JP2018063091A - Heat pump water heater with cooling function - Google Patents

Heat pump water heater with cooling function Download PDF

Info

Publication number
JP2018063091A
JP2018063091A JP2016202487A JP2016202487A JP2018063091A JP 2018063091 A JP2018063091 A JP 2018063091A JP 2016202487 A JP2016202487 A JP 2016202487A JP 2016202487 A JP2016202487 A JP 2016202487A JP 2018063091 A JP2018063091 A JP 2018063091A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
heat
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202487A
Other languages
Japanese (ja)
Other versions
JP6675961B2 (en
Inventor
基 阿部
Motoi Abe
基 阿部
伊藤 隆
Takashi Ito
伊藤  隆
晃寛 大平
Akihiro Ohira
晃寛 大平
佐藤 元泰
Motoyasu Sato
元泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2016202487A priority Critical patent/JP6675961B2/en
Publication of JP2018063091A publication Critical patent/JP2018063091A/en
Application granted granted Critical
Publication of JP6675961B2 publication Critical patent/JP6675961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely secure heating capacity of water to a hot water storage tank.SOLUTION: An outdoor fan control portion 410D increases an outdoor fan rotating speed N2 in an outdoor fan 67 according to lowering of an indoor fan rotating speed N1 in an indoor fan 66. As the outdoor fan rotating speed N2 is corrected to a high rotating speed side even when a heat absorbing amount in an indoor heat exchanger 27 is reduced due to reduction of the indoor fan rotating speed N1 with lapse of time after start of an operation, a heat absorbing amount in an outdoor heat exchanger 17 can be increased.SELECTED DRAWING: Figure 10

Description

この発明は、室内空気の冷却及び貯湯タンク内の湯水の加熱を並行して行う沸上・冷房運転を実行可能な、冷房機能付きヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater with a cooling function capable of performing boiling and cooling operations in which indoor air cooling and hot water in a hot water storage tank are heated in parallel.

従来よりこの種の給湯機においては、特許文献1記載のように、沸上・冷房運転の際、圧縮機の吐出側に凝縮器としての水冷媒熱交換器が接続され、その下流側に凝縮器としての室内熱交換器が接続され、さらにその下流側に蒸発器としてのヒートポンプ熱交換器(室外熱交換器)が接続されるものがあった。   Conventionally, in this type of water heater, as described in Patent Document 1, a water refrigerant heat exchanger as a condenser is connected to the discharge side of the compressor during the boiling and cooling operation, and condensation is performed on the downstream side thereof. In some cases, an indoor heat exchanger as an evaporator is connected, and a heat pump heat exchanger (outdoor heat exchanger) as an evaporator is connected downstream thereof.

特許4610688号公報Japanese Patent No. 4610688

沸上・冷房運転の際は、一般に、運転開始直後は冷房負荷が大きいことから室内熱交換器における吸熱量が多くなるものの、その後時間が経過するにつれて冷房負荷が小さくなることから室内熱交換器での吸熱量が小さくなる。前記の従来技術においては、このような場合、上流側に位置している水冷媒熱交換器での放熱量も小さくなるため、貯湯タンクへの水の加熱能力を確実に確保する観点からは、十分なものとは言えないという問題があった。   During boiling / cooling operation, the heat load in the indoor heat exchanger generally increases immediately after the operation starts, so the heat absorption amount in the indoor heat exchanger increases. The endothermic amount at becomes small. In the above prior art, in such a case, the heat radiation amount in the water-refrigerant heat exchanger located on the upstream side is also reduced, so from the viewpoint of reliably ensuring the heating capacity of water to the hot water storage tank, There was a problem that it was not enough.

上記課題を解決するために、本発明の請求項1では、冷媒と室内空気との熱交換を行う、蒸発器としての室内熱交換器と、湯水を貯湯する貯湯タンクと、冷媒通路と水通路とを備え、前記冷媒通路内の前記冷媒と前記水通路内の水との熱交換を行う、凝縮器としての水冷媒熱交換器と、前記冷媒と外気との熱交換を行う、蒸発器としてのヒートポンプ熱交換器と、圧縮機とを有し、前記水冷媒熱交換器の前記水通路と前記貯湯タンクとを湯水配管によって環状に接続して湯水循環回路を形成し、前記室内熱交換器、前記水冷媒熱交換器の前記冷媒通路、前記ヒートポンプ熱交換器、及び、前記圧縮機を冷媒配管で接続して冷媒循環回路を形成して、前記室内熱交換器により室内空気を冷却しかつ前記水冷媒熱交換器により前記貯湯タンクへの水を加熱する沸上・冷房運転を実行可能な冷房機能付きヒートポンプ給湯機において、前記冷媒配管は、前記圧縮機の吐出側を前記水冷媒熱交換器の前記冷媒通路の入口側に対し接続し、さらに前記水冷媒熱交換器の前記冷媒通路の出口側を前記室内熱交換器の入口側に対し接続し、さらに前記室内熱交換器の出口側を前記ヒートポンプ熱交換器の入口側に対し接続し、さらに前記ヒートポンプ熱交換器の出口側を前記圧縮機の吸入側に対し接続しており、かつ、前記室内熱交換器における冷房負荷を検出する負荷検出手段と、前記負荷検出手段により検出される前記冷房負荷が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させる吸熱制御手段とを設けたものである。   In order to solve the above-described problems, in claim 1 of the present invention, an indoor heat exchanger as an evaporator that performs heat exchange between the refrigerant and room air, a hot water storage tank that stores hot water, a refrigerant passage, and a water passage. A water refrigerant heat exchanger as a condenser that exchanges heat between the refrigerant in the refrigerant passage and water in the water passage, and an evaporator that exchanges heat between the refrigerant and outside air. A heat pump heat exchanger and a compressor, the water passage of the water-refrigerant heat exchanger and the hot water storage tank are annularly connected by hot water piping to form a hot water circulation circuit, and the indoor heat exchanger The refrigerant passage of the water refrigerant heat exchanger, the heat pump heat exchanger, and the compressor are connected by a refrigerant pipe to form a refrigerant circulation circuit, and the indoor air is cooled by the indoor heat exchanger, and To the hot water storage tank by the water refrigerant heat exchanger In the heat pump water heater with a cooling function capable of performing boiling and cooling operations for heating the refrigerant, the refrigerant pipe connects the discharge side of the compressor to the inlet side of the refrigerant passage of the water refrigerant heat exchanger, Furthermore, the outlet side of the refrigerant passage of the water refrigerant heat exchanger is connected to the inlet side of the indoor heat exchanger, and the outlet side of the indoor heat exchanger is connected to the inlet side of the heat pump heat exchanger. Furthermore, the outlet side of the heat pump heat exchanger is connected to the suction side of the compressor, and the load detecting means detects the cooling load in the indoor heat exchanger, and is detected by the load detecting means An endothermic control means for increasing the endothermic amount in the heat pump heat exchanger is provided when the cooling load is reduced.

また、請求項2では、前記冷媒配管は、前記圧縮機の吐出側と前記水冷媒熱交換器の前記冷媒通路の入口側との間を接続する第1配管と、前記水冷媒熱交換器の前記冷媒通路の出口側と前記室内熱交換器の入口側との間を接続する第2配管と、前記室内熱交換器の出口側と前記ヒートポンプ熱交換器の入口側との間を接続する第3配管と、前記ヒートポンプ熱交換器の出口側と前記圧縮機の吸入側との間を接続する第4配管とを含み、前記第2配管には、弁開度が運転状態に応じて可変に制御される減圧器が設けられるものである。   According to a second aspect of the present invention, the refrigerant pipe includes a first pipe that connects between a discharge side of the compressor and an inlet side of the refrigerant passage of the water refrigerant heat exchanger, and the water refrigerant heat exchanger. A second pipe connecting between the outlet side of the refrigerant passage and the inlet side of the indoor heat exchanger; and a second pipe connecting between the outlet side of the indoor heat exchanger and the inlet side of the heat pump heat exchanger. 3 piping, and 4th piping which connects between the exit side of the said heat pump heat exchanger, and the suction side of the said compressor, In said 2nd piping, valve opening degree is variable according to an operating state. A controlled decompressor is provided.

また、請求項3では、前記ヒートポンプ熱交換器に外気を送り込む送風ファンをさらに有し、前記吸熱制御手段は、前記負荷検出手段により検出される前記冷房負荷が減少したことを契機に前記送風ファンの回転数を増大させる回転制御手段であるものである。   According to a third aspect of the present invention, the fan further includes a blower fan that sends outside air to the heat pump heat exchanger, and the heat absorption control unit is triggered by a decrease in the cooling load detected by the load detection unit. This is rotation control means for increasing the number of rotations.

また、請求項4では、少なくとも室内温度に基づき回転が制御され、前記室内熱交換器からの冷気を室内へ吹き出す冷却ファンをさらに有し、前記負荷検出手段は、前記冷却ファンの回転数を検出する回転検出手段であり、前記吸熱制御手段は、前記回転検出手段により検出される前記冷却ファンの回転数が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させるものである。   According to a fourth aspect of the present invention, there is further provided a cooling fan that is controlled in rotation based on at least the room temperature and blows out cool air from the indoor heat exchanger into the room, and the load detecting means detects the number of rotations of the cooling fan. The heat absorption control means increases the heat absorption amount in the heat pump heat exchanger when the number of rotations of the cooling fan detected by the rotation detection means decreases.

また、請求項5では、前記室内温度を検出する検出手段をさらに有し、前記負荷検出手段は、前記検出手段により検出された室内温度検出値とユーザの設定による室内温度設定値との温度差を算出する算出手段であり、前記吸熱制御手段は、前記算出手段により算出される前記温度差が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させるものである。   Further, according to a fifth aspect of the present invention, the load detecting unit further includes a detection unit that detects the room temperature, and the load detection unit is configured to detect a temperature difference between a detected indoor temperature value detected by the detecting unit and a set indoor temperature value set by a user The heat absorption control means increases the heat absorption amount in the heat pump heat exchanger when the temperature difference calculated by the calculation means decreases.

この発明の請求項1によれば、冷媒配管により、前記圧縮機の吐出側が前記水冷媒熱交換器の冷媒通路に接続され、さらにその水冷媒熱交換器の冷媒通路が前記室内熱交換器に接続され、さらにその室内熱交換器が前記ヒートポンプ熱交換器に接続され、さらにそのヒートポンプ熱交換器が前記圧縮機の吸入側に接続される。これにより、圧縮機から吐出された高温高圧の冷媒ガスが水冷媒熱交換器において貯湯タンクへ通じる湯水配管へ放熱し凝縮して液体冷媒となり、その後室内熱交換器で蒸発することで室内空気から吸熱した後、さらにヒートポンプ熱交換器で蒸発することで外気からも吸熱して圧縮機へと戻る。これにより、室内空気を冷却すると共に貯湯タンクへの水を加熱する、沸上・冷房運転が実現される。   According to the first aspect of the present invention, the discharge side of the compressor is connected to the refrigerant passage of the water refrigerant heat exchanger by the refrigerant pipe, and the refrigerant passage of the water refrigerant heat exchanger is connected to the indoor heat exchanger. Further, the indoor heat exchanger is connected to the heat pump heat exchanger, and the heat pump heat exchanger is connected to the suction side of the compressor. As a result, the high-temperature and high-pressure refrigerant gas discharged from the compressor dissipates heat to the hot water piping that leads to the hot water storage tank in the water refrigerant heat exchanger, condenses into a liquid refrigerant, and then evaporates in the indoor heat exchanger, thereby After absorbing heat, it is further evaporated by a heat pump heat exchanger to absorb heat from the outside air and return to the compressor. Thus, boiling / cooling operation is realized in which the indoor air is cooled and the water to the hot water storage tank is heated.

そして、この沸上・冷房運転においては、前記のように、前記室内熱交換器(蒸発器として機能)での吸熱と、前記ヒートポンプ熱交換器(蒸発器として機能)での吸熱と、を合計したものが、前記水冷媒熱交換器(凝縮器として機能)での湯水の加熱に用いられる。このとき、通常、運転開始直後は冷房負荷が大きいことから室内熱交換器における吸熱量が多くなるものの、その後時間が経過するにつれて冷房負荷が小さくなることから室内熱交換器での吸熱量が小さくなる。   In this boiling / cooling operation, as described above, the heat absorption in the indoor heat exchanger (functioning as an evaporator) and the heat absorption in the heat pump heat exchanger (functioning as an evaporator) are totaled. What has been used is used for heating hot water in the water refrigerant heat exchanger (functioning as a condenser). At this time, although the cooling load is usually large immediately after the start of operation, the heat absorption amount in the indoor heat exchanger increases, but as the time passes, the cooling load decreases, so the heat absorption amount in the indoor heat exchanger is small. Become.

これに対応して、請求項1によれば、負荷検出手段と吸熱制御手段とが設けられる。吸熱制御手段は、負荷検出手段が検出する冷房負荷が前記のようにして減少すると、これに対応して前記ヒートポンプ熱交換器における吸熱量を増大させる。これにより、前記のようにして室内熱交換器で吸熱量が小さくなった分を補うことができるので、室内熱交換器での吸熱量とヒートポンプ熱交換器での吸熱量との合計が、小さくならないように維持することができる。この結果、前記水冷媒熱交換器における放熱量を低下させることなく維持し、貯湯タンクへの水の加熱能力を確実に確保することができる。   Correspondingly, according to claim 1, a load detecting means and an endothermic control means are provided. When the cooling load detected by the load detection unit decreases as described above, the heat absorption control unit increases the heat absorption amount in the heat pump heat exchanger correspondingly. As a result, since the amount of heat absorbed by the indoor heat exchanger can be compensated for as described above, the sum of the heat absorbed by the indoor heat exchanger and the heat absorbed by the heat pump heat exchanger is small. Can be maintained. As a result, the heat radiation amount in the water refrigerant heat exchanger can be maintained without lowering, and the water heating capacity to the hot water storage tank can be reliably ensured.

また、請求項2によれば、沸上・冷房運転時において、圧縮機吐出側→第1配管→水冷媒熱交換器→第2配管→室内熱交換器→第3配管→ヒートポンプ熱交換器→第4配管→圧縮機吸入側という冷媒経路が形成される。そして、前記第2配管に設けられた減圧器の弁開度が可変制御される。この場合、前記の冷媒経路において、水冷媒熱交換器で熱交換後の冷媒を第2配管の減圧器において確実に低温低圧状態に膨張させ、室内熱交換器に供給することができる。これにより、貯湯タンクへの水の加熱(排熱)を利用した高効率な運転を行うことができる。)   Further, according to claim 2, during the boiling / cooling operation, the compressor discharge side → the first pipe → the water / refrigerant heat exchanger → the second pipe → the indoor heat exchanger → the third pipe → the heat pump heat exchanger → A refrigerant path from the fourth pipe to the compressor suction side is formed. And the valve opening degree of the decompressor provided in the said 2nd piping is variably controlled. In this case, in the refrigerant path, the refrigerant after heat exchange with the water refrigerant heat exchanger can be reliably expanded to a low temperature and low pressure state in the decompressor of the second pipe and supplied to the indoor heat exchanger. Thereby, the highly efficient driving | operation using the heating (exhaust heat) of the water to a hot water storage tank can be performed. )

また、請求項3によれば、冷房負荷の減少が検出されると、回転制御手段が、ヒートポンプ熱交換器に外気を送り込む送風ファンの回転数を増大させる。これにより、冷媒と室内空気との熱交換量が増えるので、ヒートポンプ熱交換器における吸熱量を確実に増大させることができる。   According to the third aspect of the present invention, when a decrease in the cooling load is detected, the rotation control means increases the rotation speed of the blower fan that sends outside air into the heat pump heat exchanger. As a result, the amount of heat exchange between the refrigerant and the room air increases, so that the amount of heat absorbed in the heat pump heat exchanger can be reliably increased.

