側熱交換器 (33b)で無駄な放熱が行われるのを回 避できる。従って、本発明によれば、加熱側の利用側熱交換器 (33a)の加熱能力の 向上を図ることができ、ひいてはこの冷凍装置の COP (成績係数)の向上を図ること ができる。 [0030] また、第 3の発明では、一部運転を行う際に一度全閉状態とした電動弁(34b)を第 1規定時間 tl経過後に第 2規定時間 t2の間だけ開放するようにしている。このため、 第 3の発明によれば、一部運転を長期間継続して行う場合において、休止側の利用 側熱交換器 (33b)内の冷媒の寝込みを確実に解消することができ、この冷凍装置の 信頼性を確保することができる。 [0029] In particular, in the second invention, the rest-side motor operated valve (34b) is fully closed when performing partial operation. Therefore, according to the second aspect of the invention, since all the refrigerant is sent to the heating-side use-side heat exchanger (33a), wasteful heat dissipation is performed by the dormant-side use-side heat exchanger (33b). Can be avoided. Therefore, according to the present invention, it is possible to improve the heating capacity of the use-side heat exchanger (33a) on the heating side, and to improve the COP (coefficient of performance) of this refrigeration apparatus. [0030] In addition, in the third invention, the motor-operated valve (34b) that is once fully closed when performing a partial operation is opened only during the second specified time t2 after the first specified time tl has elapsed. Yes. Therefore, according to the third aspect of the present invention, it is possible to reliably eliminate the stagnation of the refrigerant in the idle-side heat exchanger (33b) when part of the operation is continued for a long time. The reliability of the refrigeration equipment can be ensured.
[0031] 特に、第 4の発明では、一部運転時において、休止側の利用側熱交換器(33b)の 周囲の室内温度に基づいて第 1規定時間 tl及び第 2規定時間 t2を補正するようにし ている。このため、第 4の発明によれば、必要以上に電動弁(34b)の全閉時間が長く なってしまい、休止側の利用側熱交換器 (33b)内に冷媒が寝込んでしまうのを確実 に回避できる。また、第 4の発明によれば、必要以上に電動弁(34b)の開放時間が長 くなつてしまい、休止側の利用側熱交換器(33b)で無駄な放熱がなされるのを確実に 回避できる。  [0031] In particular, in the fourth invention, during the partial operation, the first specified time tl and the second specified time t2 are corrected based on the room temperature around the inactive use side heat exchanger (33b). It is doing so. For this reason, according to the fourth aspect of the invention, it is ensured that the fully closed time of the motor-operated valve (34b) becomes longer than necessary, and the refrigerant stagnates in the idle side use side heat exchanger (33b). Can be avoided. In addition, according to the fourth aspect of the present invention, it is ensured that the open time of the motor-operated valve (34b) becomes longer than necessary, and wasteful heat dissipation is performed in the idle side heat exchanger (33b). Can be avoided.
[0032] また、第 5の発明では、一部運転時にぉレ、て、休止側の利用側熱交換器 (33b)内 の冷媒密度を検出し、この冷媒密度が規定冷媒密度よりも大きくなると、全閉状態で あった電動弁(34b)を一時的に開放するようにしている。即ち、第 5の発明では、休止 側の利用側熱交換器 (33b)内に貯まった冷媒量を間接的に求め、この冷媒量が多く なると電動弁(34b)を開放するようにしている。従って、休止側の利用側熱交換器(33 b)内の冷媒の寝込みを確実に回避することができる。  [0032] In the fifth aspect of the invention, the refrigerant density in the idle-side heat exchanger (33b) is detected during partial operation, and the refrigerant density becomes larger than the specified refrigerant density. The motor-operated valve (34b) that has been fully closed is temporarily opened. That is, in the fifth aspect of the invention, the amount of refrigerant stored in the idle-side use-side heat exchanger (33b) is indirectly obtained, and the motor-operated valve (34b) is opened when the amount of refrigerant increases. Accordingly, it is possible to reliably avoid the stagnation of the refrigerant in the idle side use side heat exchanger (33b).
[0033] 更に、第 6の発明によれば、冷媒として二酸化炭素を用いることで、比較的臨界温 度の低い自然冷媒を用いた超臨界サイクルを行うことが可能となる。  [0033] Furthermore, according to the sixth invention, by using carbon dioxide as the refrigerant, it is possible to perform a supercritical cycle using a natural refrigerant having a relatively low critical temperature.
[0034] また、第 7の発明によれば、一部運転時において、休止側の利用側熱交換器 (33b) の吹出口を開閉機構によって閉鎖するようにしたので、この利用側熱交換器 (33b)の 周囲温度の低下を抑制でき、利用側熱交換器 (33b)内での冷媒の寝込みを一層効 果的に回避することができる。  [0034] Further, according to the seventh aspect of the invention, since the outlet of the idle side use side heat exchanger (33b) is closed by the opening / closing mechanism during partial operation, the use side heat exchanger The decrease in the ambient temperature of (33b) can be suppressed, and the refrigerant stagnation in the use side heat exchanger (33b) can be more effectively avoided.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]図 1は、実施形態に係る空気調和装置の冷媒回路の配管系統図である。  FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to an embodiment.
[図 2]図 2は、全部暖房運転時の冷媒回路の冷媒の流れを示す配管系統図である。  [FIG. 2] FIG. 2 is a piping system diagram showing the refrigerant flow in the refrigerant circuit during all heating operations.
[図 3]図 3は、一部暖房運転時の冷媒回路の冷媒の流れを示す配管系統図である。 [図 4]図 4は、実施形態に係る超臨界サイクルの P— H線図(モリエル線図)である。 FIG. 3 is a piping diagram showing the refrigerant flow in the refrigerant circuit during partial heating operation. FIG. 4 is a PH diagram (Mollier diagram) of the supercritical cycle according to the embodiment.
[図 5]図 5は、従来例に係る冷凍サイクルの P— H線図(モリエル線図)である。  FIG. 5 is a PH diagram (Mollier diagram) of a refrigeration cycle according to a conventional example.
[図 6]図 6は、変形例に係る空気調和装置の一部暖房運転時の冷媒回路の冷媒の流 れを示す配管系統図である。  FIG. 6 is a piping diagram showing the refrigerant flow in the refrigerant circuit during partial heating operation of an air conditioner according to a modification.
園 7]図 7は、実施形態における休止側の室内熱交換器について、その入口から出 口までの冷媒密度及び冷媒温度の変化の挙動を示すグラフである。  7] FIG. 7 is a graph showing the behavior of changes in refrigerant density and refrigerant temperature from the inlet to the outlet of the pause-side indoor heat exchanger in the embodiment.
園 8]図 8は、従来例における休止側の室内熱交換器について、その入口から出口ま での冷媒密度及び冷媒温度の変化の挙動を示すグラフである。  FIG. 8 is a graph showing the behavior of changes in the refrigerant density and refrigerant temperature from the inlet to the outlet of the idle indoor heat exchanger in the conventional example.
符号の説明  Explanation of symbols
1 空気調和装置 (冷凍装置)  1 Air conditioner (refrigeration equipment)
10 冷媒回路  10 Refrigerant circuit
21 室外側回路 (熱源側回路)  21 Outdoor circuit (heat source side circuit)
22 圧縮機  22 Compressor
23 室外熱交換器 (熱源側熱交換器)  23 Outdoor heat exchanger (heat source side heat exchanger)
3ύ& 第 1室内熱交換器 (利用側熱交換器)  3ύ & 1st indoor heat exchanger (use side heat exchanger)
33b 第 2室内熱交換器 (利用側熱交換器)  33b Second indoor heat exchanger (use side heat exchanger)
34a 第 1室内膨張弁 (電動弁)  34a 1st indoor expansion valve (motorized valve)
34b 第 2室内膨張弁 (電動弁)  34b Second indoor expansion valve (motorized valve)
44 第 1室内温度センサ(室内温度センサ)  44 1st room temperature sensor (room temperature sensor)
45 第 2室内温度センサ(室内温度センサ)  45 Second room temperature sensor (room temperature sensor)
51 制御手段  51 Control means
52 補正手段  52 Correction method
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0038] 実施形態に係る冷凍装置は、室内の暖房や冷房が可能な、いわゆるマルチ式の空 気調和装置(1 )を構成している。図 1に示すように、この空気調和装置(1 )は、室外に 設置される 1つの室外ユニット(20)と、異なる室内に設置される第 1と第 2の室内ュニ ット(30a, 30b)とを備えている。 [0039] 上記室外ユニット(20)には、熱源側回路を構成する室外側回路 (21)が設けられて いる。上記第 1室内ユニット(30a)には、利用側回路を構成する第 1室内側回路 (31a) 、上記第 2室内ユニット(30b)には、利用側回路を構成する第 2室内側回路 (31b) がそれぞれ設けられている。 [0038] The refrigeration apparatus according to the embodiment constitutes a so-called multi-type air conditioner (1) capable of heating and cooling a room. As shown in FIG. 1, this air conditioner (1) includes one outdoor unit (20) installed outdoors, and first and second indoor units (30a, 30a, 30) installed in different rooms. 30b). [0039] The outdoor unit (20) is provided with an outdoor circuit (21) constituting a heat source side circuit. The first indoor unit (30a) includes a first indoor side circuit (31a) that constitutes a use side circuit, and the second indoor unit (30b) includes a second indoor side circuit (31b that constitutes a use side circuit). ) Are provided.
