JP2018063093A - Heat pump water heater with heating function - Google Patents

Heat pump water heater with heating function Download PDF

Info

Publication number
JP2018063093A
JP2018063093A JP2016202489A JP2016202489A JP2018063093A JP 2018063093 A JP2018063093 A JP 2018063093A JP 2016202489 A JP2016202489 A JP 2016202489A JP 2016202489 A JP2016202489 A JP 2016202489A JP 2018063093 A JP2018063093 A JP 2018063093A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
expansion valve
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202489A
Other languages
Japanese (ja)
Other versions
JP6718786B2 (en
Inventor
基 阿部
Motoi Abe
基 阿部
長谷川 聡
Satoshi Hasegawa
聡 長谷川
伊藤 隆
Takashi Ito
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2016202489A priority Critical patent/JP6718786B2/en
Publication of JP2018063093A publication Critical patent/JP2018063093A/en
Application granted granted Critical
Publication of JP6718786B2 publication Critical patent/JP6718786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Landscapes

  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimally control flow division balance of a refrigerant divided into a water-refrigerant heat exchanger side and an indoor heat exchanger side in a boiling-up/heating operation.SOLUTION: In a boiling-up/heating operation, an opening of an expansion valve 111 disposed in a pipe conduit at a water-refrigerant heat exchanger 15 side and an opening of an expansion valve 112 disposed in a pipe conduit at an indoor heat exchanger 27 side are variably controlled according to boiling-up requested capacity and heating requested capacity, and flow division balance to both pipe conduits is controlled. Further an opening of an expansion valve 113 disposed at a downstream side with respect to a joining point E where a refrigerant at the water-refrigerant heat exchanger 15 side and a refrigerant at the indoor heat exchanger 27 side are joined, is feedback controlled by an expansion valve control portion 410C so that a refrigerant discharge temperature Tout is kept at a prescribed fixed value. Thus the flow division balance of the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side is optimally controlled while keeping a high boiling-up temperature Tb, and an operation can be stably continued.SELECTED DRAWING: Figure 13

Description

この発明は、室内空気の加熱及び貯湯タンク内の湯水の加熱を並行して行う沸上・暖房運転を実行可能な、暖房機能付きヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater with a heating function capable of performing boiling and heating operations in which heating of indoor air and heating of hot water in a hot water storage tank are performed in parallel.

従来よりこの種の給湯機においては、特許文献1記載のように、圧縮機の吐出側から分岐して接続された2つの配管に水冷媒熱交換器及び室内熱交換器をそれぞれ配置し、圧縮機から吐出された冷媒を水冷媒熱交換器及び室内熱交換器に導いて凝縮させることで、貯湯タンク内の湯水及び室内空気の加熱を併せて行う(=沸上・暖房運転)ものがあった。   Conventionally, in this type of water heater, as described in Patent Document 1, a water refrigerant heat exchanger and an indoor heat exchanger are respectively arranged in two pipes branched and connected from the discharge side of the compressor, and compressed. The refrigerant discharged from the machine is led to a water-refrigerant heat exchanger and an indoor heat exchanger to condense, so that hot water in the hot water storage tank and indoor air are heated together (= boiling / heating operation). It was.

特開2009−92321号公報JP 2009-92321 A

前記沸上・暖房運転を行う場合、前記のように圧縮機からの冷媒は水冷媒熱交換器側の管路と室内熱交換器側の管路とに分流されることから、その分流バランスを何らかの形で制御する必要がある。しかしながら、前記の従来技術においては、そのような分流バランスの制御について特に配慮されていないという問題があった。   When performing the boiling / heating operation, the refrigerant from the compressor is divided into the water refrigerant heat exchanger side pipe and the indoor heat exchanger side pipe as described above. It needs to be controlled in some way. However, the above-described conventional technique has a problem that no particular consideration is given to the control of such a diversion balance.

上記課題を解決するために、本発明の請求項1では、冷媒と室内空気との熱交換を行う、凝縮器としての室内熱交換器と、湯水を貯湯する貯湯タンクと、冷媒通路と水通路とを備え、前記冷媒通路内の前記冷媒と前記水通路内の水との熱交換を行う、凝縮器としての水冷媒熱交換器と、前記冷媒と外気との熱交換を行う、蒸発器としてのヒートポンプ熱交換器と、圧縮機とを有し、前記水冷媒熱交換器の前記水通路と前記貯湯タンクとを湯水配管によって環状に接続して湯水循環回路を形成し、前記室内熱交換器、前記水冷媒熱交換器の前記冷媒通路、前記ヒートポンプ熱交換器、及び、前記圧縮機を冷媒配管で接続して冷媒循環回路を形成して、前記室内熱交換器により室内空気を加熱しかつ前記水冷媒熱交換器により前記貯湯タンクへの水を加熱する沸上・暖房運転を実行可能な暖房機能付きヒートポンプ給湯機において、前記冷媒配管は、前記圧縮機の吐出側に接続される吐出側管路と、前記吐出側管路に対し所定の分岐点から分岐して接続され、前記水冷媒熱交換器が配設された第1管路と、前記吐出側管路に対し前記分岐点から分岐して接続され、前記室内熱交換器が配設された第2管路と、前記水冷媒熱交換器より下流側の前記第1管路と前記室内熱交換器より下流側の前記第2管路とが合流する合流点を、前記ヒートポンプ熱交換器の入口側に接続する第3管路と、前記ヒートポンプ熱交換器の出口側を前記圧縮機の吸入側に接続する吸入側管路とを含み、前記第1管路は、第1減圧器を備えており、前記第2管路は、第2減圧器を備えており、前記第3管路は、第3減圧器を備えており、前記第1減圧器及び前記第2減圧器の弁開度を調整し、前記吐出側管路から前記第1管路及び前記第2管路へ分かれて流入する前記冷媒の分流を制御する分流制御手段と、前記第3減圧器の前記弁開度を調整し、前記圧縮機の吐出側から吐出される前記冷媒の冷媒吐出温度を制御する吐出温度制御手段とを設けたものである。   In order to solve the above-described problems, in claim 1 of the present invention, an indoor heat exchanger as a condenser that performs heat exchange between the refrigerant and room air, a hot water storage tank that stores hot water, a refrigerant passage, and a water passage. A water refrigerant heat exchanger as a condenser that exchanges heat between the refrigerant in the refrigerant passage and water in the water passage, and an evaporator that exchanges heat between the refrigerant and outside air. A heat pump heat exchanger and a compressor, the water passage of the water-refrigerant heat exchanger and the hot water storage tank are annularly connected by hot water piping to form a hot water circulation circuit, and the indoor heat exchanger A refrigerant circulation circuit is formed by connecting the refrigerant passage of the water refrigerant heat exchanger, the heat pump heat exchanger, and the compressor with refrigerant piping, and heats indoor air by the indoor heat exchanger; To the hot water storage tank by the water refrigerant heat exchanger In the heat pump water heater with a heating function capable of performing boiling and heating operation for heating the refrigerant pipe, the refrigerant pipe is connected to a discharge side of the compressor, and a predetermined amount with respect to the discharge side pipe A first branch line branched from the branch point and connected with the water-refrigerant heat exchanger, and connected to the discharge side pipe branched from the branch point, and the indoor heat exchanger is arranged. The heat pump heat is defined as a junction where the second pipe, the first pipe downstream from the water-refrigerant heat exchanger, and the second pipe downstream from the indoor heat exchanger merge. A third pipe connected to the inlet side of the exchanger; and a suction side pipe connecting the outlet side of the heat pump heat exchanger to the suction side of the compressor, wherein the first pipe The second conduit includes a second decompressor, and the third conduit includes a second decompressor. The refrigerant having a pressure reducer, adjusting the valve openings of the first pressure reducer and the second pressure reducer, and separately flowing from the discharge side pipe to the first pipe and the second pipe And a discharge temperature control means for adjusting the valve opening of the third pressure reducer and controlling the refrigerant discharge temperature of the refrigerant discharged from the discharge side of the compressor. It is a thing.

また、請求項2では、前記分流制御手段は、前記第1減圧器の弁開度を固定としつつ、前記室内熱交換器における要求熱交換能力と前記水冷媒熱交換器における要求熱交換能力とに応じて前記第2減圧器の弁開度を可変に制御することにより、前記第1管路側と前記第2管路側との分流比率を制御するものである。   Further, in the present invention, the shunt control means includes a required heat exchange capability in the indoor heat exchanger and a required heat exchange capability in the water refrigerant heat exchanger while fixing the valve opening of the first pressure reducer. Accordingly, the flow rate of the second pressure reducer is variably controlled to control the diversion ratio between the first pipeline side and the second pipeline side.

また、請求項3では、前記分流制御手段は、前記水冷媒熱交換器における第1要求熱交換能力と前記室内熱交換器における第2要求熱交換能力とに応じて、前記第1減圧器及び前記第2減圧器の弁開度をそれぞれ可変に制御することにより、前記第1管路側と前記第2管路側との分流比率を制御するものである。   According to a third aspect of the present invention, the shunt control means includes the first pressure reducer and the first pressure reducer according to a first required heat exchange capability of the water refrigerant heat exchanger and a second required heat exchange capability of the indoor heat exchanger. The diversion ratio between the first pipeline side and the second pipeline side is controlled by variably controlling the valve opening degree of the second decompressor.

この発明の請求項1によれば、ヒートポンプ熱交換器、圧縮機、水冷媒熱交換器、室内熱交換器を冷媒配管で接続して冷媒循環回路を形成する。そして、その冷媒配管において、前記圧縮機の吐出側に接続される吐出側管路に、第1管路及び第2管路を(所定の分岐点から)互いに分岐しつつ接続する。前記第1管路には水冷媒熱交換器が設けられ、前記第2管路には室内熱交換器が設けられ、それら第1管路及び第2管路の下流側は(所定の合流点において)互いに合流する。合流点は、第3管路によって室外熱交換器に接続され、さらに室外熱交換器は吸入側管路によって圧縮機の吸入側に接続される。   According to the first aspect of the present invention, the refrigerant circuit is formed by connecting the heat pump heat exchanger, the compressor, the water refrigerant heat exchanger, and the indoor heat exchanger with the refrigerant pipe. In the refrigerant pipe, the first pipe and the second pipe are connected to the discharge side pipe connected to the discharge side of the compressor while being branched from each other (from a predetermined branch point). The first pipe is provided with a water-refrigerant heat exchanger, the second pipe is provided with an indoor heat exchanger, and the downstream side of the first and second pipes has a predetermined junction point. In each other). The junction is connected to the outdoor heat exchanger by a third pipe, and the outdoor heat exchanger is connected to the suction side of the compressor by a suction side pipe.

これにより、圧縮機→吸入側管路→分岐点、分岐点→第1管路(水冷媒熱交換器)→合流点、及び、分岐点→第2管路(室内熱交換器)→合流点、さらに合流点→第3管路→ヒートポンプ熱交換器→吸入側管路→圧縮機という経路を実現することができる。この結果、圧縮機から吐出された高温高圧の冷媒ガスの一部が室内熱交換器で室内空気へ放熱し凝縮して液体冷媒となる一方、圧縮機から吐出された高温高圧の冷媒ガスの残りは水冷媒熱交換器において貯湯タンクへ通じる湯水配管へ放熱し凝縮して液体冷媒となり、それら液体冷媒がその後ヒートポンプ熱交換器で蒸発することで外気から吸熱し圧縮機へと戻る挙動を実現し、室内空気の加熱と貯湯タンク内の湯水の加熱とを行う(=沸上・暖房運転)ことができる。   Thereby, the compressor → the suction side pipe → the branch point, the branch point → the first pipe (water refrigerant heat exchanger) → the junction, and the branch → the second pipe (indoor heat exchanger) → the junction. Furthermore, the path of junction point → third pipe → heat pump heat exchanger → suction side pipe → compressor can be realized. As a result, part of the high-temperature and high-pressure refrigerant gas discharged from the compressor dissipates heat to the indoor air in the indoor heat exchanger and condenses into a liquid refrigerant, while the remaining high-temperature and high-pressure refrigerant gas discharged from the compressor In the water-refrigerant heat exchanger, heat is transferred to the hot water pipe that leads to the hot water storage tank, where it condenses into liquid refrigerant.Then, the liquid refrigerant evaporates in the heat pump heat exchanger, and then absorbs heat from the outside air and returns to the compressor. The indoor air and the hot water in the hot water storage tank can be heated (= boiling / heating operation).

このとき、前記のようにして圧縮機からの冷媒は第1管路と第2管路とに分流されることから、その分流バランスを何らかの形で制御する必要がある。請求項1によれば、分岐する前記第1管路及び前記第2管路のうち、前記水冷媒熱交換器への第1管路には第1減圧器が設けられ、前記室内熱交換器への第2管路には第2減圧器が設けられている。しかしながら、これら第1管路の第1減圧器と第2管路の第2減圧器のみで前記の分流バランスの制御を行おうとすると、前記のような冷媒経路の冷凍サイクルの変動が大きく、圧縮機からの冷媒吐出温度が安定しない。例えば冷媒吐出温度が低すぎる場合、前記水冷媒熱交換器での熱交換量が低下して湯水配管における沸上温度が低くなり、貯湯タンク内においていわゆる湯切れが生じるおそれがある。また冷媒吐出温度が高すぎる場合、回路保護機能により運転が停止するおそれがある。   At this time, since the refrigerant from the compressor is divided into the first pipe and the second pipe as described above, it is necessary to control the flow balance in some form. According to claim 1, a first decompressor is provided in the first pipeline to the water-refrigerant heat exchanger among the branched first pipeline and the second pipeline, and the indoor heat exchanger is provided. A second pressure reducer is provided in the second pipe line. However, if the control of the diversion balance is performed only by the first pressure reducer of the first pipe and the second pressure reducer of the second pipe, the change in the refrigeration cycle of the refrigerant path is large, and the compression is reduced. The refrigerant discharge temperature from the machine is not stable. For example, when the refrigerant discharge temperature is too low, the amount of heat exchange in the water / refrigerant heat exchanger is reduced, the boiling temperature in the hot water pipe is lowered, and so-called hot water shortage may occur in the hot water storage tank. In addition, when the refrigerant discharge temperature is too high, the operation may be stopped by the circuit protection function.

そこで請求項1によれば、前記合流点よりも下流側の前記第3管路に第3減圧器を設ける。そして、前記第1減圧器及び前記第2減圧器の弁開度を分流制御手段が制御することで冷媒の分流を制御する一方、前記第3減圧器の弁開度を吐出温度制御手段が制御することによって前記冷媒吐出温度を制御する。これにより、第1減圧器及び第2減圧器のみで前記分流バランスの制御を行う場合と異なり冷媒吐出温度を一定に保つことができる。この結果、高い沸上温度を維持しつつ分流バランスを最適に制御し、安定的に運転を継続することができる。   Therefore, according to the first aspect, the third pressure reducer is provided in the third pipeline downstream of the junction. The diversion control unit controls the valve openings of the first pressure reducer and the second pressure reducer to control the flow of refrigerant, while the discharge temperature control unit controls the valve opening of the third pressure reducer. By doing so, the refrigerant discharge temperature is controlled. This makes it possible to keep the refrigerant discharge temperature constant unlike the case where the control of the diversion balance is performed only by the first decompressor and the second decompressor. As a result, it is possible to optimally control the diversion balance while maintaining a high boiling temperature and to continue the operation stably.

また、請求項2によれば、水冷媒熱交換器側の第1減圧器の弁開度を固定としつつ室内熱交換器側の第2減圧器の弁開度を可変とすることで、分流比率を制御する。これにより、シンプルな制御態様で迅速に分流比率を変更することができる。   According to the second aspect of the invention, the valve opening degree of the second pressure reducer on the indoor heat exchanger side is made variable while the valve opening degree of the first pressure reducer on the water refrigerant heat exchanger side is fixed. Control the ratio. Thereby, a diversion ratio can be changed quickly with a simple control mode.

また、請求項3によれば、水冷媒熱交換器側の第1減圧器及び室内熱交換器側の第2減圧器の両方の弁開度を可変とすることで、分流比率を制御する。これにより、高精度に分流比率を変更することができる。   According to the third aspect of the present invention, the diversion ratio is controlled by making the valve openings of both the first pressure reducer on the water refrigerant heat exchanger side and the second pressure reducer on the indoor heat exchanger side variable. Thereby, a diversion ratio can be changed with high accuracy.