また、請求項4によれば、室内熱交換器に設けられる冷却ファンの回転数が、室内温度に基づき制御される。したがって、例えば冷房負荷が大きい場合には冷却ファンの回転数が高くなり冷房負荷が小さい場合には冷却ファンの回転数が低くなる。これに対応して、請求項4によれば、前記負荷検出手段として、前記冷却ファンの回転数を検出する回転検出手段が設けられる。そして、この回転検出手段が検出する冷却ファンの回転数が減少すると、(冷房負荷が小さくなっていることから)吸熱制御手段の制御により、前記ヒートポンプ熱交換器における吸熱量が増大する。この結果、室内熱交換器での吸熱量とヒートポンプ熱交換器での吸熱量との合計を確実に維持することができる。   According to claim 4, the number of rotations of the cooling fan provided in the indoor heat exchanger is controlled based on the room temperature. Therefore, for example, when the cooling load is large, the rotational speed of the cooling fan is high, and when the cooling load is small, the rotational speed of the cooling fan is low. Corresponding to this, according to the fourth aspect of the present invention, a rotation detecting means for detecting the number of rotations of the cooling fan is provided as the load detecting means. When the number of rotations of the cooling fan detected by the rotation detection unit decreases, the amount of heat absorbed in the heat pump heat exchanger increases due to the control of the heat absorption control unit (because the cooling load is small). As a result, the sum of the heat absorption amount in the indoor heat exchanger and the heat absorption amount in the heat pump heat exchanger can be reliably maintained.

また、請求項5によれば、実際の室内温度が検出手段によって検出される。例えばリモコンなどによりユーザが設定する室内温度設定値と前記検出手段による室内温度検出値との差が大きい場合は冷房負荷が大きく、逆にそれらの差が小さい場合は冷房負荷が小さくなる。これに対応して、請求項5によれば、前記負荷検出手段として、前記室内温度検出値と前記室内温度設定値との温度差を算出する算出手段が設けられる。そして、この算出手段が算出する温度差が減少すると、(冷房負荷が小さくなっていることから)吸熱制御手段の制御により、前記ヒートポンプ熱交換器における吸熱量が増大する。この結果、室内熱交換器での吸熱量とヒートポンプ熱交換器での吸熱量との合計を確実に維持することができる。   According to claim 5, the actual room temperature is detected by the detecting means. For example, when the difference between the room temperature setting value set by the user with a remote controller or the like and the room temperature detection value by the detection means is large, the cooling load is large. Conversely, when the difference is small, the cooling load is small. Correspondingly, according to claim 5, a calculation means for calculating a temperature difference between the detected indoor temperature value and the set indoor temperature value is provided as the load detecting means. When the temperature difference calculated by the calculating means decreases, the heat absorption amount in the heat pump heat exchanger increases under the control of the heat absorbing control means (because the cooling load is small). As a result, the sum of the heat absorption amount in the indoor heat exchanger and the heat absorption amount in the heat pump heat exchanger can be reliably maintained.

本発明の一実施形態の冷房機能付きヒートポンプ給湯機の主要なユニットの外観構成図1 is an external configuration diagram of main units of a heat pump water heater with a cooling function according to an embodiment of the present invention. ヒートポンプ給湯機全体の回路構成図Circuit diagram of the entire heat pump water heater ヒーポン制御部の機能的構成図Functional configuration diagram of heat-pump control unit 貯湯制御部の機能的構成図Functional configuration diagram of hot water storage control unit エアコン制御部の機能的構成図Functional configuration diagram of air conditioner control unit 沸上運転時の作動を説明する図Diagram explaining operation during boiling operation 暖房運転時の作動を説明する図The figure explaining the action at the time of heating operation 沸上・暖房運転時の作動を説明する図Diagram explaining operation during boiling and heating operation 冷房運転時の作動を説明する図The figure explaining the action at the time of cooling operation 沸上・冷房運転時の作動を説明する図Diagram explaining operation during boiling / cooling operation 室外ファン制御部における室外ファン回転数の制御内容を説明する図The figure explaining the control content of the outdoor fan rotation speed in an outdoor fan control part 室内温度とエアコン設定温度とに基づき室外ファン制御部が室外ファン回転数を制御する変形例での、沸上・冷房運転時の作動を説明する図The figure explaining the action | operation at the time of boiling-up and air_conditionaing | cooling operation in the modification in which an outdoor fan control part controls outdoor fan rotation speed based on indoor temperature and an air-conditioner preset temperature. ヒーポン制御部の機能的構成図Functional configuration diagram of heat-pump control unit エアコン制御部の機能的構成図Functional configuration diagram of air conditioner control unit 室外ファン制御部における室外ファン回転数の制御内容を説明する図The figure explaining the control content of the outdoor fan rotation speed in an outdoor fan control part

以下、本発明の一実施形態を図1〜図11に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態の冷房機能付き(但し暖房機能も付属している)ヒートポンプ給湯機1の主要なユニットの外観構成を図1に示す。図1において、本実施形態のヒートポンプ給湯機1は、貯湯タンク2(後述の図2等参照)を備えた貯湯ユニット100と、室外機としてのヒートポンプユニット300と、室内機としてのエアコンユニット200とを有している。   FIG. 1 shows an external configuration of a main unit of a heat pump water heater 1 with a cooling function (but also with a heating function) according to the present embodiment. In FIG. 1, a heat pump water heater 1 of this embodiment includes a hot water storage unit 100 provided with a hot water storage tank 2 (see FIG. 2 and the like described later), a heat pump unit 300 as an outdoor unit, and an air conditioner unit 200 as an indoor unit. have.

本実施形態のヒートポンプ給湯機1全体の回路構成を図2に示す。図2に示すように、前記貯湯ユニット100は、冷媒を流通させる冷媒側の流路15bと水側の流路15aとを有し、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する凝縮器として機能する水冷媒熱交換器15と、沸上ポンプ19と、を備えている。すなわち、前記水冷媒熱交換器15の前記水側の流路15aと前記貯湯タンク2とが湯水配管としての加熱往き管5及び加熱戻り管6によって環状に接続され、前記貯湯ユニット100内で湯水循環回路としての加熱循環回路4が形成されている。   FIG. 2 shows a circuit configuration of the entire heat pump water heater 1 of the present embodiment. As shown in FIG. 2, the hot water storage unit 100 includes a refrigerant-side flow path 15 b and a water-side flow path 15 a for circulating the refrigerant, and exchanges heat between the high-temperature and high-pressure refrigerant and the hot water in the hot water storage tank 2. A water refrigerant heat exchanger 15 that functions as a condenser that performs heating, and a boiling pump 19. That is, the water-side flow path 15a of the water-refrigerant heat exchanger 15 and the hot water storage tank 2 are annularly connected by a heating forward pipe 5 and a heating return pipe 6 serving as hot water piping, and hot water is stored in the hot water storage unit 100. A heating circulation circuit 4 as a circulation circuit is formed.

加熱往き管5は、前記貯湯タンク2の下部に接続され、加熱戻り管6は、前記貯湯タンク2の上部に接続されている。前記沸上ポンプ19は、前記加熱往き管5の途中に設けられ、前記水側の流路15aを介し前記加熱往き管5からの湯水を前記加熱戻り管6へ流通させつつ、貯湯タンク2の湯水を循環させる。なお、前記加熱往き管5には、前記水冷媒熱交換器15の前記水側の流路15aに流入する入水温度T1(湯水の入口温度)を検出する入水温度センサ23が設けられ、前記加熱戻り管6には、前記水側の流路15aから前記貯湯タンク2に向かって流出する沸上温度Tbを検出する沸上温度センサ24が設けられている。   The heating forward pipe 5 is connected to the lower part of the hot water storage tank 2, and the heating return pipe 6 is connected to the upper part of the hot water storage tank 2. The boiling pump 19 is provided in the middle of the heating forward pipe 5, and the hot water from the heating forward pipe 5 is circulated to the heating return pipe 6 through the water-side flow path 15a while Circulate hot water. The heating forward pipe 5 is provided with an incoming water temperature sensor 23 for detecting an incoming water temperature T1 (hot water inlet temperature) flowing into the water-side flow path 15a of the water-refrigerant heat exchanger 15. The return pipe 6 is provided with a boiling temperature sensor 24 for detecting a boiling temperature Tb flowing out from the water-side flow path 15a toward the hot water storage tank 2.

貯湯タンク2の側面には、貯湯タンク2内の湯水の温度(貯湯温度)をそれぞれ検出し前記湯水の加熱状況(言い替えれば貯湯状況)を検知するための貯湯温度センサ12が上下にわたり複数設けられている。前記貯湯タンク2の下部にはまた、貯湯タンク2に水を給水する給水管7が接続され、前記貯湯タンク2の上部にはまた、貯湯されている高温水を出湯する出湯管8が接続され、給水管7からは給水バイパス管9が分岐して設けられている。さらに、出湯管8からの湯と給水バイパス管9からの水とを混合して給湯設定温度の湯とする混合弁10と、混合弁10で混合後の給湯温度を検出する給湯温度センサ11と、が設けられている。   A plurality of hot water storage temperature sensors 12 for detecting the temperature of hot water in the hot water storage tank 2 (hot water storage temperature) and detecting the heating status of the hot water (in other words, the status of hot water storage) are provided on the side surface of the hot water storage tank 2. ing. A water supply pipe 7 for supplying water to the hot water storage tank 2 is connected to the lower part of the hot water storage tank 2, and a hot water discharge pipe 8 for discharging hot water stored therein is also connected to the upper part of the hot water storage tank 2. A water supply bypass pipe 9 is branched from the water supply pipe 7. Furthermore, a mixing valve 10 that mixes the hot water from the tap water pipe 8 and the water from the water supply bypass pipe 9 into hot water at a hot water supply set temperature, and a hot water temperature sensor 11 that detects the hot water temperature after mixing by the mixing valve 10; , Is provided.

一方、前記水冷媒熱交換器15における熱交換(詳細は後述)によって前記貯湯タンク2内の湯水を加熱可能な冷媒循環回路30が、前記ヒートポンプユニット300、前記貯湯ユニット100、及び前記エアコンユニット200にわたって設けられている。前記冷媒循環回路30は、前記ヒートポンプユニット300内に配置されたヒーポン回路部30Aと、前記貯湯ユニット100内に配置された貯湯回路部30Bと、前記エアコンユニット200内に配置されたエアコン回路部30Cとを含んでいる。   On the other hand, the refrigerant circulation circuit 30 capable of heating hot water in the hot water storage tank 2 by heat exchange (details will be described later) in the water refrigerant heat exchanger 15 includes the heat pump unit 300, the hot water storage unit 100, and the air conditioner unit 200. It is provided over. The refrigerant circuit 30 includes a heat pump circuit unit 30A disposed in the heat pump unit 300, a hot water storage circuit unit 30B disposed in the hot water storage unit 100, and an air conditioner circuit unit 30C disposed in the air conditioner unit 200. Including.

前記ヒーポン回路部30Aは、前記冷媒の流路となる冷媒配管18を備えており、冷媒を圧縮する圧縮機14と、四方弁31と、前記冷媒と外気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)するヒートポンプ熱交換器としての室外熱交換器17とが、前記冷媒配管18によって接続されている。なお、室外熱交換器17には、前記室外熱交換器17に外気を通じるための送風ファンとしての室外ファン67が設けられている。   The heat-pump circuit unit 30A includes a refrigerant pipe 18 serving as a flow path for the refrigerant, and a condenser or an evaporator by heat exchange between the compressor 14 that compresses the refrigerant, a four-way valve 31, and the refrigerant and outside air. And an outdoor heat exchanger 17 as a heat pump heat exchanger that selectively functions (details will be described later) are connected by the refrigerant pipe 18. The outdoor heat exchanger 17 is provided with an outdoor fan 67 as a blower fan for passing outside air through the outdoor heat exchanger 17.

詳細には、前記冷媒配管18は、圧縮機14の吐出側となる配管部18aと、沸上運転時(後述の図6参照)等において前記四方弁31を介し前記配管部18aに接続される配管部18bとを含んでいる。前記配管部18bは、ヒートポンプユニット300外への出口となる接続口68aにおいて、前記ヒートポンプユニット300と前記貯湯ユニット100とを接続する連通管路101に連通している。   Specifically, the refrigerant pipe 18 is connected to the pipe section 18a via the pipe section 18a on the discharge side of the compressor 14 and the four-way valve 31 during the boiling operation (see FIG. 6 described later). And a piping part 18b. The pipe portion 18 b communicates with a communication conduit 101 that connects the heat pump unit 300 and the hot water storage unit 100 at a connection port 68 a that is an outlet to the outside of the heat pump unit 300.

また前記冷媒配管18は、前記圧縮機14の吸入側となる配管部18cと、沸上運転時(後述の図6参照)等において前記室外熱交換器17の圧縮機14側(言い替えれば前記沸上運転時等における出口側、以下同様。後述の図6等参照)を前記四方弁31を介し前記配管部18cに接続する配管部18dと、前記室外熱交換器17の反圧縮機14側(言い替えれば前記沸上運転時等における入口側、以下同様。後述の図6等参照)に接続される配管部18eとを含んでいる。前記配管部18eは膨張弁113を備えており、前記接続口68aとは別の接続口68bにおいて、前記ヒートポンプユニット300と前記貯湯ユニット100とを接続する連通管路102に連通している。   The refrigerant pipe 18 is connected to the pipe portion 18c on the suction side of the compressor 14 and the compressor 14 side (in other words, the boiling point) of the outdoor heat exchanger 17 during a boiling operation (see FIG. 6 described later). The outlet side during the upper operation, etc. The same applies hereinafter (see FIG. 6 and the like to be described later) and the piping part 18d for connecting to the piping part 18c via the four-way valve 31, and the anti-compressor 14 side of the outdoor heat exchanger 17 ( In other words, it includes a piping portion 18e connected to the inlet side during the above-mentioned boiling operation, etc., and so on (see FIG. 6 and the like described later). The pipe portion 18e includes an expansion valve 113, and communicates with a communication pipe line 102 that connects the heat pump unit 300 and the hot water storage unit 100 at a connection port 68b different from the connection port 68a.

前記四方弁31は4つのポートを備える弁であり、前記冷媒配管18のうち(冷媒主経路を構成する)前記配管部18b,18d用の2つのポートのそれぞれに対して、残りの前記配管部18a,18c用の2つのポートのいずれを接続するかを切り替える。前記配管部18a,18c用の2つのポートどうしは、ループ状に配置された前記配管部18a,18cからなる冷媒副経路によって接続されており、この冷媒副経路上に前記圧縮機14が設けられている。例えば四方弁31は、後述する図6の状態に切り替えられた場合(以下適宜、「暖房側への切替」等と称する)は、前記圧縮機14の吐出側である前記配管部18aを前記水冷媒熱交換器15の入口側である前記配管部18bに連通させ、後述する図9の状態に切り替えられた場合(以下適宜、「冷房側への切替」等と称する)は、前記配管部18aを前記室外熱交換器17側である前記配管部18dに連通させる。   The four-way valve 31 is a valve having four ports, and the remaining pipe portions are respectively connected to the two ports for the pipe portions 18b and 18d (which constitute the refrigerant main path) in the refrigerant pipe 18. Which of the two ports for 18a and 18c is connected is switched. The two ports for the pipe portions 18a and 18c are connected to each other by a refrigerant sub route including the pipe portions 18a and 18c arranged in a loop shape, and the compressor 14 is provided on the refrigerant sub route. ing. For example, when the four-way valve 31 is switched to the state shown in FIG. 6 described later (hereinafter referred to as “switching to the heating side” or the like as appropriate), the pipe portion 18a on the discharge side of the compressor 14 is connected to the water. When connected to the pipe section 18b on the inlet side of the refrigerant heat exchanger 15 and switched to the state shown in FIG. 9 described later (hereinafter referred to as “switching to the cooling side” as appropriate), the pipe section 18a. Is communicated with the pipe portion 18d on the outdoor heat exchanger 17 side.

なお、前記の圧縮機14、四方弁31、室外熱交換器17、室外ファン67、及び膨張弁113等は、前記ヒートポンプユニット300の筐体に内包されている(図1参照)。   The compressor 14, the four-way valve 31, the outdoor heat exchanger 17, the outdoor fan 67, the expansion valve 113, and the like are included in the housing of the heat pump unit 300 (see FIG. 1).

前記貯湯回路部30Bは、前記冷媒の流路となる冷媒配管25を備えており、前記水冷媒熱交換器15の前記冷媒側の流路15bが、前記冷媒配管25に接続されている。   The hot water storage circuit section 30 </ b> B includes a refrigerant pipe 25 that serves as the refrigerant flow path, and the refrigerant-side flow path 15 b of the water-refrigerant heat exchanger 15 is connected to the refrigerant pipe 25.