[0040] 各室内側回路(31a,31b)は、第 1連絡配管(11)及び第 2連絡配管(12)を介して室 外側回路(21)に並列に接続されている。その結果、この空気調和装置(1)では、冷 媒が循環して冷凍サイクルが行われる冷媒回路(10)が構成される。この冷媒回路(1 0)には、冷媒として二酸化炭素が充填されている。  [0040] Each indoor circuit (31a, 31b) is connected in parallel to the outdoor circuit (21) via the first connection pipe (11) and the second connection pipe (12). As a result, in the air conditioner (1), the refrigerant circuit (10) is configured in which the refrigerant circulates and the refrigeration cycle is performed. This refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.
[0041] 室外側回路 (21)には、圧縮機 (22)、室外熱交換器 (23)、室外膨張弁 (24)、及び 四路切換弁(25)が設けられている。圧縮機(22)は、全密閉型で高圧ドーム型のスク ロール圧縮機である。この圧縮機(22)には、インバータを介して電力が供給される。 即ち、圧縮機(22)は、インバータの出力周波数を変化させて圧縮機モータの回転速 度を変更することによって、その容量が変更可能となっている。室外熱交換器 (23)は 、クロスフィン式のフィン 'アンド'チューブ型熱交換器であって、熱源側熱交換器を 構成している。この室外熱交換器 (23)では、冷媒と室外空気の間で熱交換が行われ る。室外膨張弁 (24)は、開度が調節可能な電子膨張弁で構成されている。  [0041] The outdoor circuit (21) is provided with a compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25). The compressor (22) is a fully-enclosed high-pressure dome type scroll compressor. Electric power is supplied to the compressor (22) via an inverter. That is, the capacity of the compressor (22) can be changed by changing the rotational speed of the compressor motor by changing the output frequency of the inverter. The outdoor heat exchanger (23) is a cross-fin type fin 'and' tube heat exchanger and constitutes a heat source side heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air. The outdoor expansion valve (24) is an electronic expansion valve whose opening degree can be adjusted.
[0042] 四路切換弁(25)は、第 1から第 4までのポートを有している。この四路切換弁(25) は、第 1ポートが圧縮機 (22)の吐出管(22a)と接続し、第 2ポートが室外熱交換器 (23 )と接続し、第 3ポートが圧縮機 (22)の吸入管(22b)と接続し、第 4ポートが第 1連絡 配管(11)と接続している。四路切換弁(25)は、第 1ポートと第 4ポートが互いに連通 して第 2ポートと第 3ポートが互いに連通する状態(図 1に実線で示す状態)と、第 1ポ 一トと第 2ポートが互いに連通して第 3ポートと第 4ポートが互いに連通する状態(図 1 に破線で示す状態)とに切り換え可能となっている。  [0042] The four-way selector valve (25) has first to fourth ports. The four-way selector valve (25) has a first port connected to the discharge pipe (22a) of the compressor (22), a second port connected to the outdoor heat exchanger (23), and a third port connected to the compressor. It is connected to the suction pipe (22b) of (22), and the fourth port is connected to the first connection pipe (11). The four-way selector valve (25) has a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (indicated by a solid line in FIG. 1), the first port, The second port communicates with each other, and the third port and the fourth port communicate with each other (shown by a broken line in FIG. 1).
[0043] 第 1室内側回路 (31a)には、一端が第 1連絡配管(11)側と繋がり、他端が第 2連絡 配管(12)側と繋がる第 1分岐配管(32a)が設けられてレ、る。この第 1分岐配管(32a) には、第 1室内熱交換器 (33a)及び第 1室内膨張弁(34a)が設けられている。第 2室 内側回路 (31b)には、一端が第 1連絡配管(11)側と繋がり、他端が第 2連絡配管(12 )側と繋がる第 2分岐配管(32b)が設けられている。この第 2分岐配管(32b)には、第 2室内熱交換器 (33b)及び第 2室内膨張弁(34b)が設けられてレ、る。 [0043] The first indoor circuit (31a) is provided with a first branch pipe (32a) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side. I'm going. The first branch pipe (32a) is provided with a first indoor heat exchanger (33a) and a first indoor expansion valve (34a). The second chamber inner circuit (31b) is provided with a second branch pipe (32b) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side. The second branch pipe (32b) Two indoor heat exchangers (33b) and a second indoor expansion valve (34b) are provided.
[0044] 各室内熱交換器(33a,33b)は、クロスフィン式のフィン.アンド'チューブ型熱交換器 であって、利用側熱交換器をそれぞれ構成している。各室内熱交換器(33a,33b)で は、冷媒と室内空気の間で熱交換が行われる。 [0044] Each indoor heat exchanger (33a, 33b) is a cross-fin type fin-and-tube heat exchanger, and constitutes a use side heat exchanger. In each indoor heat exchanger (33a, 33b), heat is exchanged between the refrigerant and room air.
[0045] 第 1室内膨張弁(34a)及び第 2室内膨張弁(34b)は、電動弁であって、開度が調節 可能な電子膨張弁をそれぞれ構成している。第 1室内膨張弁 (3½)は、第 1分岐配 管(32a)についての第 2連絡配管(12)側に設けられている。また、第 2室内膨張弁(3 4b)は、第 2分岐配管(32b)についての第 2連絡配管(12)側に設けられている。そし て、第 1室内膨張弁 (34a)は第 1室内熱交換器 (33a)を流れる冷媒の流量を調節可 能とし、第 2室内膨張弁(34b)は第 2室内熱交換器 (33b)を流れる冷媒の流量を調節 可能としている。 [0045] The first indoor expansion valve (34a) and the second indoor expansion valve (34b) are motor-operated valves, and respectively constitute electronic expansion valves whose opening degrees can be adjusted. The first indoor expansion valve (3½) is provided on the second connecting pipe (12) side of the first branch pipe (32a). The second indoor expansion valve (34b) is provided on the second connecting pipe (12) side of the second branch pipe (32b). The first indoor expansion valve (34a) can adjust the flow rate of the refrigerant flowing through the first indoor heat exchanger (33a), and the second indoor expansion valve (34b) can adjust the second indoor heat exchanger (33b). The flow rate of the refrigerant flowing through can be adjusted.
[0046] 冷媒回路(10)には、高圧圧力センサ (40)、高圧温度センサ (41)、第 1冷媒温度セ ンサ (42)、第 2冷媒温度センサ (43)が設けられてレ、る。高圧圧力センサ (40)は、圧 縮機 (22)の吐出冷媒の圧力を検出する。高圧温度センサ (41)は、圧縮機 (22)の吐 出冷媒の温度を検出する。第 1冷媒温度センサ (42)は、第 1室内熱交換器 (33a)の 出口に設けられ、第 1室内熱交換器 (33a)の流出直後の冷媒の温度を検出する。第 2冷媒温度センサ (43)は、第 2室内熱交換器 (33b)の出口に設けられ、第 2室内熱 交換器 (33b)の流出直後の冷媒の温度を検出する。  [0046] The refrigerant circuit (10) is provided with a high pressure sensor (40), a high pressure temperature sensor (41), a first refrigerant temperature sensor (42), and a second refrigerant temperature sensor (43). . The high pressure sensor (40) detects the pressure of the refrigerant discharged from the compressor (22). The high pressure temperature sensor (41) detects the temperature of the refrigerant discharged from the compressor (22). The first refrigerant temperature sensor (42) is provided at the outlet of the first indoor heat exchanger (33a), and detects the temperature of the refrigerant immediately after flowing out of the first indoor heat exchanger (33a). The second refrigerant temperature sensor (43) is provided at the outlet of the second indoor heat exchanger (33b), and detects the temperature of the refrigerant immediately after flowing out of the second indoor heat exchanger (33b).
[0047] また、第 1室内ユニット(30a)には、第 1室内熱交換器 (33a)の近傍に第 1室内温度 センサ (44)が設けられている。この第 1室内温度センサ (44)は、第 1室内熱交換器( 33a)の周囲の空気温度を検出する。第 2室内ユニット(30b)には、第 2室内熱交換器 (33b)の近傍に第 2室内温度センサ (45)が設けられてレ、る。この第 2室内温度センサ (45)は、第 2室内熱交換器 (33b)の周囲の空気温度を検出する。  [0047] The first indoor unit (30a) is provided with a first indoor temperature sensor (44) in the vicinity of the first indoor heat exchanger (33a). The first indoor temperature sensor (44) detects the air temperature around the first indoor heat exchanger (33a). The second indoor unit (30b) is provided with a second indoor temperature sensor (45) in the vicinity of the second indoor heat exchanger (33b). The second indoor temperature sensor (45) detects the air temperature around the second indoor heat exchanger (33b).
[0048] 本実施形態の空気調和装置(1)の冷媒回路(10)では、圧縮機 (22)の吐出冷媒を 臨界圧力以上として冷凍サイクル (超臨界サイクル)が行われる。また、この空気調和 装置(1)では、第 1室内ユニット(30a)及び第 2室内ユニット (30b)で個別に運転が可 能となっている。即ち、この空気調和装置(1)では、第 1室内ユニット(30a)で暖房を 行うと同時に第 2室内ユニット(30b)を休止状態とする運転 (以下、一部暖房運転と称 する)や、第 1室内ユニット (30a)及び第 2室内ユニット (30b)の双方で暖房を行う運転 (以下、全部暖房運転と称する)が可能となっている。 [0048] In the refrigerant circuit (10) of the air conditioner (1) of the present embodiment, a refrigeration cycle (supercritical cycle) is performed by setting the refrigerant discharged from the compressor (22) to a critical pressure or higher. Further, in this air conditioner (1), the first indoor unit (30a) and the second indoor unit (30b) can be operated individually. In other words, in this air conditioner (1), the first indoor unit (30a) is heated while the second indoor unit (30b) is in a dormant state (hereinafter referred to as partial heating operation). Can be operated in both the first indoor unit (30a) and the second indoor unit (30b) (hereinafter, all referred to as heating operation).