本発明の一実施形態の暖房機能付きヒートポンプ給湯機の主要なユニットの外観構成図1 is an external configuration diagram of a main unit of a heat pump water heater with a heating function according to an embodiment of the present invention. ヒートポンプ給湯機全体の回路構成図Circuit diagram of the entire heat pump water heater ヒーポン制御部の機能的構成図Functional configuration diagram of heat-pump control unit 貯湯制御部の機能的構成図Functional configuration diagram of hot water storage control unit エアコン制御部の機能的構成図Functional configuration diagram of air conditioner control unit 沸上運転時の作動を説明する図Diagram explaining operation during boiling operation 沸上運転時、暖房運転時、及び沸上・暖房運転時それぞれにおける圧縮機回転数の制御態様を表す図The figure showing the control aspect of the compressor rotation speed at the time of boiling operation, heating operation, and both boiling and heating operations 冷房運転時の作動を説明する図The figure explaining the action at the time of cooling operation 沸上・冷房運転時の作動を説明する図Diagram explaining operation during boiling / cooling operation 暖房運転時の作動を説明する図The figure explaining the action at the time of heating operation 沸上・暖房運転時の作動を説明する図Diagram explaining operation during boiling and heating operation 膨張弁制御部が各膨張弁の開度制御を実行するときの制御マップを表す図The figure showing the control map when an expansion valve control part performs the opening degree control of each expansion valve 吐出温度の安定効果を比較例と対比して説明する図The figure explaining the stability effect of discharge temperature in comparison with a comparative example 一方の膨張弁の開度を固定し、他方の膨張弁のみを開度可変とする変形例において、膨張弁制御部が各膨張弁の開度制御を実行するときの制御マップを表す図The figure showing the control map when an expansion valve control part performs the opening degree control of each expansion valve in the modification which fixes the opening degree of one expansion valve, and makes the opening degree variable only the other expansion valve. 水冷媒熱交換器側の管路で二方弁を膨張弁に入れ替えた変形例を説明する図The figure explaining the modification which replaced the two-way valve with the expansion valve by the pipe line by the side of a water refrigerant heat exchanger

以下、本発明の一実施形態を図1〜図13に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態の暖房機能付き(但し冷房機能も付属している)ヒートポンプ給湯機1の主要なユニットの外観構成を図1に示す。図1において、本実施形態のヒートポンプ給湯機1は、貯湯タンク2(後述の図2等参照)を備えた貯湯ユニット100と、室外機としてのヒートポンプユニット300と、室内機としてのエアコンユニット200とを有している。   FIG. 1 shows an external configuration of a main unit of a heat pump water heater 1 with a heating function (but also with a cooling function) according to the present embodiment. In FIG. 1, a heat pump water heater 1 of this embodiment includes a hot water storage unit 100 provided with a hot water storage tank 2 (see FIG. 2 and the like described later), a heat pump unit 300 as an outdoor unit, and an air conditioner unit 200 as an indoor unit. have.

本実施形態のヒートポンプ給湯機1全体の回路構成を図2に示す。図2に示すように、前記貯湯ユニット100は、冷媒を流通させる冷媒側の流路15bと水側の流路15aとを有し、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する凝縮器として機能する水冷媒熱交換器15と、沸上ポンプ19と、を備えている。すなわち、前記水冷媒熱交換器15の前記水側の流路15aと前記貯湯タンク2とが湯水配管としての加熱往き管5及び加熱戻り管6によって環状に接続され、前記貯湯ユニット100内で湯水循環回路としての加熱循環回路4が形成されている。   FIG. 2 shows a circuit configuration of the entire heat pump water heater 1 of the present embodiment. As shown in FIG. 2, the hot water storage unit 100 includes a refrigerant-side flow path 15 b and a water-side flow path 15 a for circulating the refrigerant, and exchanges heat between the high-temperature and high-pressure refrigerant and the hot water in the hot water storage tank 2. A water refrigerant heat exchanger 15 that functions as a condenser that performs heating, and a boiling pump 19. That is, the water-side flow path 15a of the water-refrigerant heat exchanger 15 and the hot water storage tank 2 are annularly connected by a heating forward pipe 5 and a heating return pipe 6 serving as hot water piping, and hot water is stored in the hot water storage unit 100. A heating circulation circuit 4 as a circulation circuit is formed.

加熱往き管5は、前記貯湯タンク2の下部に接続され、加熱戻り管6は、前記貯湯タンク2の上部に接続されている。前記沸上ポンプ19は、前記加熱往き管5の途中に設けられ、前記水側の流路15aを介し前記加熱往き管5からの湯水を前記加熱戻り管6へ流通させつつ、貯湯タンク2の湯水を循環させる。なお、前記加熱往き管5には、前記水冷媒熱交換器15の前記水側の流路15aに流入する入水温度T1(湯水の入口温度)を検出する入水温度センサ23が設けられ、前記加熱戻り管6には、前記水側の流路15aから前記貯湯タンク2に向かって流出する沸上温度Tbを検出する沸上温度センサ24が設けられている。   The heating forward pipe 5 is connected to the lower part of the hot water storage tank 2, and the heating return pipe 6 is connected to the upper part of the hot water storage tank 2. The boiling pump 19 is provided in the middle of the heating forward pipe 5, and the hot water from the heating forward pipe 5 is circulated to the heating return pipe 6 through the water-side flow path 15a while Circulate hot water. The heating forward pipe 5 is provided with an incoming water temperature sensor 23 for detecting an incoming water temperature T1 (hot water inlet temperature) flowing into the water-side flow path 15a of the water-refrigerant heat exchanger 15. The return pipe 6 is provided with a boiling temperature sensor 24 for detecting a boiling temperature Tb flowing out from the water-side flow path 15a toward the hot water storage tank 2.

貯湯タンク2の側面には、貯湯タンク2内の湯水の温度(貯湯温度)をそれぞれ検出し前記湯水の加熱状況(言い替えれば貯湯状況)を検知するための貯湯温度センサ12が上下にわたり複数設けられている。前記貯湯タンク2の下部にはまた、貯湯タンク2に水を給水する給水管7が接続され、前記貯湯タンク2の上部にはまた、貯湯されている高温水を出湯する出湯管8が接続され、給水管7からは給水バイパス管9が分岐して設けられている。さらに、出湯管8からの湯と給水バイパス管9からの水とを混合して給湯設定温度の湯とする混合弁10と、混合弁10で混合後の給湯温度を検出する給湯温度センサ11と、が設けられている。   A plurality of hot water storage temperature sensors 12 for detecting the temperature of hot water in the hot water storage tank 2 (hot water storage temperature) and detecting the heating status of the hot water (in other words, the status of hot water storage) are provided on the side surface of the hot water storage tank 2. ing. A water supply pipe 7 for supplying water to the hot water storage tank 2 is connected to the lower part of the hot water storage tank 2, and a hot water discharge pipe 8 for discharging hot water stored therein is also connected to the upper part of the hot water storage tank 2. A water supply bypass pipe 9 is branched from the water supply pipe 7. Furthermore, a mixing valve 10 that mixes the hot water from the tap water pipe 8 and the water from the water supply bypass pipe 9 into hot water at a hot water supply set temperature, and a hot water temperature sensor 11 that detects the hot water temperature after mixing by the mixing valve 10; , Is provided.

一方、前記水冷媒熱交換器15における熱交換(詳細は後述)によって前記貯湯タンク2内の湯水を加熱可能な冷媒循環回路30が、前記ヒートポンプユニット300、前記貯湯ユニット100、及び前記エアコンユニット200にわたって設けられている。前記冷媒循環回路30は、前記ヒートポンプユニット300内に配置されたヒーポン回路部30Aと、前記貯湯ユニット100内に配置された貯湯回路部30Bと、前記エアコンユニット200内に配置されたエアコン回路部30Cとを含んでいる。   On the other hand, the refrigerant circulation circuit 30 capable of heating hot water in the hot water storage tank 2 by heat exchange (details will be described later) in the water refrigerant heat exchanger 15 includes the heat pump unit 300, the hot water storage unit 100, and the air conditioner unit 200. It is provided over. The refrigerant circuit 30 includes a heat pump circuit unit 30A disposed in the heat pump unit 300, a hot water storage circuit unit 30B disposed in the hot water storage unit 100, and an air conditioner circuit unit 30C disposed in the air conditioner unit 200. Including.

前記ヒーポン回路部30Aは、前記冷媒の流路となる冷媒配管18を備えており、冷媒を圧縮する圧縮機14と、四方弁31と、前記冷媒と外気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)するヒートポンプ熱交換器としての室外熱交換器17とが、前記冷媒配管18によって接続されている。なお、室外熱交換器17には、前記室外熱交換器17に外気を通じるための室外ファン67が設けられている。   The heat-pump circuit unit 30A includes a refrigerant pipe 18 serving as a flow path for the refrigerant, and a condenser or an evaporator by heat exchange between the compressor 14 that compresses the refrigerant, a four-way valve 31, and the refrigerant and outside air. And an outdoor heat exchanger 17 as a heat pump heat exchanger that selectively functions (details will be described later) are connected by the refrigerant pipe 18. The outdoor heat exchanger 17 is provided with an outdoor fan 67 for passing outside air through the outdoor heat exchanger 17.

詳細には、前記冷媒配管18は、圧縮機14の吐出側となる配管部18aと、沸上運転時(後述の図6参照)等において前記四方弁31を介し前記配管部18aに接続される配管部18bとを含んでいる。前記配管部18bは、ヒートポンプユニット300外への出口となる接続口68aにおいて、前記ヒートポンプユニット300と前記貯湯ユニット100とを接続する連通管路101に連通している。   Specifically, the refrigerant pipe 18 is connected to the pipe section 18a via the pipe section 18a on the discharge side of the compressor 14 and the four-way valve 31 during the boiling operation (see FIG. 6 described later). And a piping part 18b. The pipe portion 18 b communicates with a communication conduit 101 that connects the heat pump unit 300 and the hot water storage unit 100 at a connection port 68 a that is an outlet to the outside of the heat pump unit 300.

また前記冷媒配管18は、前記圧縮機14の吸入側となる配管部18cと、沸上運転時(後述の図6参照)等において前記室外熱交換器17の圧縮機14側(言い替えれば前記沸上運転時等における出口側、以下同様。後述の図6等参照)を前記四方弁31を介し前記配管部18cに接続する配管部18dと、前記室外熱交換器17の反圧縮機14側(言い替えれば前記沸上運転時等における入口側、以下同様。後述の図6等参照)に接続される配管部18eとを含んでいる。前記配管部18eは、第3減圧器として膨張弁113を備えており、前記接続口68aとは別の接続口68bにおいて、前記ヒートポンプユニット300と前記貯湯ユニット100とを接続する連通管路102に連通している。   The refrigerant pipe 18 is connected to the pipe portion 18c on the suction side of the compressor 14 and the compressor 14 side (in other words, the boiling point) of the outdoor heat exchanger 17 during a boiling operation (see FIG. 6 described later). The outlet side during the upper operation, etc. The same applies hereinafter (see FIG. 6 and the like to be described later) and the piping part 18d for connecting to the piping part 18c via the four-way valve 31, and the anti-compressor 14 side of the outdoor heat exchanger 17 ( In other words, it includes a piping portion 18e connected to the inlet side during the above-mentioned boiling operation, etc., and so on (see FIG. 6 and the like described later). The pipe portion 18e includes an expansion valve 113 as a third pressure reducer, and is connected to a communication pipe line 102 that connects the heat pump unit 300 and the hot water storage unit 100 at a connection port 68b different from the connection port 68a. Communicate.

前記四方弁31は4つのポートを備える弁であり、前記冷媒配管18のうち(冷媒主経路を構成する)前記配管部18b,18d用の2つのポートのそれぞれに対して、残りの前記配管部18a,18c用の2つのポートのいずれを接続するかを切り替える。前記配管部18a,18c用の2つのポートどうしは、ループ状に配置された前記配管部18a,18cからなる冷媒副経路によって接続されており、この冷媒副経路上に前記圧縮機14が設けられている。例えば四方弁31は、後述する図6の状態に切り替えられた場合(以下適宜、「暖房側への切替」等と称する)は、前記圧縮機14の吐出側である前記配管部18aを前記水冷媒熱交換器15の入口側である前記配管部18bに連通させ、後述する図8の状態に切り替えられた場合(以下適宜、「冷房側への切替」等と称する)は、前記配管部18aを前記室外熱交換器17側である前記配管部18dに連通させる。   The four-way valve 31 is a valve having four ports, and the remaining pipe portions are respectively connected to the two ports for the pipe portions 18b and 18d (which constitute the refrigerant main path) in the refrigerant pipe 18. Which of the two ports for 18a and 18c is connected is switched. The two ports for the pipe portions 18a and 18c are connected to each other by a refrigerant sub route including the pipe portions 18a and 18c arranged in a loop shape, and the compressor 14 is provided on the refrigerant sub route. ing. For example, when the four-way valve 31 is switched to the state shown in FIG. 6 described later (hereinafter referred to as “switching to the heating side” or the like as appropriate), the pipe portion 18a on the discharge side of the compressor 14 is connected to the water. When connected to the pipe section 18b on the inlet side of the refrigerant heat exchanger 15 and switched to the state shown in FIG. 8 (to be referred to as “switching to the cooling side” hereinafter), the pipe section 18a. Is communicated with the pipe portion 18d on the outdoor heat exchanger 17 side.

なお、前記の圧縮機14、四方弁31、室外熱交換器17、室外ファン67、及び膨張弁113等は、前記ヒートポンプユニット300の筐体に内包されている(図1参照)。   The compressor 14, the four-way valve 31, the outdoor heat exchanger 17, the outdoor fan 67, the expansion valve 113, and the like are included in the housing of the heat pump unit 300 (see FIG. 1).

前記貯湯回路部30Bは、前記冷媒の流路となる冷媒配管25を備えており、前記水冷媒熱交換器15の前記冷媒側の流路15bが、前記冷媒配管25に接続されている。   The hot water storage circuit section 30 </ b> B includes a refrigerant pipe 25 that serves as the refrigerant flow path, and the refrigerant-side flow path 15 b of the water-refrigerant heat exchanger 15 is connected to the refrigerant pipe 25.

詳細には、前記冷媒配管25は、貯湯ユニット100外への出口となる接続口75aにおいて前記連通管路101に連通する配管部25aと、前記配管部25aの端部D(以下、単に、「分岐点D」という)から分岐して接続されるとともに、反配管部25a側が前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の入口側に接続される配管部25bと、前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の出口側に接続される配管部25cとを含んでいる。前記配管部25bは、前記四方弁31と前記水冷媒熱交換器15の入口側である前記配管部25bを開閉可能な第1二方弁としての二方弁121を備えており、前記配管部25cは第1減圧器として全閉機能付きの膨張弁111を備えている。   Specifically, the refrigerant pipe 25 includes a pipe part 25 a communicating with the communication pipe line 101 at a connection port 75 a serving as an outlet to the outside of the hot water storage unit 100, and an end D (hereinafter simply referred to as “ A pipe portion 25b that is branched from the branch point D) and connected to the inlet side of the water-refrigerant heat exchanger 15 (specifically, the refrigerant-side flow passage 15b). And a pipe portion 25c connected to the outlet side of the water-refrigerant heat exchanger 15 (specifically, the refrigerant-side flow path 15b). The pipe part 25b includes a two-way valve 121 as a first two-way valve capable of opening and closing the pipe part 25b on the inlet side of the four-way valve 31 and the water-refrigerant heat exchanger 15, and the pipe part 25c includes an expansion valve 111 with a fully-closed function as a first pressure reducer.

また前記冷媒配管25は、前記配管部25b同様、前記配管部25aの前記分岐点Dから分岐して接続される配管部25d1と、この配管部25d1の反分岐点D側に接続される配管部25d2とを含んでいる。前記配管部25d2の反配管部25a側は、貯湯ユニット100外への出口となる接続口95aにおいて、前記貯湯ユニット100と前記エアコンユニット200とを接続する連通管路104に連通している。   The refrigerant pipe 25, like the pipe part 25b, is connected to a pipe part 25d1 branched from the branch point D of the pipe part 25a and a pipe part connected to the anti-branch point D side of the pipe part 25d1. 25d2. The pipe portion 25d2 on the side opposite to the pipe portion 25a communicates with a communication conduit 104 that connects the hot water storage unit 100 and the air conditioner unit 200 at a connection port 95a serving as an outlet to the outside of the hot water storage unit 100.