詳細には、前記冷媒配管25は、貯湯ユニット100外への出口となる接続口75aにおいて前記連通管路101に連通する配管部25aと、前記配管部25aから分岐して接続されるとともに、反配管部25a側が前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の入口側に接続される配管部25bと、前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の出口側に接続される配管部25cとを含んでいる。前記配管部25bは、前記四方弁31と前記水冷媒熱交換器15の入口側である前記配管部25bを開閉可能な二方弁121を備えており、前記配管部25cは全閉機能付きの膨張弁111を備えている。   Specifically, the refrigerant pipe 25 is connected to a pipe part 25a communicating with the communication pipe line 101 at a connection port 75a serving as an outlet to the outside of the hot water storage unit 100, and branched from the pipe part 25a. A pipe section 25b whose pipe section 25a side is connected to the inlet side of the water refrigerant heat exchanger 15 (specifically, the refrigerant-side flow path 15b), and the water refrigerant heat exchanger 15 (specifically, the refrigerant-side heat exchanger 15 And a piping part 25c connected to the outlet side of the flow path 15b). The pipe part 25b includes a two-way valve 121 that can open and close the pipe part 25b on the inlet side of the four-way valve 31 and the water-refrigerant heat exchanger 15, and the pipe part 25c has a fully-closed function. An expansion valve 111 is provided.

また前記冷媒配管25は、前記配管部25b同様、前記配管部25aから分岐して接続される配管部25dを含んでいる。前記配管部25dの反配管部25a側は、貯湯ユニット100外への出口となる接続口95aにおいて、前記貯湯ユニット100と前記エアコンユニット200とを接続する連通管路104に連通している。   The refrigerant pipe 25 includes a pipe part 25d branched from the pipe part 25a and connected in the same manner as the pipe part 25b. The side of the pipe portion 25d opposite to the pipe portion 25a communicates with a communication conduit 104 that connects the hot water storage unit 100 and the air conditioner unit 200 at a connection port 95a serving as an outlet to the outside of the hot water storage unit 100.

さらに前記冷媒配管25は、前記配管部25cの反水冷媒熱交換器15側から分岐して接続されるとともに、反配管部25c側が、前記接続口75aとは別の接続口75bにおいて前記連通管路102に連通する配管部25eと、前記配管部25dと前記配管部25eとを連通する配管部25fと、前記配管部25e同様に前記配管部25cの反水冷媒熱交換器15側から分岐して接続されるとともに、貯湯ユニット100外への出口となる接続口95bにおいて、前記貯湯ユニット100と前記エアコンユニット200とを接続する連通管路103に連通する配管部25gとを含んでいる。前記配管部25dは、前記配管部25aとの接続点と前記配管部25fとの接続点の間に配管部25dを開閉可能な二方弁122を備えており、前記配管部25eは、前記配管部25gとの接続点と前記配管部25fとの接続点の間に配管部25eを開閉可能な二方弁123を備えており、前記配管部25fは、配管部25fを開閉可能な二方弁124を備えており、前記配管部25gは減圧器としての全閉機能付きの膨張弁112を備えている。この結果、前記二方弁123は、前記膨張弁113と前記膨張弁112との間の管路を開閉する機能を備え、前記膨張弁111は、前記水冷媒熱交換器15の出口側と前記膨張弁112との間の管路を開閉する機能を備える。また、前記連通管路101は、前記二方弁121,122と前記四方弁31とを連通する機能を備え、前記連通管路102は、前記二方弁123,124と前記膨張弁113とを連通する機能を備える。言い換えれば、貯湯ユニット100とヒートポンプユニット300とは、前記連通管路101,102によって接続されている(図1も参照)。   Further, the refrigerant pipe 25 is branched and connected from the anti-water refrigerant heat exchanger 15 side of the pipe part 25c, and the anti-pipe part 25c side is connected to the communication pipe at a connection port 75b different from the connection port 75a. A piping portion 25e communicating with the passage 102, a piping portion 25f communicating the piping portion 25d and the piping portion 25e, and the piping portion 25c branch off from the anti-water refrigerant heat exchanger 15 side in the same manner as the piping portion 25e. In addition, a connection port 95b serving as an outlet to the outside of the hot water storage unit 100 includes a piping portion 25g that communicates with the communication pipe 103 that connects the hot water storage unit 100 and the air conditioner unit 200. The pipe part 25d includes a two-way valve 122 that can open and close the pipe part 25d between a connection point with the pipe part 25a and a connection point with the pipe part 25f. A two-way valve 123 capable of opening and closing the pipe part 25e is provided between a connection point with the part 25g and a connection point with the pipe part 25f, and the pipe part 25f is a two-way valve capable of opening and closing the pipe part 25f. 124, and the piping part 25g is provided with an expansion valve 112 having a fully-closed function as a decompressor. As a result, the two-way valve 123 has a function of opening and closing a pipe line between the expansion valve 113 and the expansion valve 112, and the expansion valve 111 is connected to the outlet side of the water refrigerant heat exchanger 15 and the A function of opening and closing a pipe line between the expansion valve 112 and the expansion valve 112 is provided. The communication conduit 101 has a function of communicating the two-way valves 121 and 122 and the four-way valve 31, and the communication conduit 102 connects the two-way valves 123 and 124 and the expansion valve 113. It has a function to communicate. In other words, the hot water storage unit 100 and the heat pump unit 300 are connected by the communication pipes 101 and 102 (see also FIG. 1).

なお、前記の二方弁121,122,123,124、膨張弁111,112、水冷媒熱交換器15、及び貯湯タンク2等は、前記貯湯ユニット100の筐体に内包されている(図1参照)。なお、前記膨張弁112は後述の配管部26b(すなわち前記エアコンユニット200の筐体内)に設けても良い。   The two-way valves 121, 122, 123, 124, the expansion valves 111, 112, the water / refrigerant heat exchanger 15, the hot water storage tank 2, and the like are included in the casing of the hot water storage unit 100 (FIG. 1). reference). The expansion valve 112 may be provided in a piping part 26b described later (that is, in the casing of the air conditioner unit 200).

前記エアコン回路部30Cは、前記冷媒の流路となる冷媒配管26を備えており、前記冷媒と室内空気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)する室内熱交換器27が前記冷媒配管26に接続されている。なお、室内熱交換器27には、前記室内熱交換器27に室内空気を通じるための室内ファン77(冷房運転時及び沸上・冷房運転時において冷却ファンとして機能)が設けられている。   The air conditioner circuit section 30C includes a refrigerant pipe 26 that serves as a flow path for the refrigerant, and indoor heat that selectively functions as a condenser or an evaporator (details will be described later) by heat exchange between the refrigerant and room air. An exchanger 27 is connected to the refrigerant pipe 26. The indoor heat exchanger 27 is provided with an indoor fan 77 (functioning as a cooling fan during cooling operation and boiling / cooling operation) for passing indoor air through the indoor heat exchanger 27.

詳細には、前記冷媒配管26は、エアコンユニット200外への出口となる接続口76aにおいて前記連通管路104に連通するとともに、反連通管路104側が前記室内熱交換器27の前記接続口76a側(言い替えれば暖房運転時等における入口側、以下同様。後述の図7等参照)に接続される配管部26aと、前記接続口76aとは別の接続口76bにおいて前記連通管路103に連通するとともに、反連通管路103側が前記室内熱交換器27の前記接続口76b側(言い替えれば暖房運転時等における出口側、以下同様。後述の図7等参照)に接続される配管部26bとを含んでいる。この結果、前記二方弁122は、前記室内熱交換器27の反膨張弁112側である前記配管部26aと圧縮機14との間の管路を開閉する機能を備え、前記二方弁124は、前記室内熱交換器27の反膨張弁112側である前記配管部26aと前記膨張弁113との間の管路を開閉する機能を備える。また、前記連通管路103は、前記膨張弁112と前記室内熱交換器27の前記膨張弁112側とを連通する機能を備え、前記連通管路104は、前記二方弁122,124と前記室内熱交換器27の反膨張弁112側とを連通する機能を備える。言い換えれば、貯湯ユニット100とエアコンユニット200とは、前記連通管路103,104によって接続されている(図1も参照)。   Specifically, the refrigerant pipe 26 communicates with the communication pipe 104 at a connection port 76 a serving as an outlet to the outside of the air conditioner unit 200, and the anti-communication pipe 104 side is the connection port 76 a of the indoor heat exchanger 27. The pipe portion 26a connected to the side (in other words, the inlet side during heating operation, the same applies hereinafter, see FIG. 7 and the like) and the communication pipe 103 communicate with the connection port 76b different from the connection port 76a. In addition, the anti-communicating pipe line 103 side is connected to the connecting port 76b side of the indoor heat exchanger 27 (in other words, the outlet side during heating operation, the same applies hereinafter; see FIG. 7 and the like described later) Is included. As a result, the two-way valve 122 has a function of opening and closing a pipe line between the pipe portion 26a on the side of the anti-expansion valve 112 of the indoor heat exchanger 27 and the compressor 14, and the two-way valve 124. Is provided with a function of opening and closing a pipe line between the piping part 26 a on the side of the anti-expansion valve 112 of the indoor heat exchanger 27 and the expansion valve 113. The communication line 103 has a function of communicating the expansion valve 112 with the expansion valve 112 side of the indoor heat exchanger 27, and the communication line 104 includes the two-way valves 122 and 124 and the The indoor heat exchanger 27 has a function of communicating with the anti-expansion valve 112 side. In other words, the hot water storage unit 100 and the air conditioner unit 200 are connected by the communication conduits 103 and 104 (see also FIG. 1).

なお、前記の室内熱交換器27及び室内ファン77等は、前記エアコンユニット200の筐体に内包されている(図1参照)。   The indoor heat exchanger 27, the indoor fan 77, and the like are included in the casing of the air conditioner unit 200 (see FIG. 1).

前記冷媒循環回路30内には、冷媒として例えばR32冷媒が用いられ、ヒートポンプサイクルを構成している。なお、冷媒はHFC冷媒やHFO冷媒、二酸化炭素冷媒であってもよい。そして、前記ヒーポン回路部30Aの前記冷媒配管18において、前記配管部18aには、圧縮機14から吐出される冷媒吐出温度Toutを検出する吐出温度センサ20が設けられ、前記配管部18cには、圧縮機14へ吸入される冷媒の冷媒吸入温度Tinを検出する吸入温度センサ32が設けられている。なお、前記室外熱交換器17の空気入口側には、外気温度Tairを検出する外気温度センサ22が設けられ、かつ室外熱交換器17内には、ヒーポン熱交温度Tex(蒸発器として作用している時の蒸発冷媒温度)を検出する熱交温度センサ35が設けられている。これらのセンサ20,32,22,35の検出結果は、ヒートポンプユニット300に設けられたヒーポン制御部410に入力され、さらに適宜、貯湯ユニット100に設けられた貯湯制御部420やエアコンユニット200に設けられたエアコン制御部430へも入力される(ヒーポン制御部410を介し受信しても良いし、センサ20,32,22から直接受信してもよい)。   In the refrigerant circuit 30, for example, R32 refrigerant is used as a refrigerant to constitute a heat pump cycle. The refrigerant may be an HFC refrigerant, an HFO refrigerant, or a carbon dioxide refrigerant. And in the refrigerant | coolant piping 18 of the said heat-pon circuit part 30A, the discharge temperature sensor 20 which detects the refrigerant | coolant discharge temperature Tout discharged from the compressor 14 is provided in the said piping part 18a, The said piping part 18c has A suction temperature sensor 32 that detects the refrigerant suction temperature Tin of the refrigerant sucked into the compressor 14 is provided. An outdoor air temperature sensor 22 for detecting the outdoor air temperature Tair is provided on the air inlet side of the outdoor heat exchanger 17, and the heat exchanger heat exchange temperature Tex (acts as an evaporator) in the outdoor heat exchanger 17. A heat exchange temperature sensor 35 is provided for detecting the temperature of the evaporative refrigerant during The detection results of these sensors 20, 32, 22, and 35 are input to a heat pump control unit 410 provided in the heat pump unit 300 and further provided in the hot water storage control unit 420 and the air conditioner unit 200 provided in the hot water storage unit 100 as appropriate. It is also input to the air conditioner control unit 430 (which may be received via the heat pump control unit 410 or may be received directly from the sensors 20, 32, 22).

また、前記貯湯回路部30Bの前記冷媒配管25において、前記配管部25cには、前記冷媒側の流路15bから流出し前記膨張弁111に向かう冷媒流出温度T2を検出する流出温度センサ21が設けられている。なお、前記水冷媒熱交換器15には、前記冷媒が前記冷媒側の流路15bにおいて凝縮する際の冷媒凝縮温度を検出する凝縮温度センサ33が設けられている。これらのセンサ21,33の検出結果は、貯湯ユニット100に設けられた貯湯制御部420に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410やエアコンユニット200に設けられた前記エアコン制御部430へも入力される(貯湯制御部420を介し受信しても良いし、センサ21,33から直接受信してもよい)。   In addition, in the refrigerant pipe 25 of the hot water storage circuit section 30B, the pipe section 25c is provided with an outflow temperature sensor 21 that detects the refrigerant outflow temperature T2 that flows out from the refrigerant-side flow path 15b and travels toward the expansion valve 111. It has been. The water refrigerant heat exchanger 15 is provided with a condensing temperature sensor 33 that detects a refrigerant condensing temperature when the refrigerant condenses in the flow path 15b on the refrigerant side. The detection results of these sensors 21 and 33 are input to a hot water storage control unit 420 provided in the hot water storage unit 100, and further, the heat pump control unit 410 provided in the heat pump unit 300 and the air conditioner unit 200 as appropriate. It is also input to the air conditioner control unit 430 (may be received via the hot water storage control unit 420 or may be received directly from the sensors 21 and 33).

また、前記エアコン回路部30Cの前記冷媒配管26に関して、前記室内熱交換器27には、空調対象空間の室内温度Trを検出する検出手段としての室内温度センサ34が設けられている。これらのセンサ34の検出結果は、エアコンユニット200に設けられたエアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、センサ34から直接受信してもよい)。   Further, with respect to the refrigerant pipe 26 of the air conditioner circuit unit 30C, the indoor heat exchanger 27 is provided with an indoor temperature sensor 34 as detection means for detecting the indoor temperature Tr of the air-conditioning target space. The detection results of these sensors 34 are input to an air conditioner control unit 430 provided in the air conditioner unit 200, and the hot water storage control provided in the heat pump control unit 410 provided in the heat pump unit 300 or the hot water storage unit 100 as appropriate. Also input to the unit 420 (may be received via the air conditioner control unit 430 or may be received directly from the sensor 34).

そして、前記貯湯ユニット100の前記貯湯制御部420、前記ヒートポンプユニット300の前記ヒーポン制御部410、及び、前記エアコンユニット200の前記エアコン制御部430は、互いに通信可能に接続されており、前記各センサの検出結果に基づき、相互に連携しつつ、前記貯湯ユニット100、前記ヒートポンプユニット300、前記エアコンユニット200内の各機器・アクチュエータの動作を制御する。特に、前記二方弁121,122,123,124及び前記膨張弁111,112,113の開閉動作や開度を制御し、冷媒の流れる経路を切り替えることにより、貯湯タンク2内の湯水を加熱して(加熱された湯水の供給)沸上を行う沸上運転、前記空調対象空間の室内冷房を行う冷房運転、前記空調対象空間の室内暖房を行う暖房運転、前記沸上と前記冷房とを並行して行う沸上・冷房運転、及び、前記沸上と前記暖房とを並行して行う沸上・暖房運転を選択的に実行することができる。   The hot water storage control unit 420 of the hot water storage unit 100, the heat pump control unit 410 of the heat pump unit 300, and the air conditioner control unit 430 of the air conditioner unit 200 are connected to be communicable with each other. Based on the detection result, the operation of each device / actuator in the hot water storage unit 100, the heat pump unit 300, and the air conditioner unit 200 is controlled in cooperation with each other. In particular, the hot water in the hot water storage tank 2 is heated by controlling the opening / closing operation and the opening degree of the two-way valves 121, 122, 123, and 124 and the expansion valves 111, 112, and 113 and switching the flow path of the refrigerant. (Supplying heated hot water) and performing boiling operation, cooling operation for cooling the air-conditioned space, heating operation for heating the air-conditioned space, boiling and cooling in parallel The boiling / cooling operation performed in this manner, and the boiling / heating operation performed in parallel with the boiling and heating can be selectively executed.