[0049] 更に、空気調和装置(1)には、上記一部暖房運転において、各室内膨張弁(34a,3 4b)の開度を制御するためのコントローラ(50)が設けられている。このコントローラ(50 )には、制御手段(51)及び補正手段(52)が設けられている。このコントローラ(50)に よる各室内膨張弁(34a,34b)の開度制御の詳細は後述するものとする。  Furthermore, the air conditioner (1) is provided with a controller (50) for controlling the opening degree of each indoor expansion valve (34a, 34b) in the partial heating operation. The controller (50) is provided with a control means (51) and a correction means (52). Details of the opening control of the indoor expansion valves (34a, 34b) by the controller (50) will be described later.
[0050] 一運転動作一  [0050] One operation
次に本実施形態に係る空気調和装置(1)の運転動作について説明する。この空気 調和装置(1)では、各室内ユニット(30a,30b)で暖房を行う運転と、各室内ユニット(30 a,30b)で冷房を行う運転とが可能となっている。以下には、この空気調和装置(1)の 暖房運転について説明する。なお、この暖房運転では、四路切換弁(25)が図 2及び 図 3に示す状態に設定され、上述した全部暖房運転と一部暖房運転とが切り換えて 行われる。  Next, the operation of the air conditioner (1) according to this embodiment will be described. In the air conditioner (1), it is possible to perform an operation in which heating is performed in each indoor unit (30a, 30b) and an operation in which cooling is performed in each indoor unit (30a, 30b). Hereinafter, the heating operation of the air conditioner (1) will be described. In this heating operation, the four-way selector valve (25) is set to the state shown in FIGS. 2 and 3, and the above-described full heating operation and partial heating operation are switched.
[0051] く全部暖房運転〉  [0051] All heating operation>
全部暖房運転では、第 1室内膨張弁 (34a)及び第 2室内膨張弁 (34b)が所定開度 で開放される。図 2に示すように、圧縮機 (22)で臨界圧力以上に圧縮された冷媒は、 四路切換弁(25)及び第 1連絡配管(11)を経由して第 1分岐配管(32a)及び第 2分岐 配管(32b)に分流する。  In the full heating operation, the first indoor expansion valve (34a) and the second indoor expansion valve (34b) are opened at a predetermined opening. As shown in FIG. 2, the refrigerant compressed to the critical pressure or higher by the compressor (22) passes through the four-way switching valve (25) and the first connection pipe (11), and the first branch pipe (32a) and Split to the second branch pipe (32b).
[0052] 第 1分岐配管(32a)に流入した冷媒は、第 1室内熱交換器 (33a)を流れる。第 1室 内熱交換器 (33a)では、冷媒が室内空気に熱を放出する。つまり、第 1室内熱交換 器 (33a)では、室内空気を加熱する加熱動作が行われ、第 1室内ユニット(30a)が設 置された室内の暖房が行われる。第 1室内熱交換器(33a)を流出した冷媒は、第 1室 内膨張弁(34a)を通過して第 2連絡配管(12)に流入する。  [0052] The refrigerant flowing into the first branch pipe (32a) flows through the first indoor heat exchanger (33a). In the first indoor heat exchanger (33a), the refrigerant releases heat to the indoor air. That is, in the first indoor heat exchanger (33a), a heating operation for heating the room air is performed, and the room in which the first indoor unit (30a) is installed is heated. The refrigerant flowing out of the first indoor heat exchanger (33a) passes through the first indoor expansion valve (34a) and flows into the second connecting pipe (12).
[0053] 一方、第 2分岐配管(32b)に流入した冷媒は、第 2室内熱交換器 (33b)を流れる。  [0053] On the other hand, the refrigerant flowing into the second branch pipe (32b) flows through the second indoor heat exchanger (33b).
第 2室内熱交換器 (33b)では、冷媒が室内空気に熱を放出する。つまり、第 2室内熱 交換器 (33b)では、室内空気を加熱する加熱動作が行われ、第 2室内ユニット(30b) が設置された室内の暖房が行われる。第 2室内熱交換器 (33b)を流出した冷媒は、 第 2室内膨張弁(34b)を通過して第 2連絡配管(12)に流入する。 [0054] 第 2連絡配管(12)で合流した冷媒は、室外膨張弁 (24)を通過する際に減圧されて 力 室外熱交換器 (23)を流れる。室外熱交換器 (23)では、冷媒が室外空気から吸 熱して蒸発する。室外熱交換器 (23)を流出した冷媒は、四路切換弁(25)を経由して 圧縮機 (22)に吸入される。圧縮機 (22)では、この冷媒が臨界圧力以上まで圧縮され る。 In the second indoor heat exchanger (33b), the refrigerant releases heat to the indoor air. That is, in the second indoor heat exchanger (33b), a heating operation for heating the room air is performed, and the room in which the second indoor unit (30b) is installed is heated. The refrigerant flowing out of the second indoor heat exchanger (33b) passes through the second indoor expansion valve (34b) and flows into the second connection pipe (12). [0054] The refrigerant joined in the second communication pipe (12) is reduced in pressure when passing through the outdoor expansion valve (24) and flows through the power outdoor heat exchanger (23). In the outdoor heat exchanger (23), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant flowing out of the outdoor heat exchanger (23) is sucked into the compressor (22) via the four-way switching valve (25). In the compressor (22), this refrigerant is compressed to a critical pressure or higher.
[0055] く一部暖房運転〉  [0055] Partial heating operation>
一部暖房運転では、第 1室内熱交換器 (33a)で加熱動作を行うと同時に第 2室内 熱交換器 (33b)の加熱動作を休止させる運転や、第 2室内熱交換器 (33b)で加熱動 作を行うと同時に第 1室内熱交換器 (33a)の加熱動作を休止させる運転が行われる。 ここでは、第 1室内熱交換器 (33a)のみで加熱動作を行う運転を代表して、図 3を参 照しながら説明する。  In the partial heating operation, the heating operation of the second indoor heat exchanger (33b) is stopped at the same time as the heating operation of the first indoor heat exchanger (33a), or the second indoor heat exchanger (33b) is used. At the same time that the heating operation is performed, an operation for stopping the heating operation of the first indoor heat exchanger (33a) is performed. Here, a description will be given with reference to FIG. 3 on behalf of an operation in which the heating operation is performed only by the first indoor heat exchanger (33a).
[0056] この一部暖房運転では、コントローラ(50)の制御手段(51)によって、第 1室内膨張 弁 (34a)が所定開度で開放される一方、第 2室内膨張弁 (34b)が全閉状態に設定さ れる。第 1室内膨張弁 (34a)が開放されると、第 1室内熱交換器 (33a)では上述のよう な加熱動作が行われる。一方、第 2室内膨張弁 (34b)が全閉状態となると、冷媒は第 2室内膨張弁 (34b)を通過しない。従って、冷媒は、第 2室内熱交換器 (33b)を流通 することなぐ第 2室内熱交換器 (33b)は休止状態となる。  [0056] In this partial heating operation, the controller (51) of the controller (50) opens the first indoor expansion valve (34a) at a predetermined opening, while the second indoor expansion valve (34b) is fully opened. Set to the closed state. When the first indoor expansion valve (34a) is opened, the first indoor heat exchanger (33a) performs the heating operation as described above. On the other hand, when the second indoor expansion valve (34b) is fully closed, the refrigerant does not pass through the second indoor expansion valve (34b). Accordingly, the refrigerant does not circulate through the second indoor heat exchanger (33b), and the second indoor heat exchanger (33b) enters a dormant state.
[0057] このように第 2室内熱交換器 (33b)を休止させると、第 2室内熱交換器 (33b)には徐 々に冷媒が溜まり込んでいくことになる。し力 ながら、本実施形態の空気調和装置( 1)では、この一部暖房運転においても、圧縮機 (22)の吐出冷媒を臨界圧力以上と する、超臨界サイクルを行うようにしている。このため、第 2室内熱交換器 (33b)の休 止に伴レ、第 2室内熱交換器 (33b)の周囲温度が低くなつても、第 2室内熱交換器 (33 b)内の冷媒が凝縮しない。従って、第 2室内熱交換器(33b)で冷媒が寝込んでいく 速度は、例えば HFC等を用いて亜臨界での冷凍サイクルを行うものよりも大幅に遅く なる。  [0057] When the second indoor heat exchanger (33b) is suspended as described above, the refrigerant gradually accumulates in the second indoor heat exchanger (33b). However, in the air conditioner (1) of the present embodiment, a supercritical cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher is performed even in the partial heating operation. Therefore, even if the ambient temperature of the second indoor heat exchanger (33b) decreases due to the suspension of the second indoor heat exchanger (33b), the refrigerant in the second indoor heat exchanger (33b) Does not condense. Accordingly, the rate at which the refrigerant stagnates in the second indoor heat exchanger (33b) is significantly slower than that in which a subcritical refrigeration cycle is performed using, for example, HFC.