さらに前記冷媒配管25は、前記配管部25cの反水冷媒熱交換器15側の端部E(以下、単に「合流点E」という。合流挙動については後述)から分岐して接続される配管部25e2と、この配管部25e2の反合流点E側に接続されるとともに、反配管部25e2側が、前記接続口75aとは別の接続口75bにおいて前記連通管路102に連通する配管部25e1と、前記配管部25dと前記配管部25e2とを連通する配管部25fと、前記配管部25e2同様に前記配管部25cの前記合流点Eから分岐して接続されるとともに、貯湯ユニット100外への出口となる接続口95bにおいて、前記貯湯ユニット100と前記エアコンユニット200とを接続する連通管路103に連通する配管部25gとを含んでいる。前記配管部25d1は、配管部25d1を開閉可能な第2二方弁としての二方弁122を備えており、前記配管部25e2は、配管部25e2を開閉可能な二方弁123を備えており、前記配管部25fは、配管部25fを開閉可能な二方弁124を備えており、前記配管部25gは第2減圧器として全閉機能付きの膨張弁112を備えている。この結果、前記二方弁123は、前記膨張弁113と前記膨張弁112との間の管路を開閉する機能を備え、前記膨張弁111は、前記水冷媒熱交換器15の出口側と前記膨張弁112との間の管路を開閉する機能を備える。また、前記連通管路101は、前記二方弁121,122と前記四方弁31とを連通する機能を備え、前記連通管路102は、前記二方弁123,124と前記膨張弁113とを連通する機能を備える。言い換えれば、貯湯ユニット100とヒートポンプユニット300とは、前記連通管路101,102によって接続されている(図1も参照)。   Further, the refrigerant pipe 25 is a pipe part that is branched and connected from an end E of the pipe part 25c on the side of the anti-water refrigerant heat exchanger 15 (hereinafter, simply referred to as “merging point E”, the merging behavior will be described later). 25e2 and a pipe part 25e1 connected to the anti-confluence point E side of the pipe part 25e2, and the anti-pipe part 25e2 side communicates with the communication pipe line 102 at a connection port 75b different from the connection port 75a; A piping portion 25f that communicates the piping portion 25d and the piping portion 25e2, and a branching connection from the junction E of the piping portion 25c as well as the piping portion 25e2, and an outlet to the outside of the hot water storage unit 100 The connection port 95b includes a piping portion 25g that communicates with the communication conduit 103 that connects the hot water storage unit 100 and the air conditioner unit 200. The piping part 25d1 includes a two-way valve 122 as a second two-way valve capable of opening and closing the piping part 25d1, and the piping part 25e2 includes a two-way valve 123 capable of opening and closing the piping part 25e2. The pipe section 25f includes a two-way valve 124 that can open and close the pipe section 25f, and the pipe section 25g includes an expansion valve 112 with a fully-closed function as a second pressure reducer. As a result, the two-way valve 123 has a function of opening and closing a pipe line between the expansion valve 113 and the expansion valve 112, and the expansion valve 111 is connected to the outlet side of the water refrigerant heat exchanger 15 and the A function of opening and closing a pipe line between the expansion valve 112 and the expansion valve 112 is provided. The communication conduit 101 has a function of communicating the two-way valves 121 and 122 and the four-way valve 31, and the communication conduit 102 connects the two-way valves 123 and 124 and the expansion valve 113. It has a function to communicate. In other words, the hot water storage unit 100 and the heat pump unit 300 are connected by the communication pipes 101 and 102 (see also FIG. 1).

なお、前記の二方弁121,122,123,124、膨張弁111,112、水冷媒熱交換器15、及び貯湯タンク2等は、前記貯湯ユニット100の筐体に内包されている(図1参照)。なお、前記膨張弁112は後述の配管部26b(すなわち前記エアコンユニット200の筐体内)に設けても良い。   The two-way valves 121, 122, 123, 124, the expansion valves 111, 112, the water / refrigerant heat exchanger 15, the hot water storage tank 2, and the like are included in the casing of the hot water storage unit 100 (FIG. 1). reference). The expansion valve 112 may be provided in a piping part 26b described later (that is, in the casing of the air conditioner unit 200).

前記エアコン回路部30Cは、前記冷媒の流路となる冷媒配管26を備えており、前記冷媒と室内空気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)する室内熱交換器27が前記冷媒配管26に接続されている。なお、室内熱交換器27には、前記室内熱交換器27に室内空気を通じるための室内ファン77(冷房運転時及び沸上・冷房運転時において冷却ファンとして機能)が設けられている。   The air conditioner circuit section 30C includes a refrigerant pipe 26 that serves as a flow path for the refrigerant, and indoor heat that selectively functions as a condenser or an evaporator (details will be described later) by heat exchange between the refrigerant and room air. An exchanger 27 is connected to the refrigerant pipe 26. The indoor heat exchanger 27 is provided with an indoor fan 77 (functioning as a cooling fan during cooling operation and boiling / cooling operation) for passing indoor air through the indoor heat exchanger 27.

詳細には、前記冷媒配管26は、エアコンユニット200外への出口となる接続口76aにおいて前記連通管路104に連通するとともに、反連通管路104側が前記室内熱交換器27の前記接続口76a側(言い替えれば暖房運転時等における入口側、以下同様。後述の図10等参照)に接続される配管部26aと、前記接続口76aとは別の接続口76bにおいて前記連通管路103に連通するとともに、反連通管路103側が前記室内熱交換器27の前記接続口76b側(言い替えれば暖房運転時等における出口側、以下同様。後述の図10等参照)に接続される配管部26bとを含んでいる。この結果、前記二方弁122は、前記室内熱交換器27の反膨張弁112側である前記配管部26aと圧縮機14との間の管路を開閉する機能を備え、前記二方弁124は、前記室内熱交換器27の反膨張弁112側である前記配管部26aと前記膨張弁113との間の管路を開閉する機能を備える。また、前記連通管路103は、前記膨張弁112と前記室内熱交換器27の前記膨張弁112側とを連通する機能を備え、前記連通管路104は、前記二方弁122,124と前記室内熱交換器27の反膨張弁112側とを連通する機能を備える。言い換えれば、貯湯ユニット100とエアコンユニット200とは、前記連通管路103,104によって接続されている(図1も参照)。   Specifically, the refrigerant pipe 26 communicates with the communication pipe 104 at a connection port 76 a serving as an outlet to the outside of the air conditioner unit 200, and the anti-communication pipe 104 side is the connection port 76 a of the indoor heat exchanger 27. The pipe section 26a connected to the side (in other words, the inlet side during heating operation, the same applies hereinafter, see FIG. 10, etc.) and the communication pipe 103 communicate with the connection port 76b different from the connection port 76a. At the same time, the anti-communicating pipe line 103 side is connected to the connecting port 76b side of the indoor heat exchanger 27 (in other words, the outlet side during heating operation, etc., the same applies hereinafter; see FIG. 10, etc. described later) Is included. As a result, the two-way valve 122 has a function of opening and closing a pipe line between the pipe portion 26a on the side of the anti-expansion valve 112 of the indoor heat exchanger 27 and the compressor 14, and the two-way valve 124. Is provided with a function of opening and closing a pipe line between the piping part 26 a on the side of the anti-expansion valve 112 of the indoor heat exchanger 27 and the expansion valve 113. The communication line 103 has a function of communicating the expansion valve 112 with the expansion valve 112 side of the indoor heat exchanger 27, and the communication line 104 includes the two-way valves 122 and 124 and the The indoor heat exchanger 27 has a function of communicating with the anti-expansion valve 112 side. In other words, the hot water storage unit 100 and the air conditioner unit 200 are connected by the communication conduits 103 and 104 (see also FIG. 1).

また、前記の室内熱交換器27及び室内ファン77等は、前記エアコンユニット200の筐体に内包されている(図1参照)。   The indoor heat exchanger 27, the indoor fan 77, and the like are included in the casing of the air conditioner unit 200 (see FIG. 1).

なお、以上の説明において前記したように、前記配管部18b及び配管部25aが前記圧縮機14の吐出側に接続される吐出側管路として機能し、配管部25b,25cが前記吐出側管路に対し所定の分岐点Dから分岐して接続され、前記水冷媒熱交換器15が配設された第1管路として機能し、配管部25d1,25d2,26a,26b,25gが、前記吐出側管路に対し前記分岐点Dから分岐して接続され、前記室内熱交換器27が配設された第2管路として機能し、配管部25e2,25e1,18eが、前記水冷媒熱交換器15より下流側の前記第1管路と前記室内熱交換器27より下流側の前記第2管路とが合流する合流点Eを、前記室外熱交換器17の入口側に接続する第3管路として機能し、配管部18d,18cが、前記室外熱交換器17の出口側を前記圧縮機14の吸入側に接続する吸入側管路として機能する   Note that, as described above in the above description, the piping part 18b and the piping part 25a function as a discharge side pipe connected to the discharge side of the compressor 14, and the pipe parts 25b and 25c are the discharge side pipes. Branching from a predetermined branch point D and functioning as a first pipe having the water-refrigerant heat exchanger 15 disposed therein, and pipe portions 25d1, 25d2, 26a, 26b, and 25g are connected to the discharge side. The pipe 25a, 25e1, 18e is connected to the pipe branching from the branch point D and functions as a second pipe provided with the indoor heat exchanger 27. The water refrigerant heat exchanger 15 A third pipe that connects a junction E at which the first pipe on the downstream side and the second pipe on the downstream side of the indoor heat exchanger 27 join to the inlet side of the outdoor heat exchanger 17. And the piping portions 18d and 18c are It serves the outlet side of the external heat exchanger 17 as a suction side pipe line for connecting the suction side of the compressor 14

前記冷媒循環回路30内には、冷媒として例えばR32冷媒が用いられ、ヒートポンプサイクルを構成している。なお、冷媒はHFC冷媒やHFO冷媒、二酸化炭素冷媒であってもよい。そして、前記ヒーポン回路部30Aの前記冷媒配管18において、前記配管部18aには、圧縮機14から吐出される冷媒吐出温度Toutを検出する吐出温度センサ20が設けられ、前記配管部18cには、圧縮機14へ吸入される冷媒の冷媒吸入温度Tinを検出する吸入温度センサ32が設けられている。なお、前記室外熱交換器17の空気入口側には、外気温度Tairを検出する外気温度センサ22が設けられ、かつ室外熱交換器17内には、ヒーポン熱交温度Tex(蒸発器として作用している時の蒸発冷媒温度)を検出する熱交温度センサ35が設けられている。これらのセンサ20,32,22,35の検出結果は、ヒートポンプユニット300に設けられたヒーポン制御部410に入力され、さらに適宜、貯湯ユニット100に設けられた貯湯制御部420やエアコンユニット200に設けられたエアコン制御部430へも入力される(ヒーポン制御部410を介し受信しても良いし、センサ20,32,22から直接受信してもよい)。   In the refrigerant circuit 30, for example, R32 refrigerant is used as a refrigerant to constitute a heat pump cycle. The refrigerant may be an HFC refrigerant, an HFO refrigerant, or a carbon dioxide refrigerant. And in the refrigerant | coolant piping 18 of the said heat-pon circuit part 30A, the discharge temperature sensor 20 which detects the refrigerant | coolant discharge temperature Tout discharged from the compressor 14 is provided in the said piping part 18a, The said piping part 18c has A suction temperature sensor 32 that detects the refrigerant suction temperature Tin of the refrigerant sucked into the compressor 14 is provided. An outdoor air temperature sensor 22 for detecting the outdoor air temperature Tair is provided on the air inlet side of the outdoor heat exchanger 17, and the heat exchanger heat exchange temperature Tex (acts as an evaporator) in the outdoor heat exchanger 17. A heat exchange temperature sensor 35 is provided for detecting the temperature of the evaporative refrigerant during The detection results of these sensors 20, 32, 22, and 35 are input to a heat pump control unit 410 provided in the heat pump unit 300 and further provided in the hot water storage control unit 420 and the air conditioner unit 200 provided in the hot water storage unit 100 as appropriate. It is also input to the air conditioner control unit 430 (which may be received via the heat pump control unit 410 or may be received directly from the sensors 20, 32, 22).

また、前記貯湯回路部30Bの前記冷媒配管25において、前記配管部25cには、前記冷媒側の流路15bから流出し前記膨張弁111に向かう冷媒流出温度T2を検出する流出温度センサ21が設けられている。なお、前記水冷媒熱交換器15には、前記冷媒が前記冷媒側の流路15bにおいて凝縮する際の冷媒凝縮温度を検出する凝縮温度センサ33が設けられている。これらのセンサ21,33の検出結果は、貯湯ユニット100に設けられた貯湯制御部420に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410やエアコンユニット200に設けられた前記エアコン制御部430へも入力される(貯湯制御部420を介し受信しても良いし、センサ21,33から直接受信してもよい)。   In addition, in the refrigerant pipe 25 of the hot water storage circuit section 30B, the pipe section 25c is provided with an outflow temperature sensor 21 that detects the refrigerant outflow temperature T2 that flows out from the refrigerant-side flow path 15b and travels toward the expansion valve 111. It has been. The water refrigerant heat exchanger 15 is provided with a condensing temperature sensor 33 that detects a refrigerant condensing temperature when the refrigerant condenses in the flow path 15b on the refrigerant side. The detection results of these sensors 21 and 33 are input to a hot water storage control unit 420 provided in the hot water storage unit 100, and further, the heat pump control unit 410 provided in the heat pump unit 300 and the air conditioner unit 200 as appropriate. It is also input to the air conditioner control unit 430 (may be received via the hot water storage control unit 420 or may be received directly from the sensors 21 and 33).

また、前記エアコン回路部30Cの前記冷媒配管26に関して、前記室内熱交換器27には、空調対象空間の室内温度Trを検出する室内温度センサ34が設けられている。このセンサ34の検出結果は、エアコンユニット200に設けられたエアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、センサ34から直接受信してもよい)。   Further, with respect to the refrigerant pipe 26 of the air conditioner circuit section 30C, the indoor heat exchanger 27 is provided with an indoor temperature sensor 34 for detecting the indoor temperature Tr of the air-conditioning target space. The detection result of the sensor 34 is input to an air conditioner control unit 430 provided in the air conditioner unit 200, and further, the heat pump control unit 410 provided in the heat pump unit 300 and the hot water storage control unit provided in the hot water storage unit 100 as appropriate. It is also input to 420 (may be received via the air conditioner control unit 430 or directly from the sensor 34).

そして、前記貯湯ユニット100の前記貯湯制御部420、前記ヒートポンプユニット300の前記ヒーポン制御部410、及び、前記エアコンユニット200の前記エアコン制御部430は、互いに通信可能に接続されており、前記各センサの検出結果に基づき、相互に連携しつつ、前記貯湯ユニット100、前記ヒートポンプユニット300、前記エアコンユニット200内の各機器・アクチュエータの動作を制御する。特に、前記二方弁121,122,123,124及び前記膨張弁111,112,113の開閉動作や開度を制御し、冷媒の流れる経路を切り替えることにより、貯湯タンク2内の湯水を加熱して(加熱された湯水の供給)沸上を行う沸上運転、前記空調対象空間の室内冷房を行う冷房運転、前記空調対象空間の室内暖房を行う暖房運転、前記沸上と前記冷房とを並行して行う沸上・冷房運転、及び、前記沸上と前記暖房とを並行して行う沸上・暖房運転を選択的に実行することができる。   The hot water storage control unit 420 of the hot water storage unit 100, the heat pump control unit 410 of the heat pump unit 300, and the air conditioner control unit 430 of the air conditioner unit 200 are connected to be communicable with each other. Based on the detection result, the operation of each device / actuator in the hot water storage unit 100, the heat pump unit 300, and the air conditioner unit 200 is controlled in cooperation with each other. In particular, the hot water in the hot water storage tank 2 is heated by controlling the opening / closing operation and the opening degree of the two-way valves 121, 122, 123, and 124 and the expansion valves 111, 112, and 113 and switching the flow path of the refrigerant. (Supplying heated hot water) and performing boiling operation, cooling operation for cooling the air-conditioned space, heating operation for heating the air-conditioned space, boiling and cooling in parallel The boiling / cooling operation performed in this manner, and the boiling / heating operation performed in parallel with the boiling and heating can be selectively executed.

このとき、前記エアコンユニット200は、リモコン等の適宜の操作部60(以下単に「リモコン60」と称する)によって操作可能である。すなわち、リモコン60は、例えば前記エアコン制御部430に対し情報送受信可能に接続されており、ユーザは、このリモコン60を適宜に手動操作することにより、前記の沸上運転、冷房運転、及び、暖房運転のいずれの運転を行うかを指示することができる。なお、沸上・冷房運転(又は沸上・暖房運転)については、ユーザによりリモコン60を介し前記冷房運転(又は暖房運転)の指示があったとき、貯湯タンク2内における貯湯状況(未加熱水の量など)に応じて、適宜、自動的に沸上・冷房運転(又は沸上・暖房運転)に切り替えられるものである。さらに、このリモコン60における適宜の操作により、前記沸上運転時における沸上モード(例えば強力沸上モード、通常沸上モード、等)や、前記冷房運転又は暖房運転時におけるエアコン運転モード(例えば強力モード、通常モード、節電モード等)やエアコン設定温度Tcon等も指示することができる。これらのリモコン60からの指示内容は、エアコンユニット200に設けられた前記エアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、リモコン60から直接受信してもよい)。   At this time, the air conditioner unit 200 can be operated by an appropriate operation unit 60 (hereinafter simply referred to as “remote controller 60”) such as a remote controller. That is, the remote controller 60 is connected to, for example, the air conditioner control unit 430 so as to be able to transmit and receive information, and the user manually operates the remote controller 60 appropriately to thereby perform the above-described boiling operation, cooling operation, and heating. It is possible to instruct which driving operation is performed. Regarding boiling / cooling operation (or boiling / heating operation), when the user gives an instruction for the cooling operation (or heating operation) via the remote controller 60, the state of hot water storage in the hot water storage tank 2 (unheated water) Depending on the amount of the water and the like) and automatically switching to the boiling / cooling operation (or boiling / heating operation) as appropriate. Further, by appropriate operation on the remote controller 60, the boiling mode during the boiling operation (for example, the strong boiling mode, the normal boiling mode, etc.), and the air conditioner operation mode (for example, the powerful mode) during the cooling operation or heating operation. Mode, normal mode, power saving mode, etc.), air conditioner set temperature Tcon, etc. can also be instructed. The contents of instructions from these remote controllers 60 are input to the air conditioner control unit 430 provided in the air conditioner unit 200, and further, the heat pump control unit 410 provided in the heat pump unit 300 and the hot water storage unit 100 as appropriate. It is also input to hot water storage control unit 420 (may be received via air conditioner control unit 430 or may be received directly from remote control 60).