このとき、前記エアコンユニット200は、リモコン等の適宜の操作部60(以下単に「リモコン60」と称する)によって操作可能である。すなわち、リモコン60は、例えば前記エアコン制御部430に対し情報送受信可能に接続されており、ユーザは、このリモコン60を適宜に手動操作することにより、前記の沸上運転、冷房運転、及び、暖房運転のいずれの運転を行うかを指示することができる。なお、沸上・冷房運転(又は沸上・暖房運転)については、ユーザによりリモコン60を介し前記冷房運転(又は暖房運転)の指示があったとき、貯湯タンク2内における貯湯状況(未加熱水の量など)に応じて、適宜、自動的に沸上・冷房運転(又は沸上・暖房運転)に切り替えられるものである。さらに、このリモコン60における適宜の操作により、前記沸上運転時における沸上モード(例えば強力沸上モード、通常沸上モード、等)や、前記冷房運転又は暖房運転時におけるエアコン運転モード(例えば強力モード、通常モード、節電モード等)やエアコン設定温度Tcon等も指示することができる。これらのリモコン60からの指示内容は、エアコンユニット200に設けられた前記エアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、リモコン60から直接受信してもよい)。   At this time, the air conditioner unit 200 can be operated by an appropriate operation unit 60 (hereinafter simply referred to as “remote controller 60”) such as a remote controller. That is, the remote controller 60 is connected to, for example, the air conditioner control unit 430 so as to be able to transmit and receive information, and the user manually operates the remote controller 60 appropriately to thereby perform the above-described boiling operation, cooling operation, and heating. It is possible to instruct which driving operation is performed. Regarding boiling / cooling operation (or boiling / heating operation), when the user gives an instruction for the cooling operation (or heating operation) via the remote controller 60, the state of hot water storage in the hot water storage tank 2 (unheated water) Depending on the amount of the water and the like) and automatically switching to the boiling / cooling operation (or boiling / heating operation) as appropriate. Further, by appropriate operation on the remote controller 60, the boiling mode during the boiling operation (for example, the strong boiling mode, the normal boiling mode, etc.), and the air conditioner operation mode (for example, the powerful mode) during the cooling operation or heating operation. Mode, normal mode, power saving mode, etc.), air conditioner set temperature Tcon, etc. can also be instructed. The contents of instructions from these remote controllers 60 are input to the air conditioner control unit 430 provided in the air conditioner unit 200, and further, the heat pump control unit 410 provided in the heat pump unit 300 and the hot water storage unit 100 as appropriate. It is also input to hot water storage control unit 420 (may be received via air conditioner control unit 430 or may be received directly from remote control 60).

次に、前記ヒートポンプユニット300に備えられた前記ヒーポン制御部410について説明する。ヒーポン制御部410は、詳細な図示を省略するが、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えている。このヒーポン制御部410の機能的構成を図3により説明する。   Next, the heat pump control unit 410 provided in the heat pump unit 300 will be described. Although not shown in detail, the heat-pon control unit 410 includes a storage unit that stores various data and programs, and a control unit that performs calculation / control processing. The functional configuration of the heat-pon control unit 410 will be described with reference to FIG.

図3に示すように、前記ヒーポン制御部410は、四方弁制御部410Aと、圧縮機制御部410Bと、膨張弁制御部410Cと、室外ファン制御部410Dとを機能的に備えている。   As shown in FIG. 3, the heat pump control unit 410 functionally includes a four-way valve control unit 410A, a compressor control unit 410B, an expansion valve control unit 410C, and an outdoor fan control unit 410D.

四方弁制御部410Aには、前記リモコン60により指示された、いずれの運転を行うかの運転指示(沸上運転、冷房運転、暖房運転)と、前記貯湯温度センサ12により検出された前記貯湯温度とが入力される。四方弁制御部410Aは、前記運転指示と、前記貯湯温度に対応した前記湯水の加熱状況(貯湯状況)とに応じて、実際にヒートポンプ給湯機1をどのような運転態様(沸上運転、冷房運転、沸上・冷房運転、暖房運転、沸上・暖房運転)で運転するかを決定し、対応する運転情報を、前記圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410D、及び、貯湯制御部420、エアコン制御部430に出力する。また四方弁制御部410Aは、上記決定された運転態様に対応する開閉信号を四方弁31へ出力し、四方弁31を切り替える(詳細な制御内容は後述)。   The four-way valve control unit 410A is instructed by the remote controller 60 as to which operation to perform (boiling operation, cooling operation, heating operation), and the hot water storage temperature detected by the hot water storage temperature sensor 12. Are entered. The four-way valve control unit 410A actually operates the heat pump water heater 1 in accordance with the operation instruction and the heating state (hot water storage state) of the hot water corresponding to the hot water storage temperature (boiling operation, cooling operation). Operation, boiling / cooling operation, heating operation, boiling / heating operation), and corresponding operation information includes the compressor control unit 410B, the expansion valve control unit 410C, the outdoor fan control unit 410D, And it outputs to the hot water storage control part 420 and the air-conditioner control part 430. The four-way valve control unit 410A outputs an opening / closing signal corresponding to the determined operation mode to the four-way valve 31, and switches the four-way valve 31 (detailed control content will be described later).

圧縮機制御部410Bには、前記外気温度センサ22により検出された前記外気温度Tairと、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tcon及び前記沸上モードとが入力される(直接入力される場合のほか、前記の間接的な入力も含む。以下同様)。圧縮機制御部410Bは、前記のようにして四方弁制御部410Aから入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記の温度及び設定のうち少なくとも1つに基づき、前記圧縮機14の回転数を制御する(詳細な制御内容は後述)。なおこのときの圧縮機14の回転数(制御値)は、後述の貯湯制御部420の膨張弁制御部420Bにも出力される(図示省略)。   The compressor control unit 410B includes the outside air temperature Tair detected by the outside air temperature sensor 22, the indoor temperature Tr detected by the indoor temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60. And the boiling mode are input (in addition to the case of direct input, the indirect input is also included, and so on). The compressor control unit 410B is input from the four-way valve control unit 410A as described above (any of boiling operation, cooling operation, boiling / cooling operation, heating operation, and boiling / heating operation is performed). The number of rotations of the compressor 14 is controlled based on at least one of the input temperature and setting according to the operation information (detailed control content will be described later). The rotation speed (control value) of the compressor 14 at this time is also output to an expansion valve control unit 420B of a hot water storage control unit 420 (not shown).

膨張弁制御部410Cには、前記吐出温度センサ20により検出された前記冷媒吐出温度Toutと、前記流出温度センサ21により検出された前記冷媒流出温度T2と、前記吸入温度センサ32により検出された前記冷媒吸入温度Tinと、前記熱交温度センサ35により検出された前記ヒーポン熱交温度Texとが入力される。膨張弁制御部410Cは、前記四方弁制御部410Aからの前記運転情報に応じて、前記の入力された温度のうち少なくとも1つに基づき、前記膨張弁113の開度を制御する(詳細な制御内容は後述)。   The expansion valve control unit 410C includes the refrigerant discharge temperature Tout detected by the discharge temperature sensor 20, the refrigerant outflow temperature T2 detected by the outflow temperature sensor 21, and the intake temperature sensor 32. The refrigerant suction temperature Tin and the heat-pon heat exchange temperature Tex detected by the heat exchange temperature sensor 35 are input. The expansion valve control unit 410C controls the opening of the expansion valve 113 based on at least one of the input temperatures in accordance with the operation information from the four-way valve control unit 410A (detailed control). The contents will be described later).

室外ファン制御部410Dには、前記外気温度センサ22により検出された前記外気温度Tairと、前記リモコン60により設定された前記エアコン運転モードと、後述のエアコン制御部430の室内ファン制御部430Aから出力された前記室内ファン77の目標回転数N1(詳細は後述)が入力される。室外ファン制御部410Dは、前記四方弁制御部410Aからの前記運転情報に対応しつつ、前記外気温度Tair、前記運転モード、及び前記室内ファン77の目標回転数N1に応じて、前記室外ファン67に対し、目標回転数N2(以下適宜、単に「室外ファン回転数N2」という。図示も同様)に対応した駆動制御信号を出力し、これによって室外ファン67の回転数を可変に制御する(詳細な制御内容は後述)。   The outdoor fan control unit 410D outputs the outside air temperature Tair detected by the outside air temperature sensor 22, the air conditioner operation mode set by the remote controller 60, and the output from the indoor fan control unit 430A of the air conditioner control unit 430 described later. The target rotational speed N1 (details will be described later) of the indoor fan 77 is input. The outdoor fan control unit 410D corresponds to the operation information from the four-way valve control unit 410A, and according to the outdoor air temperature Tair, the operation mode, and the target rotational speed N1 of the indoor fan 77, the outdoor fan 67. On the other hand, a drive control signal corresponding to the target rotational speed N2 (hereinafter simply referred to as “outdoor fan rotational speed N2”, also shown in the drawing) is output, thereby variably controlling the rotational speed of the outdoor fan 67 (details). The details of the control will be described later).

なお、前記運転態様の決定は、貯湯制御部420やエアコン制御部430で行っても良い。この場合は、それら貯湯制御部420やエアコン制御部430から、決定された運転態様に対応した前記運転情報がヒーポン制御部410に入力され、その入力された運転情報に応じて四方弁制御部410A、圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410Dが各種制御を行う。   The operation mode may be determined by the hot water storage control unit 420 or the air conditioner control unit 430. In this case, the operation information corresponding to the determined operation mode is input to the heat pump control unit 410 from the hot water storage control unit 420 and the air conditioner control unit 430, and the four-way valve control unit 410A according to the input operation information. The compressor control unit 410B, the expansion valve control unit 410C, and the outdoor fan control unit 410D perform various controls.

次に、前記貯湯ユニット100に備えられた前記貯湯制御部420について説明する。貯湯制御部420は、前記ヒーポン制御部410同様、記憶部と制御部とを備えており、その機能的構成を図4により説明する。   Next, the hot water storage control unit 420 provided in the hot water storage unit 100 will be described. The hot water storage control unit 420 includes a storage unit and a control unit, similar to the heat pump control unit 410, and its functional configuration will be described with reference to FIG.

図4に示すように、前記貯湯制御部420は、ポンプ制御部420Aと、膨張弁制御部420Bと、二方弁制御部420Cとを機能的に備えている。   As shown in FIG. 4, the hot water storage control unit 420 functionally includes a pump control unit 420A, an expansion valve control unit 420B, and a two-way valve control unit 420C.

ポンプ制御部420Aには、前記ヒーポン制御部410からの前記運転情報と、前記沸上温度センサ24により検出された前記沸上温度Tbとが入力される。ポンプ制御部420Aは、前記のようにしてヒーポン制御部410から入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記沸上温度Tbに基づき、前記沸上ポンプ19の回転数を制御する(詳細な制御内容は後述)。   The operation information from the heat pump control unit 410 and the boiling temperature Tb detected by the boiling temperature sensor 24 are input to the pump control unit 420A. The pump control unit 420A is input from the heat pump control unit 410 as described above (whether boiling operation, cooling operation, boiling / cooling operation, heating operation, or boiling / heating operation is performed). The number of rotations of the boiling pump 19 is controlled based on the inputted boiling temperature Tb in accordance with the operation information (detailed control content will be described later).

膨張弁制御部420Bには、前記ヒーポン制御部410からの前記運転情報と、前記外気温度センサ22により検出された前記外気温度Tairと、前記リモコン60により設定された前記エアコン運転モードと、前記ヒーポン制御部410の前記圧縮機制御部410Bから入力された前記圧縮機14の回転数(制御値。但し公知の手法で検出された実際の圧縮機14の回転数を入力しても良い)と、前記流出温度センサ21により検出された前記冷媒流出温度T2と、前記吸入温度センサ32により検出された前記冷媒吸入温度Tinと、前記吐出温度センサ20により検出された前記冷媒吐出温度Toutとが入力される。膨張弁制御部420Bは、前記ヒーポン制御部410からの前記運転情報に応じて、前記の入力された温度やモード設定や回転数のうち少なくとも1つに基づき、前記膨張弁111,112の開度を制御する(詳細な制御内容は後述)。   The expansion valve control unit 420B includes the operation information from the heat pump control unit 410, the outside air temperature Tair detected by the outside air temperature sensor 22, the air conditioner operation mode set by the remote controller 60, and the heat pump. The rotation speed of the compressor 14 (control value, but the actual rotation speed of the compressor 14 detected by a known method may be input) input from the compressor control section 410B of the control section 410; The refrigerant outflow temperature T2 detected by the outflow temperature sensor 21, the refrigerant intake temperature Tin detected by the intake temperature sensor 32, and the refrigerant discharge temperature Tout detected by the discharge temperature sensor 20 are input. The The expansion valve control unit 420B is configured to open the openings of the expansion valves 111 and 112 based on at least one of the input temperature, mode setting, and rotation speed in accordance with the operation information from the heat pump control unit 410. (Details of control contents will be described later).

二方弁制御部420Cには、前記ヒーポン制御部410からの前記運転情報が入力される。二方弁制御部420Cは、前記運転情報に基づき、前記二方弁121,122,123,124の開閉動作を制御する(詳細な制御内容は後述)。   The operation information from the heat pump control unit 410 is input to the two-way valve control unit 420C. The two-way valve control unit 420C controls the opening / closing operation of the two-way valves 121, 122, 123, and 124 based on the operation information (detailed control content will be described later).

なお、前記と同様、運転態様の決定を、貯湯制御部420内(例えば前記二方弁制御部420C)やエアコン制御部430で行っても良い。この場合は、それら二方弁制御部420Cやエアコン制御部430で決定した運転態様に対応する運転情報に応じて、ポンプ制御部420A、膨張弁制御部420B、二方弁制御部420Cが各種制御を行う。   As described above, the operation mode may be determined in the hot water storage control unit 420 (for example, the two-way valve control unit 420C) or the air conditioner control unit 430. In this case, the pump control unit 420A, the expansion valve control unit 420B, and the two-way valve control unit 420C perform various controls according to the operation information corresponding to the operation mode determined by the two-way valve control unit 420C and the air conditioner control unit 430. I do.

次に、前記エアコンユニット200に備えられた前記エアコン制御部430について説明する。エアコン制御部430は、前記ヒーポン制御部410及び貯湯制御部420同様、記憶部と制御部とを備えており、その機能的構成を図5により説明する。   Next, the air conditioner control unit 430 provided in the air conditioner unit 200 will be described. The air conditioner control unit 430 includes a storage unit and a control unit, similar to the heat pump control unit 410 and the hot water storage control unit 420, and its functional configuration will be described with reference to FIG.

図5に示すように、前記エアコン制御部430は、室内ファン制御部430Aを機能的に備えている。   As shown in FIG. 5, the air conditioner control unit 430 functionally includes an indoor fan control unit 430A.

室内ファン制御部430Aには、前記ヒーポン制御部410からの前記運転情報と、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tconとが入力される。室内ファン制御部430Aは、前記ヒーポン制御部410からの前記運転情報に対応しつつ、前記室内温度Tr及びエアコン設定温度Tconに応じて、前記室内ファン77に対し、前記目標回転数N1(以下適宜、単に「室内ファン回転数N1」という。図示も同様)に対応した駆動制御信号を出力し、これによって室内ファン77の回転数を可変に制御する(詳細な制御内容は後述)。なおこの室内ファン回転数N1は、前記したように、前記ヒーポン制御部410の前記室外ファン制御部410Dへも出力される。   The indoor fan control unit 430A receives the operation information from the heat-pump control unit 410, the indoor temperature Tr detected by the indoor temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60. Is done. The indoor fan control unit 430A responds to the operation information from the heat-pump control unit 410, and with respect to the indoor fan 77 according to the indoor temperature Tr and the air conditioner set temperature Tcon (hereinafter, as appropriate) A drive control signal corresponding to “indoor fan rotational speed N1” (similarly shown in the figure) is output, and thereby the rotational speed of the indoor fan 77 is variably controlled (detailed control content will be described later). The indoor fan rotation speed N1 is also output to the outdoor fan control unit 410D of the heat pump control unit 410 as described above.