[0058] このことについて、図 4及び図 5を参照しながらより詳細に説明する。なお、図 4は、 本実施形態の二酸化炭素を用レ、た超臨界サイクルの P— H線図を、図 5は従来の H FCを用いた亜臨界での冷凍サイクルの P _H線図をそれぞれ示すものである。 [0059] 図 5に示す従来のものでは、圧縮機の吐出冷媒の圧力が臨界圧力より小さくなる。 具体的に、この冷凍サイクルの圧縮後の冷媒は、例えばその圧力が 2. 7MPa、その 温度が 80°C、冷媒密度 p が 85kg/m3となる。一方、この冷媒が室内熱交換器で This will be described in more detail with reference to FIGS. 4 and 5. Fig. 4 shows the PH diagram of the supercritical cycle using carbon dioxide of this embodiment, and Fig. 5 shows the P_H diagram of the subcritical refrigeration cycle using conventional HFC. Each is shown. In the conventional one shown in FIG. 5, the pressure of the refrigerant discharged from the compressor becomes smaller than the critical pressure. Specifically, the refrigerant after compression in this refrigeration cycle has, for example, a pressure of 2.7 MPa, a temperature of 80 ° C., and a refrigerant density p of 85 kg / m 3 . On the other hand, this refrigerant is an indoor heat exchanger
1  1
凝縮すると、凝縮後の冷媒は、その圧力が 2. 7MPa、その温度が 37°C、冷媒密度 P 力 996kg/m3となる。つまり、従来の冷凍サイクルでは、室内熱交換器の出口側When condensed, the condensed refrigerant has a pressure of 2.7 MPa, a temperature of 37 ° C, and a refrigerant density P power of 996 kg / m 3 . In other words, in the conventional refrigeration cycle, the outlet side of the indoor heat exchanger
2 2
の冷媒密度 P と入口側の冷媒密度 p との密度比 / p )が 11. 72となる。  The density ratio / p) of the refrigerant density P and the refrigerant density p on the inlet side is 11.72.
2 1 2 1  2 1 2 1
[0060] 一方、図 4に示す本実施形態では、圧縮機の吐出冷媒の圧力が臨界圧力以上とな る。具体的に、このサイクルの圧縮後の冷媒は、例えばその圧力が 10MPa、その温 度が 80°C、冷媒密度 p 力 ¾21kgZm3となる。一方、この冷媒が室内熱交換器で放 On the other hand, in the present embodiment shown in FIG. 4, the pressure of the refrigerant discharged from the compressor is equal to or higher than the critical pressure. Specifically, the refrigerant after compression in this cycle has, for example, a pressure of 10 MPa, a temperature of 80 ° C., and a refrigerant density p force of 21 kgZm 3 . On the other hand, this refrigerant is released by the indoor heat exchanger.
1  1
熱すると、放熱後の冷媒は、その圧力が 10MPa、その温度が 35°C、冷媒密度 p が  When heated, the refrigerant after heat dissipation has a pressure of 10 MPa, a temperature of 35 ° C, and a refrigerant density p of
2 2
713kgZm3となる。つまり、本実施形態の超臨界サイクルでは、室内熱交換器の出 口側の冷媒密度 P と入口側の冷媒密度 p との密度比 / p )が 3. 23となる。 The 713kgZm 3. That is, in the supercritical cycle of the present embodiment, the density ratio / p) between the refrigerant density P on the outlet side of the indoor heat exchanger and the refrigerant density p on the inlet side is 3.23.
2 1 2 1  2 1 2 1
[0061] 以上のように、従来のものと本実施形態とで室内熱交換器前後の密度比 / p  [0061] As described above, the density ratio before and after the indoor heat exchanger / p between the conventional one and the present embodiment.
2 1 twenty one
)を比較すると、従来のものは本実施形態よりも密度比が 3倍以上大きくなる。つまり、 従来の冷凍サイクルでは、休止側の室内熱交換器内で冷媒が凝縮すると、その冷媒 は高密度となって体積が小さくなるので、室内熱交換器へは次々と冷媒が送り込ま れることになる。従って、従来のものでは、休止側の室内熱交換器で冷媒が寝込んで レ、く速度が比較的速いものとなる。 ), The density ratio of the conventional one is more than three times that of the present embodiment. In other words, in the conventional refrigeration cycle, when the refrigerant condenses in the indoor heat exchanger on the dormant side, the refrigerant becomes high density and the volume decreases, so that the refrigerant is successively sent to the indoor heat exchanger. Become. Therefore, in the conventional system, the refrigerant stagnates in the indoor heat exchanger on the pause side, and the speed is relatively high.
[0062] これに対して本実施形態では、休止側の室内熱交換器内で冷媒が放熱しても、そ の冷媒は比較的低密度であるため、その体積もあまり小さくならない。従って、室内 熱交換器へは冷媒がさほど送り込まれず、その結果、休止側の室内熱交換器で冷 媒が寝込んでレ、く速度も比較的遅レ、ものとなる。 [0062] In contrast, in the present embodiment, even if the refrigerant dissipates heat in the pause-side indoor heat exchanger, the volume of the refrigerant is not so small because the refrigerant has a relatively low density. Therefore, the refrigerant is not sent so much into the indoor heat exchanger, and as a result, the refrigerant stagnates in the inactive indoor heat exchanger and the speed is relatively slow.
[0063] 一方、このような一部暖房運転を長期間に亘つて継続して行うと、やはり第 2室内熱 交換器 (33b)内の冷媒の寝込み量が増大していく。そこで、本実施形態の制御手段 (51)は、一部暖房運転を開始して第 2室内膨張弁(34b)を全閉状態としてから、第 1 規定時間 tlが経過すると、第 2室内膨張弁 (34b)の開度を第 2規定時間 t2の間だけ 微小開度で開放するようにしている。このようにすると、冷媒は第 2室内熱交換器(33 b)を微小流量で流れることになり、第 2室内熱交換器 (33b)及びその周囲の温度が 上昇する。その結果、第 2室内熱交換器 (33b)内での冷媒の寝込みが解消される。 その後、第 2規定時間 t2が経過すると、制御手段 (51)は、再び第 2室内膨張弁 (34b )を全閉状態とする。 [0063] On the other hand, if such partial heating operation is continued for a long period of time, the amount of refrigerant stagnation in the second indoor heat exchanger (33b) also increases. Therefore, the control means (51) of the present embodiment starts the partial heating operation and sets the second indoor expansion valve (34b) to the fully closed state, and when the first specified time tl has elapsed, The opening of (34b) is opened at a very small opening for the second specified time t2. In this way, the refrigerant flows through the second indoor heat exchanger (33b) at a minute flow rate, and the temperature of the second indoor heat exchanger (33b) and its surroundings are reduced. To rise. As a result, the stagnation of the refrigerant in the second indoor heat exchanger (33b) is eliminated. Thereafter, when the second specified time t2 has elapsed, the control means (51) again closes the second indoor expansion valve (34b).
[0064] また、一部暖房運転を開始して力 第 2室内膨張弁(34b)を全閉状態としてから、 第 2室内熱交換器 (33b)内に冷媒が寝込む量は、第 2室内熱交換器(33b)の周囲温 度に依存する。つまり、第 2室内熱交換器(33b)が設置された室内の温度が比較的 低い場合には、第 2室内熱交換器 (33b)内で冷媒が寝込んでレ、く速度も速くなり、こ の室内の温度が比較的高い場合には、冷媒が寝込んでレ、く速度も遅くなる。このた め、本実施形態のコントローラ(50)の補正手段(52)は、休止側の室内熱交換器(33b )の周囲の室内温度を室内温度センサ (45)で検出し、この室内温度に基づいて、上 述の第 1規定時間 tl及び第 2規定時間 t2を補正するようにしている。  [0064] Further, after the partial heating operation is started and the second indoor expansion valve (34b) is fully closed, the amount of the refrigerant that stagnates in the second indoor heat exchanger (33b) Depends on the ambient temperature of the exchanger (33b). In other words, when the temperature of the room where the second indoor heat exchanger (33b) is installed is relatively low, the refrigerant stagnates in the second indoor heat exchanger (33b) and the speed increases. When the room temperature is relatively high, the refrigerant stagnates and the speed decreases. For this reason, the correction means (52) of the controller (50) of the present embodiment detects the room temperature around the pause-side indoor heat exchanger (33b) with the room temperature sensor (45), and this room temperature is detected. Based on this, the first specified time tl and the second specified time t2 are corrected.
[0065] 具体的には、一部暖房運転の開始時に第 2室内温度センサ (45)の検出室内温度 が比較的低い場合、補正手段 (52)は、第 1規定時間 tlを短くする補正を行う。また、 第 1規定時間 tl経過時の第 2室内温度センサ (45)の検出室内温度が比較的低い場 合、補正手段 (52)は、第 2規定時間 t2を長くする補正を行う。その結果、一部暖房運 転時において第 2室内膨張弁 (34b)を全閉状態とする時間が短くなるので、第 2室内 熱交換器 (33b)内に冷媒が寝込んでしまうのを未然に解消できる。なお、このような 第 1規定時間 tl及び第 2規定時間 t2の補正は、いずれか一方でも良いし両方であつ ても良い。  [0065] Specifically, if the detected indoor temperature of the second indoor temperature sensor (45) is relatively low at the start of the partial heating operation, the correcting means (52) corrects to shorten the first specified time tl. Do. Further, when the detected room temperature of the second room temperature sensor (45) is relatively low when the first specified time tl has elapsed, the correction means (52) performs correction to increase the second specified time t2. As a result, the time for which the second indoor expansion valve (34b) is fully closed is shortened during partial heating operation, so that it is possible to prevent the refrigerant from sleeping in the second indoor heat exchanger (33b). Can be resolved. Note that the correction of the first specified time tl and the second specified time t2 may be either one or both.