次に、前記ヒートポンプユニット300に備えられた前記ヒーポン制御部410について説明する。ヒーポン制御部410は、詳細な図示を省略するが、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えている。このヒーポン制御部410の機能的構成を図3により説明する。   Next, the heat pump control unit 410 provided in the heat pump unit 300 will be described. Although not shown in detail, the heat-pon control unit 410 includes a storage unit that stores various data and programs, and a control unit that performs calculation / control processing. The functional configuration of the heat-pon control unit 410 will be described with reference to FIG.

図3に示すように、前記ヒーポン制御部410は、四方弁制御部410Aと、圧縮機制御部410Bと、吐出温度制御手段としての膨張弁制御部410Cと、室外ファン制御部410Dとを機能的に備えている。   As shown in FIG. 3, the heat pump control unit 410 includes a four-way valve control unit 410A, a compressor control unit 410B, an expansion valve control unit 410C as discharge temperature control means, and an outdoor fan control unit 410D. In preparation.

四方弁制御部410Aには、前記リモコン60により指示された、いずれの運転を行うかの運転指示(沸上運転、冷房運転、暖房運転)と、前記貯湯温度センサ12により検出された前記貯湯温度とが入力される。四方弁制御部410Aは、前記運転指示と、前記貯湯温度に対応した前記湯水の加熱状況(貯湯状況)とに応じて、実際にヒートポンプ給湯機1をどのような運転態様(沸上運転、冷房運転、沸上・冷房運転、暖房運転、沸上・暖房運転)で運転するかを決定し、対応する運転情報を、前記圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410D、及び、貯湯制御部420、エアコン制御部430に出力する。また四方弁制御部410Aは、上記決定された運転態様に対応する開閉信号を四方弁31へ出力し、四方弁31を切り替える(詳細な制御内容は後述)。   The four-way valve control unit 410A is instructed by the remote controller 60 as to which operation to perform (boiling operation, cooling operation, heating operation), and the hot water storage temperature detected by the hot water storage temperature sensor 12. Are entered. The four-way valve control unit 410A actually operates the heat pump water heater 1 in accordance with the operation instruction and the heating state (hot water storage state) of the hot water corresponding to the hot water storage temperature (boiling operation, cooling operation). Operation, boiling / cooling operation, heating operation, boiling / heating operation), and corresponding operation information includes the compressor control unit 410B, the expansion valve control unit 410C, the outdoor fan control unit 410D, And it outputs to the hot water storage control part 420 and the air-conditioner control part 430. The four-way valve control unit 410A outputs an opening / closing signal corresponding to the determined operation mode to the four-way valve 31, and switches the four-way valve 31 (detailed control content will be described later).

圧縮機制御部410Bには、前記外気温度センサ22により検出された前記外気温度Tairと、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tcon及び前記沸上モードとが入力される(直接入力される場合のほか、前記の間接的な入力も含む。以下同様)。圧縮機制御部410Bは、前記のようにして四方弁制御部410Aから入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記の温度及び設定のうち少なくとも1つに基づき、前記圧縮機14の回転数を制御する(詳細な制御内容は後述)。なおこのときの圧縮機14の回転数(制御値としての目標回転数)は、後述の貯湯制御部420の膨張弁制御部420Bにも出力される(図示省略)。   The compressor control unit 410B includes the outside air temperature Tair detected by the outside air temperature sensor 22, the indoor temperature Tr detected by the indoor temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60. And the boiling mode are input (in addition to the case of direct input, the indirect input is also included, and so on). The compressor control unit 410B is input from the four-way valve control unit 410A as described above (any of boiling operation, cooling operation, boiling / cooling operation, heating operation, and boiling / heating operation is performed). The number of rotations of the compressor 14 is controlled based on at least one of the input temperature and setting according to the operation information (detailed control content will be described later). In addition, the rotation speed (target rotation speed as a control value) of the compressor 14 at this time is also output to an expansion valve control unit 420B of a hot water storage control unit 420 (not shown).

膨張弁制御部410Cには、前記吐出温度センサ20により検出された前記冷媒吐出温度Toutと、前記流出温度センサ21により検出された前記冷媒流出温度T2と、前記吸入温度センサ32により検出された前記冷媒吸入温度Tinと、前記熱交温度センサ35により検出された前記ヒーポン熱交温度Texとが入力される。膨張弁制御部410Cは、前記四方弁制御部410Aからの前記運転情報に応じて、前記の入力された温度のうち少なくとも1つに基づき、前記膨張弁113の開度を制御する(詳細な制御内容は後述)。   The expansion valve control unit 410C includes the refrigerant discharge temperature Tout detected by the discharge temperature sensor 20, the refrigerant outflow temperature T2 detected by the outflow temperature sensor 21, and the intake temperature sensor 32. The refrigerant suction temperature Tin and the heat-pon heat exchange temperature Tex detected by the heat exchange temperature sensor 35 are input. The expansion valve control unit 410C controls the opening of the expansion valve 113 based on at least one of the input temperatures in accordance with the operation information from the four-way valve control unit 410A (detailed control). The contents will be described later).

室外ファン制御部410Dには、前記外気温度センサ22により検出された前記外気温度Tairと、前記リモコン60により設定された前記エアコン運転モードとが入力される。室外ファン制御部410Dは、前記四方弁制御部410Aからの前記運転情報に対応しつつ、前記外気温度Tair及び前記運転モードに応じて、前記室外ファン67に対し、目標回転数N2(以下適宜、単に「室外ファン回転数N2」という。図示も同様)に対応した駆動制御信号を出力し、これによって室外ファン67の回転数を可変に制御する(詳細な制御内容は後述)。   The outdoor fan control unit 410D receives the outside air temperature Tair detected by the outside air temperature sensor 22 and the air conditioner operation mode set by the remote controller 60. The outdoor fan control unit 410D responds to the operation information from the four-way valve control unit 410A, and with respect to the outdoor fan 67 according to the outside air temperature Tair and the operation mode, the target rotation speed N2 (hereinafter, as appropriate, A drive control signal corresponding to “outdoor fan rotation speed N2” (similarly shown in the figure) is output, and thereby the rotation speed of the outdoor fan 67 is variably controlled (detailed control content will be described later).

なお、前記運転態様の決定は、貯湯制御部420やエアコン制御部430で行っても良い。この場合は、それら貯湯制御部420やエアコン制御部430から、決定された運転態様に対応した前記運転情報がヒーポン制御部410に入力され、その入力された運転情報に応じて四方弁制御部410A、圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410Dが各種制御を行う。   The operation mode may be determined by the hot water storage control unit 420 or the air conditioner control unit 430. In this case, the operation information corresponding to the determined operation mode is input to the heat pump control unit 410 from the hot water storage control unit 420 and the air conditioner control unit 430, and the four-way valve control unit 410A according to the input operation information. The compressor control unit 410B, the expansion valve control unit 410C, and the outdoor fan control unit 410D perform various controls.

次に、前記貯湯ユニット100に備えられた前記貯湯制御部420について説明する。貯湯制御部420は、前記ヒーポン制御部410同様、記憶部と制御部とを備えており、その機能的構成を図4により説明する。   Next, the hot water storage control unit 420 provided in the hot water storage unit 100 will be described. The hot water storage control unit 420 includes a storage unit and a control unit, similar to the heat pump control unit 410, and its functional configuration will be described with reference to FIG.

図4に示すように、前記貯湯制御部420は、ポンプ制御部420Aと、分流制御手段としての膨張弁制御部420Bと、二方弁制御部420Cとを機能的に備えている。   As shown in FIG. 4, the hot water storage control unit 420 functionally includes a pump control unit 420A, an expansion valve control unit 420B as a diversion control unit, and a two-way valve control unit 420C.

ポンプ制御部420Aには、前記ヒーポン制御部410からの前記運転情報と、前記沸上温度センサ24により検出された前記沸上温度Tbとが入力される。ポンプ制御部420Aは、前記のようにしてヒーポン制御部410から入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記沸上温度Tbに基づき、前記沸上ポンプ19の回転数を制御する(詳細な制御内容は後述)。   The operation information from the heat pump control unit 410 and the boiling temperature Tb detected by the boiling temperature sensor 24 are input to the pump control unit 420A. The pump control unit 420A is input from the heat pump control unit 410 as described above (whether boiling operation, cooling operation, boiling / cooling operation, heating operation, or boiling / heating operation is performed). The number of rotations of the boiling pump 19 is controlled based on the inputted boiling temperature Tb in accordance with the operation information (detailed control content will be described later).

膨張弁制御部420Bには、前記ヒーポン制御部410からの前記運転情報と、前記外気温度センサ22により検出された前記外気温度Tairと、前記リモコン60により設定された前記エアコン運転モードと、前記ヒーポン制御部410の前記圧縮機制御部410Bから入力された前記圧縮機14の回転数(前記目標回転数。但し公知の手法で検出された実際の圧縮機14の回転数を入力しても良い)と、前記流出温度センサ21により検出された前記冷媒流出温度T2と、前記吸入温度センサ32により検出された前記冷媒吸入温度Tinと、前記吐出温度センサ20により検出された前記冷媒吐出温度Toutとが入力される。膨張弁制御部420Bは、前記ヒーポン制御部410からの前記運転情報に応じて、前記の入力された温度やモード設定や回転数のうち少なくとも1つに基づき、前記膨張弁111,112の開度を制御する(詳細な制御内容は後述)。   The expansion valve control unit 420B includes the operation information from the heat pump control unit 410, the outside air temperature Tair detected by the outside air temperature sensor 22, the air conditioner operation mode set by the remote controller 60, and the heat pump. The rotation speed of the compressor 14 input from the compressor control section 410B of the control section 410 (the target rotation speed; however, the actual rotation speed of the compressor 14 detected by a known method may be input). The refrigerant outflow temperature T2 detected by the outflow temperature sensor 21, the refrigerant intake temperature Tin detected by the intake temperature sensor 32, and the refrigerant discharge temperature Tout detected by the discharge temperature sensor 20. Entered. The expansion valve control unit 420B is configured to open the openings of the expansion valves 111 and 112 based on at least one of the input temperature, mode setting, and rotation speed in accordance with the operation information from the heat pump control unit 410. (Details of control contents will be described later).

二方弁制御部420Cには、前記ヒーポン制御部410からの前記運転情報が入力される。二方弁制御部420Cは、前記運転情報に基づき、前記二方弁121,122,123,124の開閉動作を制御する(詳細な制御内容は後述)。   The operation information from the heat pump control unit 410 is input to the two-way valve control unit 420C. The two-way valve control unit 420C controls the opening / closing operation of the two-way valves 121, 122, 123, and 124 based on the operation information (detailed control content will be described later).

なお、前記と同様、運転態様の決定を、貯湯制御部420内(例えば前記二方弁制御部420C)やエアコン制御部430で行っても良い。この場合は、それら二方弁制御部420Cやエアコン制御部430で決定した運転態様に対応する運転情報に応じて、ポンプ制御部420A、膨張弁制御部420B、二方弁制御部420Cが各種制御を行う。   As described above, the operation mode may be determined in the hot water storage control unit 420 (for example, the two-way valve control unit 420C) or the air conditioner control unit 430. In this case, the pump control unit 420A, the expansion valve control unit 420B, and the two-way valve control unit 420C perform various controls according to the operation information corresponding to the operation mode determined by the two-way valve control unit 420C and the air conditioner control unit 430. I do.

次に、前記エアコンユニット200に備えられた前記エアコン制御部430について説明する。エアコン制御部430は、前記ヒーポン制御部410及び貯湯制御部420同様、記憶部と制御部とを備えており、その機能的構成を図5により説明する。   Next, the air conditioner control unit 430 provided in the air conditioner unit 200 will be described. The air conditioner control unit 430 includes a storage unit and a control unit, similar to the heat pump control unit 410 and the hot water storage control unit 420, and its functional configuration will be described with reference to FIG.

図5に示すように、前記エアコン制御部430は、室内ファン制御部430Aを機能的に備えている。   As shown in FIG. 5, the air conditioner control unit 430 functionally includes an indoor fan control unit 430A.

室内ファン制御部430Aには、前記ヒーポン制御部410からの前記運転情報と、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tconとが入力される。室内ファン制御部430Aは、前記ヒーポン制御部410からの前記運転情報に対応しつつ、前記室内温度Tr及びエアコン設定温度Tconに応じて、前記室内ファン77に対し、前記目標回転数N1(以下適宜、単に「室内ファン回転数N1」という。図示も同様)に対応した駆動制御信号を出力し、これによって室内ファン77の回転数を可変に制御する(詳細な制御内容は後述)。   The indoor fan control unit 430A receives the operation information from the heat-pump control unit 410, the indoor temperature Tr detected by the indoor temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60. Is done. The indoor fan control unit 430A responds to the operation information from the heat-pump control unit 410, and with respect to the indoor fan 77 according to the indoor temperature Tr and the air conditioner set temperature Tcon (hereinafter, as appropriate) A drive control signal corresponding to “indoor fan rotational speed N1” (similarly shown in the figure) is output, and thereby the rotational speed of the indoor fan 77 is variably controlled (detailed control content will be described later).

なお、前記と同様、運転態様の決定を、エアコン制御部430内や貯湯制御部420で行っても良い。この場合は、それらエアコン制御部430や貯湯制御部420で決定した運転態様に対応する運転情報に応じて、室内ファン制御部430Aが前記制御を行う。   As described above, the operation mode may be determined in the air conditioner control unit 430 or the hot water storage control unit 420. In this case, the indoor fan control unit 430A performs the control according to the operation information corresponding to the operation mode determined by the air conditioner control unit 430 and the hot water storage control unit 420.

前記したように、本実施形態のヒートポンプ給湯機1は、沸上運転、冷房運転、暖房運転、沸上・冷房運転、沸上・暖房運転の5種類の運転を選択的に実行することができる。以下、各運転の詳細を順次説明する。   As described above, the heat pump water heater 1 according to the present embodiment can selectively execute five types of operation including boiling operation, cooling operation, heating operation, boiling / cooling operation, and boiling / heating operation. . Hereinafter, details of each operation will be sequentially described.

まず、図6を用いて、沸上運転について説明する。この図6に示す沸上運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18aを前記配管部18bに連通させると共に前記配管部18cを前記配管部18dに連通させる位置(前記した暖房側)に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が閉じ状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全開状態かつ前記膨張弁112が全閉状態に制御され、前記膨張弁制御部410Cにより前記膨張弁113が開き状態(詳細には後述の△H制御が行われている)に制御される。   First, boiling operation will be described with reference to FIG. In the boiling operation shown in FIG. 6, the four-way valve control unit 410A causes the four-way valve 31 to connect the pipe part 18a to the pipe part 18b and to connect the pipe part 18c to the pipe part 18d. The position is switched to the heating position (the heating side described above). The two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the closed state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully open state and the expansion valve 112 to be in a fully closed state, and the expansion valve control unit 410C opens the expansion valve 113 (details will be described later as ΔH Is being controlled).

この結果、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25e2→配管部25e1→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する水冷媒熱交換器15の前記冷媒側の流路15bにおいて前記水側の流路15aを流れる水と熱交換を行って前記水に熱を放出し加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。このとき、貯湯タンク2下部に接続された前記加熱往き管5から取り出された低温水(未加熱水)が、水冷媒熱交換器15の前記水側の流路15aにおいて前記凝縮する冷媒から受熱して高温まで加熱された後、貯湯タンク2上部に接続された加熱戻り管6から貯湯タンク2内に戻されることで、貯湯タンク2内に順次高温水(加熱水)が積層状に貯湯される。   As a result, the discharge side piping section 18a → the piping section 18b → the communication pipe 101 → the piping section 25a → the piping section 25b → the refrigerant side flow path 15b of the water refrigerant heat exchanger 15 → the piping section 25c (expansion). Valve 111) → pipe part 25e2 → pipe part 25e1 → communication pipe line 102 → pipe part 18e (expansion valve 113) → outdoor heat exchanger 17 → pipe part 18d → the refrigerant path of the pipe part 18c on the suction side of the compressor 14 It is formed. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the flow on the refrigerant side of the water refrigerant heat exchanger 15 functioning as a condenser is performed. In the channel 15b, heat exchange is performed with the water flowing through the water-side channel 15a to release heat to the water and change into a high-pressure liquid while heating. The refrigerant thus turned into a liquid is decompressed by the expansion valve 113 through the fully opened expansion valve 111 and becomes a low-temperature / low-pressure liquid and easily evaporates. In the outdoor heat exchanger 17 functioning as an evaporator, The heat is exchanged with the outside air to evaporate and change into gas, thereby absorbing heat and returning to the compressor 14 again as a low temperature / low pressure gas. At this time, the low-temperature water (unheated water) taken out from the heating forward pipe 5 connected to the lower part of the hot water storage tank 2 receives heat from the condensing refrigerant in the water-side flow path 15a of the water-refrigerant heat exchanger 15. Then, after being heated to a high temperature, the hot water is returned to the hot water storage tank 2 from the heating return pipe 6 connected to the upper part of the hot water storage tank 2 so that the hot water (heated water) is sequentially stored in the hot water storage tank 2 in a laminated form. The

以上の作動において、前記圧縮機14の前記目標回転数(以下適宜、沸上運転時については「目標回転数Nb」と称する)は、前記圧縮機制御部410Bの制御により、外気温度Tairに基づき決定される。すなわち、例えば図7(a)の右下がり特性線で示すように、外気温度Tairが低い場合は目標回転数Nbが大きくなるように制御され、外気温度Tairが高い場合は目標回転数Nbが小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairに基づき決定される。すなわち、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   In the above operation, the target rotational speed of the compressor 14 (hereinafter, appropriately referred to as “target rotational speed Nb” during the boiling operation) is based on the outside air temperature Tair under the control of the compressor control unit 410B. It is determined. That is, for example, as shown by the downward-sloping characteristic line in FIG. 7A, when the outside air temperature Tair is low, the target rotational speed Nb is controlled to be large, and when the outside air temperature Tair is high, the target rotational speed Nb is small. It is controlled to become. The outdoor fan rotation speed N2 of the outdoor fan 67 is determined based on the outdoor air temperature Tair under the control of the outdoor fan control unit 410D. That is, when the outside air temperature Tair is low, the fan rotation speed is controlled to be large, and when the outside air temperature Tair is high, the fan rotation speed is controlled to be small.