なお、前記と同様、運転態様の決定を、エアコン制御部430内や貯湯制御部420で行っても良い。この場合は、それらエアコン制御部430や貯湯制御部420で決定した運転態様に対応する運転情報に応じて、室内ファン制御部430Aが前記制御を行う。   As described above, the operation mode may be determined in the air conditioner control unit 430 or the hot water storage control unit 420. In this case, the indoor fan control unit 430A performs the control according to the operation information corresponding to the operation mode determined by the air conditioner control unit 430 and the hot water storage control unit 420.

前記したように、本実施形態のヒートポンプ給湯機1は、沸上運転、冷房運転、暖房運転、沸上・冷房運転、沸上・暖房運転の5種類の運転を選択的に実行することができる。以下、各運転の詳細を順次説明する。   As described above, the heat pump water heater 1 according to the present embodiment can selectively execute five types of operation including boiling operation, cooling operation, heating operation, boiling / cooling operation, and boiling / heating operation. . Hereinafter, details of each operation will be sequentially described.

まず、図6を用いて、沸上運転について説明する。この図6に示す沸上運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18aを前記配管部18bに連通させると共に前記配管部18cを前記配管部18dに連通させる位置(前記した暖房側)に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が閉じ状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全開状態かつ前記膨張弁112が全閉状態に制御され、前記膨張弁制御部410Cにより前記膨張弁113が開き状態(詳細には後述の△H制御が行われている)に制御される。   First, boiling operation will be described with reference to FIG. In the boiling operation shown in FIG. 6, the four-way valve control unit 410A causes the four-way valve 31 to connect the pipe part 18a to the pipe part 18b and to connect the pipe part 18c to the pipe part 18d. The position is switched to the heating position (the heating side described above). The two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the closed state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully open state and the expansion valve 112 to be in a fully closed state, and the expansion valve control unit 410C opens the expansion valve 113 (details will be described later as ΔH Is being controlled).

この結果、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25e→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する水冷媒熱交換器15の前記冷媒側の流路15bにおいて前記水側の流路15aを流れる水と熱交換を行って前記水に熱を放出し加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。このとき、貯湯タンク2下部に接続された前記加熱往き管5から取り出された低温水(未加熱水)が、水冷媒熱交換器15の前記水側の流路15aにおいて前記凝縮する冷媒から受熱して高温まで加熱された後、貯湯タンク2上部に接続された加熱戻り管6から貯湯タンク2内に戻されることで、貯湯タンク2内に順次高温水(加熱水)が積層状に貯湯される。   As a result, the discharge side piping section 18a → the piping section 18b → the communication pipe 101 → the piping section 25a → the piping section 25b → the refrigerant side flow path 15b of the water refrigerant heat exchanger 15 → the piping section 25c (expansion). Valve 111) → Pipe part 25e → Communication pipe line 102 → Pipe part 18e (expansion valve 113) → Outdoor heat exchanger 17 → Pipe part 18d → Refrigerant path of the suction side pipe part 18c of the compressor 14 is formed. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the flow on the refrigerant side of the water refrigerant heat exchanger 15 functioning as a condenser is performed. In the channel 15b, heat exchange is performed with the water flowing through the water-side channel 15a to release heat to the water and change into a high-pressure liquid while heating. The refrigerant thus turned into a liquid is decompressed by the expansion valve 113 through the fully opened expansion valve 111 and becomes a low-temperature / low-pressure liquid and easily evaporates. In the outdoor heat exchanger 17 functioning as an evaporator, The heat is exchanged with the outside air to evaporate and change into gas, thereby absorbing heat and returning to the compressor 14 again as a low temperature / low pressure gas. At this time, the low-temperature water (unheated water) taken out from the heating forward pipe 5 connected to the lower part of the hot water storage tank 2 receives heat from the condensing refrigerant in the water-side flow path 15a of the water-refrigerant heat exchanger 15. Then, after being heated to a high temperature, the hot water is returned to the hot water storage tank 2 from the heating return pipe 6 connected to the upper part of the hot water storage tank 2 so that the hot water (heated water) is sequentially stored in the hot water storage tank 2 in a laminated form. The

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、外気温度Tairに基づき決定される。すなわち、外気温度Tairが低い場合は圧縮機回転数が大きくなるように制御され、外気温度Tairが高い場合は圧縮機回転数が小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairに基づき決定される。すなわち、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   In the above operation, the rotational speed of the compressor 14 is determined based on the outside air temperature Tair under the control of the compressor controller 410B. That is, when the outside air temperature Tair is low, the compressor rotation speed is controlled to be large, and when the outside air temperature Tair is high, the compressor rotation speed is controlled to be small. The outdoor fan rotation speed N2 of the outdoor fan 67 is determined based on the outdoor air temperature Tair under the control of the outdoor fan control unit 410D. That is, when the outside air temperature Tair is low, the fan rotation speed is controlled to be large, and when the outside air temperature Tair is high, the fan rotation speed is controlled to be small.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上温度Tbが所定の目標温度となるように、フィードバック制御される。すなわち、沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなる(流量が低下する)ように制御され、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなる(流量が増大する)ように制御される。なお、室内ファン77は、前記室内ファン制御部430Aの制御により回転停止される。   The number of rotations of the boiling pump 19 is feedback-controlled by the control of the pump control unit 420A so that the boiling temperature Tb becomes a predetermined target temperature. That is, when the boiling temperature Tb is lower than the target temperature, control is performed such that the pump rotational speed is decreased (the flow rate is decreased), and when the boiling temperature Tb is higher than the target temperature, the pump rotational speed is increased (the flow rate is decreased). To be increased). The indoor fan 77 is stopped from rotating under the control of the indoor fan control unit 430A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、沸上運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout−T2が、所定の目標温度差△Hmとなるように、膨張弁113の開度を所定の周期でフィードバック制御する(△H制御)。すなわち、前記膨張弁制御部410Cは、△H<△Hmの場合は膨張弁113の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁113の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁113の開度を現状のまま維持する。あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁113の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部410Cは、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度を開く方向に制御する。   The opening degree of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the boiling operation. Specifically, the opening of the expansion valve 113 is set at a predetermined cycle so that the temperature difference ΔH = Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 becomes a predetermined target temperature difference ΔHm. Perform feedback control (ΔH control). That is, the expansion valve control unit 410C controls the opening degree of the expansion valve 113 to close when ΔH <ΔHm, and opens the opening degree of the expansion valve 113 when ΔH> ΔHm. If ΔH = ΔHm, the opening degree of the expansion valve 113 is maintained as it is. Alternatively, instead of the ΔH control, the opening degree of the expansion valve 113 may be feedback controlled so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 410C controls the opening degree of the expansion valve 113 to close when the refrigerant discharge temperature Tout is too low, and opens the opening degree of the expansion valve 113 when the refrigerant discharge temperature Tout is too high. Control in the direction.

次に、図7を用いて、暖房運転について説明する。この図7に示す暖房運転時においては、前記四方弁制御部410Aにより、前記沸上運転と同様、前記四方弁31は、前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が閉じ状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全閉状態かつ前記膨張弁112が全開状態に制御され、前記膨張弁制御部410Cにより前記膨張弁113が開き状態(詳細には後述のSH制御が行われている)に制御される。   Next, the heating operation will be described with reference to FIG. In the heating operation shown in FIG. 7, the four-way valve 31 is switched to the heating side by the four-way valve control unit 410A as in the boiling operation. The two-way valve controller 420C switches the two-way valve 121 to the closed state, the two-way valve 122 to the open state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be fully closed and the expansion valve 112 to be fully open, and the expansion valve control unit 410C opens the expansion valve 113 (detailed below is SH control). Is controlled).

この結果、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25d→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)→配管部25e→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する室内熱交換器27において室内空気と熱交換を行って熱を放出し空調対象空間を加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁112を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the piping part 18a on the discharge side of the compressor 14 → the piping part 18b → the communication line 101 → the piping part 25a → the piping part 25d → the communication line 104 → the piping part 26a → the indoor heat exchanger 27 → the piping part 26b → Communication pipe 103 → pipe part 25g (expansion valve 112) → pipe part 25e → communication pipe line 102 → pipe part 18e (expansion valve 113) → outdoor heat exchanger 17 → pipe part 18d → pipe on the suction side of the compressor 14 A refrigerant path of the portion 18c is formed. As a result, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the indoor heat exchanger 27 functioning as a condenser exchanges heat with the indoor air. The heat is released to change into a high-pressure liquid while heating the air-conditioning target space. The refrigerant thus turned into a liquid is decompressed in the expansion valve 113 through the fully opened expansion valve 112 and becomes a low-temperature / low-pressure liquid and easily evaporates. In the outdoor heat exchanger 17 functioning as an evaporator, The heat is exchanged with the outside air to evaporate and change into gas, thereby absorbing heat and returning to the compressor 14 again as a low temperature / low pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。すなわち、Tcon−Trの値が大きい場合は圧縮機回転数が大きくなるように制御され、Tcon−Trの値が小さい場合は圧縮機回転数が小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairとエアコン運転モードに基づき決定される。すなわち、複数用意されたエアコン運転モード(例えば強力モード、通常モード、節電モード等)のそれぞれにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   In the above operation, the rotation speed of the compressor 14 is determined based on the difference between the room temperature Tr and the air conditioner set temperature Tcon under the control of the compressor control unit 410B. That is, when the value of Tcon-Tr is large, the compressor rotational speed is controlled to be large, and when the value of Tcon-Tr is small, the compressor rotational speed is controlled to be small. The outdoor fan rotation speed N2 of the outdoor fan 67 is determined based on the outdoor air temperature Tair and the air conditioner operation mode under the control of the outdoor fan control unit 410D. That is, in each of a plurality of prepared air conditioner operation modes (for example, the high power mode, the normal mode, the power saving mode, etc.), when the outside air temperature Tair is low, the fan speed is controlled to increase, and when the outside air temperature Tair is high. The fan speed is controlled to be small.

また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。すなわち、Tcon−Trの値が大きい場合はファン回転数が大きくなるように制御され、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。なお、沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。   The indoor fan rotation speed N1 of the indoor fan 77 is determined based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon under the control of the indoor fan control unit 430A. That is, when the value of Tcon-Tr is large, control is performed so that the fan rotational speed is increased, and when the value of Tcon-Tr is small, control is performed so that the fan rotational speed is decreased. The boiling pump 19 is stopped from rotating under the control of the pump control unit 420A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、暖房運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吸入温度Tinと前記ヒーポン熱交温度Texとの温度差Tin−Texが所定の一定値となるように、膨張弁113の開度をフィードバック制御する(SH制御)。すなわち、前記膨張弁制御部410Cは、Tin−Texが小さすぎる場合は膨張弁113の開度を閉じる方向に制御し、Tin−Texが大きすぎる場合は膨張弁113の開度を開く方向に制御する。   The opening degree of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the heating operation. Specifically, the opening degree of the expansion valve 113 is feedback-controlled so that the temperature difference Tin-Tex between the refrigerant suction temperature Tin and the heat-pump heat exchange temperature Tex becomes a predetermined constant value (SH control). That is, the expansion valve control unit 410C controls the opening of the expansion valve 113 to close when Tin-Tex is too small, and controls the opening of the expansion valve 113 to open when Tin-Tex is too large. To do.

次に、図8を用いて、沸上・暖房運転について説明する。この図8に示す沸上・暖房運転時においても、前記四方弁制御部410Aにより、前記四方弁31は、前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全開状態かつ前記膨張弁112も全開状態に制御され、前記膨張弁制御部410Cにより前記膨張弁113が開き状態(詳細には後述の吐出制御が行われている)に制御される。   Next, boiling and heating operation will be described with reference to FIG. Also in the boiling / heating operation shown in FIG. 8, the four-way valve control unit 410A switches the four-way valve 31 to the heating side. The two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the open state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully open state and the expansion valve 112 to be in a fully open state, and the expansion valve control unit 410C opens the expansion valve 113 (details are the discharge control described later). To be controlled).

この結果、冷媒経路は、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25aを経て2つに分かれ、一方は、配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)を経て配管部25eに至り、他方は、配管部25d→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)を経て前記配管部25eへと合流する。その後の経路は、配管部25e→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cとなる。   As a result, the refrigerant path is divided into two through the piping part 18a on the discharge side of the compressor 14 → the piping part 18b → the communication pipe 101 → the piping part 25a, and one is the piping part 25b → the water refrigerant heat exchanger 15. The refrigerant side flow path 15b → pipe part 25c (expansion valve 111) is reached to the pipe part 25e, and the other is the pipe part 25d → communication conduit 104 → pipe part 26a → indoor heat exchanger 27 → pipe part 26b → It joins to the said piping part 25e through the communication pipe line 103-> piping part 25g (expansion valve 112). The subsequent path is the piping portion 25e → the communication conduit 102 → the piping portion 18e (expansion valve 113) → the outdoor heat exchanger 17 → the piping portion 18d → the suction side piping portion 18c of the compressor 14.

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後に前記のように分流し、前記一方の流れは前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、前記他方の流れは室内熱交換器27(凝縮器として機能)において前記同様に凝縮して室内空気に熱を放出することで空調対象空間を加熱する。前記の熱交換器15,27での凝縮で高圧の液体に変化した冷媒は前記膨張弁113において減圧されて低温・低圧の液体となった後前記室外熱交換器17(蒸発器として機能)において蒸発して外気から吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the refrigerant in the gas state sucked at a low temperature and a low pressure is compressed by the compressor 14 to become a high temperature and a high pressure gas, and then divided as described above, and the one flow is the water refrigerant heat exchanger. 15 (functions as a condenser) is condensed in the same manner as described above to heat the water flowing through the water-side flow path 15a, thereby supplying hot water (heated water) sequentially into the hot water storage tank 2, and the other flow is In the indoor heat exchanger 27 (functioning as a condenser), the air-conditioning target space is heated by condensing in the same manner as described above and releasing heat to the indoor air. The refrigerant that has changed into a high-pressure liquid by condensation in the heat exchangers 15 and 27 is decompressed by the expansion valve 113 to become a low-temperature / low-pressure liquid, and then in the outdoor heat exchanger 17 (functions as an evaporator). It evaporates and absorbs heat from the outside air, and returns to the compressor 14 again as a low temperature / low pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記暖房運転時と同様の、室内温度Trとエアコン設定温度Tconとの差に基づく決定と、前記沸上運転時と同様の、外気温度Tairに基づく決定とが加味される(詳細は省略)。また前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、前記暖房運転時と同様、外気温度Tairとエアコン運転モードに基づき、各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   In the above operation, the rotation speed of the compressor 14 is determined based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, as in the heating operation, under the control of the compressor control unit 410B. The determination based on the outside air temperature Tair, which is the same as in the upper operation, is taken into account (details are omitted). The outdoor fan rotation speed N2 is controlled by the outdoor fan control unit 410D, based on the outdoor air temperature Tair and the air conditioner operation mode, as in the heating operation, when the outdoor air temperature Tair is low in each air conditioner operation mode. When the outside air temperature Tair is high, the fan rotational speed is controlled to be small so that the rotational speed is large.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記暖房運転時と同様、室内温度Trとエアコン設定温度Tconとの差に基づき、Tcon−Trの値が大きい場合はファン回転数が大きくなるように、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。   The number of revolutions of the boiling pump 19 is controlled by the pump control unit 420A, as in the above-described boiling operation, when the boiling temperature Tb is lower than the target temperature, the number of revolutions of the pump becomes small, and the boiling temperature Tb is When the temperature is higher than the target temperature, the pump speed is controlled to be large. The indoor fan rotation speed N1 is controlled by the indoor fan control unit 430A, based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, as in the heating operation, when the value of Tcon-Tr is large. When the value of Tcon-Tr is small, the fan rotational speed is controlled to be small so that the rotational speed is large.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、沸上・暖房運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutが所定の一定値となるように膨張弁113の開度がフィードバック制御(吐出制御)され、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度を閉じる方向に、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度を開く方向に制御する。   The opening degree of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the boiling / heating operation. Specifically, the opening degree of the expansion valve 113 is feedback controlled (discharge control) so that the refrigerant discharge temperature Tout becomes a predetermined constant value, and when the refrigerant discharge temperature Tout is too low, the opening degree of the expansion valve 113 is closed. If the refrigerant discharge temperature Tout is too high, the opening of the expansion valve 113 is controlled to open.