[0066] 一方、一部暖房運転の開始時に第 2室内温度センサ (45)の検出室内温度が比較 的高い場合、補正手段 (52)は、第 1規定時間 tlを長くする補正を行う。また、第 1規 定時間 tl経過時の第 2室内温度センサ (45)の検出室内温度が比較的高い場合、補 正手段 (52)は、第 2規定時間 t2を短くする補正を行う。その結果、一部暖房運転時 において第 2室内膨張弁(34b)を開放状態とする時間が短くなるので、休止側の第 2 室内熱交換器 (33b)で無駄な放熱が行われなレ、。  On the other hand, when the detected indoor temperature of the second indoor temperature sensor (45) is relatively high at the start of the partial heating operation, the correcting means (52) performs a correction to increase the first specified time tl. Further, when the detected room temperature of the second room temperature sensor (45) is relatively high when the first specified time tl has elapsed, the correcting means (52) performs correction to shorten the second specified time t2. As a result, the time required for opening the second indoor expansion valve (34b) in the partial heating operation is shortened, so that wasteful heat radiation is not performed in the second indoor heat exchanger (33b) on the pause side. .
[0067] 一実施形態の効果一  [0067] Advantages of one embodiment
上記実施形態では、複数の室内熱交換器 (33a,33b)で個別に加熱動作を行うこと が可能な空気調和装置(1)において、圧縮機 (22)の吐出冷媒を臨界圧力以上とす る超臨界サイクルを行うようにしている。このため、一部暖房運転時に休止側の室内 膨張弁 (34b)の開度を全閉としても、休止側の室内熱交換器 (33b)内で冷媒が凝縮 することはなレ、。従って、上記実施形態によれば、休止側の室内熱交換器 (33b)で冷 媒が寝込んでレ、く速度を大幅に小さくすることができる。その結果、加熱動作中の室 内熱交換器 (33a)における冷媒不足を回避でき、加熱動作側の室内熱交換器 (33a) の暖房能力を充分に得ることができる。 In the above embodiment, in the air conditioner (1) that can be individually heated by the plurality of indoor heat exchangers (33a, 33b), the refrigerant discharged from the compressor (22) is set to a critical pressure or higher. The supercritical cycle is performed. For this reason, the refrigerant will not condense in the inactive indoor heat exchanger (33b) even when the opening of the inactive indoor expansion valve (34b) is fully closed during partial heating operation. Therefore, according to the above-described embodiment, it is possible to drastically reduce the cooling speed when the cooling medium stagnates in the inactive indoor heat exchanger (33b). As a result, the shortage of refrigerant in the indoor heat exchanger (33a) during the heating operation can be avoided, and the heating capacity of the indoor heat exchanger (33a) on the heating operation side can be sufficiently obtained.
[0068] また、上記実施形態では、一部暖房運転を行う際に休止側の室内膨張弁(34b)を 全閉にしている。このため、上記実施形態によれば、休止側の室内熱交換器(33b) における無駄な放熱を防ぐことができる。従って、この空気調和装置(1)の COP (成 績係数)の向上を図ることができる。  [0068] In the above-described embodiment, the indoor expansion valve (34b) on the pause side is fully closed when performing a partial heating operation. For this reason, according to the said embodiment, useless heat dissipation in the indoor heat exchanger (33b) of a dormant side can be prevented. Therefore, the COP (performance factor) of the air conditioner (1) can be improved.
[0069] 更に、上記実施形態では、一部暖房運転を行う際に一度全閉状態とした室内膨張 弁(34b)を第 1規定時間 tl経過後に第 2規定時間 t2の間だけ開放するようにしてい る。このため、上記実施形態によれば、一部暖房運転を長期間継続して行う場合に おいても、休止側の室内熱交換器 (33b)内の冷媒の寝込みを確実に解消することが でき、加熱動作中の室内熱交換器 (33a)における冷媒量不足を確実に防止すること ができる。  [0069] Further, in the above embodiment, the indoor expansion valve (34b), which is once fully closed when performing the partial heating operation, is opened only for the second specified time t2 after the first specified time tl has elapsed. ing. Therefore, according to the above-described embodiment, even when partial heating operation is continuously performed for a long period of time, it is possible to reliably eliminate the stagnation of the refrigerant in the inactive indoor heat exchanger (33b). In addition, it is possible to reliably prevent the refrigerant amount from being insufficient in the indoor heat exchanger (33a) during the heating operation.
[0070] また、上記実施形態では、一部暖房運転時において、休止側の室内熱交換器 (33 b)の周囲の室内温度に基づいて第 1規定時間 tl及び第 2規定時間 t2を補正するよ うにしている。このため、上記実施形態によれば、必要以上に室内膨張弁(34b)の全 閉時間が長くなつてしまい、休止側の室内熱交換器 (33b)内に冷媒が寝込んでしまう のを回避できる。また、上記実施形態によれば、必要以上に室内膨張弁(34b)の開 放時間が長くなつてしまい、休止側の室内熱交換器 (33b)で冷媒カ 無駄に熱が放 出されてしまうのを回避できる。従って、この空気調和装置(1)の COPを更に向上さ せること力 Sできる。  [0070] Further, in the above embodiment, during the partial heating operation, the first specified time tl and the second specified time t2 are corrected based on the room temperature around the inactive indoor heat exchanger (33b). I am doing so. For this reason, according to the above embodiment, it is possible to prevent the indoor expansion valve (34b) from being fully closed longer than necessary, and the refrigerant from sleeping in the inactive indoor heat exchanger (33b). . Further, according to the above embodiment, the open time of the indoor expansion valve (34b) becomes longer than necessary, and heat is discharged wastefully in the refrigerant heat in the indoor heat exchanger (33b) on the pause side. Can be avoided. Therefore, it is possible to further improve the COP of the air conditioner (1).
[0071] 一室内膨張弁の開度制御の変形例一  [0071] Modified example of opening control of one indoor expansion valve
上記実施形態では、一部暖房運転時において、休止側の室内膨張弁(33a,33b)を 全閉状態とした後、第 1規定時間 tl及び第 2規定時間 t2に基づいてこの室内膨張弁 (34b)を開閉するようにしている。し力、しながら、このような室内膨張弁(34b)の開度制 御に代わって、図 6に示すように室内膨張弁(34b)の開度制御を行うようにしても良い In the above embodiment, during the partial heating operation, after the indoor expansion valves (33a, 33b) on the pause side are fully closed, the indoor expansion valves (33a, 33b) are set based on the first specified time tl and the second specified time t2. 34b) is opened and closed. However, the opening control of such an indoor expansion valve (34b) Instead, the opening degree of the indoor expansion valve (34b) may be controlled as shown in FIG.
[0072] この変形例の一部暖房運転では、高圧圧力センサ (40)の検出冷媒圧力と、高圧温 度センサ (41)の検出冷媒温度と、第 1冷媒温度センサ (42)の検出冷媒温度と、第 2 冷媒温度センサ (43)の検出冷媒温度とがコントローラ(50)に出力される。そして、こ のコントローラ(50)では、一部暖房運転における休止側の室内熱交換器 (33b)を流 れる冷媒密度を、これらの各センサ(40,41,42,43)の検出値に基づいて求めるように してレ、る。つまり、上記各センサ(40,41,42,43)は、休止側の室内熱交換器(33b)の冷 媒密度を検出するための冷媒密度検出手段を構成している。 [0072] In the partial heating operation of this modification, the refrigerant pressure detected by the high pressure sensor (40), the refrigerant temperature detected by the high pressure sensor (41), and the refrigerant temperature detected by the first refrigerant temperature sensor (42). And the refrigerant temperature detected by the second refrigerant temperature sensor (43) are output to the controller (50). Then, in this controller (50), the density of the refrigerant flowing through the pause-side indoor heat exchanger (33b) in the partial heating operation is determined based on the detection values of these sensors (40, 41, 42, 43). As you ask. That is, each of the sensors (40, 41, 42, 43) constitutes a refrigerant density detecting means for detecting the refrigerant density of the indoor heat exchanger (33b) on the pause side.
[0073] 具体的には、例えば上記実施形態と同様の一部暖房運転を行う際、制御手段(51) は、まず第 2室内膨張弁 (34b)の開度を全閉状態とする。一方、この一部暖房運転が 長期間に亘つて継続して行われると、第 2室内熱交換器 (33b)内には次第に冷媒が 寝込んでいくことになる。  Specifically, for example, when performing a partial heating operation similar to that in the above embodiment, the control means (51) first sets the opening of the second indoor expansion valve (34b) to a fully closed state. On the other hand, when this partial heating operation is continued for a long period of time, the refrigerant gradually stagnates in the second indoor heat exchanger (33b).