図6に戻り、また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上温度Tbが所定の目標温度となるように、フィードバック制御される。すなわち、沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなる(流量が低下する)ように制御され、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなる(流量が増大する)ように制御される。なお、室内ファン77は、前記室内ファン制御部430Aの制御により回転停止される。   Returning to FIG. 6, the rotation speed of the boiling pump 19 is feedback-controlled by the control of the pump control unit 420 </ b> A so that the boiling temperature Tb becomes a predetermined target temperature. That is, when the boiling temperature Tb is lower than the target temperature, control is performed such that the pump rotational speed is decreased (the flow rate is decreased), and when the boiling temperature Tb is higher than the target temperature, the pump rotational speed is increased (the flow rate is decreased). To be increased). The indoor fan 77 is stopped from rotating under the control of the indoor fan control unit 430A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、沸上運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout−T2が、所定の目標温度差△Hmとなるように、膨張弁113の開度を所定の周期でフィードバック制御する(△H制御)。すなわち、前記膨張弁制御部410Cは、△H<△Hmの場合は膨張弁113の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁113の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁113の開度を現状のまま維持する。あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁113の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部410Cは、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度を開く方向に制御する。   The opening degree of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the boiling operation. Specifically, the opening of the expansion valve 113 is set at a predetermined cycle so that the temperature difference ΔH = Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 becomes a predetermined target temperature difference ΔHm. Perform feedback control (ΔH control). That is, the expansion valve control unit 410C controls the opening degree of the expansion valve 113 to close when ΔH <ΔHm, and opens the opening degree of the expansion valve 113 when ΔH> ΔHm. If ΔH = ΔHm, the opening degree of the expansion valve 113 is maintained as it is. Alternatively, instead of the ΔH control, the opening degree of the expansion valve 113 may be feedback controlled so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 410C controls the opening degree of the expansion valve 113 to close when the refrigerant discharge temperature Tout is too low, and opens the opening degree of the expansion valve 113 when the refrigerant discharge temperature Tout is too high. Control in the direction.

次に、図8を用いて、冷房運転について説明する。この図8に示す冷房運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18aを前記配管部18dに連通させると共に前記配管部18cを前記配管部18bに連通させる位置(前記暖房側とは異なる冷房側)に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が閉じ状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全閉状態に制御されかつ前記膨張弁112が開き状態(詳細には後述のフィードフォワード制御が行われている)に制御され、前記膨張弁制御部410Cにより前記膨張弁113が全開状態に制御される。   Next, the cooling operation will be described with reference to FIG. In the cooling operation shown in FIG. 8, the four-way valve control unit 410A causes the four-way valve 31 to connect the pipe part 18a to the pipe part 18d and to connect the pipe part 18c to the pipe part 18b. It is switched to a position (cooling side different from the heating side). The two-way valve controller 420C switches the two-way valve 121 to the closed state, the two-way valve 122 to the open state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully closed state and the expansion valve 112 to be in an open state (specifically, feedforward control described below is performed), and the expansion valve control The expansion valve 113 is controlled to be fully opened by the portion 410C.

この結果、圧縮機14の吐出側の配管部18a→配管部18d→室外熱交換器17→配管部18e(膨張弁113)→連通管路102→配管部25e1→配管部25e2→配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d2→配管部25d1→配管部25a→連通管路101→配管部18b→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、室外ファン67の回転駆動とともに凝縮器として機能する前記室外熱交換器17において外気と熱交換を行って熱を放出しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁113を経て前記膨張弁112において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、室内ファン77の回転駆動とともに蒸発器として機能する前記室内熱交換器27において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the discharge side piping portion 18a → the piping portion 18d → the outdoor heat exchanger 17 → the piping portion 18e (expansion valve 113) → the communication conduit 102 → the piping portion 25e1 → the piping portion 25e2 → the piping portion 25g ( Expansion valve 112) → Communication conduit 103 → Pipe portion 26b → Indoor heat exchanger 27 → Pipe portion 26a → Communication conduit 104 → Pipe portion 25d2 → Pipe portion 25d1 → Pipe portion 25a → Communication conduit 101 → Pipe portion 18b → A refrigerant path of the piping portion 18c on the suction side of the compressor 14 is formed. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the outdoor heat exchanger functioning as a condenser with the rotational driving of the outdoor fan 67. In 17, heat is exchanged with the outside air to release heat and change to a high-pressure liquid. The refrigerant that has become liquid in this manner is decompressed by the expansion valve 112 through the fully opened expansion valve 113 and becomes a low-temperature / low-pressure liquid that easily evaporates, and functions as an evaporator when the indoor fan 77 is driven to rotate. The indoor heat exchanger 27 absorbs heat from the indoor air, evaporates and changes to gas, thereby cooling the air-conditioning target space and returns to the compressor 14 again as low-temperature and low-pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。すなわち、Tcon−Trの値が大きい場合は圧縮機回転数が大きくなるように制御され、Tcon−Trの値が小さい場合は圧縮機回転数が小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、エアコン運転モードが例えば強力モードの場合はファン回転数が大きくなるように制御され、通常モードや節電モードの場合はファン回転数が小さくなるように制御される。さらに各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が小さくなるように、外気温度Tairが高い場合はファン回転数が大きくなるように制御される。また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記Tcon−Trの値が大きい場合はファン回転数が大きくなるように、前記Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。   In the above operation, the rotation speed of the compressor 14 is determined based on the difference between the room temperature Tr and the air conditioner set temperature Tcon under the control of the compressor control unit 410B. That is, when the value of Tcon-Tr is large, the compressor rotational speed is controlled to be large, and when the value of Tcon-Tr is small, the compressor rotational speed is controlled to be small. The outdoor fan rotation speed N2 of the outdoor fan 67 is controlled by the outdoor fan control unit 410D so that the fan rotation speed is increased when the air conditioner operation mode is, for example, the high power mode. In this case, the fan speed is controlled to be small. Further, in each air-conditioner operation mode, control is performed so that the fan speed decreases when the outside air temperature Tair is low, and the fan speed increases when the outside air temperature Tair is high. The indoor fan rotation speed N1 of the indoor fan 77 is controlled by the indoor fan control unit 430A so that the value of the Tcon-Tr increases so that the fan rotation speed increases when the Tcon-Tr value is large. When it is small, the fan speed is controlled to be small. The boiling pump 19 is stopped from rotating under the control of the pump control unit 420A.

そして、前記膨張弁112の開度は、前記膨張弁制御部420Bにより、冷房運転の運転状態に応じて可変に制御される。すなわち、前記外気温度Tair及び前記エアコン運転モードと、圧縮機14の回転数とに基づき決定される。すなわち、前記膨張弁制御部420Bは、前記複数のエアコン運転モード(例えば強力モード、通常モード、節電モード等)のそれぞれにおいて、前記外気温度Tairの高低と、前記圧縮機制御部410Bからの圧縮機回転数の高低とを加味して、膨張弁112の開度をフィードフォワード制御する(詳細は省略)。   The opening degree of the expansion valve 112 is variably controlled by the expansion valve control unit 420B according to the operating state of the cooling operation. That is, it is determined based on the outside air temperature Tair, the air conditioner operation mode, and the rotational speed of the compressor 14. That is, the expansion valve control unit 420B determines whether the outside air temperature Tair is high or low and the compressor from the compressor control unit 410B in each of the plurality of air conditioner operation modes (for example, the strong mode, the normal mode, and the power saving mode). The opening degree of the expansion valve 112 is feedforward controlled in consideration of the rotational speed (details are omitted).

次に、図9を用いて、沸上・冷房運転について説明する。この図9に示す沸上・冷房運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、(前記冷房側ではなく)前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が閉じ状態、二方弁123が閉じ状態、二方弁124が開き状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全開状態に制御されるとともに前記膨張弁112が開き状態(詳細には後述の△H制御が行われている)に制御され、前記膨張弁制御部410Cにより前記膨張弁113が全開状態に制御される。   Next, boiling and cooling operation will be described with reference to FIG. In the boiling / cooling operation shown in FIG. 9, the four-way valve control unit 410A switches the four-way valve 31 to the heating side (not the cooling side). Further, the two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the closed state, the two-way valve 123 to the closed state, and the two-way valve 124 to the open state. Further, the expansion valve control unit 420B controls the expansion valve 111 to be in a fully open state and the expansion valve 112 to be in an open state (detailed below, ΔH control is performed). The expansion valve 113 is controlled to be fully opened by the portion 410C.

この結果、冷媒経路は、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d2→配管部25f→配管部25e1→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cとなる。   As a result, the refrigerant path is the piping side 18a on the discharge side of the compressor 14 → the piping part 18b → the communication pipe 101 → the piping part 25a → the piping part 25b → the flow path 15b on the refrigerant side of the water refrigerant heat exchanger 15 → the piping. Part 25c (expansion valve 111) → piping part 25g (expansion valve 112) → communication pipe line 103 → piping part 26b → indoor heat exchanger 27 → piping part 26a → communicating pipe line 104 → piping part 25d2 → piping part 25f → piping Portion 25e1 → Communication pipeline 102 → Pipe portion 18e (expansion valve 113) → Outdoor heat exchanger 17 → Pipe portion 18d → Pipe portion 18c on the suction side of the compressor 14

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、まず前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁112において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、室内ファン77の回転駆動とともに蒸発器として機能する前記室内熱交換器27において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、さらに前記膨張弁113を経て、室外ファン67の回転駆動とともに蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   Thus, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, first, the water refrigerant heat exchanger 15 (functioning as a condenser) is used in the same manner as described above. The high-temperature water (heated water) is sequentially supplied into the hot water storage tank 2 by heating the water flowing through the water-side flow path 15a and the liquid refrigerant passes through the expansion valve 111 in a fully opened state. The expansion valve 112 is depressurized to become a low-temperature / low-pressure liquid and easily evaporates. When the indoor fan 77 is driven to rotate, the indoor heat exchanger 27 functioning as an evaporator absorbs heat from the indoor air and evaporates. The air-conditioning target space is cooled by changing to the above, and further, through the expansion valve 113, the outdoor fan 67 rotates and exchanges heat with the outside air in the outdoor heat exchanger 17 that functions as an evaporator. Evaporated to me it absorbs heat by varying the gas returns to the compressor 14 as a low-temperature low-pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記冷房運転時と同様の、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、前記冷房運転時と同様、各エアコン運転モードにおいて外気温度Tairが低い場合はファン回転数が大きくなるように、外気温度Tairが高い場合はファン回転数が小さくなるように制御されるが、適宜の手法によって冷房運転時よりは低回転数に制御される。   In the above operation, the rotation speed of the compressor 14 is determined based on the difference between the room temperature Tr and the air conditioner set temperature Tcon, similar to that during the cooling operation, under the control of the compressor control unit 410B. Further, the rotation speed of the outdoor fan 67 is controlled by the outdoor fan control unit 410D, as in the cooling operation, so that the fan rotation speed increases when the outdoor air temperature Tair is low in each air conditioner operation mode. When the Tair is high, the fan rotation speed is controlled to be small, but the rotation speed is controlled to be lower than that during the cooling operation by an appropriate method.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記暖房運転等のときと同様、室内温度Trとエアコン設定温度Tconとの差に基づき、Tcon−Trの値が大きい場合はファン回転数が大きくなるように、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。   The number of revolutions of the boiling pump 19 is controlled by the pump control unit 420A, as in the above-described boiling operation, when the boiling temperature Tb is lower than the target temperature, the number of revolutions of the pump becomes small, and the boiling temperature Tb is When the temperature is higher than the target temperature, the pump speed is controlled to be large. The indoor fan rotation speed N1 of the indoor fan 77 is controlled by the indoor fan control unit 430A based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, as in the heating operation or the like. When the value of is large, the fan rotational speed is increased, and when the value of Tcon-Tr is small, the fan rotational speed is decreased.

そして、前記膨張弁112の開度は、前記膨張弁制御部420Bにより、沸上・冷房運転の運転状態に応じて可変に制御される。詳細には、前記沸上運転時の膨張弁制御部410Cによる膨張弁113への制御と同様、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout−T2が、所定の目標温度差△Hmとなるように、膨張弁112の開度を所定の周期でフィードバック制御する(△H制御)。すなわち、前記膨張弁制御部420Bは、△H<△Hmの場合は膨張弁112の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁112の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁112の開度を現状のまま維持する。あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁112の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部420Bは、冷媒吐出温度Toutが低すぎる場合は膨張弁112の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁112の開度を開く方向に制御する。   The opening degree of the expansion valve 112 is variably controlled by the expansion valve control unit 420B in accordance with the operating state of the boiling / cooling operation. Specifically, similar to the control to the expansion valve 113 by the expansion valve control unit 410C during the boiling operation, the temperature difference ΔH = Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 is a predetermined value. The opening degree of the expansion valve 112 is feedback-controlled at a predetermined cycle so that the target temperature difference ΔHm is obtained (ΔH control). That is, the expansion valve control unit 420B controls the opening degree of the expansion valve 112 to close when ΔH <ΔHm, and opens the opening degree of the expansion valve 112 when ΔH> ΔHm. If ΔH = ΔHm, the opening degree of the expansion valve 112 is maintained as it is. Alternatively, instead of this ΔH control, the opening degree of the expansion valve 112 may be feedback controlled so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 420B controls the opening degree of the expansion valve 112 to close when the refrigerant discharge temperature Tout is too low, and opens the opening degree of the expansion valve 112 when the refrigerant discharge temperature Tout is too high. Control in the direction.

次に、図10を用いて、暖房運転について説明する。この図10に示す暖房運転時においては、前記四方弁制御部410Aにより、前記沸上運転と同様、前記四方弁31は、前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、前記冷房運転時と同様、二方弁121が閉じ状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁111が全閉状態かつ前記膨張弁112が全開状態に制御され、前記膨張弁制御部410Cにより前記膨張弁113が開き状態(詳細には後述のSH制御が行われている)に制御される。   Next, the heating operation will be described with reference to FIG. In the heating operation shown in FIG. 10, the four-way valve 31 is switched to the heating side by the four-way valve control unit 410A as in the boiling operation. Further, the two-way valve control unit 420C switches the two-way valve 121 to the closed state, the two-way valve 122 to the opened state, the two-way valve 123 to the opened state, and the two-way valve 124 to the closed state, as in the cooling operation. It is done. Further, the expansion valve control unit 420B controls the expansion valve 111 to be fully closed and the expansion valve 112 to be fully open, and the expansion valve control unit 410C opens the expansion valve 113 (detailed below is SH control). Is controlled).

この結果、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25a→配管部25d1→配管部25d2→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)→配管部25e2→配管部25e1→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する室内熱交換器27において室内空気と熱交換を行って熱を放出し空調対象空間を加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁112を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the discharge-side piping section 18a → the piping section 18b → the communication pipe 101 → the piping section 25a → the piping section 25d1 → the piping section 25d2 → the communication pipe 104 → the piping section 26a → the indoor heat exchanger 27 → Piping part 26b → Communication pipe line 103 → Piping part 25g (expansion valve 112) → Piping part 25e2 → Piping part 25e1 → Communication pipe line 102 → Pipe part 18e (expansion valve 113) → Outdoor heat exchanger 17 → Pipe part 18d → A refrigerant path of the piping portion 18c on the suction side of the compressor 14 is formed. As a result, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, the indoor heat exchanger 27 functioning as a condenser exchanges heat with the indoor air. The heat is released to change into a high-pressure liquid while heating the air-conditioning target space. The refrigerant thus turned into a liquid is decompressed in the expansion valve 113 through the fully opened expansion valve 112 and becomes a low-temperature / low-pressure liquid and easily evaporates. In the outdoor heat exchanger 17 functioning as an evaporator, The heat is exchanged with the outside air to evaporate and change into gas, thereby absorbing heat and returning to the compressor 14 again as a low temperature / low pressure gas.