次に、図9を用いて、冷房運転について説明する。この図9に示す冷房運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18aを前記配管部18dに連通させると共に前記配管部18cを前記配管部18bに連通させる位置(前記暖房側とは異なる冷房側)に切り替えられる。また前記二方弁制御部420Cにより、前記暖房運転時と同様、二方弁121が閉じ状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全閉状態に制御されかつ前記膨張弁112が開き状態(詳細には後述のフィードフォワード制御が行われている)に制御され、前記膨張弁制御部410Cにより前記膨張弁113が全開状態に制御される。   Next, the cooling operation will be described with reference to FIG. In the cooling operation shown in FIG. 9, the four-way valve control unit 410A causes the four-way valve 31 to connect the pipe part 18a to the pipe part 18d and to connect the pipe part 18c to the pipe part 18b. It is switched to a position (cooling side different from the heating side). Further, the two-way valve control unit 420C switches the two-way valve 121 to the closed state, the two-way valve 122 to the open state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state as in the heating operation. It is done. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully closed state and the expansion valve 112 to be in an open state (specifically, feedforward control described below is performed), and the expansion valve control The expansion valve 113 is controlled to be fully opened by the portion 410C.

この結果、圧縮機14の吐出側の配管部18a→配管部18d→室外熱交換器17→配管部18e(膨張弁113)→連通管路102→配管部25e→配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d→配管部25a→連通管路101→配管部18b→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、室外ファン67の回転駆動とともに凝縮器として機能する前記室外熱交換器17において外気と熱交換を行って熱を放出しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁113を経て前記膨張弁112において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、室内ファン77の回転駆動とともに蒸発器として機能する前記室内熱交換器27において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the piping section 18a on the discharge side of the compressor 14 → the piping section 18d → the outdoor heat exchanger 17 → the piping section 18e (expansion valve 113) → the communication conduit 102 → the piping section 25e → the piping section 25g (expansion valve 112). → Communication line 103 → Pipe part 26b → Indoor heat exchanger 27 → Pipe part 26a → Communication line 104 → Pipe part 25d → Pipe part 25a → Communication line 101 → Pipe part 18b → Piping on the suction side of the compressor 14 A refrigerant path of the portion 18c is formed. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the outdoor heat exchanger functioning as a condenser with the rotational driving of the outdoor fan 67. In 17, heat is exchanged with the outside air to release heat and change to a high-pressure liquid. The refrigerant that has become liquid in this manner is decompressed by the expansion valve 112 through the fully opened expansion valve 113 and becomes a low-temperature / low-pressure liquid that easily evaporates, and functions as an evaporator when the indoor fan 77 is driven to rotate. The indoor heat exchanger 27 absorbs heat from the indoor air, evaporates and changes to gas, thereby cooling the air-conditioning target space and returns to the compressor 14 again as low-temperature and low-pressure gas.

以上の作動において、前記暖房運転時と同様、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記Tcon−Trの値が大きい場合は圧縮機回転数が大きくなるように、前記Tcon−Trの値が小さい場合は圧縮機回転数が小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、エアコン運転モードが例えば強力モードの場合はファン回転数が大きくなるように制御され、通常モードや節電モードの場合はファン回転数が小さくなるように制御される。さらに各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が小さくなるように、外気温度Tairが高い場合はファン回転数が大きくなるように制御される。また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記Tcon−Trの値が大きい場合はファン回転数が大きくなるように、前記Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。   In the above operation, as in the heating operation, the rotation speed of the compressor 14 is controlled by the compressor control unit 410B so that the compressor rotation speed increases when the value of Tcon-Tr is large. When the value of Tcon-Tr is small, the compressor rotational speed is controlled to be small. The outdoor fan rotation speed N2 of the outdoor fan 67 is controlled by the outdoor fan control unit 410D so that the fan rotation speed is increased when the air conditioner operation mode is, for example, the high power mode. In this case, the fan speed is controlled to be small. Further, in each air-conditioner operation mode, control is performed so that the fan speed decreases when the outside air temperature Tair is low, and the fan speed increases when the outside air temperature Tair is high. The indoor fan rotation speed N1 of the indoor fan 77 is controlled by the indoor fan control unit 430A so that the value of the Tcon-Tr increases so that the fan rotation speed increases when the Tcon-Tr value is large. When it is small, the fan speed is controlled to be small. The boiling pump 19 is stopped from rotating under the control of the pump control unit 420A.

そして、前記膨張弁112の開度は、前記膨張弁制御部420Bにより、冷房運転の運転状態に応じて可変に制御される。すなわち、前記外気温度Tair及び前記エアコン運転モードと、圧縮機14の回転数とに基づき決定される。すなわち、前記膨張弁制御部420Bは、前記複数のエアコン運転モード(例えば強力モード、通常モード、節電モード等)のそれぞれにおいて、前記外気温度Tairの高低と、前記圧縮機制御部410Bからの圧縮機回転数の高低とを加味して、膨張弁112の開度をフィードフォワード制御する(詳細は省略)。   The opening degree of the expansion valve 112 is variably controlled by the expansion valve control unit 420B according to the operating state of the cooling operation. That is, it is determined based on the outside air temperature Tair, the air conditioner operation mode, and the rotational speed of the compressor 14. That is, the expansion valve control unit 420B determines whether the outside air temperature Tair is high or low and the compressor from the compressor control unit 410B in each of the plurality of air conditioner operation modes (for example, the strong mode, the normal mode, and the power saving mode). The opening degree of the expansion valve 112 is feedforward controlled in consideration of the rotational speed (details are omitted).

次に、図10を用いて、沸上・冷房運転について説明する。この図10に示す沸上・冷房運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、(前記冷房側ではなく)前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が閉じ状態、二方弁123が閉じ状態、二方弁124が開き状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全開状態に制御されるとともに前記膨張弁112が開き状態(詳細には後述の△H制御が行われている)に制御され、前記膨張弁制御部410Cにより前記膨張弁113が全開状態に制御される。   Next, boiling / cooling operation will be described with reference to FIG. In the boiling / cooling operation shown in FIG. 10, the four-way valve control unit 410A switches the four-way valve 31 to the heating side (not the cooling side). Further, the two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the closed state, the two-way valve 123 to the closed state, and the two-way valve 124 to the open state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully open state and the expansion valve 112 to be in an open state (detailed below, ΔH control is performed). The expansion valve 113 is controlled to be fully opened by the portion 410C.

この結果、冷媒経路は、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d→配管部25f→配管部25e→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cとなる。   As a result, the refrigerant path is the piping side 18a on the discharge side of the compressor 14 → the piping part 18b → the communication pipe 101 → the piping part 25a → the piping part 25b → the flow path 15b on the refrigerant side of the water refrigerant heat exchanger 15 → the piping. Part 25c (expansion valve 111) → piping part 25g (expansion valve 112) → communication pipe line 103 → piping part 26b → indoor heat exchanger 27 → piping part 26a → communication pipe line 104 → piping part 25d → piping part 25f → piping Portion 25e → Communication pipeline 102 → Pipe portion 18e (expansion valve 113) → Outdoor heat exchanger 17 → Pipe portion 18d → Pipe portion 18c on the suction side of the compressor 14

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、まず前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁112において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、室内ファン77の回転駆動とともに蒸発器として機能する前記室内熱交換器27において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、さらに前記膨張弁113を経て、室外ファン67の回転駆動とともに蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   Thus, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, first, the water refrigerant heat exchanger 15 (functioning as a condenser) is used in the same manner as described above. The high-temperature water (heated water) is sequentially supplied into the hot water storage tank 2 by heating the water flowing through the water-side flow path 15a and the liquid refrigerant passes through the expansion valve 111 in a fully opened state. The expansion valve 112 is depressurized to become a low-temperature / low-pressure liquid and easily evaporates. When the indoor fan 77 is driven to rotate, the indoor heat exchanger 27 functioning as an evaporator absorbs heat from the indoor air and evaporates. The air-conditioning target space is cooled by changing to the above, and further, through the expansion valve 113, the outdoor fan 67 rotates and exchanges heat with the outside air in the outdoor heat exchanger 17 that functions as an evaporator. Evaporated to me it absorbs heat by varying the gas returns to the compressor 14 as a low-temperature low-pressure gas.

なお、以上の説明にて前記したように、前記配管部18a、前記配管部25a、前記配管部25bが、圧縮機14の吐出側と水冷媒熱交換器15の入口側との間を接続する第1配管として機能する。また前記配管部25c、前記配管部25g、前記配管部26bが、水冷媒熱交換器15の出口側と室内熱交換器27の入口側との間を接続する第2配管として機能する。また、前記配管部26a、前記配管部25d(二方弁122のある区間を除く)、前記配管部25f、前記配管部25e(二方弁123のある区間を除く)、前記配管部18eが、室内熱交換器27の出口側と室外熱交換器17の入口側との間を接続する第3配管として機能する。また、前記配管部18d、前記配管部18cが、室外熱交換器17の出口側と圧縮機14の吸入側との間を接続する第4配管として機能する。   As described above, the pipe 18a, the pipe 25a, and the pipe 25b connect between the discharge side of the compressor 14 and the inlet side of the water refrigerant heat exchanger 15. It functions as the first piping. The piping part 25c, the piping part 25g, and the piping part 26b function as a second pipe that connects between the outlet side of the water-refrigerant heat exchanger 15 and the inlet side of the indoor heat exchanger 27. In addition, the piping part 26a, the piping part 25d (excluding the section with the two-way valve 122), the piping part 25f, the piping part 25e (excluding the section with the two-way valve 123), the piping part 18e, It functions as a third pipe that connects the outlet side of the indoor heat exchanger 27 and the inlet side of the outdoor heat exchanger 17. Further, the pipe portion 18d and the pipe portion 18c function as a fourth pipe that connects the outlet side of the outdoor heat exchanger 17 and the suction side of the compressor 14.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記冷房運転時と同様の、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。   In the above operation, the rotation speed of the compressor 14 is determined based on the difference between the room temperature Tr and the air conditioner set temperature Tcon, similar to that during the cooling operation, under the control of the compressor control unit 410B.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上運転や沸上・暖房運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記冷房運転等のときと同様、室内温度Trとエアコン設定温度Tconとの差に基づき、Tcon−Trの値が大きい場合はファン回転数が大きくなるように、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。   The number of rotations of the boiling pump 19 is controlled by the pump control unit 420A, as in the case of the boiling operation and the boiling / heating operation, when the boiling temperature Tb is lower than the target temperature. When the boiling temperature Tb is higher than the target temperature, the pump rotation speed is controlled to increase. The indoor fan rotation speed N1 of the indoor fan 77 is controlled by the indoor fan control unit 430A based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon as in the cooling operation or the like. When the value of is large, the fan rotational speed is increased, and when the value of Tcon-Tr is small, the fan rotational speed is decreased.

そして、前記膨張弁112の開度は、前記膨張弁制御部420Bにより、沸上・冷房運転の運転状態に応じて可変に制御される。詳細には、前記沸上運転時の膨張弁制御部410Cによる膨張弁113への制御と同様、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout−T2が、所定の目標温度差△Hmとなるように、膨張弁112の開度を所定の周期でフィードバック制御する(△H制御)。すなわち、前記膨張弁制御部420Bは、△H<△Hmの場合は膨張弁112の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁112の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁112の開度を現状のまま維持する。あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁112の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部420Bは、冷媒吐出温度Toutが低すぎる場合は膨張弁112の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁112の開度を開く方向に制御する。なお、前記室外ファン制御部410Dの制御による前記室外ファン67における前記室外ファン回転数N2の制御については、後述する。   The opening degree of the expansion valve 112 is variably controlled by the expansion valve control unit 420B in accordance with the operating state of the boiling / cooling operation. Specifically, similar to the control to the expansion valve 113 by the expansion valve control unit 410C during the boiling operation, the temperature difference ΔH = Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 is a predetermined value. The opening degree of the expansion valve 112 is feedback-controlled at a predetermined cycle so that the target temperature difference ΔHm is obtained (ΔH control). That is, the expansion valve control unit 420B controls the opening degree of the expansion valve 112 to close when ΔH <ΔHm, and opens the opening degree of the expansion valve 112 when ΔH> ΔHm. If ΔH = ΔHm, the opening degree of the expansion valve 112 is maintained as it is. Alternatively, instead of this ΔH control, the opening degree of the expansion valve 112 may be feedback controlled so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 420B controls the opening degree of the expansion valve 112 to close when the refrigerant discharge temperature Tout is too low, and opens the opening degree of the expansion valve 112 when the refrigerant discharge temperature Tout is too high. Control in the direction. The control of the outdoor fan rotation speed N2 in the outdoor fan 67 by the control of the outdoor fan control unit 410D will be described later.

ところで、前記沸上・冷房運転においては、図10を用いて前記したような冷媒の流れ挙動により、前記室内熱交換器27(蒸発器として機能)での吸熱と、前記室外熱交換器17(蒸発器として機能)での吸熱と、を合計したものが、前記水冷媒熱交換器15(凝縮器として機能)での貯湯タンク2内への湯水の加熱に用いられる。   By the way, in the above boiling / cooling operation, the heat absorption in the indoor heat exchanger 27 (functioning as an evaporator) and the outdoor heat exchanger 17 ( The sum of the heat absorption in the evaporator) is used for heating the hot water into the hot water storage tank 2 in the water refrigerant heat exchanger 15 (functioning as a condenser).

ここで、本実施形態では、通常の手法と同様、前記エアコン制御部430の室内ファン制御部430Aでは、室内温度Tr−エアコン設定温度Tconの値が大きい場合は前記室内ファン回転数N1が大きくなるように、室内温度Tr−エアコン設定温度Tconの値が小さい場合は前記室内ファン回転数N1が小さくなるように制御される。したがって、冷房負荷を表す前記Tr−Tconが大きい運転開始直後は前記室内ファン回転数N1が大きく前記室内熱交換器27における吸熱量が多くなるものの、その後時間が経過するにつれて前記Tr−Tconが小さくなり前記室内ファン回転数N1が小さくなることから、前記室内熱交換器27での吸熱量が小さくなってしまう。   Here, in the present embodiment, as in the normal method, in the indoor fan control unit 430A of the air conditioner control unit 430, when the value of the indoor temperature Tr-air conditioner set temperature Tcon is large, the indoor fan rotation speed N1 increases. As described above, when the value of the indoor temperature Tr-the air conditioner set temperature Tcon is small, the indoor fan rotation speed N1 is controlled to be small. Therefore, immediately after the start of operation when Tr-Tcon representing the cooling load is large, the indoor fan rotation speed N1 is large and the heat absorption amount in the indoor heat exchanger 27 is large, but the Tr-Tcon is small as time passes thereafter. Accordingly, since the indoor fan rotation speed N1 is reduced, the heat absorption amount in the indoor heat exchanger 27 is reduced.

そこで、これに対応して、本実施形態では、前記室外ファン67における室外ファン回転数N2を制御する前記室外ファン制御部410Dに対し、前記室内ファン制御部430Aから前記室内ファン回転数N1が出力される(室内ファン制御部430Aの回転検出手段、負荷検出手段としての機能)。そして室外ファン制御部410Dは、前記吸熱量の減少に対応した前記室内ファン回転数N1の低下を検知すると、これに対応して、室外ファン67における前記室外ファン回転数N2を増大させることで、室外熱交換器17における吸熱量を増大させる(室外ファン制御部410Dの回転制御手段、吸熱制御手段としての機能)。以下、この室外ファン制御部410Dによる制御内容の詳細について、図11を用いて説明する。   Accordingly, in this embodiment, the indoor fan control unit 430A outputs the indoor fan rotation speed N1 to the outdoor fan control unit 410D that controls the outdoor fan rotation speed N2 of the outdoor fan 67. (Functions as rotation detection means and load detection means of the indoor fan control unit 430A). When the outdoor fan control unit 410D detects a decrease in the indoor fan rotation speed N1 corresponding to the decrease in the heat absorption amount, the outdoor fan control unit 410D increases the outdoor fan rotation speed N2 in the outdoor fan 67 in response to this, The heat absorption amount in the outdoor heat exchanger 17 is increased (functions as rotation control means and heat absorption control means of the outdoor fan control unit 410D). Hereinafter, details of the control contents by the outdoor fan control unit 410D will be described with reference to FIG.