[0074] ここで、この変形例の制御手段(51)では、休止側の第 2室内熱交換器 (33b)内の 冷媒密度を、冷媒圧力及び冷媒温度から求めるようにしている。具体的に、例えば第 2室内熱交換器 (33b)が休止側となる場合には、コントローラ(50)力 高圧圧力セン サ (40)で検出した冷媒圧力と、高圧温度センサ (41)で検出した冷媒温度と、休止側 となる第 2冷媒温度センサ (43)で検出した冷媒温度とに基づいて、第 2室内熱交換 器 (33b)内の冷媒密度を求める。即ち、高圧圧力センサ (40)の検出冷媒圧力は、第 2室内熱交換器 (33b)内の冷媒圧力と実質的には同じとなる。一方、高圧温度センサ (41)で検出した冷媒温度は、第 2室内熱交換器 (33b)に流入する冷媒温度とみなす ことができ、また、第 2冷媒温度センサ (43)で検出した冷媒温度は、第 2室内熱交換 器 (33b)から流出した冷媒温度となる。従って、これらの流入及び流出冷媒温度とか ら、室内熱交換器(33b)内の冷媒の平均的な温度を求めることができる。そして、この 平均冷媒温度と上記冷媒圧力とから、第 2室内熱交換器 (33b)内の冷媒の平均的な 冷媒密度を求めることができる。  Here, in the control means (51) of this modification, the refrigerant density in the second indoor heat exchanger (33b) on the pause side is obtained from the refrigerant pressure and the refrigerant temperature. Specifically, for example, when the second indoor heat exchanger (33b) is on the idle side, the refrigerant pressure detected by the controller (50) force high pressure sensor (40) and the high pressure temperature sensor (41) are detected. The refrigerant density in the second indoor heat exchanger (33b) is obtained based on the refrigerant temperature and the refrigerant temperature detected by the second refrigerant temperature sensor (43) on the pause side. That is, the refrigerant pressure detected by the high pressure sensor (40) is substantially the same as the refrigerant pressure in the second indoor heat exchanger (33b). On the other hand, the refrigerant temperature detected by the high-pressure temperature sensor (41) can be regarded as the refrigerant temperature flowing into the second indoor heat exchanger (33b), and the refrigerant temperature detected by the second refrigerant temperature sensor (43). Is the refrigerant temperature flowing out of the second indoor heat exchanger (33b). Therefore, the average temperature of the refrigerant in the indoor heat exchanger (33b) can be obtained from these inflow and outflow refrigerant temperatures. Then, the average refrigerant density of the refrigerant in the second indoor heat exchanger (33b) can be obtained from the average refrigerant temperature and the refrigerant pressure.
[0075] 以上のようにして求めた冷媒密度は、第 2室内熱交換器(33b)内に貯まった冷媒量 を表す指標となる。そして、この変形例の制御手段(51)は、一部暖房運転を開始し て第 2室内膨張弁(34b)を全閉としてから、各センサ(40,41,43)の検出値から求めた 冷媒密度が、規定冷媒密度よりも大きくなると、第 2室内熱交換器 (33b)内に冷媒が 多く貯まっていると判断して第 2室内膨張弁 (34b)を一時的に開放させる。その結果 、第 2室内熱交換器 (33b)内における冷媒の寝込みが確実に解消される。 [0075] The refrigerant density obtained as described above serves as an index representing the amount of refrigerant stored in the second indoor heat exchanger (33b). And the control means (51) of this modification partly starts the heating operation. After the second indoor expansion valve (34b) is fully closed, if the refrigerant density obtained from the detected values of the sensors (40, 41, 43) exceeds the specified refrigerant density, the second indoor heat exchanger (33b ) The second indoor expansion valve (34b) is temporarily opened because it is determined that a large amount of refrigerant is stored in the inside. As a result, the stagnation of the refrigerant in the second indoor heat exchanger (33b) is reliably eliminated.
[0076] なお、第 1室内熱交換器(33a)を休止させ、第 2室内熱交換器(33b)で加熱動作を 行う一部暖房運転においては、高圧圧力センサ (40)、高圧温度センサ (41)、及び休 止側となる第 1冷媒温度センサ (42)の検出値に基づいて第 1室内熱交換器(33a)内 の冷媒密度が求められる。この場合、この冷媒密度が規定冷媒密度よりも大きくなる と、第 1室内膨張弁 (34a)が開放され、第 1室内熱交換器 (33a)内の冷媒の寝込みが 解消される。  [0076] In the partial heating operation in which the first indoor heat exchanger (33a) is stopped and the second indoor heat exchanger (33b) performs the heating operation, the high pressure sensor (40), the high pressure sensor ( 41) and the refrigerant density in the first indoor heat exchanger (33a) are obtained based on the detected value of the first refrigerant temperature sensor (42) on the rest side. In this case, when the refrigerant density becomes larger than the specified refrigerant density, the first indoor expansion valve (34a) is opened, and the stagnation of the refrigerant in the first indoor heat exchanger (33a) is eliminated.
[0077] 一変形例の効果一  [0077] Effect of one modification
この変形例では、一部暖房運転時において、休止側の室内熱交換器(33b)内の冷 媒密度を検出し、この冷媒密度が規定冷媒密度よりも大きくなると、全閉状態であつ た室内膨張弁(34b)を一時的に開放するようにしている。即ち、この変形例では、休 止側の室内熱交換器 (33b)内に貯まった冷媒量を間接的に求め、この冷媒量が多く なると室内膨張弁(34b)を開放するようにしている。従って、休止側の室内熱交換器( 33b)内の冷媒の寝込みを確実に回避することができる。  In this modification, during partial heating operation, the refrigerant density in the inactive indoor heat exchanger (33b) is detected, and when this refrigerant density becomes greater than the specified refrigerant density, The expansion valve (34b) is temporarily opened. That is, in this modification, the amount of refrigerant stored in the indoor heat exchanger (33b) on the rest side is obtained indirectly, and the indoor expansion valve (34b) is opened when the amount of refrigerant increases. Therefore, it is possible to reliably avoid the stagnation of the refrigerant in the inactive indoor heat exchanger (33b).
[0078] また、この変形例にぉレ、ても、一部暖房運転時に冷媒回路(10)で超臨界サイクル を行うことで、休止側となる各室内熱交換器 (33a,33b)での冷媒が寝込む速度を大幅 に遅くすることができる。  [0078] Further, even in this modification, even in a partial heating operation, by performing a supercritical cycle in the refrigerant circuit (10), each indoor heat exchanger (33a, 33b) on the dormant side is operated. The speed at which the refrigerant sleeps can be greatly reduced.
[0079] 更に、このように冷媒回路(10)で超臨界サイクルを行うと、休止側の室内熱交換器  [0079] Further, when the supercritical cycle is performed in the refrigerant circuit (10) in this way, the indoor heat exchanger on the dormant side is performed.
(33b)の平均的な冷媒密度をより正確に把握することもできる。具体的には、例えば 図 8に示すように、従来のもの(高圧が亜臨界圧力となる冷凍サイクルを行うもの)の 休止側の室内熱交換器について、その入口から出口に至るまでの冷媒密度(冷媒温 度)の変化を見ると、その変化の挙動は線形性が弱レ、ものとなる。なぜなら、従来のも のでは、休止側の室内熱交換器内で冷媒が凝縮して相変化するからである。従って 、室内熱交換器内に貯まった冷媒量を正確に把握しょうとすると、複数箇所 (例えば 3点以上)における冷媒密度 (冷媒温度)を検出する必要があり、温度センサの数量 も多くなつてしまう。 The average refrigerant density of (33b) can also be grasped more accurately. Specifically, for example, as shown in FIG. 8, the refrigerant density from the inlet to the outlet of a conventional indoor heat exchanger (which performs a refrigeration cycle in which high pressure becomes subcritical pressure) is measured. Looking at the change in (refrigerant temperature), the behavior of the change is weak in linearity. This is because in the conventional system, the refrigerant condenses and changes phase in the indoor heat exchanger on the idle side. Therefore, to accurately grasp the amount of refrigerant stored in the indoor heat exchanger, it is necessary to detect the refrigerant density (refrigerant temperature) at multiple locations (for example, three or more points). Too much.
[0080] 一方、図 7に示すように、本実施形態の休止側の室内熱交換器(33b)について、そ の入口から出口に至るまでの冷媒密度 (冷媒温度)の変化を見ると、その変化の挙動 は比較的線形性が強レ、ものとなる。なぜなら、本実施形態では、室内熱交換器 (33b) 内に臨界圧力以上の冷媒が貯まるため、室内熱交換器 (33b)内の冷媒が入口から 出口に至るまで相変化しないためである。従って、本実施形態では、上述の変形例 のようにして入口及び出口の冷媒密度を求めることで、予めコントローラ(50)内に記 憶されたデータテーブル (冷媒密度ゃ冷媒温度の変化の挙動に関するデータ等)に 基づき、室内熱交換器 (33b)の入ロカ、ら出口までの冷媒密度の挙動を正確に予測 すること力 Sできる。そして、このように求めた冷媒密度に基づいて、室内膨張弁(34a,3 4b)を開放させるタイミングを判定することで、休止側の室内熱交換器(33b)における 冷媒の寝込みを一層確実に回避することができる。  [0080] On the other hand, as shown in FIG. 7, when the change in refrigerant density (refrigerant temperature) from the inlet to the outlet of the pause-side indoor heat exchanger (33b) of this embodiment is seen, The behavior of change is relatively linear. This is because, in the present embodiment, refrigerant having a critical pressure or higher is stored in the indoor heat exchanger (33b), so that the refrigerant in the indoor heat exchanger (33b) does not change in phase from the inlet to the outlet. Therefore, in this embodiment, the refrigerant density at the inlet and the outlet is obtained as in the above-described modification example, so that the data table stored in the controller (50) in advance (the refrigerant density is related to the behavior of the refrigerant temperature change). Based on data, etc., it is possible to accurately predict the behavior of refrigerant density from the inlet to the outlet of the indoor heat exchanger (33b) to the outlet. Then, based on the refrigerant density thus obtained, the timing of opening the indoor expansion valves (34a, 34b) is determined, so that the stagnation of the refrigerant in the inactive indoor heat exchanger (33b) can be further ensured. It can be avoided.