以上の作動において、前記圧縮機14の前記目標回転数(以下適宜、暖房運転時については「目標回転数Nh」と称する)は、前記圧縮機制御部410Bの制御により、前記室内温度Tr−エアコン設定温度Tcon(=温度差△T。以下適宜,単に「温度差△T」という)の値が大きい場合は目標回転数が大きくなるように、前記温度差△T(=Tr−Tcon)の値が小さい場合は目標回転数が小さくなるように制御される。具体的には、この例では、図7(b)に示すように、前記温度差△Tの範囲を、△T≦2[℃]、2<△T≦5[℃]、5<△T≦10[℃]、10<T[℃]の4つに区分する。   In the above operation, the target rotational speed of the compressor 14 (hereinafter referred to as “target rotational speed Nh” as appropriate during heating operation) is controlled by the compressor control unit 410B. The value of the temperature difference ΔT (= Tr−Tcon) so that the target rotational speed is increased when the value of the set temperature Tcon (= temperature difference ΔT; hereinafter simply referred to as “temperature difference ΔT”) is large. When is small, the target rotational speed is controlled to be small. Specifically, in this example, as shown in FIG. 7B, the range of the temperature difference ΔT is set to ΔT ≦ 2 [° C.], 2 <ΔT ≦ 5 [° C.], 5 <ΔT. ≦ 10 [° C.], 10 <T [° C.].

そして、前記温度差△Tが4つの区分のうち最も小さい△T≦2[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを20[rpm]となるように制御する。また、前記温度差△Tが4つの区分のうち2番目に小さい2<△T≦5[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを30[rpm]となるように制御する。また、前記温度差△Tが4つの区分のうち2番目に大きい5<△T≦10[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを40[rpm]となるように制御する。そして、前記温度差△Tが4つの区分のうち最も大きい10<△T[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを50[rpm]となるように制御する。   When the temperature difference ΔT is the smallest ΔT ≦ 2 [° C.] of the four sections, the compressor control unit 410B sets the target rotational speed Nh of the compressor 14 to 20 [rpm. ] Is controlled. In addition, when the temperature difference ΔT is in the range of 2 <ΔT ≦ 5 [° C.], which is the second smallest among the four sections, the compressor control unit 410B causes the target rotational speed Nh of the compressor 14 to be Is controlled to 30 [rpm]. Further, when the temperature difference ΔT is in the range of 5 <ΔT ≦ 10 [° C.], which is the second largest among the four sections, the compressor control unit 410B causes the target rotational speed Nh of the compressor 14 to be increased. Is controlled to 40 [rpm]. When the temperature difference ΔT is in the range of 10 <ΔT [° C.] which is the largest among the four sections, the compressor control unit 410B sets the target rotational speed Nh of the compressor 14 to 50 [rpm. ] Is controlled.

図10に戻り、また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairとエアコン運転モードに基づき決定される。すなわち、複数用意されたエアコン運転モード(例えば強力モード、通常モード、節電モード等)のそれぞれにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   Returning to FIG. 10, the outdoor fan rotation speed N2 of the outdoor fan 67 is determined based on the outdoor air temperature Tair and the air conditioner operation mode under the control of the outdoor fan control unit 410D. That is, in each of a plurality of prepared air conditioner operation modes (for example, the high power mode, the normal mode, the power saving mode, etc.), when the outside air temperature Tair is low, the fan speed is controlled to increase, and when the outside air temperature Tair is high. The fan speed is controlled to be small.

また前記室内ファン77における前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記温度差△T、つまり室内温度Trとエアコン設定温度Tconとの差に基づき決定される。すなわち、Tcon−Trの値が大きい場合はファン回転数が大きくなるように制御され、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。なお、沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。   The indoor fan rotation speed N1 in the indoor fan 77 is determined based on the temperature difference ΔT, that is, the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, under the control of the indoor fan control unit 430A. That is, when the value of Tcon-Tr is large, control is performed so that the fan rotational speed is increased, and when the value of Tcon-Tr is small, control is performed so that the fan rotational speed is decreased. The boiling pump 19 is stopped from rotating under the control of the pump control unit 420A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、暖房運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吸入温度Tinと前記ヒーポン熱交温度Texとの温度差Tin−Texが所定の一定値となるように、膨張弁113の開度をフィードバック制御する(SH制御)。すなわち、前記膨張弁制御部410Cは、Tin−Texが小さすぎる場合は膨張弁113の開度を閉じる方向に制御し、Tin−Texが大きすぎる場合は膨張弁113の開度を開く方向に制御する。   The opening degree of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the heating operation. Specifically, the opening degree of the expansion valve 113 is feedback-controlled so that the temperature difference Tin-Tex between the refrigerant suction temperature Tin and the heat-pump heat exchange temperature Tex becomes a predetermined constant value (SH control). That is, the expansion valve control unit 410C controls the opening of the expansion valve 113 to close when Tin-Tex is too small, and controls the opening of the expansion valve 113 to open when Tin-Tex is too large. To do.

次に、図11を用いて、沸上・暖房運転について説明する。この図11に示す沸上・暖房運転時においても、前記四方弁制御部410Aにより、前記四方弁31は、前記暖房側に切り替えられる。また前記二方弁制御部420Cにより、二方弁121が開き状態、二方弁122が開き状態、二方弁123が開き状態、二方弁124が閉じ状態に切り替えられる。さらに前記膨張弁制御部420Bにより前記膨張弁113が開き状態(詳細には後述の吐出制御が行われている)に制御され、前記膨張弁111及び前記膨張弁112は、前記膨張弁制御部410Cにより、冷媒を所望の割合(分流比)で水冷媒熱交換器15側及び室内熱交換器27側に配分し供給するための分流制御(詳細は後述)によって開度が可変に制御される。   Next, boiling and heating operation will be described with reference to FIG. Also in the boiling / heating operation shown in FIG. 11, the four-way valve control unit 410A switches the four-way valve 31 to the heating side. The two-way valve controller 420C switches the two-way valve 121 to the open state, the two-way valve 122 to the open state, the two-way valve 123 to the open state, and the two-way valve 124 to the closed state. Further, the expansion valve control unit 420B controls the expansion valve 113 to be in an open state (specifically, discharge control described later is performed), and the expansion valve 111 and the expansion valve 112 are connected to the expansion valve control unit 410C. Thus, the opening degree is variably controlled by diversion control (details will be described later) for distributing and supplying the refrigerant to the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side at a desired ratio (diversion ratio).

この結果、冷媒経路は、圧縮機14の吐出側の配管部18a→配管部18b→連通管路101→配管部25aを経て前記分岐点Dで2つに分かれ、一方は、分岐点D→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)を経て前記合流点Eに至り、他方は、分岐点D→配管部25d1→配管部25d2→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)を経て前記合流点Eに至り、合流点Eで前記水冷媒熱交換器15からの経路と合流する。その後の経路は、合流点E→配管部25e2→配管部25e1→連通管路102→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→圧縮機14の吸入側の配管部18cとなる。   As a result, the refrigerant path is divided into two at the branch point D via the piping part 18a on the discharge side of the compressor 14 → the piping part 18b → the communication pipe 101 → the piping part 25a. Part 25b → flow path 15b on the refrigerant side of the water-refrigerant heat exchanger 15 → pipe part 25c (expansion valve 111) to reach the junction point E, and the other is a branch point D → pipe part 25d1 → pipe part 25d2 → communication. The pipe 104 → the piping section 26a → the indoor heat exchanger 27 → the piping section 26b → the communication pipe 103 → the piping section 25g (expansion valve 112) to the junction point E, and at the junction point E, the water-refrigerant heat exchanger Join the route from 15. The subsequent path is: junction E → pipe part 25e2 → pipe part 25e1 → communication pipe line 102 → pipe part 18e (expansion valve 113) → outdoor heat exchanger 17 → pipe part 18d → pipe part on the suction side of the compressor 14 18c.

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後に前記のように分流し、前記一方の流れは前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、前記他方の流れは室内熱交換器27(凝縮器として機能)において前記同様に凝縮して室内空気に熱を放出することで空調対象空間を加熱する。前記の熱交換器15,27での凝縮で高圧の液体に変化した冷媒は前記膨張弁113において減圧されて低温・低圧の液体となった後前記室外熱交換器17(蒸発器として機能)において蒸発して外気から吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。   As a result, the refrigerant in the gas state sucked at a low temperature and a low pressure is compressed by the compressor 14 to become a high temperature and a high pressure gas, and then divided as described above, and the one flow is the water refrigerant heat exchanger. 15 (functions as a condenser) is condensed in the same manner as described above to heat the water flowing through the water-side flow path 15a, thereby supplying hot water (heated water) sequentially into the hot water storage tank 2, and the other flow is In the indoor heat exchanger 27 (functioning as a condenser), the air-conditioning target space is heated by condensing in the same manner as described above and releasing heat to the indoor air. The refrigerant that has changed into a high-pressure liquid by condensation in the heat exchangers 15 and 27 is decompressed by the expansion valve 113 to become a low-temperature / low-pressure liquid, and then in the outdoor heat exchanger 17 (functions as an evaporator). It evaporates and absorbs heat from the outside air, and returns to the compressor 14 again as a low temperature / low pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、外気温度Tairに基づき決定される前記沸上運転時の目標回転数Nb(前記図7(a)参照)と、前記温度差△T(=エアコン設定温度Tcon−室内温度Tr)に基づき決定される前記暖房運転時の目標回転数Nh(前記図7(b)参照)とを合算した和である、目標回転数Nbh(=Nb+Nh)となるように制御される。すなわち、図7(c)に示すように、この例では、図示のように4つ用意された特性線(下から順番に破線、一点鎖線、点線、二点鎖線)において、前記温度差△Tが大きくなるにつれて、より大回転数側の特性線となるように、使用する特性線を段階的に切り替える。   In the above operation, the rotational speed of the compressor 14 is determined based on the outside air temperature Tair under the control of the compressor control unit 410B. The target rotational speed Nb during the boiling operation (see FIG. 7A). ) And the target rotational speed Nh (see FIG. 7B) determined during the heating operation determined based on the temperature difference ΔT (= air conditioner set temperature Tcon−room temperature Tr). Control is performed so that the target rotational speed is Nbh (= Nb + Nh). That is, as shown in FIG. 7C, in this example, in the four characteristic lines (broken line, one-dot chain line, dotted line, two-dot chain line in order from the bottom) as shown in the figure, the temperature difference ΔT As the value becomes larger, the characteristic line to be used is switched in stages so that the characteristic line on the higher rotation speed side is obtained.

具体的には、図7(c)に示すように、前記温度差△Tが前記△T≦2[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、制御基準としての実線(図7(a)の実線と同一)で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した20[rpm]を加えた図7(c)中の破線で示す特性となるように(すなわちNbh=Nb+20となるように)制御する。また、前記温度差△Tが前記2<△T≦5[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した30[rpm]を加えた図7(c)中の一点鎖線で示す特性となるように(すなわちNbh=Nb+30となるように)制御する。さらに、前記温度差△Tが前記5<△T≦10[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した40[rpm]を加えた図7(c)中の点線で示す特性となるように(すなわちNbh=Nb+40となるように)制御する。さらに、前記温度差△Tが前記10<△T[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した50[rpm]を加えた図7(c)中の二点鎖線で示す特性となるように(すなわちNbh=Nb+50となるように)制御する。   Specifically, as shown in FIG. 7C, when the temperature difference ΔT is in the range of ΔT ≦ 2 [° C.], the compressor control unit 410B sets the target rotational speed Nbh. FIG. 7 (a) is obtained by adding 20 [rpm] shown in FIG. 7 (b) to the target rotation speed Nb during the boiling operation shown by a solid line (same as the solid line in FIG. 7 (a)) as a control reference. c) Control is performed so that the characteristic indicated by the broken line in FIG. 5 is obtained (that is, Nbh = Nb + 20). When the temperature difference ΔT is in the range of 2 <ΔT ≦ 5 [° C.], the compressor control unit 410B sets the target rotational speed Nbh as the target during the boiling operation indicated by a solid line. Control is performed so that the rotation speed Nb has the characteristics indicated by the alternate long and short dash line in FIG. 7C obtained by adding 30 [rpm] shown in FIG. 7B (that is, Nbh = Nb + 30). Furthermore, when the temperature difference ΔT is in the range of 5 <ΔT ≦ 10 [° C.], the compressor control unit 410B sets the target rotational speed Nbh to the target during the boiling operation indicated by a solid line. Control is performed so that the characteristic indicated by the dotted line in FIG. 7C is obtained by adding 40 [rpm] shown in FIG. 7B to the rotational speed Nb (that is, Nbh = Nb + 40). Further, when the temperature difference ΔT is in the range of 10 <ΔT [° C.], the compressor control unit 410B sets the target rotational speed Nbh to the target rotational speed during the boiling operation indicated by a solid line. Control is performed so that Nb has a characteristic indicated by a two-dot chain line in FIG. 7C obtained by adding 50 [rpm] shown in FIG. 7B (that is, Nbh = Nb + 50).

図11に戻り、また前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、前記暖房運転時と同様、外気温度Tairとエアコン運転モードに基づき、各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。   Returning to FIG. 11, the outdoor fan speed N2 is controlled by the outdoor fan control unit 410D based on the outside air temperature Tair and the air conditioner operation mode, as in the heating operation. When the air temperature is low, the fan rotational speed is increased, and when the outside air temperature Tair is high, the fan rotational speed is decreased.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン回転数N1は、前記室内ファン制御部430Aの制御により、前記暖房運転時と同様、前記温度差△T(=Tr−Tcon)に基づき、Tcon−Trの値が大きい場合はファン回転数が大きくなるように、Tcon−Trの値が小さい場合はファン回転数が小さくなるように制御される。   The number of revolutions of the boiling pump 19 is controlled by the pump control unit 420A, as in the above-described boiling operation, when the boiling temperature Tb is lower than the target temperature, the number of revolutions of the pump becomes small, and the boiling temperature Tb is When the temperature is higher than the target temperature, the pump speed is controlled to be large. The indoor fan rotation speed N1 is controlled by the indoor fan control unit 430A, based on the temperature difference ΔT (= Tr−Tcon), as in the heating operation, and when the value of Tcon−Tr is large, When the value of Tcon-Tr is small, the fan rotational speed is controlled to be small so that the rotational speed is large.

そして、前記膨張弁111,112の開度は、前記したように、前記膨張弁制御部410Cにより前記分流制御によって可変に制御される。この分流制御の制御内容の詳細を、図12(a)及び図12(b)により説明する。   The opening degree of the expansion valves 111 and 112 is variably controlled by the diversion control by the expansion valve control unit 410C as described above. The details of the control contents of the diversion control will be described with reference to FIGS. 12 (a) and 12 (b).

図12(a)に、前記膨張弁制御部410Cにより実行される前記膨張弁111の開度制御の制御マップの一例を示す。図12(a)及び図12(b)に示すマップでは、縦軸に第1要求熱交換能力としての沸上要求能力(この例では、対応する指標としての前記沸上時の目標回転数Nb)を下向き増加方向にとり、横軸に第2要求熱交換能力としての暖房要求能力(この例では、対応する指標としての前記暖房時の目標回転数Nh)を下向き増加方向にとったときの、各状態における弁開度の値(例えば全閉状態が「0」で全開状態が「500」となる相対値)を表している。   FIG. 12A shows an example of a control map for controlling the opening degree of the expansion valve 111, which is executed by the expansion valve control unit 410C. In the maps shown in FIGS. 12A and 12B, the vertical boiling required capacity as the first required heat exchange capacity (in this example, the target rotational speed Nb at the time of boiling as a corresponding index is plotted on the vertical axis. ) In the downward increasing direction, and the horizontal axis indicates the heating required capacity as the second required heat exchange capacity (in this example, the target rotational speed Nh during heating as the corresponding index) in the downward increasing direction, The valve opening value in each state (for example, a relative value in which the fully closed state is “0” and the fully open state is “500”) is shown.

図12(a)に示すように、例えば沸上・暖房運転時における前記暖房要求能力が最小レベルで前記沸上要求能力も最小レベルであった場合には、膨張弁111は開度「250」(例えば全開と全閉のちょうど中間となる開度)となるように制御される。この暖房要求能力が最小レベルのままで前記沸上要求能力が1ランク高くなると膨張弁111の開度は少し大きな開度「300」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の開度はさらに少し大きな開度「350」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の開度はさらに少し大きな開度「400」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の開度はさらに少し大きな開度「450」(全開状態に近い状態)となるように制御される。このように膨張弁111の開度が徐々に大きくなることにより、水冷媒熱交換器15側及び室内熱交換器27側への分流における、水冷媒熱交換器15側への分流比が増大するように制御される。   As shown in FIG. 12 (a), for example, when the required heating capacity is at the minimum level and the required boiling capacity is at the minimum level at the time of boiling / heating operation, the expansion valve 111 has an opening "250". (For example, the opening degree is exactly halfway between fully open and fully closed). When the required heating capacity remains at the minimum level and the required boiling capacity increases by one rank, the opening degree of the expansion valve 111 is controlled to be a slightly larger opening "300", and the required boiling capacity increases by one rank. When it is higher, the opening of the expansion valve 111 is controlled to be a slightly larger opening “350”, and when the boiling-up required capacity is further increased by one rank, the opening of the expansion valve 111 is a slightly larger opening “400”. When the boiling requirement is further increased by one rank, the opening of the expansion valve 111 is controlled to be a slightly larger opening “450” (a state close to a fully opened state). Thus, by gradually increasing the opening degree of the expansion valve 111, the diversion ratio to the water refrigerant heat exchanger 15 side in the diversion to the water refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side increases. To be controlled.