図11(a)に右下がりの特性線で示すように、前記室外ファン67における室外ファン回転数N2は、前記室外ファン制御部410Dにより、外気温度Tairが低い場合は大きくなるように制御され、外気温度Tairが高い場合は小さくなるように制御される。なお、前記冷房運転時と同様、この右下がり特性線で表される制御内容は、各エアコン運転モードにごとにそれぞれ別個に用意されており、図11(a)はその中のある1つの運転モードにおけるものを一例として表している。   As shown by the characteristic line of the lower right in FIG. 11A, the outdoor fan rotation speed N2 of the outdoor fan 67 is controlled by the outdoor fan control unit 410D so as to increase when the outdoor air temperature Tair is low, When the outside air temperature Tair is high, it is controlled to be small. As in the case of the cooling operation, the control content represented by the downward-sloping characteristic line is prepared separately for each air-conditioner operation mode, and FIG. 11 (a) shows one of the operations. The mode is shown as an example.

そして、前記したように、前記室外ファン制御部410Dは、室内ファン66における前記室内ファン回転数N1の低下に応じて、室外ファン67における前記室外ファン回転数N2を増大させる。この例では、図示のように3つ用意された特性線において、前記室内ファン回転数N1が低下するにつれて、より大回転数側の特性線となるように、使用する特性線を段階的に切り替える。具体的には、図11(b)に示すように、前記室内ファン回転数N1の範囲を、N1<200[rpm]、200≦N1<300[rpm]、300≦N1[rpm]の3つに区分する。   As described above, the outdoor fan control unit 410D increases the outdoor fan rotation speed N2 of the outdoor fan 67 in accordance with a decrease in the indoor fan rotation speed N1 of the indoor fan 66. In this example, among the three characteristic lines as shown in the figure, the characteristic lines to be used are switched in stages so that the characteristic line on the higher rotational speed side becomes a characteristic line as the indoor fan rotational speed N1 decreases. Specifically, as shown in FIG. 11B, there are three ranges of the indoor fan rotation speed N1, N1 <200 [rpm], 200 ≦ N1 <300 [rpm], and 300 ≦ N1 [rpm]. Divide into

そして、前記室内ファン回転数N1が3つの区分のうち最も大きい300≦N1[rpm]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を(制御基準としての)図11(a)中の最下段の実線で示す特性となるように制御する。また、前記室内ファン回転数N1が3つの区分のうち真ん中の200≦N1<300[rpm]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を、図11(a)中の最下段の実線で示した特性に対し補正値100[rpm](図11(b)参照)を加えた特性、すなわち前記実線より1段上となる図11(a)中の中段の二点鎖線で示す特性となるように制御する。さらに、前記室内ファン回転数N1が3つの区分のうちもっとも小さいN1<200[rpm]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を、図11(a)中の最下段の実線で示した特性に対し補正値200[rpm](図11(b)参照)を加えた特性、すなわち前記二点鎖線よりさらに1段上となる図11(a)中の上段の破線で示す特性となるように制御する。   When the indoor fan rotation speed N1 is in the range of 300 ≦ N1 [rpm], which is the largest among the three sections, the outdoor fan control unit 410D uses the outdoor fan rotation speed N2 (as a control reference). Control is performed so that the characteristic indicated by the solid line at the bottom in FIG. When the indoor fan rotation speed N1 is in the range of 200 ≦ N1 <300 [rpm] in the middle of the three sections, the outdoor fan control unit 410D determines the outdoor fan rotation speed N2 as shown in FIG. A characteristic obtained by adding a correction value 100 [rpm] (see FIG. 11B) to the characteristic indicated by the solid line at the bottom in a), that is, the middle part in FIG. 11A that is one stage higher than the solid line. Control is performed so as to obtain the characteristics indicated by the two-dot chain line. Further, when the indoor fan rotation speed N1 is in the range of the smallest N1 <200 [rpm] among the three sections, the outdoor fan control unit 410D determines the outdoor fan rotation speed N2 as shown in FIG. A characteristic obtained by adding a correction value 200 [rpm] (see FIG. 11B) to the characteristic indicated by the solid line at the bottom in FIG. 11A, that is, one level above the two-dot chain line in FIG. Control is performed so that the characteristic indicated by the upper broken line is obtained.

このような制御が前記室外ファン制御部410Dで行われることにより、前記のような運転開始後の時間経過により前記室内ファン回転数N1が小さくなり前記室内熱交換器27での吸熱量が小さくなってしまったとしても、これに応じて前記のように前記室外ファン回転数N2が大回転数側に補正されることで、前記室外熱交換器17における吸熱量を増大させることができる。   By performing such control in the outdoor fan control unit 410D, the indoor fan rotation speed N1 decreases with the passage of time after the start of operation as described above, and the heat absorption amount in the indoor heat exchanger 27 decreases. Even if this occurs, the amount of heat absorbed in the outdoor heat exchanger 17 can be increased by correcting the outdoor fan rotational speed N2 to the high rotational speed side as described above.

以上説明したように、本実施形態のヒートポンプ給湯機1によれば、運転開始後に冷房負荷が減少したら、これに対応して前記室外熱交換器17における吸熱量を増大させる。これにより、前記のようにして室内熱交換器27で吸熱量が小さくなった分を補うことができるので、室内熱交換器27での吸熱量と室外熱交換器17での吸熱量との合計が、小さくならないように維持することができる。この結果、前記水冷媒熱交換器15における放熱量を低下させることなく維持できるので、貯湯タンク2への湯水の加熱能力を確実に確保することができる。   As described above, according to the heat pump water heater 1 of the present embodiment, when the cooling load decreases after the start of operation, the heat absorption amount in the outdoor heat exchanger 17 is increased correspondingly. As a result, the amount of heat absorbed by the indoor heat exchanger 27 can be compensated for as described above, so the sum of the heat absorbed by the indoor heat exchanger 27 and the heat absorbed by the outdoor heat exchanger 17 can be compensated. However, it can be kept small. As a result, since the heat radiation amount in the water-refrigerant heat exchanger 15 can be maintained without lowering, the hot water heating capacity to the hot water storage tank 2 can be reliably ensured.

また、本実施形態では特に、図10に示す沸上・冷房運転時において、圧縮機14の吐出側→配管部18b,25a,25b→水冷媒熱交換器15→配管部25c,25g,26b→室内熱交換器27→配管部26a,25d,25f,25e,18e→室外熱交換器17→配管部18d,18c→圧縮機14の吸入側という冷媒経路が形成される。そして、配管部25gに、弁開度が運転状態に応じて可変に制御される膨張弁112が設けられ。この場合、前記の冷媒経路において、水冷媒熱交換器15で熱交換後の冷媒を膨張弁112において確実に低温低圧状態に膨張させ、室内熱交換器27に供給することができる。これにより、貯湯タンク2への水の加熱(排熱)を利用した高効率な運転を行うことができる。   Further, in the present embodiment, in particular, during the boiling / cooling operation shown in FIG. 10, the discharge side of the compressor 14 → pipe parts 18 b, 25 a, 25 b → water refrigerant heat exchanger 15 → pipe parts 25 c, 25 g, 26 b → The refrigerant path is formed as follows: indoor heat exchanger 27 → piping sections 26a, 25d, 25f, 25e, 18e → outdoor heat exchanger 17 → piping sections 18d, 18c → the suction side of the compressor 14. An expansion valve 112 whose valve opening degree is variably controlled according to the operating state is provided in the piping portion 25g. In this case, in the refrigerant path, the refrigerant after heat exchange by the water refrigerant heat exchanger 15 can be reliably expanded to a low temperature and low pressure state by the expansion valve 112 and supplied to the indoor heat exchanger 27. Thereby, the highly efficient driving | operation using the heating (exhaust heat) of the water to the hot water storage tank 2 can be performed.

なお、本発明は上記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not change the summary of invention.

例えば、上記実施形態では、室内温度Tr−エアコン設定温度Tcon(=温度差△T。以下適宜,単に「温度差△T」という)の値に応じて制御される前記室内ファン回転数N1が、室内ファン制御部430Aから前記室外ファン制御部410Dへ出力され、前記室外ファン制御部410Dは室内ファン回転数N1の低下によって冷房負荷が小さくなったことを検知し、前記室外ファン回転数N2を増大させた。これに代えて、前記室内温度Tr及び前記エアコン設定温度Tconが直接前記室外ファン制御部410Dへ入力され、前記室外ファン制御部410Dがそれらに基づく前記温度差△Tの低下によって冷房負荷が小さくなったことを検知し、前記室外ファン回転数N2を増大させるようにしてもよい。   For example, in the above-described embodiment, the indoor fan rotation speed N1 controlled according to the value of the indoor temperature Tr−the air conditioner set temperature Tcon (= temperature difference ΔT; hereinafter, simply referred to as “temperature difference ΔT”) is Output from the indoor fan control unit 430A to the outdoor fan control unit 410D, the outdoor fan control unit 410D detects that the cooling load has decreased due to the decrease in the indoor fan rotation speed N1, and increases the outdoor fan rotation speed N2. I let you. Instead, the indoor temperature Tr and the air conditioner set temperature Tcon are directly input to the outdoor fan control unit 410D, and the outdoor fan control unit 410D reduces the cooling load due to the decrease in the temperature difference ΔT based on them. This may be detected and the outdoor fan rotation speed N2 may be increased.

そのような変形例における沸上・冷房運転時の作動を図12に示し、またヒーポン制御部及びエアコン制御部の機能的構成を、図3及び図5にそれぞれ対応する図13及び図14に示す。図14に示すように、この変形例では、前記室内ファン制御部430Aからの前記室内ファン回転数N1(駆動制御信号)は室内ファン77に対し出力され、上記実施形態のように前記室外ファン制御部410Dには出力されない。そして図13に示すように、室外ファン制御部410Dには、前記外気温度Tair及び前記エアコン運転モードに加え、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tconとが入力される。   FIG. 12 shows the operation during boiling / cooling operation in such a modification, and FIG. 13 and FIG. 14 corresponding to FIG. 3 and FIG. 5 respectively show the functional configurations of the heat pump control unit and the air conditioner control unit. . As shown in FIG. 14, in this modification, the indoor fan rotation speed N1 (drive control signal) from the indoor fan control unit 430A is output to the indoor fan 77, and the outdoor fan control as in the above embodiment. It is not output to unit 410D. As shown in FIG. 13, in addition to the outdoor temperature Tair and the air conditioner operation mode, the indoor temperature Tr detected by the indoor temperature sensor 34 and the remote controller 60 are set in the outdoor fan control unit 410D. The air conditioner set temperature Tcon is input.

そして室外ファン制御部410Dは、入力される前記室内温度Tr及び前記エアコン設定温度Tconに応じて、温度差△T(=室内温度Tr−エアコン設定温度Tcon)を算出する(算出手段、負荷検出手段としての機能)。なお、他の部位(例えば前記圧縮機制御部410B)でこの温度差△Tが算出され、その算出された温度差△が室外ファン制御部410Dに入力されて用いられる構成でもよい。室外ファン制御部410Dは、前記吸熱量の減少に対応した前記温度差△Tの低下を検知すると、これに対応して、室外ファン67における前記室外ファン回転数N2を増大させることで、室外熱交換器17における吸熱量を増大させる(室外ファン制御部410Dの回転制御手段、吸熱制御手段としての機能)。   The outdoor fan control unit 410D calculates a temperature difference ΔT (= indoor temperature Tr−air conditioner set temperature Tcon) according to the input room temperature Tr and the air conditioner set temperature Tcon (calculation means, load detection means). As a function). The temperature difference ΔT may be calculated by another part (for example, the compressor control unit 410B), and the calculated temperature difference Δ may be input to the outdoor fan control unit 410D for use. When the outdoor fan control unit 410D detects a decrease in the temperature difference ΔT corresponding to the decrease in the heat absorption amount, the outdoor fan control unit 410D increases the outdoor fan rotation speed N2 in the outdoor fan 67 in response to this, thereby increasing the outdoor heat. The heat absorption amount in the exchanger 17 is increased (functions as rotation control means and heat absorption control means of the outdoor fan control unit 410D).

本変形例における前記室外ファン制御部410Dの制御内容の詳細について、前記図11に対応する図15を用いて説明する。   Details of the control contents of the outdoor fan control unit 410D in this modification will be described with reference to FIG. 15 corresponding to FIG.

前記図11同様、図15(a)に右下がりの特性線で示すように、前記室外ファン67における室外ファン回転数N2は、前記室外ファン制御部410Dにより、外気温度Tairが低い場合は大きくなるように制御され、外気温度Tairが高い場合は小さくなるように制御される。   As shown in FIG. 15A, the outdoor fan rotation speed N2 of the outdoor fan 67 is increased by the outdoor fan control unit 410D when the outdoor air temperature Tair is low, as shown by the characteristic line that descends to the right in FIG. When the outside air temperature Tair is high, it is controlled to be small.

そして、前記したように、前記室外ファン制御部410Dは、前記温度差△T(=Tr−Tcon)の低下に応じて前記室外ファン回転数N2を増大させる。この例では、前記図11と同様に3つ用意された特性線において、前記温度差△Tが低下するにつれて、より大回転数側の特性線となるように、使用する特性線を段階的に切り替える。すなわち、図15(b)に示すように、前記温度差△Tの範囲を、△T<5[℃]、5≦△T<10[℃]、10≦△T[℃]の3つに区分する。   As described above, the outdoor fan control unit 410D increases the outdoor fan rotation speed N2 in accordance with a decrease in the temperature difference ΔT (= Tr−Tcon). In this example, in the three characteristic lines prepared in the same manner as in FIG. 11, as the temperature difference ΔT decreases, the characteristic lines to be used are switched step by step so as to become a characteristic line on the higher rotational speed side. . That is, as shown in FIG. 15B, the temperature difference ΔT is divided into three ranges: ΔT <5 [° C.], 5 ≦ ΔT <10 [° C.], 10 ≦ ΔT [° C.]. Break down.

そして、前記温度差△Tが3つの区分のうち最も大きい10≦△T[℃]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を(制御基準としての)図15(a)中の最下段の実線で示す特性となるように制御する。また、前記温度差△Tが3つの区分のうち真ん中の5≦△T<10[℃]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を、図15(a)中の最下段の実線で示した特性に対し補正値100[rpm](図15(b)参照)を加えた特性、すなわち前記実線より1段上となる図15(a)中の中段の二点鎖線で示す特性となるように制御する。さらに、前記温度差△Tが3つの区分のうちもっとも小さい△T<5[℃]の範囲である場合には、室外ファン制御部410Dは、前記室外ファン回転数N2を、図15(a)中の最下段の実線で示した特性に対し補正値200[rpm](図15(b)参照)を加えた特性、すなわち前記二点鎖線よりさらに1段上となる図15(a)中の上段の破線で示す特性となるように制御する。   When the temperature difference ΔT is the largest range of 10 ≦ ΔT [° C.] among the three sections, the outdoor fan control unit 410D uses the outdoor fan rotation speed N2 (as a control reference). Control is performed so that the characteristic indicated by the solid line at the bottom in FIG. When the temperature difference ΔT is in the range of 5 ≦ ΔT <10 [° C.] in the middle of the three sections, the outdoor fan control unit 410D determines the outdoor fan rotation speed N2 as shown in FIG. A characteristic obtained by adding a correction value 100 [rpm] (see FIG. 15B) to the characteristic indicated by the solid line at the bottom in a), that is, the middle part in FIG. 15A that is one stage above the solid line. Control is performed so as to obtain the characteristics indicated by the two-dot chain line. Furthermore, when the temperature difference ΔT is the smallest ΔT <5 [° C.] of the three sections, the outdoor fan control unit 410D determines the outdoor fan rotation speed N2 as shown in FIG. A characteristic obtained by adding a correction value 200 [rpm] (see FIG. 15B) to the characteristic indicated by the solid line at the bottom in FIG. 15A, that is, one stage higher than the two-dot chain line in FIG. Control is performed so that the characteristic indicated by the upper broken line is obtained.