[0081] 《その他の実施形態》  [0081] << Other Embodiments >>
上記実施形態に係る空気調和装置(1)について、各利用側熱交換器 (33a,33b)を 通過した空気がそれぞれ吹出される各吹出口に、該各吹出口を開閉自在なルーバ 一等の開閉機構をそれぞれ設けるようにしてもよい。そして、上述のような一部運転 時において、休止側の利用側熱交換器(33b)に対応する吹出口のみを開閉機構に よって閉鎖するようにしても良い。この場合には、休止側の利用側熱交換器(33b)内 に溜まった冷媒の熱が、吹出口を介して室内空間へ逃げてしまうことを抑制できる。 従って、利用側熱交換器 (33b)の周囲温度の低下を抑制でき、利用側熱交換器 (33 b)内の冷媒の寝込みを一層効果的に回避することができる。なお、ルーバー等の開 閉機構には、吹出口を封止した際のシール性を高めるため、パッキン等のシール材 をルーバーの周囲に設けると好適である。  In the air conditioner (1) according to the above-described embodiment, a louver or the like that can freely open and close each outlet is provided at each outlet from which air that has passed through each use-side heat exchanger (33a, 33b) is blown out. An opening / closing mechanism may be provided. Then, during the partial operation as described above, only the outlet corresponding to the use side heat exchanger (33b) on the pause side may be closed by the opening / closing mechanism. In this case, it is possible to suppress the heat of the refrigerant accumulated in the use side heat exchanger (33b) on the dormant side from escaping into the indoor space via the blowout port. Therefore, a decrease in the ambient temperature of the use side heat exchanger (33b) can be suppressed, and the stagnation of the refrigerant in the use side heat exchanger (33b) can be more effectively avoided. It is to be noted that a sealing material such as packing is preferably provided around the louver in the opening / closing mechanism such as a louver in order to improve the sealing performance when the outlet is sealed.
[0082] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0082] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0083] 以上説明したように、本発明は、複数の利用側熱交換器で個別に加熱動作を可能 とする冷凍装置において、休止側の利用側熱交換器の冷媒の寝込み対策として有 用である。 [0083] As described above, the present invention is effective as a countermeasure against the stagnation of the refrigerant in the dormant use side heat exchanger in the refrigerating apparatus that can individually perform the heating operation with the plurality of use side heat exchangers. It is for.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機及び熱源熱交換器を有する熱源側回路に対して、利用側熱交換器及び該 利用側熱交換器に対応する電動弁をそれぞれ有する複数の利用側回路が並列に 接続されて構成される冷媒回路を備え、利用側熱交換器内の冷媒から熱を放出する 加熱動作を各利用側熱交換器で個別に可能とする冷凍装置であって、  [1] With respect to the heat source side circuit having the compressor and the heat source heat exchanger, a plurality of usage side circuits each having a usage side heat exchanger and an electric valve corresponding to the usage side heat exchanger are connected in parallel. A refrigeration apparatus comprising a refrigerant circuit configured to allow heating operation to release heat from the refrigerant in the use side heat exchanger individually in each use side heat exchanger,
上記冷媒回路は、圧縮機の吐出冷媒を臨界圧力以上とする冷凍サイクルを行うよう に構成されてレ、ることを特徴とする冷凍装置。  The refrigerant circuit is configured to perform a refrigeration cycle in which a refrigerant discharged from a compressor has a critical pressure or higher.
[2] 請求項 1において、  [2] In claim 1,
加熱動作を行う利用側熱交換器と休止状態の利用側熱交換器とが共存する運転 を行う際、休止側の利用側熱交換器に対応する電動弁を全閉する制御手段を備え ていることを特徴とする冷凍装置。  A control means is provided for fully closing the motor-operated valve corresponding to the idle-side use-side heat exchanger when performing operation in which the use-side heat exchanger performing the heating operation and the dormant use-side heat exchanger coexist. A refrigeration apparatus characterized by that.
[3] 請求項 2において、 [3] In claim 2,
上記制御手段は、休止側の利用側熱交換器に対応する電動弁を全閉してから第 1 規定時間 tlが経過すると、該電動弁を第 2規定時間 t2に亘つて一時的に開放するこ とを特徴とする冷凍装置。  The control means opens the motorized valve temporarily for the second specified time t2 when the first specified time tl elapses after the motorized valve corresponding to the use side heat exchanger on the idle side is fully closed. A refrigeration system characterized by this.
[4] 請求項 3において、 [4] In claim 3,
上記各利用側熱交換器は、室内に配置されて室内空気へ冷媒の熱を放出するよう に構成され、  Each of the use side heat exchangers is arranged indoors and is configured to release the heat of the refrigerant to the indoor air.
各利用側熱交換器の周囲には、該各利用側熱交換器に対応する室内の温度を検 出する室内温度センサがそれぞれ設けられ、  An indoor temperature sensor that detects the temperature of the room corresponding to each usage-side heat exchanger is provided around each usage-side heat exchanger.
休止側の利用側熱交換器に対応する室内温度センサの検出温度に基づいて上記 第 1規定時間 tl及び第 2規定時間 t2のいずれか一方又は両方を補正する補正手段 を備えてレ、ることを特徴とする冷凍装置。  Provide correction means for correcting one or both of the first specified time tl and the second specified time t2 based on the detected temperature of the indoor temperature sensor corresponding to the use side heat exchanger on the dormant side. A refrigeration apparatus characterized by.
[5] 請求項 2において、 [5] In claim 2,
各利用側熱交換器内の冷媒密度をそれぞれ検出する冷媒密度検出手段を備え、 上記制御手段は、休止側の利用側熱交換器に対応する電動弁を全閉してから該 利用側熱交換器に対応する冷媒密度検知手段の検出冷媒密度が規定冷媒密度よ り大きくなると、該電動弁を一時的に開放することを特徴とする冷凍装置。 Refrigerant density detection means for detecting the refrigerant density in each user-side heat exchanger is provided, and the control means fully closes the motor-operated valve corresponding to the idle-side user-side heat exchanger and then uses the user-side heat exchange. A refrigerating apparatus characterized in that the motor-operated valve is temporarily opened when a refrigerant density detected by a refrigerant density detecting means corresponding to the container becomes larger than a specified refrigerant density.
[6] 請求項 1乃至 5のいずれ力 1において、 [6] In any force 1 of claims 1 to 5,
上記冷媒回路には、冷媒として二酸化炭素が充填されていることを特徴とする冷凍 装置。  The refrigerating apparatus, wherein the refrigerant circuit is filled with carbon dioxide as a refrigerant.
[7] 請求項 2乃至 5のいずれ力 4において、  [7] In any force 4 of claims 2 to 5,
各利用側熱交換器を通過した空気がそれぞれ吹き出される吹出口と、該吹出口を それぞれ開閉自在な開閉機構とを備え、  An air outlet through which each of the air passing through each use-side heat exchanger is blown, and an opening / closing mechanism that can open and close the air outlet,
上記各開閉機構は、加熱動作を行う利用側熱交換器の吹出口を開放する一方、 休止側の利用側熱交換器の吹出口を閉鎖するように構成されていることを特徴とす る冷凍装置。  Each of the open / close mechanisms is configured to open the outlet of the use side heat exchanger that performs the heating operation, and close the outlet of the use side heat exchanger on the idle side. apparatus.
PCT/JP2007/054405 2006-03-22 2007-03-07 Refrigerating apparatus WO2007108319A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2007228237A AU2007228237B2 (en) 2006-03-22 2007-03-07 Refrigeration system
CN2007800081990A CN101395435B (en) 2006-03-22 2007-03-07 Refrigerating apparatus
EP07737919.6A EP1998123B1 (en) 2006-03-22 2007-03-07 Refrigerating apparatus
ES07737919.6T ES2671446T3 (en) 2006-03-22 2007-03-07 Cooling device
US12/224,720 US20090019879A1 (en) 2006-03-22 2007-03-07 Refrigeration System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006078157A JP4797727B2 (en) 2006-03-22 2006-03-22 Refrigeration equipment
JP2006-078157 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007108319A1 true WO2007108319A1 (en) 2007-09-27