同様に、前記暖房要求能力が最小レベルより1ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111は前記開度「250」より小さい開度「200」となるように制御される。これにより、前記分流における室内熱交換器27側への分流比が(前記開度「250」の場合に比べると)やや増大する。この状態のままで前記沸上要求能力が1ランク高くなると膨張弁111の開度は少し大きな開度「250」となるように制御され、その後、前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の開度は「300」「350」「400」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Similarly, when the required heating capacity is one level higher than the minimum level and the required boiling capacity is the minimum level, the expansion valve 111 has an opening “200” smaller than the opening “250”. To be controlled. Thereby, the diversion ratio to the indoor heat exchanger 27 side in the diversion is slightly increased (compared to the case of the opening degree “250”). In this state, when the required boiling capacity increases by one rank, the opening degree of the expansion valve 111 is controlled to be a slightly larger opening "250", and thereafter, the required boiling capacity increases by one rank. Accordingly, the opening degree of the expansion valve 111 is controlled to gradually increase to “300”, “350”, and “400”, and the diversion ratio toward the water / refrigerant heat exchanger 15 is increased.

さらに前記同様に、前記暖房要求能力が最小レベルより2ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111は前記開度「200」よりさらに小さい開度「150」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「200」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の開度は「200」「250」「300」「350」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, similarly to the above, when the heating required capacity is two ranks higher than the minimum level and the boiling required capacity is the minimum level, the expansion valve 111 has an opening “150” smaller than the opening “200”. It is controlled to become. Thereby, the diversion ratio to the indoor heat exchanger 27 side further increases (compared to the opening degree “200”). In this state, the opening degree of the expansion valve 111 is controlled to gradually increase to “200”, “250”, “300”, and “350” as the required boiling capacity increases by one rank. The diversion ratio to the refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最小レベルより3ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111は前記開度「150」よりさらに小さい開度「100」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「150」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の開度は「150」「200」「250」「300」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, similarly to the above, when the heating required capacity is three ranks higher than the minimum level and the boiling required capacity is at the minimum level, the expansion valve 111 has an opening “100” smaller than the opening “150”. It is controlled to become. Thereby, the diversion ratio to the indoor heat exchanger 27 side further increases (compared to the case of the opening degree “150”). In this state, as the boiling-up required capacity increases by one rank, the opening degree of the expansion valve 111 is controlled to gradually increase to “150”, “200”, “250”, and “300”. The diversion ratio to the refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最大レベルで前記沸上要求能力が最小レベルであった場合には、膨張弁111は前記開度「100」よりさらに小さい開度「50」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「100」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランク高くなるに連れて、膨張弁111の開度は「100」「150」「200」「250」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, similarly to the above, when the required heating capacity is the maximum level and the required boiling capacity is the minimum level, the expansion valve 111 has an opening “50” that is smaller than the opening “100”. Be controlled. Thereby, the diversion ratio to the indoor heat exchanger 27 side further increases (compared to the case of the opening degree “100”). In this state, the opening degree of the expansion valve 111 is controlled to gradually increase to “100”, “150”, “200”, and “250” as the boiling-up required capacity increases by one rank. The diversion ratio to the heat exchanger 15 side increases.

図12(b)に、前記膨張弁制御部410Cにより実行される前記膨張弁112の開度制御の制御マップの一例を示す。図12(b)に示すマップでは、前記同様、縦軸に沸上要求能力(沸上時の目標回転数Nb)、横軸に暖房要求能力(前記暖房時の目標回転数Nh)を下向き増加方向にとって表している。   FIG. 12B shows an example of a control map for opening degree control of the expansion valve 112 executed by the expansion valve control unit 410C. In the map shown in FIG. 12B, as described above, the boiling required capacity (target rotational speed Nb during boiling) is increased on the vertical axis, and the heating required capacity (target rotational speed Nh during heating) is increased downward on the horizontal axis. It represents for the direction.

図12(b)に示すように、例えば沸上・暖房運転時における前記暖房要求能力が最小レベルで前記沸上要求能力も最小レベルであった場合には、膨張弁112は開度「250」となるように制御される。この暖房要求能力が最小レベルのままで前記沸上要求能力が1ランク高くなると膨張弁112の開度は少し小さな開度「200」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁112の開度はさらに少し小さな開度「150」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁112の開度はさらに少し小さな開度「100」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁112の開度はさらに少し大きな開度「50」となるように制御される。このように膨張弁112の開度が徐々に小さくなることにより、水冷媒熱交換器15側及び室内熱交換器27側への分流における、水冷媒熱交換器15側への分流比が増大するように制御される。   As shown in FIG. 12 (b), for example, when the required heating capacity at the boiling / heating operation is at the minimum level and the required boiling capacity is also at the minimum level, the expansion valve 112 has the opening degree "250". It is controlled to become. When the required heating capacity remains at the minimum level and the required boiling capacity increases by one rank, the opening degree of the expansion valve 112 is controlled to be a slightly smaller opening "200", and the required boiling capacity increases by one rank. When it is higher, the opening degree of the expansion valve 112 is controlled to be a slightly smaller opening degree “150”, and when the boiling-up required capacity is further increased by one rank, the opening degree of the expansion valve 112 is a little smaller opening degree “100”. When the boiling requirement is further increased by one rank, the opening degree of the expansion valve 112 is controlled to be a slightly larger opening degree “50”. Thus, by gradually decreasing the opening degree of the expansion valve 112, the diversion ratio to the water refrigerant heat exchanger 15 side in the diversion to the water refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side increases. To be controlled.

同様に、前記暖房要求能力が最小レベルより1ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁112は前記開度「250」より大きい開度「300」となるように制御される。これにより、前記分流における室内熱交換器27側への分流比が(前記開度「250」の場合に比べると)やや増大する。この状態のままで前記沸上要求能力が1ランク高くなると膨張弁112の開度は少し小さな開度「250」となるように制御され、その後、前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁112の開度は「200」「150」「100」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Similarly, when the required heating capacity is one level higher than the minimum level and the required boiling capacity is the minimum level, the expansion valve 112 has an opening “300” that is larger than the opening “250”. To be controlled. Thereby, the diversion ratio to the indoor heat exchanger 27 side in the diversion is slightly increased (compared to the case of the opening degree “250”). In this state, when the required boiling capacity increases by one rank, the opening degree of the expansion valve 112 is controlled to be slightly smaller, “250”, and thereafter, the required boiling capacity increases by one rank. Accordingly, the opening degree of the expansion valve 112 is controlled to be gradually reduced to “200”, “150”, and “100”, and the diversion ratio to the water refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最小レベルより2ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁112は前記開度「300」よりさらに大きい開度「350」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「300」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁112の開度は「300」「250」「200」「150」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, similarly to the above, when the heating required capacity is two ranks higher than the minimum level and the boiling required capacity is the minimum level, the expansion valve 112 has an opening “350” larger than the opening “300”. It is controlled to become. Thereby, the diversion ratio to the indoor heat exchanger 27 side is further increased (compared to the case of the opening degree “300”). In this state, as the boiling required capacity increases by one rank, the opening degree of the expansion valve 112 is controlled to gradually decrease to “300” “250” “200” “150” The diversion ratio to the refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最小レベルより3ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁112は前記開度「350」よりさらに大きい開度「400」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「350」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁112の開度は「350」「300」「250」「200」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, similarly to the above, when the required heating capacity is three ranks higher than the minimum level and the required boiling capacity is the minimum level, the expansion valve 112 has an opening “400” that is larger than the opening “350”. It is controlled to become. Thereby, the diversion ratio to the indoor heat exchanger 27 side further increases (compared to the case of the opening degree “350”). In this state, as the boiling-up required capacity increases by one rank, the opening degree of the expansion valve 112 is controlled to gradually decrease to “350”, “300”, “250”, and “200”. The diversion ratio to the refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最大レベルで前記沸上要求能力が最小レベルであった場合には、膨張弁112は前記開度「400」よりさらに大きな開度「450」(全開状態に近い状態)となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「400」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランク高くなるに連れて、膨張弁112の開度は「400」「350」「300」「250」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。   Further, in the same manner as described above, when the required heating capacity is at the maximum level and the required boiling capacity is at the minimum level, the expansion valve 112 has an opening “450” (a fully open state) larger than the opening “400”. (Close state). Thereby, the diversion ratio to the indoor heat exchanger 27 side is further increased (compared to the opening degree “400”). In this state, the opening degree of the expansion valve 112 is controlled to be gradually reduced to “400”, “350”, “300”, and “250” as the boiling-up required capacity increases by one rank. The diversion ratio to the heat exchanger 15 side increases.

ところで、前記のような沸上・暖房運転において、本願発明者等の検討によれば、図12を用いて前記したような、水冷媒熱交換器15側に設けた膨張弁111及び室内熱交換器27側に設けた膨張弁112の開度可変のみによる分流バランス制御では、前記したような冷媒経路の冷凍サイクルの変動が大きく、圧縮機14から吐出される冷媒の前記冷媒吐出温度Toutが安定しないことが知見された。すなわち、図13(a)に比較例として示すように、この場合、例えば操作者がリモコン60を操作し前記エアコン設定温度Tconを変更した等により、室内熱交換器27の暖房能力が時間t1〜t2においてWA→WBに切り替わったとき、前記冷媒吐出温度Toutは前記時間t1から大きく上昇して前記時間t2においてTout=TAでピークとなった後、さらに大きく変化してその後の時間t3においてTout=TBまで急落した後、再度上昇してその後の時間t4になってようやく落ち着くという、かなり不安定な挙動となる。この結果、このときの前記冷媒吐出温度Toutの振れ幅TA−TBも、かなり大きな値の△TABとなる。この結果、冷媒吐出温度Toutが低すぎる場合(例えば時間t3のTout=TBなど)、前記水冷媒熱交換器15での熱交換量が低下して前記加熱戻り管6における前記沸上温度Tbが低くなり、貯湯タンク2内においていわゆる湯切れが生じるおそれがある。また冷媒吐出温度Toutが高すぎる場合(例えば時間t2のTout=TAなど)、公知の回路保護機能により運転が停止するおそれがある。   By the way, in the above boiling / heating operation, according to the study by the inventors of the present application, the expansion valve 111 provided on the water refrigerant heat exchanger 15 side and the indoor heat exchange as described above with reference to FIG. In the diversion balance control only by varying the opening degree of the expansion valve 112 provided on the compressor 27 side, the refrigerant path refrigeration cycle varies greatly as described above, and the refrigerant discharge temperature Tout of the refrigerant discharged from the compressor 14 is stable. It was found not to. That is, as shown in FIG. 13A as a comparative example, in this case, for example, when the operator operates the remote controller 60 to change the air conditioner set temperature Tcon, the heating capacity of the indoor heat exchanger 27 is changed from time t1 to time t1. When switching from WA to WB at t2, the refrigerant discharge temperature Tout rises greatly from the time t1, reaches a peak at Tout = TA at the time t2, and further changes to Tout = tout at a subsequent time t3. After falling sharply to TB, it rises again and finally settles down at time t4, which results in a rather unstable behavior. As a result, the fluctuation range TA-TB of the refrigerant discharge temperature Tout at this time also becomes a relatively large value ΔTAB. As a result, when the refrigerant discharge temperature Tout is too low (for example, Tout = TB at time t3), the heat exchange amount in the water refrigerant heat exchanger 15 is decreased, and the boiling temperature Tb in the heating return pipe 6 is reduced. There is a risk that so-called hot water shortage may occur in the hot water storage tank 2. Further, when the refrigerant discharge temperature Tout is too high (for example, Tout = TA at time t2), the operation may be stopped by a known circuit protection function.

そこで、これに対応して、本実施形態では、前記水冷媒熱交換器15側の冷媒と前記室内熱交換器27側の冷媒とが合流する前記合流点Eよりも下流側に設けた前記膨張弁113において、前記の吐出制御が行われる。すなわち、前記膨張弁制御部410Cにより、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁113の開度がフィードバック制御される。すなわち、前記膨張弁制御部410Cによって、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度が閉じる方向に制御され、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度が開く方向に制御される。   Accordingly, in this embodiment, in correspondence with this, the expansion provided on the downstream side of the junction E where the refrigerant on the water refrigerant heat exchanger 15 side and the refrigerant on the indoor heat exchanger 27 side merge. In the valve 113, the above discharge control is performed. That is, the opening degree of the expansion valve 113 is feedback-controlled by the expansion valve control unit 410C so that the refrigerant discharge temperature Tout becomes a predetermined constant value. That is, when the refrigerant discharge temperature Tout is too low, the expansion valve control unit 410C controls the opening degree of the expansion valve 113 to close, and when the refrigerant discharge temperature Tout is too high, the opening degree of the expansion valve 113 opens. To be controlled.

本実施形態によれば、このような制御が行われることにより、図13(b)にて示すように、前記のようにエアコン設定温度Tconが変更され、室内熱交換器27の暖房能力が時間t1〜t2においてWa→Wbに切り替わった場合でも、前記冷媒吐出温度Toutは前記時間t1から少しだけ上昇して前記時間t2においてTout=Taでピークとなった後、小さく下降して直後の時間t5でTout=Tbとなった後、その後の時間t6で安定して収束する。このように、前記図13(a)の比較例に比べて揺れの少ない安定的な挙動となる結果、このときの前記冷媒吐出温度Toutの振れ幅Ta−Tbも、前記△TABよりもかなり小さな△Tabにとどまる。したがって、前記比較例と異なり、高い前記沸上温度Tbを維持しつつ、前記水冷媒熱交換器15側と前記室内熱交換器27側との分流バランスを最適に制御し、安定的に運転を継続することができる。   According to this embodiment, by performing such control, as shown in FIG. 13B, the air conditioner set temperature Tcon is changed as described above, and the heating capacity of the indoor heat exchanger 27 is changed over time. Even when switching from Wa to Wb from t1 to t2, the refrigerant discharge temperature Tout rises slightly from the time t1, reaches a peak at Tout = Ta at the time t2, and then falls slightly to a time t5 immediately after Then, after Tout = Tb, it converges stably at time t6 thereafter. As described above, as a result of a stable behavior with less fluctuation compared to the comparative example of FIG. 13A, the fluctuation width Ta-Tb of the refrigerant discharge temperature Tout at this time is also considerably smaller than the ΔTAB. [Delta] stays at Tab. Therefore, unlike the comparative example, while maintaining the high boiling temperature Tb, the diversion balance between the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side is optimally controlled to operate stably. Can continue.

また、本実施形態では特に、前記水冷媒熱交換器15側の沸上要求能力(前記の例では沸上時目標回転数Nb)と前記室内熱交換器27側の暖房要求能力(前記の例では暖房時目標回転数Nh)とに応じて、膨張弁111,112の弁開度がそれぞれ可変に制御されることで、分流比率を制御する。これにより、高精度に分流比率を変更することができる。   Further, in the present embodiment, in particular, the boiling requirement capacity on the water refrigerant heat exchanger 15 side (the target rotation speed Nb in the above example) and the heating requirement capacity on the indoor heat exchanger 27 side (the above example). Then, the diversion ratio is controlled by variably controlling the valve openings of the expansion valves 111 and 112 according to the heating target rotation speed Nh). Thereby, a diversion ratio can be changed with high accuracy.

また、本実施形態では特に、配管部25bにおいて膨張弁111に加えて二方弁121が設けられ、配管部25d1において膨張弁112に加えて二方弁122が設けられる。これにより、水冷媒熱交換器15側の管路(配管部25b,25c等)及び室内熱交換器27側の管路(配管部25d1,25d2,26a,26b,25g)それぞれにおいて、確実な分流バランスの制御を行うことができる。   In the present embodiment, in particular, a two-way valve 121 is provided in addition to the expansion valve 111 in the piping portion 25b, and a two-way valve 122 is provided in addition to the expansion valve 112 in the piping portion 25d1. Thereby, in each of the pipes (pipe parts 25b, 25c, etc.) on the side of the water refrigerant heat exchanger 15 and the pipes (pipe parts 25d1, 25d2, 26a, 26b, 25g) on the indoor heat exchanger 27 side, reliable diversion is performed. Balance control can be performed.

なお、本発明は上記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not change the summary of invention.

例えば、上記実施形態では、前記水冷媒熱交換器15側の沸上要求能力(前記の例では沸上時目標回転数Nb)と前記室内熱交換器27側の暖房要求能力(前記の例では暖房時目標回転数Nh)とに応じて、膨張弁111,112の弁開度がそれぞれ可変に制御された。これに代えて、いずれか一方の膨張弁の弁開度は固定しつつ、残りの膨張弁の弁開度のみを可変に制御するようにしてもよい。   For example, in the above embodiment, the boiling requirement capacity on the water refrigerant heat exchanger 15 side (in the above example, the target rotation speed Nb during boiling) and the heating requirement capacity on the indoor heat exchanger 27 side (in the above example) The valve openings of the expansion valves 111 and 112 were variably controlled according to the heating target rotational speed Nh). Instead of this, only one of the remaining expansion valves may be variably controlled while the valve opening of any one of the expansion valves is fixed.

そのような変形例として、膨張弁111の開度を固定しつつ膨張弁112の開度のみを可変に制御する場合の前記膨張弁制御部420Bによる制御マップを図14(a)及び図14(b)に示す。   As such a modification, control maps by the expansion valve control unit 420B in the case where only the opening degree of the expansion valve 112 is variably controlled while the opening degree of the expansion valve 111 is fixed are shown in FIGS. Shown in b).

図14(a)及び図14(b)に示すマップでは、前記図12と同様、縦軸に沸上要求能力(前記沸上時の目標回転数Nb)を下向き増加方向にとり、横軸に暖房要求能力(前記暖房時の目標回転数Nh)を下向き増加方向にとったときの、各状態における弁開度の値(全閉状態が「0」で全開状態が「500」となる相対値)を表している。   In the maps shown in FIGS. 14 (a) and 14 (b), as in FIG. 12, the vertical axis indicates the required boiling capacity (the target rotational speed Nb during boiling) in the downward increasing direction, and the horizontal axis indicates heating. Value of valve opening in each state when the required capacity (target rotation speed Nh during heating) is increased downward (relative value where the fully closed state is “0” and the fully opened state is “500”) Represents.

そして、図14(a)に示すように、本変形例では、膨張弁111は、沸上・暖房運転時における前記暖房要求能力及び前記沸上要求能力がどのようなレベルであっても、前記膨張弁111の開度は開度「250」(例えば全開と全閉のちょうど中間となる開度)に固定される。   And as shown to Fig.14 (a), in this modification, the expansion valve 111 is the said whether the said heating request capability and the said boiling request capability at the time of boiling-up and heating operation are what level. The opening degree of the expansion valve 111 is fixed to an opening degree “250” (for example, an opening degree that is exactly halfway between full opening and full closing).

そして、膨張弁112の開度は、図14(b)に示すように、前記図12(b)に示した制御マップと全く同一の内容となっている。   The opening degree of the expansion valve 112 is exactly the same as the control map shown in FIG. 12 (b), as shown in FIG. 14 (b).

本変形例においては、前記した実施形態と同様の効果に加え、水冷媒熱交換器15側の膨張弁111の弁開度を固定としつつ室内熱交換器27側の膨張弁112の弁開度を可変として分流比率を制御することにより、シンプルな制御態様で迅速に分流比率を変更できる効果もある。   In this modified example, in addition to the effects similar to those of the above-described embodiment, the valve opening degree of the expansion valve 112 on the indoor heat exchanger 27 side is fixed while the valve opening degree of the expansion valve 111 on the water refrigerant heat exchanger 15 side is fixed. By controlling the diversion ratio with variable, there is also an effect that the diversion ratio can be quickly changed with a simple control mode.

また例えば、上記実施形態では、図11に示したように、配管部25b,25cにおいて沸上・暖房運転の際の水冷媒熱交換器15の上流側に前記二方弁121を配置し下流側に前記膨張弁111を配置すると共に、配管部25d1,25d2,26a,26b,25gにおいて沸上・暖房運転の際の室内熱交換器27の上流側に前記二方弁122を配置し下流側に前記膨張弁112を配置した(図11参照)。   Further, for example, in the above embodiment, as shown in FIG. 11, the two-way valve 121 is arranged on the upstream side of the water / refrigerant heat exchanger 15 at the time of the boiling / heating operation in the piping parts 25 b and 25 c, The two-way valve 122 is arranged on the upstream side of the indoor heat exchanger 27 during the heating and heating operation in the piping portions 25d1, 25d2, 26a, 26b, and 25g. The expansion valve 112 was disposed (see FIG. 11).

このような配置に対し、例えば図15に示すように、配管部25b,25cにおいて、二方弁121を全閉機能付きの膨張弁121aに入れ替えて配置し、この膨張弁121aで前記のように分流比率を制御したり、配管部25d1,25gにおいて、二方弁122を全閉機能付きの膨張弁122aに入れ替えて配置し、この膨張弁122aで前記のように分流比率を制御するようにしてもよい。あるいは、前記の2つの入れ替えを何れか片方のみ行うようにしてもよい。   For example, as shown in FIG. 15, the two-way valve 121 is replaced with an expansion valve 121a having a fully-closed function in the piping portions 25b and 25c, and the expansion valve 121a is used as described above. In the piping portions 25d1 and 25g, the two-way valve 122 is replaced with an expansion valve 122a having a fully-closed function, and the diversion ratio is controlled by the expansion valve 122a as described above. Also good. Alternatively, only one of the two exchanges may be performed.

さらに、本発明は以上の態様に限定されることなく、例えば、前記二方弁121〜124のうち少なくとも1つを、閉止機能付きの膨張弁で置き換えても良い。また、前記膨張弁111〜113に代え、減圧器としてエジェクターを用いても良い。   Furthermore, the present invention is not limited to the above embodiment, and for example, at least one of the two-way valves 121 to 124 may be replaced with an expansion valve with a closing function. Further, instead of the expansion valves 111 to 113, an ejector may be used as a decompressor.

1 ヒートポンプ給湯機
2 貯湯タンク
4 加熱循環回路(湯水循環回路)
5 加熱往き管(湯水配管)
6 加熱戻り管(湯水配管)
14 圧縮機
15 水冷媒熱交換器
15a 冷媒側の流路
15b 水側の流路
17 室外熱交換器(ヒートポンプ熱交換器)
18 冷媒配管
18a 配管部(吐出側管路)
18c 配管部(吸入側管路)
18d 配管部(吸入側管路)
18e 配管部(第3管路)
25a 配管部(吐出側管路)
25b 配管部(第1管路)
25c 配管部(第1管路)
25d1 配管部(第2管路)
25d2 配管部(第2管路)
25e1 配管部(第3管路)
25e2 配管部(第3管路)
25g 配管部(第2管路)
26a 配管部(第2管路)
26b 配管部(第2管路)
27 室内熱交換器
30 冷媒循環回路
31 四方弁
100 貯湯ユニット
111 膨張弁(第1減圧器)
112 膨張弁(第2減圧器)
113 膨張弁(第3減圧器)
121 二方弁(第1二方弁)
122 二方弁(第2二方弁)
123 二方弁
124 二方弁
200 ヒートポンプユニット(室外機)
300 エアコンユニット(室内機)
410 ヒーポン制御部
410C 膨張弁制御部(吐出温度制御手段)
420 貯湯制御部
420B 膨張弁制御部(分流制御手段)
430 エアコン制御部
D 分岐点
E 合流点
Nb 沸上運転時の圧縮機の目標回転数(第1要求熱交換能力)
Nh 暖房運転時の圧縮機の目標回転数(第2要求熱交換能力)
Nbh 沸上・暖房運転時の圧縮機の目標回転数
Tair 外気温度
Tcon エアコン設定温度
Tr 室内温度
1 Heat pump water heater 2 Hot water storage tank 4 Heating circulation circuit (hot water circulation circuit)
5 Heating pipe (hot water pipe)
6 Heating return pipe (hot water pipe)
DESCRIPTION OF SYMBOLS 14 Compressor 15 Water refrigerant heat exchanger 15a Refrigerant side flow path 15b Water side flow path 17 Outdoor heat exchanger (heat pump heat exchanger)
18 Refrigerant piping 18a Piping section (discharge side pipe line)
18c Piping section (suction side pipe line)
18d Piping section (suction side pipe line)
18e Piping section (third pipe line)
25a Piping section (discharge side pipe line)
25b Piping section (first pipe)
25c Piping section (first pipe)
25d1 Piping section (second pipe)
25d2 Piping section (second pipe)
25e1 Piping section (third pipe line)
25e2 Piping section (third pipe line)
25g Piping section (second pipe)
26a Piping section (second pipe)
26b Piping section (second pipe)
27 Indoor heat exchanger 30 Refrigerant circulation circuit 31 Four-way valve 100 Hot water storage unit 111 Expansion valve (first decompressor)
112 Expansion valve (second pressure reducer)
113 Expansion valve (third decompressor)
121 Two-way valve (first two-way valve)
122 Two-way valve (second two-way valve)
123 Two-way valve 124 Two-way valve 200 Heat pump unit (outdoor unit)
300 Air conditioner unit (indoor unit)
410 Heaton Control Unit 410C Expansion Valve Control Unit (Discharge Temperature Control Unit)
420 Hot Water Storage Control Unit 420B Expansion Valve Control Unit (Diversion Control Unit)
430 Air-conditioner control unit D Branch point E Junction point Nb Target compressor speed during boiling operation (first required heat exchange capacity)
Nh Target compressor speed during heating operation (second required heat exchange capacity)
Nbh Target compressor speed during boiling and heating operation Tair Outside air temperature Tcon Air-conditioner set temperature Tr Indoor temperature

Claims (3)

冷媒と室内空気との熱交換を行う、凝縮器としての室内熱交換器と、
湯水を貯湯する貯湯タンクと、
冷媒通路と水通路とを備え、前記冷媒通路内の前記冷媒と前記水通路内の水との熱交換を行う、凝縮器としての水冷媒熱交換器と、
前記冷媒と外気との熱交換を行う、蒸発器としてのヒートポンプ熱交換器と、
圧縮機と
を有し、
前記水冷媒熱交換器の前記水通路と前記貯湯タンクとを湯水配管によって環状に接続して湯水循環回路を形成し、前記室内熱交換器、前記水冷媒熱交換器の前記冷媒通路、前記ヒートポンプ熱交換器、及び、前記圧縮機を冷媒配管で接続して冷媒循環回路を形成して、前記室内熱交換器により室内空気を加熱しかつ前記水冷媒熱交換器により前記貯湯タンクへの水を加熱する沸上・暖房運転を実行可能な暖房機能付きヒートポンプ給湯機において、
前記冷媒配管は、
前記圧縮機の吐出側に接続される吐出側管路と、
前記吐出側管路に対し所定の分岐点から分岐して接続され、前記水冷媒熱交換器が配設された第1管路と、
前記吐出側管路に対し前記分岐点から分岐して接続され、前記室内熱交換器が配設された第2管路と、
前記水冷媒熱交換器より下流側の前記第1管路と前記室内熱交換器より下流側の前記第2管路とが合流する合流点を、前記ヒートポンプ熱交換器の入口側に接続する第3管路と、
前記ヒートポンプ熱交換器の出口側を前記圧縮機の吸入側に接続する吸入側管路とを含み、
前記第1管路は、第1減圧器を備えており、
前記第2管路は、第2減圧器を備えており、
前記第3管路は、第3減圧器を備えており、
前記第1減圧器及び前記第2減圧器の弁開度を調整し、前記吐出側管路から前記第1管路及び前記第2管路へ分かれて流入する前記冷媒の分流を制御する分流制御手段と、
前記第3減圧器の前記弁開度を調整し、前記圧縮機の吐出側から吐出される前記冷媒の冷媒吐出温度を制御する吐出温度制御手段と
を設けたことを特徴とする暖房機能付きヒートポンプ給湯機。
An indoor heat exchanger as a condenser that performs heat exchange between the refrigerant and room air;
A hot water storage tank for storing hot water,
A water refrigerant heat exchanger as a condenser, comprising a refrigerant passage and a water passage, and performing heat exchange between the refrigerant in the refrigerant passage and water in the water passage;
A heat pump heat exchanger as an evaporator that performs heat exchange between the refrigerant and outside air;
A compressor,
The water passage of the water refrigerant heat exchanger and the hot water storage tank are annularly connected by hot water piping to form a hot water circulation circuit, the indoor heat exchanger, the refrigerant passage of the water refrigerant heat exchanger, the heat pump A heat exchanger and the compressor are connected by refrigerant piping to form a refrigerant circulation circuit, indoor air is heated by the indoor heat exchanger, and water to the hot water storage tank is discharged by the water refrigerant heat exchanger. In a heat pump water heater with a heating function capable of performing heating and heating operations,
The refrigerant pipe is
A discharge side pipe connected to the discharge side of the compressor;
A first pipe that is branched and connected to the discharge side pipe from a predetermined branch point, and the water refrigerant heat exchanger is disposed;
A second pipe that is branched and connected to the discharge side pipe from the branch point, and in which the indoor heat exchanger is disposed;
A junction that joins the first pipeline downstream of the water-refrigerant heat exchanger and the second pipeline downstream of the indoor heat exchanger is connected to the inlet side of the heat pump heat exchanger. 3 pipe lines,
A suction side pipe connecting the outlet side of the heat pump heat exchanger to the suction side of the compressor,
The first pipe line includes a first pressure reducer;
The second conduit includes a second pressure reducer;
The third conduit includes a third pressure reducer;
Flow control for adjusting the valve opening of the first pressure reducer and the second pressure reducer and controlling the flow of the refrigerant that flows separately from the discharge side pipe to the first pipe and the second pipe Means,
A heat pump with a heating function, characterized by comprising discharge temperature control means for adjusting the valve opening of the third decompressor and controlling the refrigerant discharge temperature of the refrigerant discharged from the discharge side of the compressor Water heater.
前記分流制御手段は、
前記第1減圧器の弁開度を固定としつつ、前記室内熱交換器における要求熱交換能力と前記水冷媒熱交換器における要求熱交換能力とに応じて前記第2減圧器の弁開度を可変に制御することにより、前記第1管路側と前記第2管路側との分流比率を制御する
ことを特徴とする請求項1記載の暖房機能付きヒートポンプ給湯機。
The diversion control means includes:
While the valve opening of the first pressure reducer is fixed, the valve opening of the second pressure reducer is set according to the required heat exchange capability in the indoor heat exchanger and the required heat exchange capability in the water refrigerant heat exchanger. The heat pump water heater with a heating function according to claim 1, wherein a diversion ratio between the first pipeline side and the second pipeline side is controlled by variably controlling.
前記分流制御手段は、
前記水冷媒熱交換器における第1要求熱交換能力と前記室内熱交換器における第2要求熱交換能力とに応じて、前記第1減圧器及び前記第2減圧器の弁開度をそれぞれ可変に制御することにより、前記第1管路側と前記第2管路側との分流比率を制御する
ことを特徴とする請求項1記載の暖房機能付きヒートポンプ給湯機。
The diversion control means includes:
Depending on the first required heat exchange capability in the water refrigerant heat exchanger and the second required heat exchange capability in the indoor heat exchanger, the valve opening degree of the first decompressor and the second decompressor can be varied. 2. The heat pump water heater with a heating function according to claim 1, wherein the flow dividing ratio between the first pipe line side and the second pipe line side is controlled by controlling.
JP2016202489A 2016-10-14 2016-10-14 Heat pump water heater with heating function Active JP6718786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202489A JP6718786B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with heating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202489A JP6718786B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with heating function

Publications (2)

Publication Number Publication Date
JP2018063093A true JP2018063093A (en) 2018-04-19
JP6718786B2 JP6718786B2 (en) 2020-07-08

Family

ID=61967669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202489A Active JP6718786B2 (en) 2016-10-14 2016-10-14 Heat pump water heater with heating function

Country Status (1)

Country Link
JP (1) JP6718786B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063091A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063090A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling/heating function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
JP2018063091A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling function

Also Published As

Publication number Publication date
JP6718786B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP4959800B2 (en) Operation control method of refrigeration cycle apparatus
KR101462745B1 (en) Control device for an air-conditioning device and air-conditioning device provided therewith
JP6792057B2 (en) Refrigeration cycle equipment
JP4375171B2 (en) Refrigeration equipment
JP6657613B2 (en) Air conditioner
EP2927612B1 (en) Air conditioning device
JPWO2019053876A1 (en) Air conditioner
JP6703468B2 (en) Air conditioner with hot water supply function
JP2018066518A (en) Heat pump water heater with cooling function
JP6640695B2 (en) Heat pump water heater with air conditioning function
JP6718786B2 (en) Heat pump water heater with heating function
JP2022535197A (en) Air conditioner and its control method
JP5872052B2 (en) Air conditioner
JP2018091540A (en) Air conditioner
JP6675961B2 (en) Heat pump water heater with cooling function
JP2018066538A (en) Heat pump water heater with air-conditioning function
US20210207834A1 (en) Air-conditioning system
JP2017009269A (en) Air conditioning system
JP2017009269A5 (en)
JP6679461B2 (en) Heat pump water heater with heating function
JP5463995B2 (en) Multi-room air conditioner
US10465935B2 (en) Air-conditioning apparatus
JP7160699B2 (en) Heat pump water heater with air conditioning function
JP5445494B2 (en) Air conditioner
JP7265368B2 (en) Cooling waste heat utilization heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6718786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250