このような制御が前記室外ファン制御部410Dで行われることにより、前記のような運転開始後の時間経過により前記温度差△T(=室内温度Tr−エアコン設定温度Tcon)が小さくなり前記室内熱交換器27での吸熱量が小さくなってしまったとしても、これに応じて前記のように前記室外ファン回転数N2が大回転数側に補正されることで、前記室外熱交換器17における吸熱量を増大させることができる。この結果、上記実施形態と同様の効果を得ることができる。   When such control is performed by the outdoor fan control unit 410D, the temperature difference ΔT (= indoor temperature Tr−air conditioner set temperature Tcon) becomes small with the passage of time after the start of operation as described above, and the indoor heat. Even if the heat absorption amount in the exchanger 27 is small, the outdoor fan rotation speed N2 is corrected to the large rotation speed side as described above, and thus the heat absorption amount in the outdoor heat exchanger 17 is corrected. Can be increased. As a result, the same effect as the above embodiment can be obtained.

また例えば、上記実施形態では、冷媒負荷が小さくなったことが検知されたら、前記室外ファン回転数N2を増大させることで室外熱交換器17における吸熱量を増大させた。これに代えて、例えば室外熱交換器17において前記のような外気との熱交換を行うモジュールが複数セット設けられており、冷媒負荷が大きい場合はそのうちの1セットが用いられる一方、冷媒負荷が小さい場合はそのうちの複数セットが用いられるようにする(吸熱制御手段としての機能)ことで、前記吸熱量を増大させても良い。また例えば室外熱交換器17において、前記熱交換に寄与する冷媒通路のルートが短距離ルートと長距離ルートとに切り替え可能となっており、冷媒負荷が大きい場合はそのうちの短距離ルートが用いられる一方、冷媒負荷が小さい場合はそのうちの長距離ルートが用いられるようにする(吸熱制御手段としての機能)ことで、前記吸熱量を増大させても良い。   Further, for example, in the above embodiment, when it is detected that the refrigerant load is reduced, the heat absorption amount in the outdoor heat exchanger 17 is increased by increasing the outdoor fan rotation speed N2. Instead, for example, the outdoor heat exchanger 17 is provided with a plurality of sets of modules for performing heat exchange with the outside air as described above, and when the refrigerant load is large, one set is used while the refrigerant load is If it is small, a plurality of sets may be used (function as heat absorption control means) to increase the amount of heat absorption. For example, in the outdoor heat exchanger 17, the route of the refrigerant passage contributing to the heat exchange can be switched between a short-distance route and a long-distance route, and when the refrigerant load is large, the short-distance route is used. On the other hand, when the refrigerant load is small, the long distance route may be used (function as heat absorption control means) to increase the amount of heat absorption.

さらに、本発明は以上の態様に限定されることなく、例えば、前記二方弁121〜124のうち少なくとも1つを、閉止機能付きの膨張弁で置き換えても良い。また、前記膨張弁111〜113に代え、減圧器としてエジェクターを用いても良い。   Furthermore, the present invention is not limited to the above embodiment, and for example, at least one of the two-way valves 121 to 124 may be replaced with an expansion valve with a closing function. Further, instead of the expansion valves 111 to 113, an ejector may be used as a decompressor.

1 ヒートポンプ給湯機
2 貯湯タンク
4 加熱循環回路(湯水循環回路)
5 加熱往き管(湯水配管)
6 加熱戻り管(湯水配管)
14 圧縮機
15 水冷媒熱交換器
15a 冷媒側の流路
15b 水側の流路
17 室外熱交換器(ヒートポンプ熱交換器)
18 冷媒配管
18a 配管部(第1配管)
18c 配管部(第4配管)
18d 配管部(第4配管)
18e 配管部(第3配管)
25a 配管部(第1配管)
25b 配管部(第1配管)
25c 配管部(第2配管)
25d 配管部(第3配管)
25e 配管部(第3配管)
25f 配管部(第3配管)
25g 配管部(第2配管)
26a 配管部(第3配管)
26b 配管部(第2配管)
27 室内熱交換器
30 冷媒循環回路
31 四方弁
34 室内温度センサ(検出手段)
67 室外ファン(送風ファン)
77 室内ファン(冷却ファン)
100 貯湯ユニット
112 膨張弁(減圧器)
121 二方弁
122 二方弁
123 二方弁
124 二方弁
200 ヒートポンプユニット(室外機)
300 エアコンユニット(室内機)
410 ヒーポン制御部
420 貯湯制御部
430 エアコン制御部
N1 室内ファン回転数
N2 室外ファン回転数
Tair 外気温度
Tcon エアコン設定温度
Tr 室内温度
1 Heat pump water heater 2 Hot water storage tank 4 Heating circulation circuit (hot water circulation circuit)
5 Heating pipe (hot water pipe)
6 Heating return pipe (hot water pipe)
DESCRIPTION OF SYMBOLS 14 Compressor 15 Water refrigerant heat exchanger 15a Refrigerant side flow path 15b Water side flow path 17 Outdoor heat exchanger (heat pump heat exchanger)
18 Refrigerant piping 18a Piping section (first piping)
18c Piping section (4th piping)
18d Piping section (4th piping)
18e Piping section (third piping)
25a Piping section (first piping)
25b Piping section (first piping)
25c Piping section (second piping)
25d Piping section (third piping)
25e Piping section (third piping)
25f Piping section (third piping)
25g Piping section (second piping)
26a Piping section (third piping)
26b Piping section (second piping)
27 Indoor heat exchanger 30 Refrigerant circulation circuit 31 Four-way valve 34 Indoor temperature sensor (detection means)
67 Outdoor fan (fan)
77 Indoor fan (cooling fan)
100 Hot water storage unit 112 Expansion valve (pressure reducer)
121 Two-way valve 122 Two-way valve 123 Two-way valve 124 Two-way valve 200 Heat pump unit (outdoor unit)
300 Air conditioner unit (indoor unit)
410 Heat-pump control unit 420 Hot-water storage control unit 430 Air-conditioner control unit N1 Indoor fan rotation speed N2 Outdoor fan rotation speed Tair Outdoor air temperature Tcon Air-conditioner set temperature Tr Indoor temperature

Claims (5)

冷媒と室内空気との熱交換を行う、蒸発器としての室内熱交換器と、
湯水を貯湯する貯湯タンクと、
冷媒通路と水通路とを備え、前記冷媒通路内の前記冷媒と前記水通路内の水との熱交換を行う、凝縮器としての水冷媒熱交換器と、
前記冷媒と外気との熱交換を行う、蒸発器としてのヒートポンプ熱交換器と、
圧縮機と
を有し、
前記水冷媒熱交換器の前記水通路と前記貯湯タンクとを湯水配管によって環状に接続して湯水循環回路を形成し、前記室内熱交換器、前記水冷媒熱交換器の前記冷媒通路、前記ヒートポンプ熱交換器、及び、前記圧縮機を冷媒配管で接続して冷媒循環回路を形成して、前記室内熱交換器により室内空気を冷却しかつ前記水冷媒熱交換器により前記貯湯タンクへの水を加熱する沸上・冷房運転を実行可能な冷房機能付きヒートポンプ給湯機において、
前記冷媒配管は、
前記圧縮機の吐出側を前記水冷媒熱交換器の前記冷媒通路の入口側に対し接続し、さらに前記水冷媒熱交換器の前記冷媒通路の出口側を前記室内熱交換器の入口側に対し接続し、さらに前記室内熱交換器の出口側を前記ヒートポンプ熱交換器の入口側に対し接続し、さらに前記ヒートポンプ熱交換器の出口側を前記圧縮機の吸入側に対し接続しており、
かつ、
前記室内熱交換器における冷房負荷を検出する負荷検出手段と、
前記負荷検出手段により検出される前記冷房負荷が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させる吸熱制御手段と
を設けたことを特徴とする冷房機能付きヒートポンプ給湯機。
An indoor heat exchanger as an evaporator that exchanges heat between the refrigerant and room air;
A hot water storage tank for storing hot water,
A water refrigerant heat exchanger as a condenser, comprising a refrigerant passage and a water passage, and performing heat exchange between the refrigerant in the refrigerant passage and water in the water passage;
A heat pump heat exchanger as an evaporator that performs heat exchange between the refrigerant and outside air;
A compressor,
The water passage of the water refrigerant heat exchanger and the hot water storage tank are annularly connected by hot water piping to form a hot water circulation circuit, the indoor heat exchanger, the refrigerant passage of the water refrigerant heat exchanger, the heat pump A heat exchanger and the compressor are connected by refrigerant piping to form a refrigerant circulation circuit, indoor air is cooled by the indoor heat exchanger, and water to the hot water storage tank is discharged by the water refrigerant heat exchanger. In a heat pump water heater with a cooling function capable of performing boiling and cooling operations to be heated,
The refrigerant pipe is
The discharge side of the compressor is connected to the inlet side of the refrigerant passage of the water refrigerant heat exchanger, and the outlet side of the refrigerant passage of the water refrigerant heat exchanger is connected to the inlet side of the indoor heat exchanger. Connected, further connected the outlet side of the indoor heat exchanger to the inlet side of the heat pump heat exchanger, and further connected the outlet side of the heat pump heat exchanger to the suction side of the compressor,
And,
Load detection means for detecting a cooling load in the indoor heat exchanger;
A heat pump water heater with a cooling function, characterized by comprising heat absorption control means for increasing the amount of heat absorption in the heat pump heat exchanger when the cooling load detected by the load detection means decreases.
前記冷媒配管は、
前記圧縮機の吐出側と前記水冷媒熱交換器の前記冷媒通路の入口側との間を接続する第1配管と、
前記水冷媒熱交換器の前記冷媒通路の出口側と前記室内熱交換器の入口側との間を接続する第2配管と、
前記室内熱交換器の出口側と前記ヒートポンプ熱交換器の入口側との間を接続する第3配管と、
前記ヒートポンプ熱交換器の出口側と前記圧縮機の吸入側との間を接続する第4配管とを含み、
前記第2配管には、弁開度が運転状態に応じて可変に制御される減圧器が設けられる
ことを特徴とする請求項1記載の冷房機能付きヒートポンプ給湯機。
The refrigerant pipe is
A first pipe connecting the discharge side of the compressor and the inlet side of the refrigerant passage of the water refrigerant heat exchanger;
A second pipe connecting the outlet side of the refrigerant passage of the water refrigerant heat exchanger and the inlet side of the indoor heat exchanger;
A third pipe connecting the outlet side of the indoor heat exchanger and the inlet side of the heat pump heat exchanger;
A fourth pipe connecting the outlet side of the heat pump heat exchanger and the suction side of the compressor;
The heat pump water heater with a cooling function according to claim 1, wherein the second pipe is provided with a decompressor whose valve opening is variably controlled according to an operating state.
前記ヒートポンプ熱交換器に外気を送り込む送風ファンをさらに有し、
前記吸熱制御手段は、
前記負荷検出手段により検出される前記冷房負荷が減少したことを契機に前記送風ファンの回転数を増大させる回転制御手段である
ことを特徴とする請求項1または請求項2記載の冷房機能付きヒートポンプ給湯機。
A fan further for sending outside air to the heat pump heat exchanger;
The endothermic control means includes
3. The heat pump with a cooling function according to claim 1, wherein the heat pump is a rotation control unit that increases the number of rotations of the blower fan when the cooling load detected by the load detection unit decreases. Water heater.
少なくとも室内温度に基づき回転が制御され、前記室内熱交換器からの冷気を室内へ吹き出す冷却ファンをさらに有し、
前記負荷検出手段は、
前記冷却ファンの回転数を検出する回転検出手段であり、
前記吸熱制御手段は、
前記回転検出手段により検出される前記冷却ファンの回転数が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させる
ことを特徴とする請求項1乃至請求項3の何れか1項に記載の冷房機能付きヒートポンプ給湯機。
The rotation is controlled based on at least the room temperature, and further includes a cooling fan that blows out cool air from the indoor heat exchanger into the room,
The load detecting means includes
Rotation detection means for detecting the number of rotations of the cooling fan;
The endothermic control means includes
4. The heat absorption amount in the heat pump heat exchanger is increased in response to a decrease in the number of rotations of the cooling fan detected by the rotation detection unit. 5. A heat pump water heater with a cooling function described in 1.
前記室内温度を検出する検出手段をさらに有し、
前記負荷検出手段は、
前記検出手段により検出された室内温度検出値とユーザの設定による室内温度設定値との温度差を算出する算出手段であり、
前記吸熱制御手段は、
前記算出手段により算出される前記温度差が減少したことを契機に、前記ヒートポンプ熱交換器における吸熱量を増大させる
ことを特徴とする請求項1乃至請求項3の何れか1項に記載の冷房機能付きヒートポンプ給湯機。
It further has detection means for detecting the room temperature,
The load detecting means includes
Calculating means for calculating a temperature difference between an indoor temperature detection value detected by the detection means and an indoor temperature setting value set by a user;
The endothermic control means includes
The cooling according to any one of claims 1 to 3, wherein the heat absorption amount in the heat pump heat exchanger is increased when the temperature difference calculated by the calculating means decreases. Heat pump water heater with function.
JP2016202487A 2016-10-14 2016-10-14 Heat pump water heater with cooling function Active JP6675961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202487A JP6675961B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with cooling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202487A JP6675961B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with cooling function

Publications (2)

Publication Number Publication Date
JP2018063091A true JP2018063091A (en) 2018-04-19
JP6675961B2 JP6675961B2 (en) 2020-04-08

Family

ID=61967670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202487A Active JP6675961B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with cooling function

Country Status (1)

Country Link
JP (1) JP6675961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
CN112032968A (en) * 2020-08-27 2020-12-04 海信(山东)空调有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196794A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump hot water supply cooling/heating apparatus
CN204084947U (en) * 2014-10-17 2015-01-07 浙江中广电器有限公司 Refrigeration Hot water units
JP2015215107A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Air conditioner
JP2018063094A (en) * 2016-10-14 2018-04-19 株式会社コロナ Air conditioner with hot water supply function
JP2018063093A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
JP2018066538A (en) * 2016-10-21 2018-04-26 株式会社コロナ Heat pump water heater with air-conditioning function
JP2018066518A (en) * 2016-10-20 2018-04-26 株式会社コロナ Heat pump water heater with cooling function

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196794A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump hot water supply cooling/heating apparatus
JP2015215107A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Air conditioner
CN204084947U (en) * 2014-10-17 2015-01-07 浙江中广电器有限公司 Refrigeration Hot water units
JP2018063094A (en) * 2016-10-14 2018-04-19 株式会社コロナ Air conditioner with hot water supply function
JP2018063093A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
JP2018066518A (en) * 2016-10-20 2018-04-26 株式会社コロナ Heat pump water heater with cooling function
JP2018066538A (en) * 2016-10-21 2018-04-26 株式会社コロナ Heat pump water heater with air-conditioning function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
CN112032968A (en) * 2020-08-27 2020-12-04 海信(山东)空调有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium

Also Published As

Publication number Publication date
JP6675961B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6792057B2 (en) Refrigeration cycle equipment
JP6296364B2 (en) Air conditioner
JP6728535B2 (en) Heat pump water heater with cooling function
JP2005077084A (en) Air-conditioner, and control method therefor
JP6703468B2 (en) Air conditioner with hot water supply function
JP2012141113A (en) Air conditioning/water heating device system
JP2006071137A (en) Refrigeration unit
CN103154621A (en) Air conditioner
JP6640695B2 (en) Heat pump water heater with air conditioning function
JP6675961B2 (en) Heat pump water heater with cooling function
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP2009264717A (en) Heat pump hot water system
JP2018066538A (en) Heat pump water heater with air-conditioning function
JP6672619B2 (en) Air conditioning system
JP6718786B2 (en) Heat pump water heater with heating function
JP6092731B2 (en) Air conditioner
JP2017009269A5 (en)
JP6537990B2 (en) Heat pump type cold and hot water supply system
US10465935B2 (en) Air-conditioning apparatus
JP6679461B2 (en) Heat pump water heater with heating function
WO2022239212A1 (en) Air conditioner and air conditioning system
JP2009264716A (en) Heat pump hot water system
JP2008175430A (en) Air conditioner
JP7265368B2 (en) Cooling waste heat utilization heat pump water heater
JP7398617B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6675961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250