Family

ID=38522352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054405 WO2007108319A1 (en) 2006-03-22 2007-03-07 Refrigerating apparatus

Country Status (9)

Country Link
US (1) US20090019879A1 (en)
EP (1) EP1998123B1 (en)
JP (1) JP4797727B2 (en)
KR (1) KR100988712B1 (en)
CN (2) CN101395435B (en)
AU (1) AU2007228237B2 (en)
ES (1) ES2671446T3 (en)
TR (1) TR201807246T4 (en)
WO (1) WO2007108319A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413738A (en) * 2007-10-17 2009-04-22 开利公司 Middle and low temperature integrated type refrigerated storage / refrigerating system
JP5187373B2 (en) * 2010-10-20 2013-04-24 ダイキン工業株式会社 Air conditioner
JP5789755B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5789754B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5789756B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
EP2965932B1 (en) * 2013-03-06 2019-05-08 Panasonic Intellectual Property Management Co., Ltd. Vehicle air conditioning device
JP6155824B2 (en) * 2013-05-08 2017-07-05 ダイキン工業株式会社 Air conditioner
CN104764097A (en) * 2015-04-08 2015-07-08 珠海格力电器股份有限公司 Air-conditioning system, air-conditioner and control method thereof
JP6415703B2 (en) * 2015-04-23 2018-10-31 三菱電機株式会社 Refrigeration cycle equipment
CN106871385B (en) * 2017-04-13 2020-08-25 青岛海尔空调器有限总公司 Air conditioner and control method
CN107560214A (en) * 2017-08-02 2018-01-09 青岛海尔空调电子有限公司 A kind of control method and device of expansion valve
KR20200118968A (en) * 2019-04-09 2020-10-19 엘지전자 주식회사 Air conditioning apparatus
JP2022059486A (en) * 2020-10-01 2022-04-13 住友重機械工業株式会社 Cryogenic refrigerator and control method for cryogenic refrigerator
CN114234301B (en) * 2021-12-13 2023-02-21 广东芬尼克兹节能设备有限公司 Dehumidifier and accumulated liquid prevention control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH05312428A (en) * 1992-05-11 1993-11-22 Daikin Ind Ltd Operation controller for air conditioner
JPH08159590A (en) 1994-12-06 1996-06-21 Toshiba Corp Air conditioner
JPH11201572A (en) * 1998-01-13 1999-07-30 Matsushita Refrig Co Ltd Multiroom air conditioner
JP2004232905A (en) * 2003-01-29 2004-08-19 Sanyo Electric Co Ltd Refrigerator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934797A (en) * 1974-05-28 1976-01-27 Neal Robert Perlmutter Individual room temperature control system
CA1247385A (en) * 1984-07-02 1988-12-28 Kosaku Sayo Apparatus for measuring refrigerant flow rate in refrigeration cycle
DE69115434T2 (en) * 1990-10-25 1996-05-30 Toshiba Kawasaki Kk Air conditioner
JPH05149605A (en) * 1991-11-30 1993-06-15 Toshiba Corp Air conditioner
SG135972A1 (en) * 1993-11-12 2007-10-29 Sanyo Electric Co Air conditioner
US5860473A (en) * 1994-07-12 1999-01-19 Trol-A-Temp Division Of Trolex Corp. Multi-zone automatic changeover heating, cooling and ventilating control system
JP3378712B2 (en) * 1995-11-17 2003-02-17 三洋電機株式会社 Air conditioner
FR2752611B1 (en) * 1996-08-22 2000-10-13 Samsung Electronics Co Ltd ROOM AIR CONDITIONER AND CORRESPONDING METHODS OF IMPLEMENTATION
JP2002022635A (en) * 2000-07-10 2002-01-23 Kaijo Corp Oscillatory density meter
JP4151219B2 (en) * 2001-01-10 2008-09-17 松下電器産業株式会社 Multi-chamber air conditioner
JP4165049B2 (en) * 2001-10-15 2008-10-15 ダイキン工業株式会社 Refrigeration equipment
KR100504498B1 (en) * 2003-01-13 2005-08-03 엘지전자 주식회사 Air conditioner
EP1471316A1 (en) * 2003-04-22 2004-10-27 Delphi Technologies, Inc. Reversible heat pump system
JP2004340568A (en) * 2003-04-22 2004-12-02 Sanyo Electric Co Ltd Multi-type air-conditioner
US6898941B2 (en) * 2003-06-16 2005-05-31 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of expansion machine flowrate
KR100546616B1 (en) * 2004-01-19 2006-01-26 엘지전자 주식회사 controling method in the multi airconditioner
KR20060012837A (en) * 2004-08-04 2006-02-09 삼성전자주식회사 A multi air conditioner and a driving method of it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH05312428A (en) * 1992-05-11 1993-11-22 Daikin Ind Ltd Operation controller for air conditioner
JPH08159590A (en) 1994-12-06 1996-06-21 Toshiba Corp Air conditioner
JPH11201572A (en) * 1998-01-13 1999-07-30 Matsushita Refrig Co Ltd Multiroom air conditioner
JP2004232905A (en) * 2003-01-29 2004-08-19 Sanyo Electric Co Ltd Refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1998123A4

Also Published As

Publication number Publication date
KR20080091853A (en) 2008-10-14
TR201807246T4 (en) 2018-06-21
AU2007228237B2 (en) 2010-08-05
EP1998123A1 (en) 2008-12-03
EP1998123A4 (en) 2011-03-02
CN101395435B (en) 2012-07-18
CN101395435A (en) 2009-03-25
CN101907366B (en) 2012-11-21
US20090019879A1 (en) 2009-01-22
AU2007228237A1 (en) 2007-09-27
JP2007255750A (en) 2007-10-04
CN101907366A (en) 2010-12-08
JP4797727B2 (en) 2011-10-19
EP1998123B1 (en) 2018-05-02
ES2671446T3 (en) 2018-06-06
KR100988712B1 (en) 2010-10-18

Similar Documents

Publication Publication Date Title
WO2007108319A1 (en) Refrigerating apparatus
JP6935720B2 (en) Refrigeration equipment
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
KR101479458B1 (en) Refrigeration device
US9494363B2 (en) Air-conditioning apparatus
JP2009229012A (en) Refrigerating device
WO2009107395A1 (en) Refrigeration device
JP2008232508A (en) Water heater
JP2006242476A (en) Air conditioner
JP6783271B2 (en) Air conditioning system
US11268737B2 (en) Refrigeration cycle apparatus
WO2008032558A1 (en) Refrigeration device
JP2007051825A (en) Air-conditioner
JP2008064437A5 (en)
US20190249912A1 (en) Air conditioner
JP2009041845A (en) Operation control method of multi-room type air conditioner
JP2003240391A (en) Air conditioner
JP2013053818A (en) Air conditioner
US7921670B2 (en) Refrigeration apparatus
JP2008039233A (en) Refrigerating device
JP4363483B2 (en) Refrigeration equipment
WO2008069265A1 (en) Air-conditioner
JP2018063091A (en) Heat pump water heater with cooling function
JP2009014321A (en) Air conditioner
JP2010032167A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007228237

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007737919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224720

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780008199.0

Country of ref document: CN

Ref document number: 1020087021871

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007228237

Country of ref document: AU

Date of ref document: 20070307

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE