JP7160699B2 - Heat pump water heater with air conditioning function - Google Patents

Heat pump water heater with air conditioning function Download PDF

Info

Publication number
JP7160699B2
JP7160699B2 JP2019006443A JP2019006443A JP7160699B2 JP 7160699 B2 JP7160699 B2 JP 7160699B2 JP 2019006443 A JP2019006443 A JP 2019006443A JP 2019006443 A JP2019006443 A JP 2019006443A JP 7160699 B2 JP7160699 B2 JP 7160699B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
way valve
pipeline
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006443A
Other languages
Japanese (ja)
Other versions
JP2020115061A (en
Inventor
晃寛 大平
元泰 佐藤
隆 伊藤
基 阿部
聡 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2019006443A priority Critical patent/JP7160699B2/en
Publication of JP2020115061A publication Critical patent/JP2020115061A/en
Application granted granted Critical
Publication of JP7160699B2 publication Critical patent/JP7160699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、室内空気の暖房機能及び冷房機能を備えた、冷暖房機能付きヒートポンプ給湯機に関するものである。 TECHNICAL FIELD The present invention relates to a heat pump water heater with a cooling and heating function, which has indoor air heating and cooling functions.

従来よりこの種のヒートポンプ給湯機においては、特許文献1記載のように、冷房運転時には四方弁を、圧縮機を室外熱交換器(ヒートポンプ熱交換器)側に連通する位置に切り替えることで、圧縮機→室外熱交換器→室内熱交換器→圧縮機の順序で冷媒を流通させる一方、沸上・冷房運転時には四方弁を、前記とは逆の圧縮機を反室外熱交換器側に連通する位置に切り替えることで、圧縮機→水冷媒熱交換器→室内熱交換器→室外熱交換器→圧縮機の順序で冷媒を流通させるものがあった。 Conventionally, in this type of heat pump water heater, as described in Patent Document 1, during cooling operation, the four-way valve is switched to a position where the compressor communicates with the outdoor heat exchanger (heat pump heat exchanger) side, so that the compression Refrigerant is circulated in the order of air conditioner → outdoor heat exchanger → indoor heat exchanger → compressor. In some cases, the refrigerant is circulated in the order of compressor→water-refrigerant heat exchanger→indoor heat exchanger→outdoor heat exchanger→compressor by switching the positions.

特開2018-63094号公報JP 2018-63094 A

前記の従来技術では、冷房運転時と沸上・冷房運転時とで前記四方弁を互いに逆向きの位置に切り替える必要がある。このため、当該四方弁切替時における運転中断により室温が上昇し冷房感の低下が生じるという問題があった。 In the prior art, it is necessary to switch the four-way valve to opposite positions during the cooling operation and during the boiling/cooling operation. Therefore, there is a problem that the room temperature rises due to interruption of operation at the time of switching the four-way valve, resulting in a decrease in cooling sensation.

上記課題を解決するために、本発明の請求項1では、冷媒と外気との熱交換を行う、凝縮器又は蒸発器として選択的に機能可能なヒートポンプ熱交換器と、前記ヒートポンプ熱交換器に接続される圧縮機と、湯水を貯湯する貯湯タンクと、前記冷媒と水との熱交換を行う、凝縮器としての水冷媒熱交換器と、前記冷媒と室内空気との熱交換を行う、凝縮器又は蒸発器として選択的に機能可能な室内熱交換器とを有し、前記水冷媒熱交換器の水側と前記貯湯タンクとを湯水配管で環状に接続して湯水循環回路を形成し、前記ヒートポンプ熱交換器、前記圧縮機、前記水冷媒熱交換器の冷媒側、及び、前記室内熱交換器を冷媒配管で接続して冷媒循環回路を形成する冷暖房機能付きヒートポンプ給湯機において、前記圧縮機の吐出側を凝縮器としての前記ヒートポンプ熱交換器に連通させるとともに前記圧縮機の吸込側を蒸発器としての前記室内熱交換器に連通させる第1切替位置、及び、前記圧縮機の吐出側を凝縮器としての前記室内熱交換器に連通させるとともに前記圧縮機の吸込側を蒸発器としての前記ヒートポンプ熱交換器に連通させる第2切替位置、に切替可能な四方弁と、一方側が前記第1切替位置の前記四方弁を介し前記圧縮機の吐出側に連通されると共に、他方側が凝縮器としての前記ヒートポンプ熱交換器の入口側に接続される、第1管路と、凝縮器としての前記ヒートポンプ熱交換器の出口側と蒸発器としての前記室内熱交換器の入口側とを接続する、第2管路と、一方側が前記第1切替位置の前記四方弁を介し前記圧縮機の吸込側に連通されると共に、他方側が蒸発器としての前記室内熱交換器の出口側に接続される、第3管路と、一方側が前記第1管路に設けた第1分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の入口側に接続される、第4管路と、一方側が前記第2管路に設けた第2分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の出口側に接続される、第5管路と、一方側が前記第1管路に設けた第3分岐点から分岐して設けられて蒸発器としての前記ヒートポンプ熱交換器の出口側に接続され、他方側が前記第3管路に設けた第4分岐点から分岐して設けられて前記第1切替位置の前記四方弁を介し前記圧縮機の吸込側に連通される、第6管路と、前記四方弁を前記第1切替位置及び前記第2切替位置のいずれかに切り替える四方弁制御手段と、一方側が前記第3管路に設けた第5分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の入口側に接続される、第7管路と、を有し、前記四方弁が前記第2切替位置にある場合において、前記第3管路は、前記圧縮機の吐出側と凝縮器としての前記室内熱交換器の入口側とを接続し、前記第1管路は、前記圧縮機の吸込側と蒸発器としての前記ヒートポンプ熱交換器の出口側とを接続し、前記第2管路は、凝縮器としての前記室内熱交換器の出口側と蒸発器としての前記ヒートポンプ熱交換器の入口側とを接続するものである。
In order to solve the above problems, claim 1 of the present invention provides a heat pump heat exchanger that can selectively function as a condenser or an evaporator that exchanges heat between a refrigerant and the outside air, and the heat pump heat exchanger A connected compressor, a hot water storage tank that stores hot water, a water-refrigerant heat exchanger as a condenser that exchanges heat between the refrigerant and water, and a condenser that exchanges heat between the refrigerant and indoor air. and an indoor heat exchanger capable of selectively functioning as an evaporator or an evaporator, and the water side of the water-refrigerant heat exchanger and the hot water storage tank are annularly connected by hot water piping to form a hot water circulation circuit, In a heat pump water heater with a cooling and heating function in which the heat pump heat exchanger, the compressor, the refrigerant side of the water-refrigerant heat exchanger, and the indoor heat exchanger are connected by refrigerant piping to form a refrigerant circulation circuit, the compression a first switching position in which the discharge side of the compressor is communicated with the heat pump heat exchanger as a condenser and the suction side of the compressor is communicated with the indoor heat exchanger as an evaporator; and the discharge side of the compressor. to the indoor heat exchanger as a condenser and the suction side of the compressor to be communicated to the heat pump heat exchanger as an evaporator; a first pipeline that communicates with the discharge side of the compressor through the four-way valve in the 1 switching position, and the other side of which is connected to the inlet side of the heat pump heat exchanger as a condenser; a second pipeline connecting the outlet side of the heat pump heat exchanger and the inlet side of the indoor heat exchanger as an evaporator; and a third pipeline connected to the outlet side of the indoor heat exchanger as an evaporator on the other side, and one side branched from a first branch point provided in the first pipeline. a fourth pipe having the other side connected to the inlet side of the water-refrigerant heat exchanger as a condenser; and one side branching from a second branch point provided in the second pipe. and a fifth pipeline whose other side is connected to the outlet side of the water-refrigerant heat exchanger as a condenser, and one side of which is branched from a third branch point provided in the first pipeline for evaporation. is connected to the outlet side of the heat pump heat exchanger as a vessel, and the other side is provided by branching from a fourth branch point provided in the third pipeline, and is provided through the four-way valve in the first switching position to the compressor Switching the sixth pipeline and the four-way valve to either the first switching position or the second switching position, which are communicated with the suction side of A four-way valve control means to be replaced, one side of which is branched from a fifth branch point provided in the third pipeline, and the other side of which is connected to the inlet side of the water-refrigerant heat exchanger as a condenser. 7 pipelines, and when the four-way valve is in the second switching position, the third pipeline is connected to the discharge side of the compressor and the inlet side of the indoor heat exchanger as a condenser. , the first pipeline connects the suction side of the compressor and the outlet side of the heat pump heat exchanger as an evaporator, and the second pipeline connects the indoor heat exchanger as a condenser It connects the outlet side of the evaporator and the inlet side of the heat pump heat exchanger as an evaporator .

また、請求項2では、前記第4管路に設けられ、当該第4管路を開閉する第1開閉弁と、前記第6管路に設けられ、当該第6管路を開閉する第2開閉弁と、
を有するものである。
Further, in claim 2 , a first opening/closing valve provided in the fourth pipeline for opening and closing the fourth pipeline, and a second opening/closing valve provided in the sixth pipeline for opening and closing the sixth pipeline. a valve;
It has

また、請求項3では、前記第1管路における前記第1分岐点と前記第3分岐点との間の区間に設けられ、当該区間を開閉する第3開閉弁を有するものである。
Moreover, in Claim 3 , it is provided in the section between the said 1st branch point and the said 3rd branch point in a said 1st pipeline, and has a 3rd on-off valve which opens and closes the said area.

また、請求項4では、前記第3管路における前記第5分岐点よりも前記室内熱交換器側を閉止可能な第4開閉弁と、前記第2管路における前記第2分岐点よりも前記室内熱交換器側を閉止可能な第5開閉弁と、を有するものである。
Further, in claim 4 , a fourth on-off valve capable of closing the indoor heat exchanger side of the third pipeline rather than the fifth branch point, and the second pipeline more than the second branch point. and a fifth on-off valve capable of closing the indoor heat exchanger side.

また、請求項5では、前記四方弁制御手段は、所定の運転切替因子に応じて、前記四方弁を前記第1切替位置又は前記第2切替位置のいずれか一方に切り替えるものである。
Further, in claim 5 , the four-way valve control means switches the four-way valve to either the first switching position or the second switching position according to a predetermined operation switching factor.

この発明の請求項1によれば、四方弁を第1切替位置に切り替えることで、冷房(単独)運転を実行することができる。
すなわち、前記第1切替位置への切替により、圧縮機の吐出側が第1管路を介し凝縮器としてのヒートポンプ熱交換器の入口側に連通し、さらにそのヒートポンプ熱交換器の出口側が第2管路を介し蒸発器としての室内熱交換器の入口側に接続され、さらにその室内熱交換器の出口側が第3管路を介し圧縮機の吸込側に連通する。これにより、圧縮機から吐出された高温高圧の冷媒ガスが前記ヒートポンプ熱交換器で外気へ放熱し凝縮して液体冷媒となり、その後前記室内熱交換器で蒸発することで室内空気から吸熱して圧縮機へと戻る、前記冷房運転が実現される。
According to claim 1 of the present invention, cooling (individual) operation can be performed by switching the four-way valve to the first switching position.
That is, by switching to the first switching position, the discharge side of the compressor communicates with the inlet side of the heat pump heat exchanger as a condenser through the first conduit, and the outlet side of the heat pump heat exchanger communicates with the second conduit. It is connected to the inlet side of an indoor heat exchanger as an evaporator via a line, and the outlet side of the indoor heat exchanger communicates with the suction side of the compressor via a third line. As a result, the high-temperature and high-pressure refrigerant gas discharged from the compressor radiates heat to the outside air in the heat pump heat exchanger and condenses into liquid refrigerant, and then evaporates in the indoor heat exchanger to absorb heat from the indoor air and compress it. The cooling operation is realized back to the aircraft.

また、請求項1によれば、前記第1管路、前記第2管路、前記第3管路とは別に、第1管路から分岐して接続される第4管路、第2管路から分岐して接続される第5管路、第1管路から分岐して接続される第6管路が設けられており、これらを用いることで、前記四方弁を第1切替位置とした状態で、室内空間の冷房を行いつつ貯湯タンク内の湯水の加温を行う、沸上・冷房運転を実行することができる。 Further, according to claim 1, a fourth pipeline and a second pipeline are branched and connected from the first pipeline separately from the first pipeline, the second pipeline, and the third pipeline. A fifth pipeline branched from and connected to and a sixth pipeline branched from the first pipeline are provided, and by using these, the four-way valve is set to the first switching position Thus, it is possible to perform a boiling/cooling operation in which the hot water in the hot water storage tank is heated while cooling the indoor space.

すなわち、前記第1管路の第1分岐点から分岐する前記第4管路を介し、圧縮機の吐出側が凝縮器としての水冷媒熱交換器の入口側に連通し、さらにその水冷媒熱交換器の出口側が、第5管路を介し、第2管路の第2分岐点に接続される。この第2管路は、前記したように蒸発器としての室内熱交換器の入口側に接続され、その室内熱交換器の出口側が第3管路を介して圧縮機の吸込側に連通される。
一方、前記第2管路はまた、凝縮器として機能するときのヒートポンプ熱交換器の出口側(言い換えれば蒸発器としてのヒートポンプ熱交換器の入口側)にも接続されている。この蒸発器としてのヒートポンプ熱交換器の出口側(言い換えれば凝縮器として機能するときのヒートポンプ熱交換器の入口側)に接続される前記第1管路に備えられた第3分岐点からは第6管路が分岐して接続されており、この第6管路は、第3管路に設けた第4分岐点に接続され、第3管路を介して圧縮機の吸込側に連通されることとなる。
That is, through the fourth pipeline branching from the first branch point of the first pipeline, the discharge side of the compressor communicates with the inlet side of a water-refrigerant heat exchanger as a condenser, and the water-refrigerant heat exchange is performed. The outlet side of the vessel is connected via a fifth line to the second branch point of the second line. This second pipe line is connected to the inlet side of the indoor heat exchanger as the evaporator as described above, and the outlet side of the indoor heat exchanger is communicated with the suction side of the compressor via the third pipe line. .
On the other hand, the second pipeline is also connected to the outlet side of the heat pump heat exchanger when functioning as a condenser (in other words, the inlet side of the heat pump heat exchanger as an evaporator). From the third branch point provided in the first pipeline connected to the outlet side of the heat pump heat exchanger as the evaporator (in other words, the inlet side of the heat pump heat exchanger when functioning as a condenser), 6 pipelines are branched and connected, and this 6th pipeline is connected to a 4th branch point provided in the 3rd pipeline, and is communicated with the suction side of the compressor via the 3rd pipeline. It will happen.

このような接続態様により、圧縮機から吐出された高温高圧の冷媒ガスは第4管路を介して前記水冷媒熱交換器へ導入され、当該水冷媒熱交換器において貯湯タンクへ通じる湯水配管へ放熱し凝縮して液体冷媒となり、その後第5管路を介して第2分岐点にて第2管路へ導入される。第2管路へ導入された前記液体冷媒の一部は第2分岐点から前記室内熱交換器へと導入され当該室内熱交換器で蒸発することで室内空気から吸熱した後、第3管路を介して圧縮機へと戻る一方、第2管路へ導入された前記液体冷媒の残りは第2分岐点から前記ヒートポンプ熱交換器へと導入され当該ヒートポンプ熱交換器で蒸発することで外気から吸熱した後、第1管路の第3分岐点から第6管路を介して前記第3管路へと合流し、圧縮機へと戻る。このようにして、室内空間の冷却と貯湯タンク内の湯水の加温とを同時並行して行う沸上・冷房運転が実現される。 With such a connection mode, the high-temperature and high-pressure refrigerant gas discharged from the compressor is introduced into the water-refrigerant heat exchanger through the fourth pipe, and in the water-refrigerant heat exchanger, into the hot water pipe leading to the hot water storage tank. The heat is released and condensed to form a liquid refrigerant, which is then introduced into the second conduit at the second branch point via the fifth conduit. A portion of the liquid refrigerant introduced into the second pipeline is introduced into the indoor heat exchanger from the second branch point, evaporates in the indoor heat exchanger, absorbs heat from the indoor air, and then flows into the third pipeline. while returning to the compressor via, the rest of the liquid refrigerant introduced into the second pipeline is introduced into the heat pump heat exchanger from the second branch point and evaporated in the heat pump heat exchanger to be removed from the outside air. After absorbing the heat, it joins the third pipeline from the third branch point of the first pipeline via the sixth pipeline and returns to the compressor. In this manner, the heating/cooling operation is realized in which the cooling of the indoor space and the heating of the hot water in the hot water storage tank are performed in parallel.

以上のように、請求項1によれば、冷房運転及び沸上・冷房運転のいずれについても、四方弁を同じ切替位置(第1切替位置)に切り替えた状態のまま行うことができる。この結果、沸上・冷房運転時において四方弁を冷房運転時とは逆向きの位置に切り替える必要があった従来手法のように、当該四方弁切替時における運転中断により室温が上昇し冷房感の低下が生じるのを防止することができる。 As described above, according to claim 1, both the cooling operation and the boiling/cooling operation can be performed while the four-way valve is switched to the same switching position (first switching position). As a result, unlike the conventional method in which the four-way valve had to be switched to the position opposite to that during the cooling operation during the heating and cooling operation, the suspension of operation during the switching of the four-way valve raises the room temperature and reduces the cooling sensation. You can prevent the decline from occurring.

また、請求項1によれば、四方弁を第2切替位置に切り替えることで、暖房(単独)運転を実行することができる。
すなわち、前記第2切替位置への切替により、圧縮機の吐出側が第3管路を介し凝縮器としての室内熱交換器の入口側に連通し、さらにその室内熱交換器の出口側が第2管路を介し蒸発器としてのヒートポンプ熱交換器の入口側に接続され、さらにそのヒートポンプ熱交換器の出口側が第1管路を介し圧縮機の吸込側に連通する。これにより、圧縮機から吐出された高温高圧の冷媒ガスが前記室内熱交換器で室内空気へ放熱し凝縮して液体冷媒となり、その後ヒートポンプ熱交換器で蒸発することで外気から吸熱して圧縮機へと戻る、前記暖房運転を実現することができる。
Further, according to claim 1 , heating (individual) operation can be executed by switching the four-way valve to the second switching position.
That is, by switching to the second switching position, the discharge side of the compressor communicates with the inlet side of the indoor heat exchanger as a condenser through the third pipe line, and the outlet side of the indoor heat exchanger communicates with the second pipe. It is connected to the inlet side of a heat pump heat exchanger as an evaporator via a line, and the outlet side of the heat pump heat exchanger communicates with the suction side of the compressor via a first line. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor radiates heat to the indoor air in the indoor heat exchanger and condenses to become liquid refrigerant. , the heating operation can be realized.

一方、前記第3管路はまた、第5分岐点から分岐して設けられる第7管路を介し、凝縮器として機能する水冷媒熱交換器の入口側にも接続されている。前記したように、この水冷媒熱交換器の出口側は、前記第5管路を介し前記第2管路の第2分岐点に接続されており、当該第2管路を介して蒸発器としてのヒートポンプ熱交換器の入口側に接続されることとなる。 On the other hand, the third pipeline is also connected to the inlet side of a water-refrigerant heat exchanger functioning as a condenser via a seventh pipeline branched from the fifth branch point. As described above, the outlet side of this water-refrigerant heat exchanger is connected to the second branch point of the second pipeline via the fifth pipeline, and the evaporator is operated via the second pipeline. will be connected to the inlet side of the heat pump heat exchanger.

このような接続態様により、圧縮機から吐出された高温高圧の冷媒ガスのうち、前記の第3管路→室内熱交換器→第2管路→ヒートポンプ熱交換器の経路で流れて前記暖房を行うもの以外の残りを、第3管路から分岐する前記第7管路へと分流させて当該第7管路を介して前記水冷媒熱交換器へ導入し、当該水冷媒熱交換器において貯湯タンクへ通じる湯水配管へ放熱し凝縮し、その凝縮後の液体冷媒を第5管路を介し第2分岐点にて第2管路へと合流させ、前記ヒートポンプ熱交換器へと導入可能となる。この結果、室内空間の暖房と貯湯タンク内の湯水の加温とを同時並行して行う、沸上・暖房運転を実現することもできる。 With such a connection mode, the high-temperature and high-pressure refrigerant gas discharged from the compressor flows through the route of the third pipe → the indoor heat exchanger → the second pipe → the heat pump heat exchanger to perform the heating. The remainder other than what is performed is diverted to the seventh pipeline branching from the third pipeline, introduced into the water-refrigerant heat exchanger via the seventh pipeline, and stored in the water-refrigerant heat exchanger. Heat is radiated and condensed in the hot water pipe leading to the tank, and the condensed liquid refrigerant is made to join the second pipe line at the second branch point through the fifth pipe line, and can be introduced into the heat pump heat exchanger. . As a result, it is also possible to realize a boiling-up/heating operation in which the heating of the indoor space and the heating of the hot water in the hot water storage tank are performed simultaneously.

以上の結果、請求項1によれば、暖房運転及び沸上・暖房運転のいずれについても四方弁を同じ切替位置(第2切替位置)に切り替えた状態のまま行うことができる。この結果、冷房(単独)運転及び沸上・冷房運転を互いに同一の四方弁の切替位置(第1切替位置)で行うことができ、かつ、暖房(単独)運転及び沸上・暖房運転を互いに同一の四方弁の切替位置(第2切替位置)で行うことができる。言い換えれば、四方弁の切替位置を、少なくとも冷房を行う運転時(冷房単独運転時、沸上・冷房運転時)、及び、少なくとも暖房を行う運転時(暖房単独運転時、沸上・暖房運転時)、それぞれで統一することができる。
As a result, according to claim 1 , both the heating operation and the boiling/heating operation can be performed while the four-way valve is switched to the same switching position (second switching position). As a result, the cooling (individual) operation and the boiling/cooling operation can be performed at the same switching position (first switching position) of the four-way valve, and the heating (independent) operation and the boiling/heating operation can be performed with each other. It can be performed at the switching position (second switching position) of the same four-way valve. In other words, the switching position of the four-way valve is set at least during cooling operation (cooling independent operation, boiling/cooling operation) and at least during heating operation (heating independent operation, boiling/heating operation). ), can be unified in each.

また、請求項2によれば、例えば四方弁を前記第1切替位置とした状態において、第1開閉弁及び第2開閉弁を閉じ状態とすることで冷房(単独)運転を実行するとともに、第1開閉弁及び第2開閉弁を開き状態とすることで沸上・冷房運転を実行することができる。また例えば第1開閉弁及び第2開閉弁を閉じ状態として四方弁を前記第2切替位置とすることで、暖房(単独)運転又は沸上・暖房運転を実行することができる。
Further, according to claim 2 , for example, in a state in which the four-way valve is in the first switching position, the cooling (individual) operation is executed by closing the first on-off valve and the second on-off valve. By opening the first on-off valve and the second on-off valve, the boiling/cooling operation can be performed. Further, for example, by closing the first on-off valve and the second on-off valve and setting the four-way valve to the second switching position, heating (independent) operation or boiling/heating operation can be performed.

また、請求項3によれば、第3開閉弁を閉じ状態として第1管路における第1分岐点と第3分岐点との間の区間を閉止することで、前記沸上・冷房運転時における、圧縮機吐出側→第1管路→第1分岐点→第4管路→・・の冷媒流れと、・・→ヒートポンプ熱交換器→第1管路→第3分岐点→第6管路→・・の冷媒流れと、を確実に分離することができる。
Further, according to claim 3 , by closing the section between the first branch point and the third branch point in the first pipeline by closing the third on-off valve, , compressor discharge side → first pipeline → first branch point → fourth pipeline → . → can be reliably separated from the refrigerant flow of .

また、請求項4によれば、第4開閉弁及び第5開閉弁を閉じ状態とすることで、第5分岐点(第4開閉弁)~第3管路~室内熱交換器~第2管路~第2分岐点(第5開閉弁)の間を閉止区間とし、この区間内の冷媒を封じ込めて、冷媒流動をなくすことができる。
Further, according to claim 4 , by closing the fourth on-off valve and the fifth on-off valve, the fifth branch point (fourth on-off valve) ~ third pipeline ~ indoor heat exchanger ~ second pipe A section between the path and the second branch point (fifth on-off valve) is defined as a closed section, and the refrigerant in this section is confined to eliminate refrigerant flow.

これにより、四方弁制御手段が四方弁を前記第1切替位置とすれば、圧縮機吐出側→第4管路→水冷媒熱交換器→第5管路→第2管路→ヒートポンプ熱交換器→第6管路→圧縮機吸込側の経路にて、貯湯タンク内の湯水の加温を行う沸上(単独)運転を実現することができる。すなわちこの場合、前記冷房(単独)運転及び前記沸上・冷房運転と共通の四方弁の切替位置(第1切替位置)で、沸上(単独)運転を実現することができる。この結果、冷房(単独)運転、沸上・冷房運転、沸上(単独)運転、相互間の運転切替を、四方弁の切替を行うことなく実行することができる。 Thus, if the four-way valve control means sets the four-way valve to the first switching position, the compressor discharge side→fourth pipeline→water-refrigerant heat exchanger→fifth pipeline→second pipeline→heat pump heat exchanger →Sixth pipeline→Compressor suction side route, boiling-up (single) operation for heating the hot water in the hot water storage tank can be realized. That is, in this case, the heating (individual) operation can be realized at the switching position (first switching position) of the four-way valve common to the cooling (individual) operation and the boiling/cooling operation. As a result, the cooling (individual) operation, the boiling/cooling operation, the boiling (independent) operation, and operation switching between them can be executed without switching the four-way valve.

あるいは、四方弁制御手段が四方弁を前記第2切替位置とすれば、圧縮機吐出側→第3管路→第7管路→水冷媒熱交換器→第5管路→第2管路→ヒートポンプ熱交換器→第1管路→圧縮機吸込側の経路にて、貯湯タンク内の湯水の加温を行う沸上(単独)運転を実現することができる。すなわちこの場合、前記暖房(単独)運転及び前記沸上・暖房運転と共通の四方弁の切替位置(第2切替位置)で、沸上運転を実現することができる。この結果、暖房(単独)運転、沸上・暖房運転、沸上(単独)運転、相互間の運転切替を、四方弁の切替を行うことなく実行することができる。 Alternatively, if the four-way valve control means sets the four-way valve to the second switching position, the compressor discharge side→third pipeline→seventh pipeline→water-refrigerant heat exchanger→fifth pipeline→second pipeline→ A boiling-up (single) operation for heating the hot water in the hot water storage tank can be realized in the route of the heat pump heat exchanger→the first pipe→compressor suction side. That is, in this case, the heating (individual) operation and the boiling/heating operation can be performed at the switching position (second switching position) of the four-way valve common to the boiling operation. As a result, heating (individual) operation, boiling/heating operation, boiling (individual) operation, and operation switching between them can be performed without switching the four-way valve.

前記したように、本願発明においては、四方弁を第1切替位置とした状態で沸上(単独)運転を行うこともでき、四方弁を第2切替位置とした状態で沸上(単独)運転を行うこともできる。そこで、請求項5によれば、四方弁制御手段が、冷房運転等に対応した第1切替位置とすべきか暖房運転等に対応した前記第2切替位置とすべきかの指標となる、所定の運転切替因子に応じて、四方弁の制御を行う。 As described above, in the present invention, the boiling-up (individual) operation can be performed with the four-way valve set to the first switching position, and the boiling-up (single) operation can be performed with the four-way valve set to the second switching position. can also be done. Therefore, according to claim 5 , the four-way valve control means is set to the first switching position corresponding to the cooling operation or the like or the second switching position corresponding to the heating operation or the like. The four-way valve is controlled according to the switching factor.

運転切替因子の例としては、適宜の検出手段により検出される外気温や貯湯タンクへの給水温度、あるいはそれらの所定期間(例えば過去の複数日)内における平均値、所定期間内における冷房運転又は暖房運転の運転態様の実績(又は運転態様の指示実績)等がある。 Examples of operation switching factors include the outside air temperature detected by appropriate detection means, the water supply temperature to the hot water storage tank, or their average value within a predetermined period (for example, a plurality of days in the past), the cooling operation within a predetermined period, or There is a track record of the operation mode of the heating operation (or a track record of the instruction of the operation mode).

これにより、前記沸上(単独)運転が行われる際、例えば前記外気温や前記給水温度が比較的低い場合、前記所定期間内に暖房運転の運転実績が多かった場合、等においては、四方弁制御手段は、四方弁を前記暖房運転等に対応して切り替えるべきとみなし、前記第2切替位置へと切り替える。これにより、この第2切替位置とした状態での前記沸上(単独)運転が実行されるので、その後、さらに前記暖房運転もしくは前記沸上・暖房運転へと移行する指示がなされた場合であっても、同じ第2切替位置とした状態のままで円滑に前記移行を行うことができる。この結果、四方弁の切替位置の変更が生じる場合のような、運転中断による室温低下(暖房感の低下)を確実に防止することができる。 As a result, when the boiling (independent) operation is performed, for example, when the outside temperature or the water supply temperature is relatively low, or when the heating operation has been performed frequently within the predetermined period, etc., the four-way valve The control means considers that the four-way valve should be switched in response to the heating operation or the like, and switches it to the second switching position. As a result, the boiling (single) operation is executed in the second switching position, so even if an instruction to shift to the heating operation or the boiling/heating operation is given thereafter. However, the transition can be performed smoothly while maintaining the same second switching position. As a result, it is possible to reliably prevent a decrease in room temperature (a decrease in feeling of heating) due to suspension of operation such as when the switching position of the four-way valve is changed.

逆に、前記沸上(単独)運転が行われる際、例えば前記外気温や前記給水温度が比較的高い場合、前記所定期間内に冷房運転の運転実績が多かった場合、等においては、四方弁制御手段は、四方弁を前記冷房運転等に対応して切り替えるべきとみなし、前記第1切替位置へと切り替える。これにより、この第1切替位置とした状態での前記沸上(単独)運転が実行されるので、その後、さらに前記冷房運転もしくは前記沸上・冷房運転へと移行する指示がなされた場合であっても、同じ第1切替位置とした状態のままで円滑に前記移行を行うことができる。この結果、四方弁の切替位置の変更が生じる場合のような、運転中断による室温上昇(冷房感の低下)を確実に防止することができる。 Conversely, when the boiling-up (independent) operation is performed, for example, when the outside air temperature or the water supply temperature is relatively high, or when the cooling operation has been performed frequently within the predetermined period, etc., the four-way valve The control means considers that the four-way valve should be switched in response to the cooling operation or the like, and switches it to the first switching position. As a result, the boiling (single) operation is executed in the state of the first switching position, so even if an instruction to shift to the cooling operation or the boiling/cooling operation is given thereafter. However, the transition can be performed smoothly while maintaining the same first switching position. As a result, it is possible to reliably prevent an increase in room temperature (reduced feeling of cooling) due to suspension of operation, such as when the switching position of the four-way valve is changed.

本発明の一実施形態の冷暖房機能付きヒートポンプ給湯機の主要なユニットの外観構成図1 is an external configuration diagram of main units of a heat pump water heater with cooling and heating functions according to one embodiment of the present invention. ヒートポンプ給湯機全体の回路構成図Circuit configuration diagram of the entire heat pump water heater ヒーポン制御部の機能的構成図Functional block diagram of the heat pump control unit 貯湯制御部の機能的構成図Functional configuration diagram of hot water storage controller エアコン制御部の機能的構成図Functional block diagram of air conditioner control unit 冬期沸上運転時の作動を説明する図Diagram explaining the operation during winter heating operation 沸上運転時、暖房運転時、及び沸上・暖房運転時それぞれにおける圧縮機回転数の制御態様を表す図A diagram showing the control mode of the compressor rotation speed during the boiling operation, the heating operation, and the boiling/heating operation. 暖房運転時の作動を説明する図Diagram explaining operation during heating operation 沸上・暖房運転時の作動を説明する図Diagram explaining operation during boiling/heating operation 膨張弁制御部が膨張弁の分流制御を実行するときの制御マップを表す図FIG. 4 is a diagram showing a control map when the expansion valve control unit executes flow division control of the expansion valve; 夏期沸上運転時の作動を説明する図Diagram explaining the operation during summer boiling operation 冷房運転時の作動を説明する図Diagram explaining the operation during cooling operation 沸上・冷房運転時の作動を説明する図Diagram explaining operation during boiling/cooling operation 沸上・冷房運転時の別の例の作動を説明する図Diagram for explaining the operation of another example during boiling/cooling operation 膨張弁制御部が膨張弁の分流制御を実行するときの制御マップを表す図FIG. 4 is a diagram showing a control map when the expansion valve control unit executes flow division control of the expansion valve; 運転切替因子に応じて冬期沸上運転・夏期沸上運転を切り替える変形例の制御内容を表すフローチャート図Flowchart diagram showing the control contents of a modified example in which winter boiling operation and summer boiling operation are switched according to the operation switching factor.

以下、本発明の一実施形態を図1~図15に基づいて説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 15. FIG.

<外観構成>
本実施形態の冷暖房機能付きヒートポンプ給湯機1の主要なユニットの外観構成を図1に示す。図1において、本実施形態のヒートポンプ給湯機1は、貯湯タンク2(後述の図2等参照)を備えた貯湯ユニット100と、室外機としてのヒートポンプユニット300と、室内機としてのエアコンユニット200と、を有している。
<External configuration>
FIG. 1 shows the external configuration of main units of the heat pump water heater 1 with cooling and heating functions of the present embodiment. In FIG. 1, the heat pump water heater 1 of the present embodiment includes a hot water storage unit 100 including a hot water storage tank 2 (see FIG. 2, which will be described later), a heat pump unit 300 as an outdoor unit, and an air conditioner unit 200 as an indoor unit. ,have.

<回路構成>
本実施形態のヒートポンプ給湯機1全体の回路構成を図2に示す。図2に示すように、前記貯湯ユニット100は、冷媒を流通させる冷媒側の流路15bと水側の流路15aとを有し、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する凝縮器として機能する水冷媒熱交換器15と、沸上ポンプ19と、を備えている。すなわち、前記水冷媒熱交換器15の前記水側の流路15aと前記貯湯タンク2とが湯水配管としての加熱往き管5及び加熱戻り管6によって環状に接続され、前記貯湯ユニット100内で湯水循環回路としての加熱循環回路4が形成されている。
<Circuit configuration>
FIG. 2 shows the overall circuit configuration of the heat pump water heater 1 of this embodiment. As shown in FIG. 2, the hot water storage unit 100 has a refrigerant-side flow path 15b and a water-side flow path 15a for circulating the refrigerant, and heat exchanges between the high-temperature and high-pressure refrigerant and the hot water in the hot water storage tank 2. It has a water-refrigerant heat exchanger 15 functioning as a condenser for heating and a boiling pump 19 . That is, the water-side flow path 15 a of the water-refrigerant heat exchanger 15 and the hot water storage tank 2 are annularly connected by a heating supply pipe 5 and a heating return pipe 6 as hot water piping, and hot water is supplied to the hot water storage unit 100 . A heating circulation circuit 4 is formed as a circulation circuit.

加熱往き管5は、前記貯湯タンク2の下部に接続され、加熱戻り管6は、前記貯湯タンク2の上部に接続されている。前記沸上ポンプ19は、前記加熱往き管5の途中に設けられ、前記水側の流路15aを介し前記加熱往き管5からの湯水を前記加熱戻り管6へ流通させつつ、貯湯タンク2の湯水を循環させる。 A heating feed pipe 5 is connected to the lower portion of the hot water storage tank 2 , and a heating return pipe 6 is connected to the upper portion of the hot water storage tank 2 . The boiling pump 19 is provided in the middle of the heating pipe 5, and circulates hot water from the heating pipe 5 to the heating return pipe 6 through the water-side flow path 15a. Circulate water.

貯湯タンク2の側面には、貯湯タンク2内の湯水の温度(貯湯温度)をそれぞれ検出し前記湯水の加熱状況(言い替えれば貯湯状況)を検知するための貯湯温度センサ12が上下にわたり複数設けられている。前記貯湯タンク2の下部にはまた、貯湯タンク2に水を給水する給水管7が接続され、前記貯湯タンク2の上部にはまた、貯湯されている高温水を出湯する出湯管8が接続され、給水管7からは給水バイパス管9が分岐して設けられている。さらに、出湯管8からの湯と給水バイパス管9からの水とを混合して給湯設定温度の湯とする混合弁10と、混合弁10で混合後の給湯温度を検出する給湯温度センサ11と、が設けられている。 On the side surface of the hot water storage tank 2, a plurality of stored hot water temperature sensors 12 for detecting the temperature of hot water (hot water temperature) in the hot water storage tank 2 and detecting the heating state of the hot water (in other words, hot water storage state) are provided vertically. ing. A water supply pipe 7 for supplying water to the hot water storage tank 2 is also connected to the lower part of the hot water storage tank 2, and a hot water supply pipe 8 for supplying hot water stored in the hot water storage tank 2 is connected to the upper part of the hot water storage tank 2. , a water supply bypass pipe 9 is branched from the water supply pipe 7 . Further, a mixing valve 10 that mixes the hot water from the hot water supply pipe 8 and the water from the water supply bypass pipe 9 to produce hot water at the hot water supply set temperature; , is provided.

一方、前記水冷媒熱交換器15における熱交換(詳細は後述)によって前記貯湯タンク2内の湯水を加熱可能な冷媒循環回路30が、前記ヒートポンプユニット300、前記貯湯ユニット100、及び前記エアコンユニット200にわたって設けられている。前記冷媒循環回路30は、前記ヒートポンプユニット300内に配置されたヒーポン回路部30Aと、前記ヒートポンプユニット300及び前記貯湯ユニット100に跨って配置された貯湯回路部30Bと、前記エアコンユニット200内に配置されたエアコン回路部30Cと、を含んでいる。 On the other hand, a refrigerant circulation circuit 30 capable of heating hot water in the hot water storage tank 2 by heat exchange (details will be described later) in the water-refrigerant heat exchanger 15 includes the heat pump unit 300, the hot water storage unit 100, and the air conditioner unit 200. are set across. The refrigerant circulation circuit 30 includes a heat pump circuit portion 30A arranged inside the heat pump unit 300, a hot water storage circuit portion 30B arranged across the heat pump unit 300 and the hot water storage unit 100, and inside the air conditioner unit 200. and an air conditioner circuit unit 30C.

<ヒーポン回路部>
前記ヒーポン回路部30Aは、前記冷媒の流路となる冷媒配管18を備えており、冷媒を圧縮する圧縮機14と、四方弁31と、前記冷媒と外気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)するヒートポンプ熱交換器としての室外熱交換器17とが、前記冷媒配管18によって接続されている。なお、室外熱交換器17には、前記室外熱交換器17に外気を通じるための室外ファン67が設けられている。
<Heapon circuit part>
The heat pump circuit unit 30A includes a refrigerant pipe 18 that serves as a flow path for the refrigerant, a compressor 14 that compresses the refrigerant, a four-way valve 31, and a condenser or evaporator by heat exchange between the refrigerant and the outside air. The refrigerant pipe 18 is connected to an outdoor heat exchanger 17 as a heat pump heat exchanger that selectively functions as a heat pump heat exchanger (details will be described later). The outdoor heat exchanger 17 is provided with an outdoor fan 67 for passing outside air through the outdoor heat exchanger 17 .

詳細には、前記冷媒配管18は、圧縮機14の吐出側となる配管部18cと、冷房運転時(後述の図12参照)等において一方側が圧縮機14の吐出側の前記配管部18cに連通されるとともに、他方側が前記室外熱交換器17の圧縮機14側(言い替えれば当該冷房運転時における入口側、以下同様)に接続される、配管部18d(第1管路に相当)と、前記室外熱交換器17の反圧縮機14側に接続される配管部18eと、を含んでいる。前記配管部18eは、膨張弁113を備えており、後述の配管部25eに連通している。 Specifically, one side of the refrigerant pipe 18 communicates with the pipe portion 18c on the discharge side of the compressor 14 and the pipe portion 18c on the discharge side of the compressor 14 during cooling operation (see FIG. 12 described later). and the other side is connected to the compressor 14 side of the outdoor heat exchanger 17 (in other words, the inlet side during the cooling operation, the same applies hereinafter), the piping portion 18d (corresponding to the first pipeline); and a piping portion 18e connected to the side of the outdoor heat exchanger 17 opposite to the compressor 14. The piping portion 18e includes an expansion valve 113 and communicates with a piping portion 25e, which will be described later.

また前記冷媒配管18は、前記圧縮機14の吸入側となる配管部18aと、前記冷房運転時(後述の図12参照)等において前記四方弁31を介し前記配管部18aに接続される配管部18bと、を含んでいる。前記配管部18bは、後述の配管部25mに連通している。 The refrigerant pipe 18 includes a pipe portion 18a on the suction side of the compressor 14 and a pipe portion connected to the pipe portion 18a through the four-way valve 31 during the cooling operation (see FIG. 12 described later). 18b and . The pipe portion 18b communicates with a pipe portion 25m, which will be described later.

<四方弁詳細>
前記四方弁31は4つのポートを備える弁であり、前記冷媒配管18のうち(冷媒主経路を構成する)前記配管部18b,18d用の2つのポートのそれぞれに対して、残りの前記配管部18a,18c用の2つのポートのいずれを接続するかを切り替える。前記配管部18a,18c用の2つのポートどうしは、ループ状に配置された前記配管部18a,18cからなる冷媒副経路によって接続されており、この冷媒副経路上に前記圧縮機14が設けられている。
<Four-way valve details>
The four-way valve 31 is a valve having four ports, and of the refrigerant pipe 18, each of the two ports for the pipe portions 18b and 18d (constituting the refrigerant main path) is connected to the remaining pipe portions. It switches which of the two ports for 18a and 18c should be connected. The two ports for the piping portions 18a and 18c are connected to each other by a refrigerant subpath composed of the piping portions 18a and 18c arranged in a loop, and the compressor 14 is provided on this refrigerant subpath. ing.

例えば四方弁31は、後述する図12の状態に切り替えられた(=第1切替位置に相当。以下適宜、「冷房位置」「冷房側への切替」等と称する)場合は、前記圧縮機14の吐出側である前記配管部18cを前記室外熱交換器17側である前記配管部18dに連通させるとともに、前記圧縮機14の吸込側である前記配管部18aを前記室内熱交換器27側である前記配管部18bに連通させる。
また四方弁31は、後述する図8の状態に切り替えられた(=第2切替位置に相当。以下適宜、「暖房位置」「暖房側への切替」等と称する)場合は、前記配管部18cを前記前記室内熱交換器27側である前記配管部18bに連通させるとともに、前記配管部18aを前記室外熱交換器17側である前記配管部18dに連通させる。
For example, when the four-way valve 31 is switched to the state shown in FIG. The piping portion 18c on the discharge side of is communicated with the piping portion 18d on the outdoor heat exchanger 17 side, and the piping portion 18a on the suction side of the compressor 14 is connected on the indoor heat exchanger 27 side. Communicate with a certain piping portion 18b.
When the four-way valve 31 is switched to the state shown in FIG. 8 described later (=corresponding to the second switching position, hereinafter referred to as "heating position", "switching to heating side", etc.), the piping portion 18c is communicated with the piping portion 18b on the indoor heat exchanger 27 side, and the piping portion 18a is communicated with the piping portion 18d on the outdoor heat exchanger 17 side.

このとき、前記室外熱交換器17から前記四方弁31に至る前記配管部18dの途中には、開閉可能な二方弁125(第3開閉弁に相当)が設けられている。そして、前記配管部18dのうち前記二方弁125よりも前記室熱交換器17側に位置する分岐点B(第3分岐点に相当)からは配管部18f(第6管路に相当)が分岐して設けられており、この配管部18fは前記配管部18bに位置する分岐点C(第4分岐点に相当)に接続されている。また、この分岐点Bから分岐点Cに至る前記配管部18fには、開閉可能な二方弁126(第2開閉弁に相当)が設けられている。 At this time, a two-way valve 125 (corresponding to a third on-off valve) that can be opened and closed is provided in the middle of the piping portion 18 d from the outdoor heat exchanger 17 to the four-way valve 31 . A pipe portion 18f (corresponding to a sixth pipe line) extends from a branch point B (corresponding to a third branch point) located closer to the room heat exchanger 17 than the two-way valve 125 in the pipe portion 18d. The pipe portion 18f is branched and connected to a branch point C (corresponding to a fourth branch point) located in the pipe portion 18b. Further, the pipe portion 18f from the branch point B to the branch point C is provided with a two-way valve 126 (corresponding to a second on-off valve) that can be opened and closed.

<貯湯回路部>
前記貯湯回路部30Bは、前記冷媒の流路となる冷媒配管25を備えており、前記水冷媒熱交換器15の前記冷媒側の流路15bが、前記冷媒配管25に接続されている。
<Hot water storage circuit>
The hot water storage circuit section 30</b>B includes a refrigerant pipe 25 that serves as a flow path for the refrigerant, and the refrigerant-side flow path 15 b of the water-refrigerant heat exchanger 15 is connected to the refrigerant pipe 25 .

詳細には、前記冷媒配管25は、前記分岐点Cにおいて前記配管部18bに接続される配管部25mと、この配管部25mのうち前記分岐点Cと反対側に位置する分岐点E(第5分岐点に相当)に接続される配管部25aと、前記配管部25aのうち前記分岐点Eと反対側に位置する分岐点Fに接続されるとともに、反配管部25a側が前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の入口側に接続される配管部25bと、前記水冷媒熱交換器15(詳細には前記冷媒側の流路15b)の出口側に接続される配管部25c(第5管路に相当)と、を含んでいる。前記配管部25bは、開閉可能な二方弁121を備えており、前記配管部25cは全閉機能付きの膨張弁111を備えている。 Specifically, the refrigerant pipe 25 includes a pipe portion 25m connected to the pipe portion 18b at the branch point C, and a branch point E (fifth and a branch point F located on the opposite side of the branch point E in the piping portion 25a, and the side opposite to the piping portion 25a is connected to the water refrigerant heat exchanger. 15 (specifically, the refrigerant-side flow path 15b) connected to the inlet side, and the water-refrigerant heat exchanger 15 (specifically, the refrigerant-side flow path 15b) connected to the outlet side. and a piping portion 25c (corresponding to a fifth pipeline). The piping portion 25b has a two-way valve 121 that can be opened and closed, and the piping portion 25c has an expansion valve 111 with a fully closed function.

また前記冷媒配管25は、前記配管部25b同様、前記配管部25aの前記分岐点Fに接続される配管部25hと、この配管部25hのうち前記分岐点Fと反対側に位置する分岐点Gに接続される配管部25dと、を含んでいる。前記配管部25dの反配管部25h側は、ヒートポンプユニット300外への出口となる接続口95aにおいて、前記ヒートポンプユニット300と前記エアコンユニット200とを接続する連通管路104に連通している。 The refrigerant pipe 25 includes a pipe portion 25h connected to the branch point F of the pipe portion 25a and a branch point G located on the opposite side of the branch point F in the pipe portion 25h. and a pipe portion 25d connected to the . The side of the pipe portion 25d opposite to the pipe portion 25h communicates with a communication pipe line 104 that connects the heat pump unit 300 and the air conditioner unit 200 at a connection port 95a serving as an outlet to the outside of the heat pump unit 300 .

さらに前記冷媒配管25は、前記配管部25cの反水冷媒熱交換器15側に位置する分岐点Dに接続されるとともに、反配管部25c側が前記配管部18eに連通する配管部25eと、前記分岐点Gに接続される配管部25fと、この配管部25fのうち前記分岐点Gと反対側に位置する分岐点Hと前記分岐点Eとを接続する配管部25iと、前記配管部18dのうち前記二方弁125より四方弁31側に位置する分岐点Aに接続される配管部25jと、この配管部25jのうち前記分岐点Aと反対側に位置する分岐点Jと前記分岐点Hとを接続する配管部25kと、前記配管部25bのうち前記二方弁121よりも前記水冷媒熱交換器15側に位置する分岐点Iと前記分岐点Jとを接続する配管部25lと、を含んでいる。前記配管部25hは全閉機能付きの膨張弁114を備えており、前記配管部25iは開閉可能な二方弁122(第4開閉弁に相当)を備えており、前記配管部25kは開閉可能な二方弁124を備えており、前記配管部25lは開閉可能な二方弁123(第1開閉弁に相当)を備えている。 Further, the refrigerant pipe 25 is connected to a branch point D located on the anti-water refrigerant heat exchanger 15 side of the pipe portion 25c, and the pipe portion 25e that communicates with the pipe portion 18e on the side opposite to the pipe portion 25c; A pipe portion 25f connected to the branch point G, a pipe portion 25i connecting the branch point H and the branch point E located on the opposite side of the branch point G in the pipe portion 25f, and the pipe portion 18d. Among them, a piping portion 25j connected to a branch point A located on the side of the four-way valve 31 from the two-way valve 125, and a branch point J and the branch point H located on the opposite side of the branch point A in the piping portion 25j. and a piping portion 25k that connects the branch point I and the branch point J located closer to the water-refrigerant heat exchanger 15 than the two-way valve 121 in the piping portion 25b, contains. The piping section 25h has an expansion valve 114 with a fully closed function, the piping section 25i has a two-way valve 122 (equivalent to a fourth on-off valve) that can be opened and closed, and the piping section 25k can be opened and closed. A two-way valve 124 is provided, and the piping portion 25l is provided with a two-way valve 123 (corresponding to a first on-off valve) that can be opened and closed.

さらに前記冷媒配管25は、前記配管部25e同様に前記配管部25cの反水冷媒熱交換器15側に位置する前記分岐点Dに接続されるとともに、ヒートポンプユニット300外への出口となる接続口95bにおいて、前記ヒートポンプユニット300と前記エアコンユニット200とを接続する連通管路103に連通する配管部25gを含んでいる。この配管部25gは、全閉機能付きの膨張弁112(第5開閉弁に相当)を備えている。 Further, the refrigerant pipe 25 is connected to the branch point D located on the side opposite to the water refrigerant heat exchanger 15 of the pipe portion 25c in the same manner as the pipe portion 25e, and is a connection port serving as an outlet to the outside of the heat pump unit 300. 95 b includes a pipe portion 25 g that communicates with the communication pipe line 103 that connects the heat pump unit 300 and the air conditioner unit 200 . The piping portion 25g is provided with an expansion valve 112 (corresponding to a fifth on-off valve) with a fully closed function.

なお、前記の圧縮機14、四方弁31、室外熱交換器17、室外ファン67、二方弁122,123,124,125,126、膨張弁111,112,113,114等は、前記ヒートポンプユニット300の筐体に内包されている(図1参照)。なお、前記膨張弁112は後述の配管部26b(すなわち前記エアコンユニット200の筐体内)に設けても良い。
また、前記の二方弁121、水冷媒熱交換器15、及び貯湯タンク2等は、前記貯湯ユニット100の筐体に内包されている(図1参照)。
The compressor 14, the four-way valve 31, the outdoor heat exchanger 17, the outdoor fan 67, the two-way valves 122, 123, 124, 125, 126, the expansion valves 111, 112, 113, 114, etc. 300 housing (see FIG. 1). Note that the expansion valve 112 may be provided in a pipe portion 26b (that is, inside the housing of the air conditioner unit 200), which will be described later.
The two-way valve 121, the water-refrigerant heat exchanger 15, the hot water storage tank 2, and the like are included in the housing of the hot water storage unit 100 (see FIG. 1).

<エアコン回路部>
前記エアコン回路部30Cは、前記冷媒の流路となる冷媒配管26を備えており、前記冷媒と室内空気との熱交換により凝縮器又は蒸発器として選択的に機能(詳細は後述)する室内熱交換器27が前記冷媒配管26に接続されている。なお、室内熱交換器27には、前記室内熱交換器27に室内空気を通じるための室内ファン77が設けられている。
<Air conditioner circuit part>
The air conditioner circuit unit 30C includes a refrigerant pipe 26 that serves as a flow path for the refrigerant, and selectively functions as a condenser or an evaporator (details will be described later) by heat exchange between the refrigerant and indoor air. An exchanger 27 is connected to the refrigerant pipe 26 . The indoor heat exchanger 27 is provided with an indoor fan 77 for passing the indoor air through the indoor heat exchanger 27 .

詳細には、前記冷媒配管26は、エアコンユニット200外への出口となる接続口76aにおいて前記連通管路104に連通するとともに、反連通管路104側が前記室内熱交換器27の前記接続口76a側(言い替えれば暖房運転時等における入口側、以下同様。後述の図8等参照)に接続される配管部26aと、前記接続口76aとは別の接続口76bにおいて前記連通管路103に連通するとともに、反連通管路103側が前記室内熱交換器27の前記接続口76b側(言い替えれば暖房運転時等における出口側、以下同様。後述の図8等参照)に接続される配管部26bと、を含んでいる。 Specifically, the refrigerant pipe 26 communicates with the communication pipe line 104 at a connection port 76a serving as an outlet to the outside of the air conditioner unit 200, and the connection port 76a of the indoor heat exchanger 27 is connected to the non-communication pipe line 104 side. side (in other words, the inlet side during heating operation, etc.; the same applies hereinafter; see FIG. 8 and the like, which will be described later). In addition, the side of the anti-communication pipe line 103 is connected to the side of the connection port 76b of the indoor heat exchanger 27 (in other words, the outlet side during heating operation, etc., the same applies hereinafter, see FIG. 8 etc. described later). , contains

なお、前記の室内熱交換器27及び室内ファン77等は、前記エアコンユニット200の筐体に内包されている(図1参照)。 The indoor heat exchanger 27, the indoor fan 77, and the like are contained in the housing of the air conditioner unit 200 (see FIG. 1).

なお、前記した回路構成において、前記配管部18e、前記配管部25e、前記配管部25g、前記連通管路103、及び前記配管部26bが、各請求項記載の第2管路に相当し、前記配管部18b、前記配管部25m、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、及び前記配管部26aが第3管路に相当する。また前記配管部25j及び前記配管部25lが第4管路に相当し、前記配管部25a及び前記配管部25bが第7管路に相当する。 In the circuit configuration described above, the piping portion 18e, the piping portion 25e, the piping portion 25g, the communicating pipe line 103, and the piping portion 26b correspond to the second pipe line described in each claim. The pipe portion 18b, the pipe portion 25m, the pipe portion 25i, the pipe portion 25f, the pipe portion 25d, the communication pipe line 104, and the pipe portion 26a correspond to the third pipe line. Further, the piping portion 25j and the piping portion 25l correspond to a fourth piping line, and the piping portions 25a and 25b correspond to a seventh piping line.

<各種センサ>
前記冷媒循環回路30内には、冷媒として例えばR32冷媒が用いられ、ヒートポンプサイクルを構成している。なお、冷媒はHFC冷媒やHFO冷媒、二酸化炭素冷媒であってもよい。そして、前記ヒーポン回路部30Aの前記冷媒配管18において、前記配管部18cには、圧縮機14から吐出される冷媒吐出温度Toutを検出する吐出温度センサ32が設けられ、前記配管部18aには、圧縮機14へ吸入される冷媒の冷媒吸入温度Tinを検出する吸入温度センサ20が設けられている。なお、前記室外熱交換器17の空気入口側には、外気温度Tairを検出する外気温度センサ22が設けられ、かつ室外熱交換器17内には、ヒーポン熱交温度Tex(蒸発器として作用している時の蒸発冷媒温度)を検出する熱交温度センサ35が設けられている。これらのセンサ32,20,22,35の検出結果は、ヒートポンプユニット300に設けられたヒーポン制御部410に入力され、さらに適宜、貯湯ユニット100に設けられた貯湯制御部420やエアコンユニット200に設けられたエアコン制御部430へも入力される(ヒーポン制御部410を介し受信しても良いし、センサ32,20,22から直接受信してもよい)。
<Various sensors>
For example, R32 refrigerant is used as a refrigerant in the refrigerant circulation circuit 30 to form a heat pump cycle. Note that the refrigerant may be an HFC refrigerant, an HFO refrigerant, or a carbon dioxide refrigerant. In the refrigerant pipe 18 of the heat pump circuit portion 30A, the pipe portion 18c is provided with a discharge temperature sensor 32 for detecting the refrigerant discharge temperature Tout discharged from the compressor 14. A suction temperature sensor 20 is provided to detect a refrigerant suction temperature Tin of refrigerant sucked into the compressor 14 . An outdoor air temperature sensor 22 for detecting the outdoor air temperature Tair is provided on the air inlet side of the outdoor heat exchanger 17, and the outdoor heat exchanger 17 has a heat pump heat exchanger temperature Tex (acting as an evaporator). A heat exchanger temperature sensor 35 is provided for detecting the temperature of the evaporating refrigerant (at the time of heating). The detection results of these sensors 32, 20, 22, and 35 are input to the heat pump control section 410 provided in the heat pump unit 300, and further provided to the hot water storage control section 420 provided in the hot water storage unit 100 and the air conditioner unit 200 as appropriate. It is also input to the air conditioner control unit 430 (which may be received via the heat pump control unit 410 or may be received directly from the sensors 32, 20, 22).

また、前記貯湯回路部30Bの前記冷媒配管25において、前記配管部25cには、前記冷媒側の流路15bから流出し前記膨張弁111に向かう冷媒流出温度T2を検出する流出温度センサ21が設けられている。なお、前記水冷媒熱交換器15には、前記冷媒が前記冷媒側の流路15bにおいて凝縮する際の冷媒凝縮温度を検出する凝縮温度センサ33が設けられている。また、前記加熱往き管5には、前記水冷媒熱交換器15の前記水側の流路15aに流入する入水温度T1(湯水の入口温度)を検出する入水温度センサ23が設けられ、前記加熱戻り管6には、前記水側の流路15aから前記貯湯タンク2に向かって流出する沸上温度Tbを検出する沸上温度センサ24が設けられている。
これらのセンサ21,33,23,24の検出結果は、貯湯ユニット100に設けられた貯湯制御部420に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410やエアコンユニット200に設けられた前記エアコン制御部430へも入力される(貯湯制御部420を介し受信しても良いし、センサ21,33,23,24から直接受信してもよい)。
Further, in the refrigerant pipe 25 of the hot water storage circuit portion 30B, the pipe portion 25c is provided with an outflow temperature sensor 21 for detecting a refrigerant outflow temperature T2 flowing out from the refrigerant-side flow path 15b toward the expansion valve 111. It is The water-refrigerant heat exchanger 15 is provided with a condensation temperature sensor 33 for detecting the refrigerant condensation temperature when the refrigerant is condensed in the refrigerant-side passage 15b. Further, the heating supply pipe 5 is provided with an incoming water temperature sensor 23 for detecting an incoming water temperature T1 (inlet temperature of hot water) flowing into the water-side flow path 15a of the water-refrigerant heat exchanger 15. The return pipe 6 is provided with a boiling temperature sensor 24 for detecting a boiling temperature Tb flowing out from the water-side flow path 15 a toward the hot water storage tank 2 .
The detection results of these sensors 21, 33, 23, and 24 are input to the hot water storage control section 420 provided in the hot water storage unit 100, and further to the heat pump control section 410 provided in the heat pump unit 300 and the air conditioner unit 200 as appropriate. It is also input to the provided air conditioner control unit 430 (it may be received via the hot water storage control unit 420, or may be received directly from the sensors 21, 33, 23, 24).

また、前記エアコン回路部30Cの前記冷媒配管26に関して、前記室内熱交換器27には、空調対象空間の室内温度Trを検出する室内温度センサ34が設けられ、また室内熱交換器27内には、室内熱交温度Tev(蒸発器として作用している時の蒸発冷媒温度)を検出する熱交温度センサ36が設けられている。これらセンサ34,36の検出結果は、エアコンユニット200に設けられたエアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、センサ34から直接受信してもよい)。 Further, regarding the refrigerant pipe 26 of the air conditioner circuit section 30C, the indoor heat exchanger 27 is provided with an indoor temperature sensor 34 for detecting the indoor temperature Tr of the air-conditioned space. A heat exchanger temperature sensor 36 is provided for detecting the indoor heat exchanger temperature Tev (evaporated refrigerant temperature when acting as an evaporator). The detection results of these sensors 34 and 36 are input to the air conditioner control section 430 provided in the air conditioner unit 200, and furthermore, the heat pump control section 410 provided in the heat pump unit 300 and the hot water storage unit 100 provided in the hot water storage unit 100 are input as appropriate. It is also input to the control unit 420 (it may be received via the air conditioner control unit 430 or may be received directly from the sensor 34).

そして、前記貯湯ユニット100の前記貯湯制御部420、前記ヒートポンプユニット300の前記ヒーポン制御部410、及び、前記エアコンユニット200の前記エアコン制御部430は、互いに通信可能に接続されており、前記各センサの検出結果に基づき、相互に連携しつつ、前記貯湯ユニット100、前記ヒートポンプユニット300、前記エアコンユニット200内の各機器・アクチュエータの動作を制御する。特に、前記四方弁31、前記二方弁121,122,123,124、125,126及び前記膨張弁111,112,113,114の開閉動作や開度を制御し、冷媒の流れる経路を切り替えることにより、貯湯タンク2内の湯水を加熱して沸上を行う沸上運転、前記空調対象空間の室内冷房を行う冷房運転、前記空調対象空間の室内暖房を行う暖房運転、前記沸上と前記冷房とを並行して行う沸上・冷房運転、及び、前記沸上と前記暖房とを並行して行う沸上・暖房運転、等を選択的に実行することができる。 The hot water storage controller 420 of the hot water storage unit 100, the heat pump controller 410 of the heat pump unit 300, and the air conditioner controller 430 of the air conditioner unit 200 are connected so as to be able to communicate with each other. Based on the detection result, the operation of each device/actuator in the hot water storage unit 100, the heat pump unit 300, and the air conditioner unit 200 is controlled in cooperation with each other. In particular, the four-way valve 31, the two-way valves 121, 122, 123, 124, 125, 126, and the expansion valves 111, 112, 113, 114 are controlled to open and close and to switch paths through which the refrigerant flows. A heating operation for heating and boiling the hot water in the hot water storage tank 2, a cooling operation for indoor cooling of the air-conditioned space, a heating operation for indoor heating of the air-conditioned space, the boiling and the cooling. A boiling-up/cooling operation in which the heating is performed in parallel, a boiling-up/heating operation in which the heating and the heating are performed in parallel, and the like can be selectively executed.

<リモコン>
このとき、前記エアコンユニット200は、リモコン等の適宜の操作部60(以下単に「リモコン60」と称する)によって操作可能である。すなわち、リモコン60は、例えば前記エアコン制御部430に対し情報送受信可能に接続されており、ユーザは、このリモコン60を適宜に手動操作することにより、前記の沸上運転、冷房運転、及び、暖房運転のいずれの運転を行うかを指示することができる。なお、沸上・冷房運転(又は沸上・暖房運転)については、ユーザによりリモコン60を介し前記冷房運転(又は暖房運転)の指示があったとき、貯湯タンク2内における貯湯状況(未加熱水の量など)に応じて、適宜、自動的に沸上・冷房運転(又は沸上・暖房運転)に切り替えられるものである。さらに、このリモコン60における適宜の操作により、前記沸上運転時における沸上モード(例えば強力沸上モード、通常沸上モード、等)や、前記冷房運転又は暖房運転時におけるエアコン運転モード(例えば強力モード、通常モード、節電モード等)やエアコン設定温度Tcon等も指示することができる。これらのリモコン60からの指示内容は、エアコンユニット200に設けられた前記エアコン制御部430に入力され、さらに適宜、ヒートポンプユニット300に設けられた前記ヒーポン制御部410や貯湯ユニット100に設けられた前記貯湯制御部420へも入力される(エアコン制御部430を介し受信しても良いし、リモコン60から直接受信してもよい)。
<Remote control>
At this time, the air conditioner unit 200 can be operated by an appropriate operating section 60 such as a remote controller (hereinafter simply referred to as "remote controller 60"). That is, the remote controller 60 is connected to, for example, the air conditioner control unit 430 so that information can be transmitted and received. It is possible to instruct which operation of the operation is to be performed. Regarding the boiling/cooling operation (or boiling/heating operation), when the user instructs the cooling operation (or heating operation) via the remote control 60, the hot water storage state (unheated water) in the hot water storage tank 2 etc.), it is automatically switched to boiling/cooling operation (or boiling/heating operation) as appropriate. Furthermore, by appropriately operating the remote controller 60, a boiling mode during the boiling operation (for example, a strong boiling mode, a normal boiling mode, etc.) or an air conditioner operating mode during the cooling operation or heating operation (for example, a strong boiling mode) mode, normal mode, power saving mode, etc.), air conditioner set temperature Tcon, etc. can also be instructed. The contents of instructions from these remote controllers 60 are input to the air conditioner control section 430 provided in the air conditioner unit 200, and furthermore, as appropriate, the heat pump control section 410 provided in the heat pump unit 300 and the hot water storage unit 100 are provided. It is also input to hot water storage control unit 420 (it may be received via air conditioner control unit 430 or may be received directly from remote controller 60).

<ヒーポン制御部>
次に、前記ヒートポンプユニット300に備えられた前記ヒーポン制御部410について説明する。ヒーポン制御部410は、詳細な図示を省略するが、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えている。このヒーポン制御部410の機能的構成を図3により説明する。
<Heapon control unit>
Next, the heat pump control section 410 provided in the heat pump unit 300 will be described. Although not shown in detail, the heat pump control unit 410 includes a storage unit that stores various data and programs, and a control unit that performs arithmetic and control processing. A functional configuration of the heat pump control unit 410 will be described with reference to FIG.

図3に示すように、前記ヒーポン制御部410は、四方弁制御部410A(四方弁制御手段に相当)と、圧縮機制御部410Bと、膨張弁制御部410Cと、室外ファン制御部410Dと、二方弁制御部410Eと、を機能的に備えている。 As shown in FIG. 3, the heat pump control unit 410 includes a four-way valve control unit 410A (corresponding to four-way valve control means), a compressor control unit 410B, an expansion valve control unit 410C, an outdoor fan control unit 410D, and a two-way valve control unit 410E.

四方弁制御部410Aには、前記リモコン60により指示された、いずれの運転を行うかの運転指示(沸上運転、冷房運転、暖房運転等)と、前記貯湯温度センサ12により検出された前記貯湯温度とが入力される。四方弁制御部410Aは、前記運転指示と、前記貯湯温度に対応した前記湯水の加熱状況(貯湯状況)とに応じて、実際にヒートポンプ給湯機1をどのような運転態様(沸上運転、冷房運転、沸上・冷房運転、暖房運転、沸上・暖房運転等)で運転するかを決定し、対応する運転情報を、前記圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410D、二方弁制御部410E、及び、貯湯制御部420、エアコン制御部430に出力する。また四方弁制御部410Aは、上記決定された運転態様に対応する開閉信号を四方弁31へ出力し、四方弁31を切り替える(詳細な制御内容は後述)。 The four-way valve control unit 410A receives an operation instruction (boiling operation, cooling operation, heating operation, etc.) instructed by the remote control 60 and the stored hot water detected by the stored hot water temperature sensor 12. temperature is entered. The four-way valve control unit 410A actually controls the heat pump water heater 1 in what kind of operation mode (boiling operation, cooling operation, boiling-up/cooling operation, heating operation, boiling-up/heating operation, etc.), and the corresponding operation information is sent to the compressor control unit 410B, the expansion valve control unit 410C, and the outdoor fan control unit 410D. , the two-way valve control unit 410E, the hot water storage control unit 420, and the air conditioner control unit 430. The four-way valve control unit 410A also outputs an open/close signal corresponding to the determined operating mode to the four-way valve 31 to switch the four-way valve 31 (details of control will be described later).

圧縮機制御部410Bには、前記外気温度センサ22により検出された前記外気温度Tairと、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tcon及び前記沸上モードとが入力される(直接入力される場合のほか、前記の間接的な入力も含む。以下同様)。圧縮機制御部410Bは、前記のようにして四方弁制御部410Aから入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記の温度及び設定のうち少なくとも1つに基づき、前記圧縮機14の回転数を制御する(詳細な制御内容は後述)。なおこのときの圧縮機14の回転数(制御値)は、後述の膨張弁制御部410Cにも出力される。 The outside air temperature Tair detected by the outside air temperature sensor 22, the inside temperature Tr detected by the inside temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60 are stored in the compressor control unit 410B. and the boiling mode are input (in addition to direct input, the above-mentioned indirect input is also included; the same applies hereinafter). The compressor control unit 410B receives input from the four-way valve control unit 410A as described above (boiling operation, cooling operation, boiling/cooling operation, heating operation, and boiling/heating operation). The number of revolutions of the compressor 14 is controlled based on at least one of the input temperature and setting according to the operation information (details of control content will be described later). Note that the rotational speed (control value) of the compressor 14 at this time is also output to an expansion valve control section 410C, which will be described later.

膨張弁制御部410Cには、前記リモコン60により設定された前記エアコン運転モードと、前記吐出温度センサ32により検出された前記冷媒吐出温度Toutと、前記流出温度センサ21により検出された前記冷媒流出温度T2と、前記外気温度センサ22により検出された前記外気温度Tairと、前記吸入温度センサ20により検出された前記冷媒吸入温度Tinと、前記熱交温度センサ35により検出された前記ヒーポン熱交温度Texと、熱交温度センサ36により検出された前記室内熱交温度Tevと、が入力される。膨張弁制御部410Cは、前記四方弁制御部410Aからの前記運転情報に応じて、前記の入力された温度のうち少なくとも1つに基づき、前記膨張弁111,112,113,114の開度を制御する(詳細な制御内容は後述)。 The expansion valve control unit 410C stores the air conditioner operation mode set by the remote controller 60, the refrigerant discharge temperature Tout detected by the discharge temperature sensor 32, and the refrigerant outflow temperature detected by the outflow temperature sensor 21. T2, the outside air temperature Tair detected by the outside air temperature sensor 22, the refrigerant intake temperature Tin detected by the intake temperature sensor 20, and the heat exchanger heat exchanger temperature Tex detected by the heat exchanger temperature sensor 35 and the indoor heat exchanger temperature Tev detected by the heat exchanger temperature sensor 36 are input. The expansion valve control unit 410C adjusts the opening degrees of the expansion valves 111, 112, 113, and 114 based on at least one of the input temperatures in accordance with the operation information from the four-way valve control unit 410A. control (details of control will be described later).

室外ファン制御部410Dには、前記外気温度センサ22により検出された前記外気温度Tairと、前記リモコン60により設定された前記エアコン運転モードとが入力される。室外ファン制御部410Dは、前記四方弁制御部410Aからの前記運転情報に応じて、前記外気温度Tair及び運転モードに基づき、前記室外ファン67の回転数を制御する(詳細な制御内容は後述)。 The outside air temperature Tair detected by the outside air temperature sensor 22 and the air conditioner operation mode set by the remote controller 60 are input to the outdoor fan control unit 410D. The outdoor fan control unit 410D controls the rotation speed of the outdoor fan 67 based on the outside air temperature Tair and the operation mode according to the operation information from the four-way valve control unit 410A (details of control will be described later). .

二方弁制御部410Eには、前記四方弁制御部410Aからの前記運転情報が入力される。二方弁制御部410Eは、前記運転情報に基づき、前記二方弁122,123,124,125,126の開閉動作を制御する(詳細な制御内容は後述)。 The operation information from the four-way valve control section 410A is input to the two-way valve control section 410E. The two-way valve control unit 410E controls opening and closing operations of the two-way valves 122, 123, 124, 125, and 126 based on the operation information (details of control will be described later).

なお、前記運転態様の決定は、貯湯制御部420やエアコン制御部430で行っても良い。この場合は、それら貯湯制御部420やエアコン制御部430から、決定された運転態様に対応した前記運転情報がヒーポン制御部410に入力され、その入力された運転情報に応じて四方弁制御部410A、圧縮機制御部410B、膨張弁制御部410C、室外ファン制御部410D、二方弁制御部410Eが各種制御を行う。 Note that the determination of the operation mode may be performed by the hot water storage control section 420 or the air conditioner control section 430 . In this case, the operation information corresponding to the determined operation mode is input to the heat pump control unit 410 from the hot water storage control unit 420 and the air conditioner control unit 430, and the four-way valve control unit 410A is controlled according to the input operation information. , a compressor control unit 410B, an expansion valve control unit 410C, an outdoor fan control unit 410D, and a two-way valve control unit 410E perform various controls.

<貯湯制御部>
次に、前記貯湯ユニット100に備えられた前記貯湯制御部420について説明する。貯湯制御部420は、前記ヒーポン制御部410同様、記憶部と制御部とを備えており、その機能的構成を図4により説明する。
<Hot water storage controller>
Next, the hot water storage controller 420 provided in the hot water storage unit 100 will be described. Like the heat pump control unit 410, the hot water storage control unit 420 includes a storage unit and a control unit, and its functional configuration will be described with reference to FIG.

図4に示すように、前記貯湯制御部420は、ポンプ制御部420Aと、二方弁制御部420Cと、を機能的に備えている。 As shown in FIG. 4, the hot water storage controller 420 functionally includes a pump controller 420A and a two-way valve controller 420C.

ポンプ制御部420Aには、前記ヒーポン制御部410からの前記運転情報と、前記沸上温度センサ24により検出された前記沸上温度Tbとが入力される。ポンプ制御部420Aは、前記のようにしてヒーポン制御部410から入力される(沸上運転、冷房運転、沸上・冷房運転、暖房運転、及び沸上・暖房運転等のいずれの運転が行われるかを表す)前記運転情報に応じて、入力された前記沸上温度Tbに基づき、前記沸上ポンプ19の回転数を制御する(詳細な制御内容は後述)。 The operation information from the heat pump control unit 410 and the boiling temperature Tb detected by the boiling temperature sensor 24 are input to the pump control unit 420A. The pump control unit 420A receives input from the heat pump control unit 410 as described above (any operation such as boiling operation, cooling operation, boiling/cooling operation, heating operation, and boiling/heating operation is performed. The number of revolutions of the boiling pump 19 is controlled based on the input boiling temperature Tb according to the operation information (details of control content will be described later).

二方弁制御部420Cには、前記ヒーポン制御部410からの前記運転情報が入力される。二方弁制御部420Cは、前記運転情報に基づき、前記二方弁121の開閉動作を制御する(詳細な制御内容は後述)。 The operation information from the heat pump control unit 410 is input to the two-way valve control unit 420C. The two-way valve control unit 420C controls the opening/closing operation of the two-way valve 121 based on the operation information (details of control will be described later).

なお、前記と同様、運転態様の決定を、貯湯制御部420内(例えば前記二方弁制御部420C)やエアコン制御部430で行っても良い。この場合は、それら二方弁制御部420Cやエアコン制御部430で決定した運転態様に対応する運転情報に応じて、ポンプ制御部420A、二方弁制御部420Cが各種制御を行う。 Note that the operation mode may be determined in the hot water storage control section 420 (for example, the two-way valve control section 420C) or the air conditioner control section 430 in the same manner as described above. In this case, the pump control section 420A and the two-way valve control section 420C perform various controls according to the operating information corresponding to the operating mode determined by the two-way valve control section 420C and the air conditioner control section 430. FIG.

<エアコン制御部>
次に、前記エアコンユニット200に備えられた前記エアコン制御部430について説明する。エアコン制御部430は、前記ヒーポン制御部410及び貯湯制御部420同様、記憶部と制御部とを備えており、その機能的構成を図5により説明する。
<Air conditioner controller>
Next, the air conditioner control section 430 provided in the air conditioner unit 200 will be described. The air conditioner control unit 430 includes a storage unit and a control unit, similarly to the heat pump control unit 410 and the hot water storage control unit 420, and the functional configuration thereof will be described with reference to FIG.

図5に示すように、前記エアコン制御部430は、室内ファン制御部430Aを機能的に備えている。 As shown in FIG. 5, the air conditioner controller 430 functionally includes an indoor fan controller 430A.

室内ファン制御部430Aには、前記ヒーポン制御部410からの前記運転情報と、前記室内温度センサ34により検出された前記室内温度Trと、前記リモコン60により設定された前記エアコン設定温度Tconとが入力される。室内ファン制御部430Aは、前記ヒーポン制御部410からの前記運転情報に応じて、前記室内温度Tr及びエアコン設定温度Tconに基づき、前記室内ファン77の回転数を制御する(詳細な制御内容は後述)。 The indoor fan controller 430A receives the operation information from the heat pump controller 410, the indoor temperature Tr detected by the indoor temperature sensor 34, and the air conditioner set temperature Tcon set by the remote controller 60. be done. The indoor fan control unit 430A controls the rotation speed of the indoor fan 77 based on the indoor temperature Tr and the air conditioner set temperature Tcon in accordance with the operation information from the heat pump control unit 410 (details of control will be described later). ).

なお、前記と同様、運転態様の決定を、エアコン制御部430内や貯湯制御部420で行っても良い。この場合は、それらエアコン制御部430や貯湯制御部420で決定した運転態様に対応する運転情報に応じて、室内ファン制御部430Aが前記制御を行う。 Note that the operation mode may be determined in the air conditioner control unit 430 or the hot water storage control unit 420 in the same manner as described above. In this case, the indoor fan control unit 430A performs the control according to the operation information corresponding to the operation mode determined by the air conditioner control unit 430 and the hot water storage control unit 420. FIG.

前記したように、本実施形態のヒートポンプ給湯機1は、沸上運転、冷房運転、暖房運転、沸上・冷房運転、沸上・暖房運転等の各種類の運転を選択的に実行することができる。以下、各運転の詳細を順次説明する。 As described above, the heat pump water heater 1 of the present embodiment can selectively execute various types of operations such as boiling operation, cooling operation, heating operation, boiling/cooling operation, and boiling/heating operation. can. Details of each operation will be described below.

<冬期沸上運転>
まず、沸上運転について説明する。なお、本実施形態では、例えば冬期と夏期とで別態様の沸上運転を行うことができる(詳細は後述)ため、まず、冬期において実行するのに好適な沸上運転(以下適宜、冬期沸上運転という)を図6を用いて説明する。
<Winter heating operation>
First, the boiling-up operation will be explained. In addition, in the present embodiment, for example, different modes of boiling-up operation can be performed in winter and summer (details will be described later). (referred to as upward operation) will be described with reference to FIG.

この図6に示す冬期沸上運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18cを前記配管部18bに連通させると共に前記配管部18aを前記配管部18dに連通させる位置(前記暖房位置)に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全開状態、二方弁123が全閉状態、二方弁122が全閉状態、二方弁125が全開状態、二方弁126が全閉状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が全閉状態、前記膨張弁114が全閉状態、前記膨張弁113が開き状態(詳細には後述の△H制御が行われる)、前記膨張弁111が全開状態に制御される。 During the winter boiling operation shown in FIG. 6, the four-way valve control section 410A causes the four-way valve 31 to connect the piping section 18c to the piping section 18b and connect the piping section 18a to the piping section 18d. It is switched to the communication position (the heating position). The two-way valve control units 410E and 420C control the two-way valve 121 to be fully open, the two-way valve 123 to be fully closed, the two-way valve 122 to be fully closed, the two-way valve 125 to be fully open, and the two-way valve 126 to be fully opened. is fully closed, and the two-way valve 124 is switched to the fully closed state. Further, the expansion valve control unit 410C controls the expansion valve 112 to be fully closed, the expansion valve 114 to be fully closed, the expansion valve 113 to be open (specifically, ΔH control, which will be described later), and the expansion valve 113 to be fully closed. Valve 111 is controlled to be fully open.

この結果、圧縮機14の吐出側の配管部18c→配管部18b→配管部25m→配管部25a→配管部25b(二方弁121)→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d(二方弁125)→圧縮機14の吸入側の配管部18aの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する水冷媒熱交換器15の前記冷媒側の流路15bにおいて前記水側の流路15aを流れる水と熱交換を行って前記水に熱を放出し加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。このとき、貯湯タンク2下部に接続された前記加熱往き管5から取り出された低温水(未加熱水)が、水冷媒熱交換器15の前記水側の流路15aにおいて前記凝縮する冷媒から受熱して高温まで加熱された後、貯湯タンク2上部に接続された加熱戻り管6から貯湯タンク2内に戻されることで、貯湯タンク2内に順次高温水(加熱水)が積層状に貯湯される。 As a result, the piping section 18c on the discharge side of the compressor 14→piping section 18b→piping section 25m→piping section 25a→piping section 25b (two-way valve 121)→flow path 15b on the refrigerant side of the water-refrigerant heat exchanger 15→ Pipe portion 25c (expansion valve 111)→Pipe portion 25e→Pipe portion 18e (expansion valve 113)→Outdoor heat exchanger 17→Pipe portion 18d (two-way valve 125)→Refrigerant in pipe portion 18a on the suction side of compressor 14 A path is formed. As a result, after the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, the refrigerant side flow of the water-refrigerant heat exchanger 15 functioning as a condenser In the passage 15b, the water exchanges heat with the water flowing through the passage 15a on the water side, releases heat to the water, heats the water, and changes into a high-pressure liquid. The liquid refrigerant passes through the fully open expansion valve 111 and is decompressed by the expansion valve 113 to become a low-temperature, low-pressure liquid, which is easily evaporated. It absorbs heat by exchanging heat with the outside air, evaporating and changing to gas, and returns to the compressor 14 again as a low-temperature, low-pressure gas. At this time, the low-temperature water (unheated water) taken out from the heating supply pipe 5 connected to the lower part of the hot water storage tank 2 receives heat from the condensed refrigerant in the water-side flow path 15a of the water-refrigerant heat exchanger 15. After being heated to a high temperature, the hot water is returned into the hot water storage tank 2 through a heating return pipe 6 connected to the top of the hot water storage tank 2, so that high temperature water (heated water) is sequentially stored in the hot water storage tank 2 in a layered manner. be.

なおこのとき、前記膨張弁112、前記膨張弁114、前記二方弁122、前記二方弁124が全閉状態に制御されることにより、前記室内熱交換器27と、その室内熱交換器27側へ連通する、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26a、前記配管部26b、前記連通管路103等と、の内部には、前記冷媒が封じ込められた状態となる(図6中の左下段のテーブル参照)。 At this time, the expansion valve 112, the expansion valve 114, the two-way valve 122, and the two-way valve 124 are controlled to be fully closed, so that the indoor heat exchanger 27 and the indoor heat exchanger 27 Inside the piping portion 25i, the piping portion 25f, the piping portion 25d, the communication pipeline 104, the piping portion 26a, the piping portion 26b, the communication pipeline 103, etc., which communicate to the side, the A state in which the refrigerant is enclosed is reached (see the lower left table in FIG. 6).

以上の作動において、前記圧縮機14の前記目標回転数(以下適宜、沸上運転時については「目標回転数Nb」と称する)は、前記圧縮機制御部410Bの制御により、外気温度Tairに基づき決定される。すなわち、例えば図7(a)の右下がり特性線で示すように、外気温度Tairが低い場合は目標回転数Nbが大きくなるように制御され、外気温度Tairが高い場合は目標回転数Nbが小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairに基づき決定される。すなわち、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される(図示省略)。ここで、前記圧縮機14の目標回転数Nbおよび室外ファン回転数N2は、外気温度Tairの高低によらず予め定められた一定の沸上能力となるようにそれぞれの回転数が定められている。 In the above operation, the target rotation speed of the compressor 14 (hereinafter referred to as “target rotation speed Nb” for boiling operation) is controlled by the compressor control unit 410B based on the outside air temperature Tair. It is determined. That is, for example, as shown by the right-down characteristic line in FIG. 7A, when the outside air temperature Tair is low, the target rotation speed Nb is controlled to be large, and when the outside air temperature Tair is high, the target rotation speed Nb is small. controlled to be The outdoor fan rotation speed N2 of the outdoor fan 67 is determined based on the outside air temperature Tair under the control of the outdoor fan control section 410D. That is, when the outside air temperature Tair is low, the fan rotation speed is controlled to increase, and when the outside air temperature Tair is high, the fan rotation speed is controlled to decrease (not shown). Here, the target rotational speed Nb of the compressor 14 and the outdoor fan rotational speed N2 are determined so as to achieve a predetermined constant boiling capacity regardless of whether the outside air temperature Tair is high or low. .

図6に戻り、また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記沸上温度Tbが所定の目標温度となるように、フィードバック制御される。すなわち、沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなる(流量が低下する)ように制御され、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなる(流量が増大する)ように制御される。なお、室内ファン77は、前記室内ファン制御部430Aの制御により回転停止される。 Returning to FIG. 6, the rotation speed of the boiling pump 19 is feedback-controlled by the control of the pump control section 420A so that the boiling temperature Tb becomes a predetermined target temperature. That is, when the boiling temperature Tb is lower than the target temperature, the pump rotation speed is controlled to decrease (the flow rate decreases), and when the boiling temperature Tb is higher than the target temperature, the pump rotation speed increases (the flow rate decreases). increased). The indoor fan 77 is stopped from rotating under the control of the indoor fan controller 430A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、前記冬期沸上運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout-T2が、所定の目標温度差△Hmとなるように、膨張弁113の開度を所定の周期でフィードバック制御する(△H制御)。すなわち、前記膨張弁制御部410Cは、△H<△Hmの場合は膨張弁113の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁113の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁113の開度を現状のまま維持する。
あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁113の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部410Cは、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度を開く方向に制御する。
The degree of opening of the expansion valve 113 is variably controlled by the expansion valve control section 410C according to the operating state of the winter boiling operation. Specifically, the degree of opening of the expansion valve 113 is changed at a predetermined cycle so that the temperature difference ΔH=Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 becomes a predetermined target temperature difference ΔHm. Feedback control (ΔH control). That is, the expansion valve control unit 410C controls the opening of the expansion valve 113 to close when ΔH<ΔHm, and to open the expansion valve 113 when ΔH>ΔHm. When ΔH=ΔHm, the opening of the expansion valve 113 is maintained as it is.
Alternatively, instead of this ΔH control, feedback control of the degree of opening of the expansion valve 113 may be performed so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 410C controls the opening of the expansion valve 113 to close when the refrigerant discharge temperature Tout is too low, and opens the expansion valve 113 when the refrigerant discharge temperature Tout is too high. Control direction.

<暖房運転>
次に、図8を用いて、暖房運転について説明する。この図8に示す暖房運転時においては、前記四方弁制御部410Aにより、前記冬期沸上運転と同様、前記四方弁31は、前記暖房位置に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全閉状態、二方弁123が全閉状態、二方弁122が全開状態、二方弁125が全開状態、二方弁126が全閉状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が全開状態、前記膨張弁114が全閉状態、前記膨張弁113が開き状態(詳細には前記と同様の吐出制御が行われる)、前記膨張弁111が全閉状態に制御される。
<Heating operation>
Next, the heating operation will be described with reference to FIG. During the heating operation shown in FIG. 8, the four-way valve control section 410A switches the four-way valve 31 to the heating position as in the winter heating operation. The two-way valve control units 410E and 420C control the two-way valve 121 to be fully closed, the two-way valve 123 to be fully closed, the two-way valve 122 to be fully open, the two-way valve 125 to be fully open, and the two-way valve 126 to be fully closed. is fully closed, and the two-way valve 124 is switched to the fully closed state. Further, the expansion valve control unit 410C controls the expansion valve 112 in the fully open state, the expansion valve 114 in the fully closed state, the expansion valve 113 in the open state (specifically, discharge control similar to that described above is performed), and the expansion valve 113 is opened. The valve 111 is controlled to be fully closed.

この結果、圧縮機14の吐出側の配管部18c→配管部18b→配管部25m→配管部25i(二方弁122)→配管部25f→配管部25d→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)→配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d(二方弁125)→圧縮機14の吸入側の配管部18aの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する室内熱交換器27において室内空気と熱交換を行って熱を放出し空調対象空間を加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁112を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。 As a result, the piping portion 18c on the discharge side of the compressor 14→piping portion 18b→piping portion 25m→piping portion 25i (two-way valve 122)→piping portion 25f→piping portion 25d→communication pipe line 104→piping portion 26a→indoor Heat exchanger 27→pipe portion 26b→communication pipe line 103→pipe portion 25g (expansion valve 112)→pipe portion 25e→pipe portion 18e (expansion valve 113)→outdoor heat exchanger 17→pipe portion 18d (two-way valve 125 ) → A refrigerant path of the piping portion 18a on the suction side of the compressor 14 is formed. As a result, the gaseous refrigerant drawn in at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, and then heat exchanged with the indoor air in the indoor heat exchanger 27 functioning as a condenser. As the air moves, heat is released, and the space to be air-conditioned is heated while changing into a high-pressure liquid. The liquid refrigerant passes through the fully open expansion valve 112 and is decompressed by the expansion valve 113 to become a low-temperature, low-pressure liquid, which is easily evaporated. It absorbs heat by exchanging heat with the outside air, evaporating and changing to gas, and returns to the compressor 14 again as a low-temperature, low-pressure gas.

なおこのとき、前記膨張弁111、前記二方弁121、前記二方弁123が全閉状態に制御されることにより、前記水冷媒熱交換器15と、その水冷媒熱交換器15側へ連通する前記配管部25l、前記配管部25b、前記配管部25cの水冷媒熱交換器15側の部分と、の内部には、前記冷媒が封じ込められた状態となる(図8中の左下段のテーブル参照)。 At this time, the expansion valve 111, the two-way valve 121, and the two-way valve 123 are controlled to be fully closed, thereby communicating with the water-refrigerant heat exchanger 15 and the water-refrigerant heat exchanger 15 side. The refrigerant is confined inside the piping portion 25l, the piping portion 25b, and the portion of the piping portion 25c on the side of the water-refrigerant heat exchanger 15 (lower left table in FIG. 8). reference).

以上の作動において、前記圧縮機14の前記目標回転数(以下適宜、暖房運転時については「目標回転数Nh」と称する)は、前記圧縮機制御部410Bの制御により、エアコン設定温度Tcon-前記室内温度Tr(=温度差△T。以下適宜,単に「温度差△T」という)の値が大きい場合は目標回転数が大きくなるように、前記温度差△T(=Tcon-Tr)の値が小さい場合は目標回転数が小さくなるように制御される。具体的には、この例では、図7(b)に示すように、前記温度差△Tの範囲を、△T≦2[℃]、2<△T≦5[℃]、5<△T≦10[℃]、10<T[℃]の4つに区分する。 In the above operation, the target rotation speed of the compressor 14 (hereinafter referred to as “target rotation speed Nh” for heating operation) is controlled by the compressor control unit 410B so that the air conditioner set temperature Tcon minus the above When the indoor temperature Tr (=temperature difference ΔT, hereinafter simply referred to as “temperature difference ΔT”) is large, the temperature difference ΔT (=Tcon-Tr) is adjusted so that the target rotation speed becomes large. is small, the target rotational speed is controlled to be small. Specifically, in this example, as shown in FIG. 7B, the range of the temperature difference ΔT is set to It is divided into four categories of ≦10 [° C.] and 10<T [° C.].

そして、前記温度差△Tが4つの区分のうち最も小さい△T≦2[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを20[rps]となるように制御する。また、前記温度差△Tが4つの区分のうち2番目に小さい2<△T≦5[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを30[rps]となるように制御する。また、前記温度差△Tが4つの区分のうち2番目に大きい5<△T≦10[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを40[rps]となるように制御する。そして、前記温度差△Tが4つの区分のうち最も大きい10<△T[℃]の範囲である場合には、圧縮機制御部410Bは、圧縮機14の前記目標回転数Nhを50[rps]となるように制御する。 Then, when the temperature difference ΔT is within the range of ΔT≦2 [° C.], which is the smallest among the four categories, the compressor control unit 410B sets the target rotation speed Nh of the compressor 14 to 20 [rps]. ]. Further, when the temperature difference ΔT is in the range of 2<ΔT≦5 [° C.], which is the second smallest among the four categories, the compressor control unit 410B controls the target rotation speed Nh of the compressor 14 is controlled to be 30 [rps]. Further, when the temperature difference ΔT is in the range of 5<ΔT≦10 [° C.], which is the second largest among the four categories, the compressor control unit 410B controls the target rotation speed Nh of the compressor 14 is controlled to be 40 [rps]. Then, when the temperature difference ΔT is within the largest range of 10<ΔT [° C.] among the four categories, the compressor control unit 410B sets the target rotation speed Nh of the compressor 14 to 50 [rps ].

図8に戻り、また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、外気温度Tairとエアコン運転モードに基づき決定される。すなわち、複数用意されたエアコン運転モード(例えば強力モード、通常モード、節電モード等)のそれぞれにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。 Returning to FIG. 8, the rotation speed of the outdoor fan 67 is determined based on the outside air temperature Tair and the air conditioner operation mode under the control of the outdoor fan control section 410D. That is, in each of a plurality of prepared air conditioner operation modes (for example, strong mode, normal mode, power saving mode, etc.), when the outside temperature Tair is low, the fan rotation speed is controlled to increase, and when the outside temperature Tair is high, The fan rotation speed is controlled to be small.

また前記室内ファン77の回転数は、前記室内ファン制御部430Aの制御により、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。すなわち、Tcon-Trの値が大きい場合はファン回転数が大きくなるように制御され、Tcon-Trの値が小さい場合はファン回転数が小さくなるように制御される。なお、沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。 The rotation speed of the indoor fan 77 is determined based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon under the control of the indoor fan control section 430A. That is, when the value of Tcon-Tr is large, the fan speed is controlled to increase, and when the value of Tcon-Tr is small, the fan speed is controlled to decrease. The boiling pump 19 is stopped from rotating under the control of the pump control section 420A.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、暖房運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁113の開度がフィードバック制御される(前記同様の吐出制御)。この場合、前記膨張弁制御部410Cは、冷媒吐出温度Toutが低すぎる場合は膨張弁113の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁113の開度を開く方向に制御する。なお、前記吐出制御に代え、前記冷媒吸入温度Tinと前記ヒーポン熱交温度Texとの温度差Tin-Texが所定の一定値となるように、膨張弁113の開度をフィードバック制御するようにしてもよい(SH制御)。この場合、前記膨張弁制御部410Cは、Tin-Texが小さすぎる場合は膨張弁113の開度を閉じる方向に制御し、Tin-Texが大きすぎる場合は膨張弁113の開度を開く方向に制御する。 The degree of opening of the expansion valve 113 is variably controlled by the expansion valve control section 410C according to the operating state of the heating operation. Specifically, the degree of opening of the expansion valve 113 is feedback-controlled so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control similar to that described above). In this case, the expansion valve control unit 410C controls the opening of the expansion valve 113 to close when the refrigerant discharge temperature Tout is too low, and opens the expansion valve 113 when the refrigerant discharge temperature Tout is too high. Control direction. Instead of the discharge control, the opening degree of the expansion valve 113 is feedback-controlled so that the temperature difference Tin-Tex between the refrigerant suction temperature Tin and the heat pump heat exchanger temperature Tex becomes a predetermined constant value. (SH control). In this case, the expansion valve control unit 410C controls the opening of the expansion valve 113 in the closing direction when the Tin-Tex is too small, and in the opening direction of the expansion valve 113 when the Tin-Tex is too large. Control.

<沸上・暖房運転>
次に、図9を用いて、沸上・暖房運転について説明する。この図9に示す沸上・暖房運転時においても、前記四方弁制御部410Aにより、前記四方弁31は、前記暖房位置に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全開状態、二方弁123が全閉状態、二方弁122が全閉状態、二方弁125が全開状態、二方弁126が全閉状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が全開状態、前記膨張弁114,111が開き状態(詳細には後述の分流制御が行われる)、前記膨張弁113が開き状態(詳細には前記と同様の△H制御が行われる)に制御される。
<Boiling/heating operation>
Next, the boiling/heating operation will be described with reference to FIG. The four-way valve control section 410A switches the four-way valve 31 to the heating position even during the boiling/heating operation shown in FIG. The two-way valve control units 410E and 420C control the two-way valve 121 to be fully open, the two-way valve 123 to be fully closed, the two-way valve 122 to be fully closed, the two-way valve 125 to be fully open, and the two-way valve 126 to be fully opened. is fully closed, and the two-way valve 124 is switched to the fully closed state. Further, the expansion valve control unit 410C controls the expansion valve 112 to be in a fully open state, the expansion valves 114 and 111 to be in an open state (specifically, branch flow control described later), and the expansion valve 113 to be in an open state (specifically, ΔH control similar to that described above is performed).

この結果、冷媒経路は、圧縮機14の吐出側の配管部18c→配管部18b→配管部25m→配管部25aを経て前記分岐点Fにおいて2つに分かれ、一方は、配管部25b(二方弁121)→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)を経て前記分岐点Dに至り、他方は、配管部25h(膨張弁114)→配管部25d→連通管路104→配管部26a→室内熱交換器27→配管部26b→連通管路103→配管部25g(膨張弁112)を経て前記分岐点Dへ至る。分岐点Dでこれら2つの経路が合流し、その後の経路は、前記分岐点D→配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d(二方弁125)→圧縮機14の吸入側の配管部18aとなる。 As a result, the refrigerant path passes through the piping portion 18c on the discharge side of the compressor 14→the piping portion 18b→the piping portion 25m→the piping portion 25a, and is divided into two at the branch point F. valve 121)→flow path 15b on the refrigerant side of the water-refrigerant heat exchanger 15→pipe portion 25c (expansion valve 111) to reach the branch point D, and the other is the pipe portion 25h (expansion valve 114)→pipe portion 25d. →Communication pipeline 104→Pipe part 26a→Indoor heat exchanger 27→Pipe part 26b→Communication pipeline 103→Pipe part 25g (expansion valve 112) to the branch point D. These two routes merge at the branch point D, and the subsequent route is the branch point D→pipe section 25e→pipe section 18e (expansion valve 113)→outdoor heat exchanger 17→pipe section 18d (two-way valve 125). → It becomes the piping portion 18 a on the suction side of the compressor 14 .

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後に前記のように分流し、前記一方の流れは前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、前記他方の流れは室内熱交換器27(凝縮器として機能)において前記同様に凝縮して室内空気に熱を放出することで空調対象空間を加熱する。前記の熱交換器15,27での凝縮で高圧の液体に変化した冷媒は前記膨張弁113において減圧されて低温・低圧の液体となった後前記室外熱交換器17(蒸発器として機能)において蒸発して外気から吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。 As a result, the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, and then divided as described above. 15 (functioning as a condenser) heats the water that is condensed in the same manner as described above and flows through the water-side flow path 15a, thereby sequentially supplying high-temperature water (heated water) into the hot water storage tank 2, and the other flow is The air is condensed in the indoor heat exchanger 27 (functioning as a condenser) in the same manner as described above and heat is released to the indoor air, thereby heating the air-conditioned space. The refrigerant that has changed to a high-pressure liquid by condensation in the heat exchangers 15 and 27 is decompressed in the expansion valve 113 to become a low-temperature, low-pressure liquid, and then in the outdoor heat exchanger 17 (functioning as an evaporator). It evaporates, absorbs heat from the outside air, and returns to the compressor 14 again as a low-temperature, low-pressure gas.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、外気温度Tairに基づき決定される前記沸上運転時の目標回転数Nb(前記図7(a)参照)と、前記温度差△T(=エアコン設定温度Tcon-室内温度Tr)に基づき決定される前記暖房運転時の目標回転数Nh(前記図7(b)参照)とを合算した和である、目標回転数Nbh(=Nb+Nh)となるように制御される。すなわち、図7(c)に示すように、この例では、図示のように4つ用意された特性線(下から順番に破線、一点鎖線、点線、二点鎖線)において、前記温度差△Tが大きくなるにつれて、より大回転数側の特性線となるように、使用する特性線を段階的に切り替える。 In the operation described above, the rotation speed of the compressor 14 is controlled by the compressor control unit 410B, and the target rotation speed Nb (see FIG. ) and the target rotation speed Nh (see FIG. 7(b)) during the heating operation determined based on the temperature difference ΔT (=air conditioner set temperature Tcon−indoor temperature Tr). It is controlled so as to reach the target rotation speed Nbh (=Nb+Nh). That is, as shown in FIG. 7C, in this example, the temperature difference ΔT increases, the characteristic line to be used is switched step by step so that the characteristic line is closer to the high rotation speed side.

具体的には、図7(c)に示すように、前記温度差△Tが前記△T≦2[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、制御基準としての実線(図7(a)の実線と同一)で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した20[rps]を加えた図7(c)中の破線で示す特性となるように(すなわちNbh=Nb+20となるように)制御する。また、前記温度差△Tが前記2<△T≦5[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した30[rps]を加えた図7(c)中の一点鎖線で示す特性となるように(すなわちNbh=Nb+30となるように)制御する。さらに、前記温度差△Tが前記5<△T≦10[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した40[rps]を加えた図7(c)中の点線で示す特性となるように(すなわちNbh=Nb+40となるように)制御する。さらに、前記温度差△Tが前記10<△T[℃]の範囲である場合には、圧縮機制御部410Bは、前記目標回転数Nbhを、実線で示す前記沸上運転時の目標回転数Nbに対し、図7(b)に示した50[rps]を加えた図7(c)中の二点鎖線で示す特性となるように(すなわちNbh=Nb+50となるように)制御する。 Specifically, as shown in FIG. 7(c), when the temperature difference ΔT is within the range of ΔT≦2 [° C.], the compressor control unit 410B reduces the target rotation speed Nbh to , 20 [rps] shown in FIG. c) Control is performed so as to obtain the characteristics indicated by the dashed line in (that is, Nbh=Nb+20). Further, when the temperature difference ΔT is in the range of 2<ΔT≦5 [° C.], the compressor control unit 410B sets the target rotation speed Nbh to the target during the boiling operation indicated by the solid line. Control is performed so that the characteristic shown by the dashed line in FIG. 7(c) is obtained by adding 30 [rps] shown in FIG. 7(b) to the rotational speed Nb (that is, Nbh=Nb+30). Furthermore, when the temperature difference ΔT is in the range of 5<ΔT≦10 [° C.], the compressor control unit 410B sets the target rotation speed Nbh to the target during the boiling operation indicated by the solid line. Control is performed so that the characteristic shown by the dotted line in FIG. 7(c) is obtained by adding 40 [rps] shown in FIG. 7(b) to the rotational speed Nb (that is, Nbh=Nb+40). Furthermore, when the temperature difference ΔT is in the range of 10<ΔT [° C.], the compressor control unit 410B sets the target rotation speed Nbh to the target rotation speed during the boiling operation indicated by the solid line. Control is performed so that Nb is added with 50 [rps] shown in FIG. 7(b) to obtain the characteristic indicated by the chain double-dashed line in FIG. 7(c) (that is, Nbh=Nb+50).

図9に戻り、また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、前記暖房運転時と同様、外気温度Tairとエアコン運転モードに基づき、各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が大きくなるように、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。 Returning to FIG. 9, the number of rotations of the outdoor fan 67 is controlled by the outdoor fan control unit 410D, similarly to during the heating operation, based on the outside air temperature Tair and the air conditioner operation mode in each air conditioner operation mode. When the Tair is low, the fan rotation speed is controlled to increase, and when the outside air temperature Tair is high, the fan rotation speed is controlled to decrease.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記冬期沸上運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン77の回転数は、前記室内ファン制御部430Aの制御により、前記暖房運転時と同様、室内温度Trとエアコン設定温度Tconとの差に基づき、Tcon-Trの値が大きい場合はファン回転数が大きくなるように、Tcon-Trの値が小さい場合はファン回転数が小さくなるように制御される。 In addition, the pump control unit 420A controls the rotation speed of the boiling pump 19 to reduce the pump rotation speed when the boiling temperature Tb is lower than the target temperature, as in the winter boiling operation. is higher than the target temperature, the pump speed is controlled to increase. Further, the number of revolutions of the indoor fan 77 is controlled by the indoor fan control unit 430A based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, as in the case of the heating operation. When the value of Tcon-Tr is small, the fan rotation speed is controlled to decrease so that the fan rotation speed increases.

そして、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、沸上・暖房運転の運転状態に応じて可変に制御され、前記冬期沸上運転と同様、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout-T2が、所定の目標温度差△Hmとなるように、所定の周期でフィードバック制御される(前記した△H制御)。 The degree of opening of the expansion valve 113 is variably controlled by the expansion valve control unit 410C according to the operating state of the boiling/heating operation. The temperature difference ΔH=Tout−T2 from the refrigerant outflow temperature T2 is feedback-controlled at a predetermined cycle so that it becomes a predetermined target temperature difference ΔHm (the aforementioned ΔH control).

また、前記膨張弁111,114の開度は、前記膨張弁制御部410Cにより、冷媒を所望の割合(分流比)で水冷媒熱交換器15側及び室内熱交換器27側に配分し供給する、分流制御によって可変に制御される。この分流制御の制御内容の詳細を、図10(a)及び図10(b)により説明する。 Further, the opening degrees of the expansion valves 111 and 114 are controlled by the expansion valve control unit 410C to distribute and supply the refrigerant to the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side at a desired ratio (split flow ratio). , is variably controlled by the shunt control. Details of the control contents of this flow division control will be described with reference to FIGS. 10(a) and 10(b).

図10(a)に、前記膨張弁制御部410Cにより実行される前記膨張弁111の開度制御の制御マップの一例を示す。図10(a)及び図10(b)に示すマップでは、縦軸に沸上要求能力(この例では、対応する指標としての前記沸上時の目標回転数Nb)を下向き増加方向にとり、横軸に暖房要求能力(この例では、対応する指標としての前記暖房時の目標回転数Nh)を下向き増加方向にとったときの、各状態における目標開度の値(例えば全閉状態が「0」で全開状態が「500」となる相対値)を表している。 FIG. 10(a) shows an example of a control map of the opening degree control of the expansion valve 111 executed by the expansion valve control section 410C. In the maps shown in FIGS. 10( a ) and 10 ( b ), the vertical axis indicates the required boiling capacity (in this example, the target rotation speed Nb during boiling as a corresponding index) in the downward increasing direction, and the horizontal axis The value of the target opening in each state (for example, when the fully closed state is "0 ” represents the relative value at which the fully open state is “500”).

図10(a)に示すように、例えば沸上・暖房運転時における前記暖房要求能力が最小レベルで前記沸上要求能力も最小レベルであった場合には、膨張弁111の前記目標開度は開度「250」(例えば全開と全閉のちょうど中間となる開度)となるように制御される。この暖房要求能力が最小レベルのままで前記沸上要求能力が1ランク高くなると膨張弁111の前記目標開度は少し大きな開度「300」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の前記目標開度はさらに少し大きな開度「350」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の前記目標開度はさらに少し大きな開度「400」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁111の前記目標開度はさらに少し大きな開度「450」(全開状態に近い状態)となるように制御される。このように膨張弁111の開度が徐々に大きくなることにより、水冷媒熱交換器15側及び室内熱交換器27側への分流における、水冷媒熱交換器15側への分流比が増大するように制御される。 As shown in FIG. 10(a), for example, when the required heating capacity during boiling/heating operation is at the minimum level and the required boiling capacity is also at the minimum level, the target opening of the expansion valve 111 is The opening is controlled to be "250" (for example, an opening that is just between fully open and fully closed). If the required boiling capacity is increased by one rank while the required heating capacity remains at the minimum level, the target opening of the expansion valve 111 is controlled to a slightly larger opening of "300", and furthermore, the required boiling capacity is increased. When the required boiling capacity is increased by one rank, the target opening of the expansion valve 111 is controlled to be a slightly larger opening of "350". The opening is controlled to be a large opening of "400", and when the required boiling capacity is increased by one rank, the target opening of the expansion valve 111 becomes a slightly larger opening of "450" (a state close to a fully open state). controlled as As the degree of opening of the expansion valve 111 gradually increases in this way, the split flow ratio to the water-refrigerant heat exchanger 15 side in the split flow to the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side increases. controlled as

同様に、前記暖房要求能力が最小レベルより1ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111の前記目標開度は前記開度「250」より小さい開度「200」となるように制御される。これにより、前記分流における室内熱交換器27側への分流比が(前記開度「250」の場合に比べると)やや増大する。この状態のままで前記沸上要求能力が1ランク高くなると膨張弁111の前記目標開度は少し大きな開度「250」となるように制御され、その後、前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の前記目標開度は「300」「350」「400」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Similarly, when the required heating capacity is one rank higher than the minimum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 111 is smaller than the opening "250". It is controlled to be "200". As a result, the split flow ratio to the indoor heat exchanger 27 side in the split flow is slightly increased (compared to the case where the opening degree is "250"). If the required boiling-up capacity is increased by one rank in this state, the target opening of the expansion valve 111 is controlled to be a slightly larger opening of "250", and thereafter the required boiling-up capacity is increased by one rank. As the temperature increases, the target opening of the expansion valve 111 is controlled to gradually increase to "300", "350", and "400", and the split flow ratio to the water-refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最小レベルより2ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111の前記目標開度は前記開度「200」よりさらに小さい開度「150」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「200」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の前記目標開度は「200」「250」「300」「350」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Furthermore, in the same manner as described above, when the required heating capacity is two ranks higher than the minimum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 111 is further than the opening "200". It is controlled to have a small opening of "150". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "200"). In this state, the target opening of the expansion valve 111 is controlled to gradually increase to "200," "250," "300," and "350" as the required boiling-up capacity increases by one rank. , the split ratio to the water-refrigerant heat exchanger 15 increases.

さらに前記同様に、前記暖房要求能力が最小レベルより3ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁111の前記目標開度は前記開度「150」よりさらに小さい開度「100」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「150」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁111の前記目標開度は「150」「200」「250」「300」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Furthermore, in the same manner as described above, when the required boiling capacity is at the minimum level while the required heating capacity is three ranks higher than the minimum level, the target opening of the expansion valve 111 is further than the opening "150". It is controlled to have a small opening of "100". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "150"). In this state, the target opening of the expansion valve 111 is controlled to gradually increase to "150," "200," "250," and "300" as the required boiling-up capacity increases by one rank. , the split ratio to the water-refrigerant heat exchanger 15 increases.

さらに前記同様に、前記暖房要求能力が最大レベルで前記沸上要求能力が最小レベルであった場合には、膨張弁111の前記目標開度は前記開度「100」よりさらに小さい開度「50」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「100」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランク高くなるに連れて、膨張弁111の前記目標開度は「100」「150」「200」「250」と徐々に大きくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Furthermore, in the same manner as described above, when the required heating capacity is at the maximum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 111 is 50, which is smaller than the opening of 100. ” is controlled. As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "100"). In this state, the target opening of the expansion valve 111 is controlled to gradually increase to "100", "150", "200", and "250" as the required boiling-up capacity increases by one rank, The split ratio to the water-refrigerant heat exchanger 15 side increases.

図10(b)に、前記膨張弁制御部410Cにより実行される前記膨張弁114の開度制御の制御マップの一例を示す。図10(b)に示すマップでは、前記同様、縦軸に沸上要求能力(沸上時の目標回転数Nb)、横軸に暖房要求能力(前記暖房時の目標回転数Nh)を下向き増加方向にとって表している。 FIG. 10(b) shows an example of a control map for controlling the degree of opening of the expansion valve 114 executed by the expansion valve control section 410C. In the map shown in FIG. 10(b), in the same manner as described above, the vertical axis indicates the required boiling capacity (target rotation speed Nb during boiling), and the horizontal axis indicates the required heating capacity (target rotation speed Nh during heating). Represents for direction.

図10(b)に示すように、例えば沸上・暖房運転時における前記暖房要求能力が最小レベルで前記沸上要求能力も最小レベルであった場合には、膨張弁114の前記目標開度は開度「250」となるように制御される。この暖房要求能力が最小レベルのままで前記沸上要求能力が1ランク高くなると膨張弁114の前記目標開度は少し小さな開度「200」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁114の前記目標開度はさらに少し小さな開度「150」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁114の前記目標開度はさらに少し小さな開度「100」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁114の前記目標開度はさらに少し大きな開度「50」となるように制御される。このように膨張弁114の開度が徐々に小さくなることにより、水冷媒熱交換器15側及び室内熱交換器27側への分流における、水冷媒熱交換器15側への分流比が増大するように制御される。 As shown in FIG. 10(b), for example, when the required heating capacity during boiling/heating operation is at a minimum level and the required boiling capacity is also at a minimum level, the target opening of the expansion valve 114 is The opening is controlled to be "250". If the required boiling capacity is increased by one rank while the required heating capacity remains at the minimum level, the target opening of the expansion valve 114 is controlled to a slightly smaller opening of "200", and furthermore, the required boiling capacity is increased. When the required boiling capacity is increased by one rank, the target opening of the expansion valve 114 is controlled to be a slightly smaller opening of "150". The opening is controlled to be a small opening of "100", and when the required boiling capacity is further increased by one rank, the target opening of the expansion valve 114 is controlled to be a slightly larger opening of "50". As the degree of opening of the expansion valve 114 gradually decreases in this way, the split flow ratio to the water-refrigerant heat exchanger 15 side in the split flow to the water-refrigerant heat exchanger 15 side and the indoor heat exchanger 27 side increases. controlled as

同様に、前記暖房要求能力が最小レベルより1ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁114の前記目標開度は前記開度「250」より大きい開度「300」となるように制御される。これにより、前記分流における室内熱交換器27側への分流比が(前記開度「250」の場合に比べると)やや増大する。この状態のままで前記沸上要求能力が1ランク高くなると膨張弁114の前記目標開度は少し小さな開度「250」となるように制御され、その後、前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁114の前記目標開度は「200」「150」「100」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Similarly, when the required heating capacity is one rank higher than the minimum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 114 is greater than the opening "250". It is controlled to be "300". As a result, the split flow ratio to the indoor heat exchanger 27 side in the split flow is slightly increased (compared to the case where the opening degree is "250"). If the required boiling-up capacity is increased by one rank in this state, the target opening of the expansion valve 114 is controlled to be a slightly smaller opening of "250", and then the required boiling-up capacity is increased by one rank. As the temperature increases, the target opening of the expansion valve 114 is controlled to gradually decrease to "200", "150", and "100", and the split flow ratio to the water-refrigerant heat exchanger 15 side increases.

さらに前記同様に、前記暖房要求能力が最小レベルより2ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁114の前記目標開度は前記開度「300」よりさらに大きい開度「350」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「300」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁114の前記目標開度は「300」「250」「200」「150」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Further, in the same manner as described above, when the required heating capacity is two ranks higher than the minimum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 114 is further than the opening "300". It is controlled to have a large opening of "350". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "300"). In this state, the target opening of the expansion valve 114 is controlled to gradually decrease to "300," "250," "200," and "150" as the required boiling-up capability increases by one rank. , the split ratio to the water-refrigerant heat exchanger 15 increases.

さらに前記同様に、前記暖房要求能力が最小レベルより3ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁114の前記目標開度は前記開度「350」よりさらに大きい開度「400」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「350」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁114の前記目標開度は「350」「300」「250」「200」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Furthermore, in the same manner as described above, when the required boiling capacity is at the minimum level while the required heating capacity is three ranks higher than the minimum level, the target opening of the expansion valve 114 is further than the opening 350. It is controlled to have a large opening of "400". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the opening degree "350"). In this state, the target opening of the expansion valve 114 is controlled to gradually decrease to "350," "300," "250," and "200" as the required boiling-up capacity increases by one rank. , the split ratio to the water-refrigerant heat exchanger 15 increases.

さらに前記同様に、前記暖房要求能力が最大レベルで前記沸上要求能力が最小レベルであった場合には、膨張弁114の前記目標開度は前記開度「400」よりさらに大きな開度「450」(全開状態に近い状態)となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「400」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランク高くなるに連れて、膨張弁114の前記目標開度は「400」「350」「300」「250」と徐々に小さくなるように制御され、水冷媒熱交換器15側への分流比が増大する。 Further, in the same manner as described above, when the required heating capacity is at the maximum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 114 is 450, which is larger than the opening of 400. ” (a state close to a fully open state). As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "400"). In this state, the target opening of the expansion valve 114 is controlled to gradually decrease to "400," "350," "300," and "250" as the required boiling-up capacity increases by one rank, The split ratio to the water-refrigerant heat exchanger 15 side increases.

<夏期沸上運転>
次に、夏期において実行するのに好適な沸上運転(以下適宜、夏期沸上運転という)を図11を用いて説明する。
<Summer heating operation>
Next, boiling-up operation suitable for execution in summer (hereinafter referred to as summer boiling-up operation as appropriate) will be described with reference to FIG. 11 .

この図11に示す夏期沸上運転時においては、前記四方弁制御部410Aにより、前記四方弁31は、前記配管部18cを前記配管部18dに連通させると共に前記配管部18aを前記配管部18bに連通させる位置(前記した冷房位置)に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全閉状態、二方弁123が全開状態、二方弁122が全閉状態、二方弁125が全閉状態、二方弁126が全開状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が全閉状態、前記膨張弁114が全閉状態、前記膨張弁113が開き状態(詳細には前述の△H制御が行われる)、前記膨張弁111が全開状態に制御される。 During the summer boiling operation shown in FIG. 11, the four-way valve control unit 410A causes the four-way valve 31 to connect the piping portion 18c to the piping portion 18d and connect the piping portion 18a to the piping portion 18b. It is switched to the communication position (cooling position described above). The two-way valve control units 410E and 420C control the two-way valve 121 to be fully closed, the two-way valve 123 to be fully open, the two-way valve 122 to be fully closed, the two-way valve 125 to be fully closed, and the two-way valve to be fully closed. 126 is switched to a fully open state, and the two-way valve 124 is switched to a fully closed state. Further, the expansion valve control unit 410C controls the expansion valve 112 to be fully closed, the expansion valve 114 to be fully closed, the expansion valve 113 to be open (specifically, the ΔH control described above is performed), and the expansion valve 113 to be fully closed. Valve 111 is controlled to be fully open.

この結果、圧縮機14の吐出側の配管部18c→配管部18d→配管部25j(二方弁123)→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)→配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→配管部18f→配管部18b→圧縮機14の吸入側の配管部18aの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する水冷媒熱交換器15の前記冷媒側の流路15bにおいて前記水側の流路15aを流れる水と熱交換を行って前記水に熱を放出し加熱しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁111を経て前記膨張弁113において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記室外熱交換器17において外気と熱交換を行って蒸発してガスに変化することで吸熱し、低温・低圧のガスとして再び圧縮機14へと戻る。このとき、貯湯タンク2下部に接続された前記加熱往き管5から取り出された低温水(未加熱水)が、水冷媒熱交換器15の前記水側の流路15aにおいて前記凝縮する冷媒から受熱して高温まで加熱された後、貯湯タンク2上部に接続された加熱戻り管6から貯湯タンク2内に戻されることで、貯湯タンク2内に順次高温水(加熱水)が積層状に貯湯される。 As a result, the piping portion 18c on the discharge side of the compressor 14 → the piping portion 18d → the piping portion 25j (two-way valve 123) → the piping portion 25b → the flow path 15b on the refrigerant side of the water-refrigerant heat exchanger 15 → the piping portion 25c ( expansion valve 111)→piping portion 25e→piping portion 18e (expansion valve 113)→outdoor heat exchanger 17→piping portion 18d→piping portion 18f→piping portion 18b→piping portion 18a on the intake side of compressor 14. It is formed. As a result, after the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, the refrigerant side flow of the water-refrigerant heat exchanger 15 functioning as a condenser In the passage 15b, the water exchanges heat with the water flowing through the passage 15a on the water side, releases heat to the water, heats the water, and changes into a high-pressure liquid. The liquid refrigerant passes through the fully open expansion valve 111 and is decompressed by the expansion valve 113 to become a low-temperature, low-pressure liquid, which is easily evaporated. It absorbs heat by exchanging heat with the outside air, evaporating and changing to gas, and returns to the compressor 14 again as a low-temperature, low-pressure gas. At this time, the low-temperature water (unheated water) taken out from the heating supply pipe 5 connected to the lower part of the hot water storage tank 2 receives heat from the condensed refrigerant in the water-side flow path 15a of the water-refrigerant heat exchanger 15. After being heated to a high temperature, the hot water is returned into the hot water storage tank 2 through a heating return pipe 6 connected to the top of the hot water storage tank 2, so that high temperature water (heated water) is sequentially stored in the hot water storage tank 2 in a layered manner. be.

なおこのとき、前記図6の冬期沸上運転時と同様、前記膨張弁112、前記膨張弁114、前記二方弁122、前記二方弁124が全閉状態に制御されることにより、前記室内熱交換器27と、その室内熱交換器27側へ連通する、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26a、前記配管部26b、前記連通管路103等と、の内部には、前記冷媒が封じ込められた状態となっている(図11中の左下段のテーブル参照)。 At this time, as in the winter boiling operation of FIG. The heat exchanger 27, and the piping section 25i, the piping section 25f, the piping section 25d, the communication conduit 104, the piping section 26a, the piping section 26b, and the communication that communicate with the indoor heat exchanger 27 side. The refrigerant is sealed inside the pipes 103 and the like (see the lower left table in FIG. 11).

以上の作動において、前記図6の冬期沸上運転時と同様、前記圧縮機14の前記目標回転数Nbは、前記圧縮機制御部410Bの制御により、前記図7(a)に示したすように、外気温度Tairが低い場合は目標回転数Nbが大きくなるように制御され、外気温度Tairが高い場合は目標回転数Nbが小さくなるように制御される。また前記室外ファン67における前記室外ファン回転数N2は、前記室外ファン制御部410Dの制御により、外気温度Tairが低い場合はファン回転数が大きくなるように制御され、外気温度Tairが高い場合はファン回転数が小さくなるように制御される。これら前記圧縮機14の目標回転数Nbおよび室外ファン回転数N2は、前記同様、外気温度Tairの高低によらず予め定められた一定の沸上能力となるようにそれぞれの回転数が定められている。 In the above operation, the target rotation speed Nb of the compressor 14 is controlled by the compressor control section 410B as shown in FIG. Furthermore, when the outside air temperature Tair is low, the target rotation speed Nb is controlled to be high, and when the outside air temperature Tair is high, the target rotation speed Nb is controlled to be low. The outdoor fan rotation speed N2 of the outdoor fan 67 is controlled by the outdoor fan control unit 410D so that the fan rotation speed increases when the outside air temperature Tair is low, and the fan rotation speed N2 increases when the outside air temperature Tair is high. The rotation speed is controlled to be small. The target rotation speed Nb of the compressor 14 and the rotation speed N2 of the outdoor fan are determined so as to achieve a predetermined constant boiling capacity regardless of the level of the outside air temperature Tair. there is

また沸上ポンプ19の回転数についても、前記図6の冬期沸上運転時と同様、前記ポンプ制御部420Aの制御により、沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなるように制御され、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。なお、室内ファン77は、前記室内ファン制御部430Aの制御により回転停止される。 6, the pump control unit 420A controls the rotation speed of the boiling pump 19 so that the pump rotation speed decreases when the boiling temperature Tb is lower than the target temperature. , and when the boiling temperature Tb is higher than the target temperature, the pump rotation speed is controlled to be increased. The indoor fan 77 is stopped from rotating under the control of the indoor fan controller 430A.

また前記膨張弁113の開度についても、前記図6の冬期沸上運転時と同様、前記膨張弁制御部410Cにより、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout-T2が、所定の目標温度差△Hmとなるように、前記△H制御が行われる(これに代え、前記の吐出制御を行っても良い)。 As for the degree of opening of the expansion valve 113, the temperature difference ΔH=Tout between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 is controlled by the expansion valve control unit 410C, as in the case of the winter boiling operation in FIG. The ΔH control is performed so that −T2 becomes a predetermined target temperature difference ΔHm (alternatively, the discharge control described above may be performed).

<冷房運転>
次に、図12を用いて、冷房運転について説明する。この図12に示す冷房運転時においては、前記四方弁制御部410Aにより、前記夏期沸上運転と同様、前記四方弁31は、前記冷房位置に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全閉状態、二方弁123が全閉状態、二方弁122が全開状態、二方弁125が全開状態、二方弁126が全閉状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が開き状態(公知の過熱制御制御が行われる。詳細な説明は省略)、前記膨張弁114が全閉状態、前記膨張弁113が全開状態、前記膨張弁111が全閉状態に制御される。
<Cooling operation>
Next, the cooling operation will be described with reference to FIG. 12 . During the cooling operation shown in FIG. 12, the four-way valve control section 410A switches the four-way valve 31 to the cooling position as in the summer boiling operation. The two-way valve control units 410E and 420C control the two-way valve 121 to be fully closed, the two-way valve 123 to be fully closed, the two-way valve 122 to be fully open, the two-way valve 125 to be fully open, and the two-way valve 126 to be fully closed. is fully closed, and the two-way valve 124 is switched to the fully closed state. Further, the expansion valve control unit 410C controls the expansion valve 112 in an open state (a known overheat control control is performed. Detailed description is omitted), the expansion valve 114 in a fully closed state, the expansion valve 113 in a fully open state, The expansion valve 111 is controlled to be fully closed.

この結果、圧縮機14の吐出側の配管部18c→配管部18d(二方弁125)→室外熱交換器17→配管部18e(膨張弁113)→配管部25e→配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d→配管部25f→配管部25i(二方弁122)→配管部25m→配管部18b→圧縮機14の吸入側の配管部18aの冷媒経路が形成される。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、室外ファン67の回転駆動とともに凝縮器として機能する前記室外熱交換器17において外気と熱交換を行って熱を放出しながら高圧の液体に変化する。こうして液体となった冷媒は全開状態の前記膨張弁113を経て前記膨張弁112において減圧されて低温・低圧の液体となって蒸発しやすい状態となり、室内ファン77の回転駆動とともに蒸発器として機能する前記室内熱交換器27において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、低温・低圧のガスとして再び圧縮機14へと戻る。 As a result, the piping portion 18c on the discharge side of the compressor 14→piping portion 18d (two-way valve 125)→outdoor heat exchanger 17→piping portion 18e (expansion valve 113)→piping portion 25e→piping portion 25g (expansion valve 112 )→communication pipe line 103→pipe portion 26b→indoor heat exchanger 27→pipe portion 26a→communication pipe line 104→pipe portion 25d→pipe portion 25f→pipe portion 25i (two-way valve 122)→pipe portion 25m→pipe portion 18b → A refrigerant path of the piping portion 18a on the suction side of the compressor 14 is formed. As a result, the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become high temperature and high pressure gas, and then the outdoor heat exchanger functions as a condenser as the outdoor fan 67 rotates. At 17, it changes into a high-pressure liquid while exchanging heat with the outside air and releasing heat. The liquid refrigerant passes through the fully opened expansion valve 113 and is decompressed by the expansion valve 112 to become a low-temperature, low-pressure liquid that is easily evaporated. The indoor heat exchanger 27 absorbs heat from the indoor air, evaporates, and changes to gas, thereby cooling the air-conditioned space, and returns to the compressor 14 again as a low-temperature, low-pressure gas.

なおこのとき、前記膨張弁111、前記二方弁121、前記二方弁123が全閉状態に制御されることにより、前記水冷媒熱交換器15と、その水冷媒熱交換器15側へ連通する前記配管部25l、前記配管部25b、前記配管部25cの水冷媒熱交換器15側の部分と、の内部には、前記冷媒が封じ込められた状態となる(図12中の左下段のテーブル参照)。 At this time, the expansion valve 111, the two-way valve 121, and the two-way valve 123 are controlled to be fully closed, thereby communicating with the water-refrigerant heat exchanger 15 and the water-refrigerant heat exchanger 15 side. The refrigerant is confined inside the piping portion 25l, the piping portion 25b, and the portion of the piping portion 25c on the side of the water-refrigerant heat exchanger 15 (the lower left table in FIG. 12). reference).

以上の作動において、前記暖房運転時と同様、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記Tcon-Trの値が大きい場合は圧縮機回転数が大きくなるように、前記Tcon-Trの値が小さい場合は圧縮機回転数が小さくなるように制御される。また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、エアコン運転モードが例えば強力モードの場合はファン回転数が大きくなるように制御され、通常モードや節電モードの場合はファン回転数が小さくなるように制御される。さらに各エアコン運転モードにおいて、外気温度Tairが低い場合はファン回転数が小さくなるように、外気温度Tairが高い場合はファン回転数が大きくなるように制御される。また前記室内ファン77の回転数は、前記室内ファン制御部430Aの制御により、前記Tcon-Trの値が大きい場合はファン回転数が大きくなるように、前記Tcon-Trの値が小さい場合はファン回転数が小さくなるように制御される。沸上ポンプ19は、前記ポンプ制御部420Aの制御により回転停止される。 In the above operation, as in the heating operation, the rotation speed of the compressor 14 is controlled by the compressor control unit 410B so that the rotation speed of the compressor increases when the value of Tcon-Tr is large. , and when the value of Tcon-Tr is small, the compressor rotation speed is controlled to be small. The outdoor fan control unit 410D controls the outdoor fan 67 so that the outdoor fan 67 rotates at a high speed when the air conditioner is in the high power mode, and when the air conditioner is in the normal mode or the power saving mode, the fan speed is increased. The rotation speed is controlled to be small. Furthermore, in each air conditioner operation mode, the fan rotation speed is controlled to decrease when the outside air temperature Tair is low, and to increase when the outside air temperature Tair is high. The indoor fan 77 is controlled by the indoor fan control unit 430A so that the fan rotation speed increases when the Tcon-Tr value is large, and the fan rotation speed increases when the Tcon-Tr value is small. The rotation speed is controlled to be small. The boiling pump 19 is stopped from rotating under the control of the pump control section 420A.

次に、図13を用いて、沸上・冷房運転について説明する。この図13に示す沸上・冷房運転時においては、本実施形態の特徴の1つとして、前記四方弁制御部410Aにより、前記四方弁31は、従来の手法と異なり前記冷房位置(すなわち前記冷房運転時と同じ側)に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全閉状態、二方弁123が全開状態、二方弁122が全開状態、二方弁125が全閉状態、二方弁126が全開状態、二方弁124が全閉状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が開き状態(詳細には前記と同様の△H制御が行われる)、前記膨張弁114が全閉状態、前記膨張弁113が開き状態(詳細には後述の能力調整制御が行われる)、前記膨張弁111が全開状態に制御される。 Next, the boiling/cooling operation will be described with reference to FIG. During the boiling/cooling operation shown in FIG. 13, one of the features of this embodiment is that the four-way valve control unit 410A controls the four-way valve 31 to the cooling position (that is, the cooling (same side as driving). The two-way valve control units 410E and 420C control the two-way valve 121 to be fully closed, the two-way valve 123 to be fully open, the two-way valve 122 to be fully open, the two-way valve 125 to be fully closed, and the two-way valve 126 to be fully closed. is fully open, and the two-way valve 124 is fully closed. Further, the expansion valve control unit 410C controls the expansion valve 112 in the open state (in detail, the same ΔH control as described above is performed), the expansion valve 114 in the fully closed state, and the expansion valve 113 in the open state (details , the expansion valve 111 is controlled to be fully open.

この結果、冷媒経路は、圧縮機14の吐出側の配管部18c→配管部18d→配管部25j→配管部25l(二方弁123)→配管部25b→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)を経て前記分岐点Dにおいて2つに分かれ、一方は、配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d→配管部18f(二方弁126)を経て前記分岐点Cに至り、他方は、配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d→配管部25f→配管部25i(二方弁122)→配管部25mを経て前記分岐点Cに至る。分岐点Cでこれら2つの経路が合流し、その後の経路は、前記分岐点C→配管部18b→圧縮機14の吸入側の配管部18aとなる。 As a result, the refrigerant path is the piping section 18c on the discharge side of the compressor 14→the piping section 18d→the piping section 25j→the piping section 25l (two-way valve 123)→the piping section 25b→the refrigerant side of the water-refrigerant heat exchanger 15. Passing through the flow path 15b → pipe portion 25c (expansion valve 111), it is divided into two at the branch point D, one of which is pipe portion 25e → pipe portion 18e (expansion valve 113) → outdoor heat exchanger 17 → pipe portion 18d → It reaches the branch point C via the pipe portion 18f (two-way valve 126), and the other is the pipe portion 25g (expansion valve 112)→communication pipe line 103→pipe portion 26b→indoor heat exchanger 27→pipe portion 26a→communication. Pipe line 104→pipe portion 25d→pipe portion 25f→pipe portion 25i (two-way valve 122)→pipe portion 25m to reach branch point C. These two routes merge at the branch point C, and the subsequent route is the branch point C→pipe section 18b→pipe section 18a on the suction side of the compressor 14 .

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、まず前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、液体となった冷媒は全開状態の前記膨張弁111において減圧されて低温・低圧の液体となって蒸発しやすい状態となった後に前記のように分流する。そして、前記一方の流れは、前記膨張弁113においてさらに減圧された後前記室外熱交換器17(蒸発器として機能)において蒸発して外気から吸熱し、前記他方の流れは、前記膨張弁112においてさらに減圧された後前記室内熱交換器27(蒸発器として機能)において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、それぞれ、低温・低圧のガスとして再び圧縮機14へと戻る。 As a result, after the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, first, the water-refrigerant heat exchanger 15 (functioning as a condenser) high-temperature water (heated water) is sequentially supplied into the hot water storage tank 2 by heating the water flowing through the water-side flow path 15a, and the liquid refrigerant is decompressed by the expansion valve 111 in the fully open state. After it becomes a low-temperature, low-pressure liquid and easily evaporates, it is split as described above. The one flow is further decompressed in the expansion valve 113 and then evaporated in the outdoor heat exchanger 17 (functioning as an evaporator) to absorb heat from the outside air. After further pressure reduction, the indoor heat exchanger 27 (functioning as an evaporator) absorbs heat from the indoor air, evaporates, and changes to gas to cool the air-conditioned space. Go back to 14.

以上の作動において、前記圧縮機14の回転数は、前記圧縮機制御部410Bの制御により、前記冷房運転時と同様の、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、前記冷房運転時と同様、各エアコン運転モードにおいて外気温度Tairが低い場合はファン回転数が大きくなるように、外気温度Tairが高い場合はファン回転数が小さくなるように制御されるが、適宜の手法によって冷房運転時よりは低回転数に制御される。 In the operation described above, the rotational speed of the compressor 14 is determined based on the difference between the room temperature Tr and the air conditioner set temperature Tcon, as in the case of the cooling operation, under the control of the compressor control section 410B. Further, the number of rotations of the outdoor fan 67 is controlled by the outdoor fan control unit 410D so that the number of rotations of the outdoor fan 67 increases when the outside air temperature Tair is low in each air conditioner operation mode, as in the case of the cooling operation. When the Tair is high, the fan rotation speed is controlled to be low, but controlled to a lower rotation speed than during the cooling operation by an appropriate method.

また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記冬期沸上運転や前記夏期沸上運転や沸上・暖房運転と同様、前記沸上温度Tbが目標温度より低い場合はポンプ回転数が小さくなり、沸上温度Tbが目標温度より高い場合はポンプ回転数が大きくなるように制御される。また前記室内ファン77の回転数は、前記室内ファン制御部430Aの制御により、前記冷房運転等のときと同様、室内温度Trとエアコン設定温度Tconとの差に基づき、Tcon-Trの値が大きい場合はファン回転数が大きくなるように、Tcon-Trの値が小さい場合はファン回転数が小さくなるように制御される。 The rotation speed of the boiling pump 19 is controlled by the pump control unit 420A when the boiling temperature Tb is lower than the target temperature, as in the winter boiling operation, the summer boiling operation, and the boiling/heating operation. When the boiling point temperature Tb is higher than the target temperature, the pump rotation speed is controlled to increase. Further, the number of revolutions of the indoor fan 77 is controlled by the indoor fan control section 430A to increase the value of Tcon-Tr based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon, as in the case of the cooling operation. When the value of Tcon-Tr is small, control is performed so that the fan speed is decreased.

そして、前記膨張弁112の開度は、前記膨張弁制御部410Cにより、沸上・冷房運転の運転状態に応じて可変に制御される。詳細には、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout-T2が、所定の目標温度差△Hmとなるように、膨張弁112の開度が所定の周期でフィードバック制御される(前記同様のいわゆる△H制御)。すなわち、前記膨張弁制御部410Cは、△H<△Hmの場合は膨張弁112の開度を閉じる方向に制御し、△H>△Hmの場合は、膨張弁112の開度を開く方向に制御し、△H=△Hmの場合は、膨張弁112の開度を現状のまま維持する。
あるいは、この△H制御に代え、前記冷媒吐出温度Toutが所定の一定値となるように、膨張弁112の開度をフィードバック制御してもよい(吐出制御)。この場合、前記膨張弁制御部410Cは、冷媒吐出温度Toutが低すぎる場合は膨張弁112の開度を閉じる方向に制御し、冷媒吐出温度Toutが高すぎる場合は膨張弁112の開度を開く方向に制御する。
The degree of opening of the expansion valve 112 is variably controlled by the expansion valve control section 410C according to the operating state of the boiling/cooling operation. Specifically, the degree of opening of the expansion valve 112 is changed at a predetermined cycle so that the temperature difference ΔH=Tout−T2 between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2 becomes a predetermined target temperature difference ΔHm. Feedback control is performed (so-called ΔH control similar to the above). That is, the expansion valve control unit 410C controls the opening of the expansion valve 112 in the closing direction when ΔH<ΔHm, and the opening of the expansion valve 112 in the opening direction when ΔH>ΔHm. When ΔH=ΔHm, the opening of the expansion valve 112 is maintained as it is.
Alternatively, instead of this ΔH control, feedback control of the degree of opening of the expansion valve 112 may be performed so that the refrigerant discharge temperature Tout becomes a predetermined constant value (discharge control). In this case, the expansion valve control unit 410C controls the opening of the expansion valve 112 to close when the refrigerant discharge temperature Tout is too low, and opens the expansion valve 112 when the refrigerant discharge temperature Tout is too high. Control direction.

さらに、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、沸上・冷房運転の運転状態に応じて可変に制御される。詳細には、前記熱交温度センサ36により検出された前記室内熱交温度Tevに基づき、前記膨張弁113の開度の能力調整制御が行われる。この能力調整制御の意義及び内容は、以下の通りである。すなわち、この沸上・冷房運転の開始直後等の空調対象の冷房負荷が大きい状態から、ある程度時間が経過し、冷房負荷が小さくなると、実使用上は、冷房能力は定格能力よりも低い能力で十分となる。ここで、そのままだと冷房能力を抑制すると同時に沸上能力も低下してしまうこととなるが、貯湯タンク2における湯切れ等の発生防止の観点からは、沸上能力は一定のレベルを維持することが好ましい。そこで、前記室内熱交換器27に前記熱交温度センサ36を設け、冷房能力が低下し十分に冷媒が蒸発していないことを検出したら、これに対応して前記膨張弁113を制御することで、前記沸上能力を一定に保つようにする。具体的には、前記熱交温度センサ36が検出する蒸発温度の低下に対応して、膨張弁113の弁開度を大きくするように制御する。これにより、前記室内熱交換器27において不足した蒸発能力を前記室外熱交換器17側で補い、貯湯タンク2内の湯水に対する沸上能力が一定に保たれる。 Furthermore, the degree of opening of the expansion valve 113 is variably controlled by the expansion valve control section 410C according to the operating state of the boiling/cooling operation. Specifically, based on the indoor heat exchanger temperature Tev detected by the heat exchanger temperature sensor 36, the opening degree of the expansion valve 113 is controlled to adjust its capacity. The significance and contents of this ability adjustment control are as follows. That is, when a certain amount of time elapses from a state in which the cooling load of the object to be air-conditioned is large, such as immediately after the start of the boiling/cooling operation, and the cooling load becomes small, the cooling capacity is lower than the rated capacity in actual use. be enough. Here, if left as it is, the cooling capacity will be suppressed and the boiling capacity will also decrease, but from the viewpoint of preventing the occurrence of running out of hot water in the hot water storage tank 2, the boiling capacity will be maintained at a constant level. is preferred. Therefore, the heat exchange temperature sensor 36 is provided in the indoor heat exchanger 27, and when it is detected that the cooling capacity is lowered and the refrigerant is not sufficiently evaporated, the expansion valve 113 is controlled in response to this. , to keep the boiling capacity constant. Specifically, the valve opening degree of the expansion valve 113 is controlled to be increased in response to the decrease in the evaporating temperature detected by the heat exchanger temperature sensor 36 . As a result, the outdoor heat exchanger 17 compensates for the insufficient evaporation capacity of the indoor heat exchanger 27, and the boiling capacity of the hot water in the hot water storage tank 2 is kept constant.

なお、本実施形態においては、前記沸上・冷房運転の別の態様として、従来の手法と同様に、前記四方弁31を前記暖房位置(すなわち前記冷房運転時とは逆の側)に切り替えた状態で運転することも可能である。そのような沸上・冷房運転を図14により説明する。 In this embodiment, as another aspect of the boiling/cooling operation, the four-way valve 31 is switched to the heating position (that is, the side opposite to that during the cooling operation) as in the conventional method. It is also possible to drive in Such boiling/cooling operation will be described with reference to FIG.

図14に示す例は、例えば春期・秋期等、直前まで前記暖房運転や前記沸上・暖房運転を行い前記四方弁31が前記暖房位置に切り替わっていた状態で沸上・冷房運転を行いたいときに(典型的には季節の変わり目等において)、好適な運転例である。すなわち、この図14に示す沸上・冷房運転時においては、前記したように、前記四方弁制御部410Aにより前記四方弁31は前記暖房位置に切り替えられる。また前記二方弁制御部410E,420Cにより、二方弁121が全開状態、二方弁123が全閉状態、二方弁122が全閉状態、二方弁125が全開状態、二方弁126が全閉状態、二方弁124が全開状態に切り替えられる。さらに前記膨張弁制御部410Cにより、前記膨張弁112が開き状態(詳細には前記と同様の△H制御が行われる)、前記膨張弁114が全閉状態、前記膨張弁113が開き状態(詳細には前述の分流制御が行われる)、前記膨張弁111が全開状態に制御される。 The example shown in FIG. 14 is, for example, spring, autumn, etc., when the heating operation or the boiling/heating operation is performed until immediately before and the heating/cooling operation is desired in a state in which the four-way valve 31 has been switched to the heating position. (typically at the change of season, etc.), this is a suitable example of operation. That is, during the boiling/cooling operation shown in FIG. 14, the four-way valve control section 410A switches the four-way valve 31 to the heating position as described above. The two-way valve control units 410E and 420C control the two-way valve 121 to be fully open, the two-way valve 123 to be fully closed, the two-way valve 122 to be fully closed, the two-way valve 125 to be fully open, and the two-way valve 126 to be fully opened. is fully closed, and the two-way valve 124 is switched to a fully open state. Further, the expansion valve control unit 410C controls the expansion valve 112 in the open state (in detail, the same ΔH control as described above is performed), the expansion valve 114 in the fully closed state, and the expansion valve 113 in the open state (details ), and the expansion valve 111 is controlled to be fully open.

この結果、冷媒経路は、圧縮機14の吐出側の配管部18c→配管部18b→配管部25m→配管部25a→配管部25b(二方弁121)→水冷媒熱交換器15の冷媒側の流路15b→配管部25c(膨張弁111)を経て前記分岐点Dにおいて2つに分かれ、一方は、配管部25e→配管部18e(膨張弁113)→室外熱交換器17→配管部18d(二方弁125)を経て前記分岐点Aに至り、他方は、配管部25g(膨張弁112)→連通管路103→配管部26b→室内熱交換器27→配管部26a→連通管路104→配管部25d→配管部25f→配管部25k(二方弁124)→配管部25jを経て前記分岐点Aに至る。分岐点Aでこれら2つの経路が合流し、その後の経路は、前記分岐点A→配管部18d→圧縮機14の吸入側の配管部18aとなる。 As a result, the refrigerant path is the piping portion 18c on the discharge side of the compressor 14→the piping portion 18b→the piping portion 25m→the piping portion 25a→the piping portion 25b (two-way valve 121)→the refrigerant side of the water-refrigerant heat exchanger 15. Passing through the flow path 15b → pipe portion 25c (expansion valve 111), it is divided into two at the branch point D, one is pipe portion 25e → pipe portion 18e (expansion valve 113) → outdoor heat exchanger 17 → pipe portion 18d ( The two-way valve 125) reaches the branch point A, and the other is the piping portion 25g (expansion valve 112)→communication pipeline 103→pipe portion 26b→indoor heat exchanger 27→pipe portion 26a→communication pipeline 104→ The branch point A is reached via the piping portion 25d→the piping portion 25f→the piping portion 25k (the two-way valve 124)→the piping portion 25j. These two routes merge at a branch point A, and the subsequent route is the branch point A→pipe section 18d→pipe section 18a on the suction side of the compressor 14 .

これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機14で圧縮されて高温・高圧のガスとなった後、まず前記水冷媒熱交換器15(凝縮器として機能)で前記同様に凝縮して前記水側の流路15aを流れる水を加熱することで貯湯タンク2内へ順次高温水(加熱水)を供給し、液体となった冷媒は全開状態の前記膨張弁111において減圧されて低温・低圧の液体となって蒸発しやすい状態となった後に前記のように分流する。そして、前記一方の流れは、前記膨張弁113においてさらに減圧された後前記室外熱交換器17(蒸発器として機能)において蒸発して外気から吸熱し、前記他方の流れは、前記膨張弁112においてさらに減圧された後前記室内熱交換器27(蒸発器として機能)において室内空気から吸熱して蒸発しガスに変化することで空調対象空間を冷却し、それぞれ、低温・低圧のガスとして再び圧縮機14へと戻る。 As a result, after the gaseous refrigerant sucked at low temperature and low pressure is compressed by the compressor 14 to become a high temperature and high pressure gas, first, the water-refrigerant heat exchanger 15 (functioning as a condenser) high-temperature water (heated water) is sequentially supplied into the hot water storage tank 2 by heating the water flowing through the water-side flow path 15a, and the liquid refrigerant is decompressed by the expansion valve 111 in the fully open state. After it becomes a low-temperature, low-pressure liquid and easily evaporates, it is split as described above. The one flow is further decompressed in the expansion valve 113 and then evaporated in the outdoor heat exchanger 17 (functioning as an evaporator) to absorb heat from the outside air. After further pressure reduction, the indoor heat exchanger 27 (functioning as an evaporator) absorbs heat from the indoor air, evaporates, and changes to gas to cool the air-conditioned space. Go back to 14.

以上の作動において、前記圧縮機14の回転数は、前記図13の沸上・冷房運転時と同様、前記圧縮機制御部410Bの制御により、室内温度Trとエアコン設定温度Tconとの差に基づき決定される。また前記室外ファン67の回転数は、前記室外ファン制御部410Dの制御により、前記同様、各エアコン運転モードにおいて外気温度Tairに応じて制御されるが、冷房運転時よりは低回転数に制御される。また沸上ポンプ19の回転数は、前記ポンプ制御部420Aの制御により、前記同様、前記沸上温度Tbが目標温度となるように制御される。また前記室内ファン77の回転数は、前記室内ファン制御部430Aの制御により、前記同様、室内温度Trとエアコン設定温度Tconとの差に基づき制御される。 In the above operation, the rotation speed of the compressor 14 is controlled by the compressor control section 410B based on the difference between the room temperature Tr and the air conditioner set temperature Tcon, as in the boiling/cooling operation of FIG. It is determined. The number of rotations of the outdoor fan 67 is controlled by the outdoor fan control section 410D in accordance with the outside air temperature Tair in each air conditioner operation mode in the same manner as described above, but is controlled to a lower number of rotations than during the cooling operation. be. The rotation speed of the boiling pump 19 is controlled by the pump control section 420A so that the boiling temperature Tb becomes the target temperature in the same manner as described above. Further, the number of revolutions of the indoor fan 77 is controlled by the indoor fan control section 430A based on the difference between the indoor temperature Tr and the air conditioner set temperature Tcon in the same manner as described above.

また、前記膨張弁112の開度は、前記図13の沸上・冷房運転時と同様、前記膨張弁制御部410Cにより、前記冷媒吐出温度Toutと前記冷媒流出温度T2との温度差△H=Tout-T2が、所定の目標温度差△Hmとなるように、前記の△H制御が行われる(あるいは、前記吐出制御でもよい)。 13, the opening degree of the expansion valve 112 is controlled by the expansion valve control unit 410C to determine the temperature difference ΔH= between the refrigerant discharge temperature Tout and the refrigerant outflow temperature T2. The ΔH control is performed (or the discharge control may be performed) so that Tout-T2 becomes a predetermined target temperature difference ΔHm.

さらに、前記膨張弁113の開度は、前記膨張弁制御部410Cにより、冷媒を所望の割合(分流比)で室外熱交換器17側及び室内熱交換器27側に配分し供給する、前記同様の分流制御によって可変に制御される。この分流制御の制御内容の詳細を、図15により説明する。 Furthermore, the degree of opening of the expansion valve 113 is controlled by the expansion valve control unit 410C to distribute and supply the refrigerant to the outdoor heat exchanger 17 side and the indoor heat exchanger 27 side at a desired ratio (split flow ratio). is variably controlled by the shunting control of The details of the control contents of this flow division control will be described with reference to FIG. 15 .

図15に、前記膨張弁制御部410Cにより実行される前記膨張弁113の開度制御の制御マップの一例を示す。図15に示すマップは、縦軸に沸上要求能力を下向き増加方向にとり、横軸に冷房要求能力を下向き増加方向にとったときの、各状態における目標開度の値(例えば全閉状態が「0」で全開状態が「500」となる相対値)を表している。 FIG. 15 shows an example of a control map of the opening degree control of the expansion valve 113 executed by the expansion valve control section 410C. In the map shown in FIG. 15, the vertical axis indicates the required boiling capacity in the downward increasing direction, and the horizontal axis indicates the required cooling capacity in the downward increasing direction. It represents a relative value where "0" is "500" when the fully open state is reached.

図15に示すように、例えば前記沸上・冷房運転時における前記冷房要求能力が最小レベルで前記沸上要求能力も最小レベルであった場合には、膨張弁113の前記目標開度は開度「250」(例えば全開と全閉のちょうど中間となる開度)となるように制御される。この冷房要求能力が最小レベルのままで前記沸上要求能力が1ランク高くなると膨張弁113の前記目標開度は少し大きな開度「300」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁113の前記目標開度はさらに少し大きな開度「350」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁113の前記目標開度はさらに少し大きな開度「400」となるように制御され、さらに前記沸上要求能力が1ランク高くなると膨張弁113の前記目標開度はさらに少し大きな開度「450」(全開状態に近い状態)となるように制御される。このように膨張弁113の開度が徐々に大きくなることにより、室外熱交換器17側及び室内熱交換器27側への分流における、室外熱交換器17側への分流比が増大するように制御される。 As shown in FIG. 15, for example, when the required cooling capacity during the boiling/cooling operation is at the minimum level and the required boiling capacity is also at the minimum level, the target opening of the expansion valve 113 is the opening It is controlled to be "250" (for example, the degree of opening that is exactly intermediate between fully open and fully closed). If the required boiling capacity is increased by one rank while the required cooling capacity remains at the minimum level, the target opening of the expansion valve 113 is controlled to a slightly larger opening of "300". When the required boiling capacity is increased by one rank, the target opening of the expansion valve 113 is controlled to a slightly larger opening of "350". Control is performed so as to have a large opening of "400", and when the required boiling-up capacity is increased by one rank, the target opening of the expansion valve 113 becomes a slightly larger opening of "450" (a state close to a fully open state). controlled as As the degree of opening of the expansion valve 113 gradually increases in this way, the split flow ratio to the outdoor heat exchanger 17 side in the split flow to the outdoor heat exchanger 17 side and the indoor heat exchanger 27 side increases. controlled.

同様に、前記冷房要求能力が最小レベルより1ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁113の前記目標開度は前記開度「250」より小さい開度「200」となるように制御される。これにより、前記分流における室内熱交換器27側への分流比が(前記開度「250」の場合に比べると)やや増大する。この状態のままで前記沸上要求能力が1ランク高くなると膨張弁113の前記目標開度は少し大きな開度「250」となるように制御され、その後、前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁113の前記目標開度は「300」「350」「400」と徐々に大きくなるように制御され、室外熱交換器17側への分流比が増大する。 Similarly, when the required cooling capacity is one rank higher than the minimum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 113 is smaller than the opening "250". It is controlled to be "200". As a result, the split flow ratio to the indoor heat exchanger 27 side in the split flow is slightly increased (compared to the case where the opening degree is "250"). If the required boiling-up capacity is increased by one rank in this state, the target opening of the expansion valve 113 is controlled to a slightly larger opening of "250", and thereafter the required boiling-up capacity is increased by one rank. As the temperature increases, the target opening of the expansion valve 113 is controlled to gradually increase to "300", "350", and "400", and the split flow ratio to the outdoor heat exchanger 17 side increases.

さらに前記同様に、前記冷房要求能力が最小レベルより2ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁113の前記目標開度は前記開度「200」よりさらに小さい開度「150」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「200」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁113の前記目標開度は「200」「250」「300」「350」と徐々に大きくなるように制御され、室外熱交換器17側への分流比が増大する。 Furthermore, in the same manner as described above, when the required boiling capacity is at the minimum level while the required cooling capacity is two ranks higher than the minimum level, the target opening of the expansion valve 113 is further than the opening "200". It is controlled to have a small opening of "150". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "200"). In this state, the target opening of the expansion valve 113 is controlled to gradually increase to "200," "250," "300," and "350" as the required boiling-up capacity increases by one rank. , the split ratio to the outdoor heat exchanger 17 increases.

さらに前記同様に、前記冷房要求能力が最小レベルより3ランク高い状態で前記沸上要求能力が最小レベルであった場合には、膨張弁113の前記目標開度は前記開度「150」よりさらに小さい開度「100」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「150」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランクずつ高くなるに連れて、膨張弁113の前記目標開度は「150」「200」「250」「300」と徐々に大きくなるように制御され、室外熱交換器17側への分流比が増大する。 Furthermore, in the same manner as described above, when the required boiling capacity is at the minimum level while the required cooling capacity is three ranks higher than the minimum level, the target opening of the expansion valve 113 is further than the opening "150". It is controlled to have a small opening of "100". As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "150"). In this state, the target opening of the expansion valve 113 is controlled to gradually increase to "150," "200," "250," and "300" as the required boiling capacity increases by one rank. , the split ratio to the outdoor heat exchanger 17 increases.

さらに前記同様に、前記冷房要求能力が最大レベルで前記沸上要求能力が最小レベルであった場合には、膨張弁113の前記目標開度は前記開度「100」よりさらに小さい開度「50」となるように制御される。これにより、前記室内熱交換器27側への分流比が(前記開度「100」の場合に比べ)さらに増大する。この状態のままで前記沸上要求能力が1ランク高くなるに連れて、膨張弁113の前記目標開度は「100」「150」「200」「250」と徐々に大きくなるように制御され、室外熱交換器17側への分流比が増大する。 Furthermore, in the same manner as described above, when the required cooling capacity is at the maximum level and the required boiling capacity is at the minimum level, the target opening of the expansion valve 113 is 50, which is smaller than the opening of 100. ” is controlled. As a result, the branch flow ratio to the indoor heat exchanger 27 side is further increased (compared to the case where the degree of opening is "100"). In this state, the target opening of the expansion valve 113 is controlled to gradually increase to "100", "150", "200", and "250" as the required boiling-up capacity increases by one rank, The diversion ratio to the outdoor heat exchanger 17 side increases.

以上説明したように、本実施形態のヒートポンプ給湯機1においては、まず、前記四方弁31を前記冷房位置に切り替えることで、図12を用いて前記した前記冷房運転を実行することができる。すなわち、前記冷房位置への切替により、圧縮機14の吐出側の前記配管部18cが前記配管部18dを介し凝縮器としての室外熱交換器17の入口側に連通し、さらにその室外熱交換器17の出口側が前記配管部18e、前記配管部25e、前記配管部25g、前記連通管路103、前記配管部26bを介し蒸発器としての前記室内熱交換器27の入口側に接続され、さらにその室内熱交換器27の出口側が前記配管部26a、前記連通管路104、前記配管部25d、前記配管部25f、前記配管部25i、前記配管部25m、を介し圧縮機14の吸込側の前記配管部18aに連通する。これにより、圧縮機14から吐出された高温高圧の冷媒ガスが前記室外熱交換器17で外気へ放熱し凝縮して液体冷媒となり、その後前記室内熱交換器27で蒸発することで室内空気から吸熱して圧縮機14へと戻る、前記冷房運転が実現される。 As described above, in the heat pump water heater 1 of the present embodiment, first, by switching the four-way valve 31 to the cooling position, the cooling operation described above with reference to FIG. 12 can be performed. That is, by switching to the cooling position, the piping portion 18c on the discharge side of the compressor 14 communicates with the inlet side of the outdoor heat exchanger 17 as a condenser through the piping portion 18d. 17 is connected to the inlet side of the indoor heat exchanger 27 as an evaporator via the pipe portion 18e, the pipe portion 25e, the pipe portion 25g, the communication pipe line 103, and the pipe portion 26b. The outlet side of the indoor heat exchanger 27 is the piping on the suction side of the compressor 14 via the piping section 26a, the communication piping line 104, the piping section 25d, the piping section 25f, the piping section 25i, and the piping section 25m. It communicates with the portion 18a. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 14 radiates heat to the outside air in the outdoor heat exchanger 17, condenses into liquid refrigerant, and then evaporates in the indoor heat exchanger 27 to absorb heat from the indoor air. and return to the compressor 14, the cooling operation is realized.

そしてまた、本実施形態のヒートポンプ給湯機1においては、前記第1管路を構成する前記配管部18dや、前記第2管路を構成する前記配管部18e、前記配管部25e、前記配管部25g、前記連通管路103、前記配管部26bや、前記第3管路を構成する前記配管部18b、前記配管部25m、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26aとは別に、前記第1管路から分岐して接続される第4管路を構成する前記配管部25j及び前記配管部25l、前記第2管路から分岐して接続される第5管路を構成する配管部25c、前記第1管路から分岐して接続される第6管路を構成する配管部18fが設けられている。これらを用いることで、前記四方弁31を前記冷房位置とした状態で、室内空間の冷房を行いつつ貯湯タンク内の湯水の加温を行う、沸上・冷房運転を実行することができる。 Further, in the heat pump water heater 1 of the present embodiment, the pipe portion 18d forming the first pipe line, the pipe portions 18e, the pipe portions 25e, and the pipe portions 25g forming the second pipe line , the communication conduit 103, the piping section 26b, the piping section 18b constituting the third conduit, the piping section 25m, the piping section 25i, the piping section 25f, the piping section 25d, the communication conduit 104, apart from the pipe portion 26a, the pipe portion 25j and the pipe portion 25l constituting a fourth pipe branched from the first pipe and connected to each other by branching from the second pipe. A pipe portion 25c forming a fifth pipe line, and a pipe portion 18f forming a sixth pipe line branched from and connected to the first pipe line are provided. By using these, with the four-way valve 31 in the cooling position, it is possible to perform a boiling/cooling operation in which the hot water in the hot water storage tank is heated while cooling the indoor space.

すなわち、前記配管部18dの分岐点Aから分岐する前記前記配管部25j及び前記配管部25lを介し、圧縮機14の吐出側が凝縮器としての水冷媒熱交換器15の入口側に連通し、さらにその水冷媒熱交換器15の出口側が、配管部25cを介し、前記分岐点Dに接続される。このとき分岐点Dは、前記配管部25g、前記連通管路103、及び前記配管部26bを介して蒸発器としての前記室内熱交換器27の入口側に接続され、その室内熱交換器27の出口側が前記配管部26a、前記連通管路104、前記配管部25d、前記配管部25f、前記配管部25i、前記配管部25m、前記配管部18bを介して圧縮機14の吸込側に連通される。 That is, the discharge side of the compressor 14 communicates with the inlet side of the water-refrigerant heat exchanger 15 as a condenser via the piping portion 25j and the piping portion 25l branching from the branch point A of the piping portion 18d, and further The outlet side of the water-refrigerant heat exchanger 15 is connected to the branch point D through a pipe portion 25c. At this time, the branch point D is connected to the inlet side of the indoor heat exchanger 27 as an evaporator via the pipe portion 25g, the communication pipe line 103, and the pipe portion 26b. The outlet side is communicated with the suction side of the compressor 14 via the piping portion 26a, the communication pipe line 104, the piping portion 25d, the piping portion 25f, the piping portion 25i, the piping portion 25m, and the piping portion 18b. .

一方、前記分岐点Dはまた、凝縮器として機能するときの前記室外熱交換器17の出口側(言い換えれば蒸発器としての前記室外熱交換器17の入口側)にも接続されている。この蒸発器としての前記室外熱交換器17の出口側(言い換えれば凝縮器として機能するときの前記室外熱交換器17の入口側)に接続される前記第1管路に備えられた前記分岐点Bからは前記配管部18fが分岐して接続されており、この配管部18fは、前記分岐点Cに接続され、圧縮機14の吸込側に連通されることとなる。 On the other hand, the branch point D is also connected to the outlet side of the outdoor heat exchanger 17 when functioning as a condenser (in other words, the inlet side of the outdoor heat exchanger 17 as an evaporator). The branch point provided in the first pipeline connected to the outlet side of the outdoor heat exchanger 17 as the evaporator (in other words, the inlet side of the outdoor heat exchanger 17 when functioning as a condenser) The pipe portion 18f is branched from B and connected, and this pipe portion 18f is connected to the branch point C and communicated with the suction side of the compressor .

このような接続態様により、圧縮機14から吐出された高温高圧の冷媒ガスは前記配管部25j及び前記配管部25lを介して前記水冷媒熱交換器15へ導入され、当該水冷媒熱交換器15において貯湯タンク2へ通じる湯水配管へ放熱し凝縮して液体冷媒となり、その後配管部25cを介して分岐点Dへ導入される。導入された前記液体冷媒の一部は分岐点Dから前記室内熱交換器27へと導入され当該室内熱交換器27で蒸発することで室内空気から吸熱した後、前記配管部26a、前記連通管路104、前記配管部25d、前記配管部25f、前記配管部25i、前記配管部25m、前記配管部18bを介して圧縮機14へと戻る一方、前記導入された前記液体冷媒の残りは分岐点Dから前記室外熱交換器17へと導入され当該室外熱交換器17で蒸発することで外気から吸熱した後、分岐点Bから配管部18fを介して分岐点Cで合流し、圧縮機14へと戻る。このようにして、室内空間の冷却と貯湯タンク2内の湯水の加温とを同時並行して行う沸上・冷房運転が実現される。 With such a connection mode, the high-temperature and high-pressure refrigerant gas discharged from the compressor 14 is introduced into the water-refrigerant heat exchanger 15 via the piping portion 25j and the piping portion 25l, and the water-refrigerant heat exchanger 15 , heat is radiated to the hot water pipe leading to the hot water storage tank 2 and condenses to become a liquid refrigerant, which is then introduced to the branch point D via the pipe portion 25c. A part of the introduced liquid refrigerant is introduced into the indoor heat exchanger 27 from the branch point D, evaporates in the indoor heat exchanger 27, absorbs heat from the indoor air, and then flows through the pipe portion 26a and the communication pipe. While returning to the compressor 14 via the path 104, the pipe portion 25d, the pipe portion 25f, the pipe portion 25i, the pipe portion 25m, and the pipe portion 18b, the rest of the introduced liquid refrigerant is diverted. D is introduced into the outdoor heat exchanger 17 and evaporates in the outdoor heat exchanger 17 to absorb heat from the outside air. and return. In this manner, the boiling/cooling operation is realized in which the indoor space is cooled and the hot water in the hot water storage tank 2 is heated in parallel.

以上のように、本実施形態のヒートポンプ給湯機1によれば、冷房運転及び沸上・冷房運転のいずれについても、四方弁31を同じ切替位置(前記冷房位置)に切り替えた状態のまま行うことができる。この結果、沸上・冷房運転時において四方弁31を冷房運転時とは逆向きの位置に切り替える必要があった従来手法のように、当該四方弁切替時における運転中断により室温が上昇し冷房感の低下が生じるのを防止することができる。 As described above, according to the heat pump water heater 1 of the present embodiment, both the cooling operation and the boiling/cooling operation can be performed while the four-way valve 31 is switched to the same switching position (the cooling position). can be done. As a result, unlike the conventional method in which it was necessary to switch the four-way valve 31 to a position opposite to that during cooling operation during boiling/cooling operation, interruption of operation at the time of switching the four-way valve raises the room temperature and causes a cooling sensation. can be prevented from occurring.

また、本実施形態では特に、前記四方弁31が前記暖房位置にある前記暖房運転時(図8参照)において、前記第3管路を構成する、前記配管部18b、前記配管部25m、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26aは、前記圧縮機14の吐出側の前記室内熱交換器27の入口側とを接続し、前記配管部18dは、前記圧縮機14の吸込側と蒸発器としての前記室外熱交換器17の出口側とを接続し、前記第2管路を構成する、前記配管部18e、前記配管部25e、前記配管部25g、前記連通管路103、及び前記配管部26bは、蒸発器としての前記室外熱交換器17の入口側と凝縮器としての前記室内熱交換器27の出口側とを接続する。これにより、圧縮機14から吐出された高温高圧の冷媒ガスが前記室内熱交換器27で室内空気へ放熱し凝縮して液体冷媒となり、その後前記室外熱交換器17で蒸発することで外気から吸熱して圧縮機14へと戻る、前記暖房運転を実現することができる。 Further, in this embodiment, in particular, during the heating operation (see FIG. 8) in which the four-way valve 31 is in the heating position, the pipe portion 18b, the pipe portion 25m, and the pipes constituting the third pipe line The portion 25i, the pipe portion 25f, the pipe portion 25d, the communication pipe line 104, and the pipe portion 26a connect the inlet side of the indoor heat exchanger 27 on the discharge side of the compressor 14, and the pipe portion 18d connects the suction side of the compressor 14 and the outlet side of the outdoor heat exchanger 17 as an evaporator, and constitutes the second pipeline. The portion 25g, the communication pipe line 103, and the pipe portion 26b connect the inlet side of the outdoor heat exchanger 17 as an evaporator and the outlet side of the indoor heat exchanger 27 as a condenser. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 14 radiates heat to the indoor air in the indoor heat exchanger 27, condenses into a liquid refrigerant, and then evaporates in the outdoor heat exchanger 17 to absorb heat from the outside air. and return to the compressor 14, the heating operation can be realized.

一方、前記第3管路を構成する前記配管部18b、前記配管部25m、前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26aはまた、前記分岐点Eから分岐して設けられる前記配管部25a及び前記配管部25bを介し、凝縮器として機能する水冷媒熱交換器15の入口側にも接続されている。前記したように、この水冷媒熱交換器15の出口側は、前記配管部25cを介し前記分岐点Dに接続されており、前記配管部25e、前記配管部18eを介して蒸発器としての前記室外熱交換器17の入口側に接続されることとなる。 On the other hand, the pipe portion 18b, the pipe portion 25m, the pipe portion 25i, the pipe portion 25f, the pipe portion 25d, the communication pipe line 104, and the pipe portion 26a, which constitute the third pipe line, are also connected to the branch line. It is also connected to the inlet side of the water-refrigerant heat exchanger 15 functioning as a condenser via the pipe portion 25a and the pipe portion 25b branched from the point E. As described above, the outlet side of the water-refrigerant heat exchanger 15 is connected to the branch point D through the pipe portion 25c, and the above-mentioned heat exchanger as an evaporator is connected through the pipe portion 25e and the pipe portion 18e. It will be connected to the inlet side of the outdoor heat exchanger 17 .

このような接続態様により、圧縮機14から吐出された高温高圧の冷媒ガスのうち、前記の室内熱交換器27→前記室外熱交換器17の経路で流れて前記暖房を行うもの以外の残りを、前記配管部25a及び前記配管部25bへと分流させてそれらを介して前記水冷媒熱交換器15へ導入し、当該水冷媒熱交換器15において貯湯タンク2へ通じる湯水配管へ放熱し凝縮し、その凝縮後の液体冷媒を分岐点Dにて合流させ、前記室外熱交換器17へと導入可能となる。この結果、室内空間の暖房と貯湯タンク2内の湯水の加温とを同時並行して行う、沸上・暖房運転を実現することもできる。 With such a connection mode, among the high-temperature and high-pressure refrigerant gas discharged from the compressor 14, the remainder other than the one that flows in the route of the indoor heat exchanger 27 → the outdoor heat exchanger 17 and performs the heating is , to the piping portion 25a and the piping portion 25b and introduced into the water-refrigerant heat exchanger 15 via them, where heat is released to the hot water pipe leading to the hot water storage tank 2 in the water-refrigerant heat exchanger 15 and condensed. , the condensed liquid refrigerant can be merged at the branch point D and introduced into the outdoor heat exchanger 17 . As a result, it is possible to realize a boiling-up/heating operation in which heating of the indoor space and heating of the hot water in the hot water storage tank 2 are simultaneously performed.

以上の結果、本実施形態のヒートポンプ給湯機1によれば、暖房運転及び沸上・暖房運転のいずれについても四方弁31を同じ切替位置(前記暖房位置)に切り替えた状態のまま行うことができる。
この結果、冷房運転及び沸上・冷房運転を互いに同一の四方弁31の切替位置(前記冷房位置)で行うことができ、かつ、暖房運転及び沸上・暖房運転を互いに同一の四方弁31の切替位置(前記暖房位置)で行うことができる。言い換えれば、四方弁31の切替位置を、少なくとも冷房を行う運転時(冷房運転時、沸上・冷房運転時)、及び、少なくとも暖房を行う運転時(暖房運転時、沸上・暖房運転時)、それぞれで統一することができる。
As a result, according to the heat pump water heater 1 of the present embodiment, both the heating operation and the boiling/heating operation can be performed while the four-way valve 31 is switched to the same switching position (the heating position). .
As a result, the cooling operation and the boiling/cooling operation can be performed at the same switching position (the cooling position) of the four-way valve 31, and the heating operation and the boiling/heating operation can be performed at the same switching position of the four-way valve 31. It can be done in the switching position (the heating position). In other words, the switching position of the four-way valve 31 is set at least during cooling operation (cooling operation, boiling/cooling operation) and at least during heating operation (heating operation, boiling/heating operation). , can be unified.

また、本実施形態では特に、前記第4管路を構成する前記配管部25j及び前記配管部25lのうち前記配管部25lに前記二方弁123が設けられ、第6管路を構成する配管部18fに前記二方弁126が設けられている。これにより、例えば四方弁31を前記冷房位置とした状態において、それら二方弁123,126を閉じ状態とすることで前記冷房運転(図12参照)を実行するとともに、二方弁123,126を開き状態とすることで前記沸上・冷房運転(図13参照)を実行することができる。また例えば二方弁123,126を閉じ状態として前記四方弁31を前記暖房位置とすることで、前記暖房運転(図8参照)又は前記沸上・暖房運転(図9)を実行することができる。 Further, particularly in the present embodiment, the two-way valve 123 is provided in the pipe portion 25l of the pipe portion 25j and the pipe portion 25l that constitute the fourth pipe line, and the pipe portion that constitutes the sixth pipe line. The two-way valve 126 is provided at 18f. As a result, for example, with the four-way valve 31 in the cooling position, the cooling operation (see FIG. 12) is executed by closing the two-way valves 123 and 126, and the two-way valves 123 and 126 are closed. The boiling/cooling operation (see FIG. 13) can be executed by opening the valve. Further, for example, by closing the two-way valves 123 and 126 and setting the four-way valve 31 to the heating position, the heating operation (see FIG. 8) or the boiling/heating operation (FIG. 9) can be performed. .

また、本実施形態では特に、前記配管部18dにおける前記分岐点Aと前記分岐点Bとの間に、当該区間を開閉する二方弁125が設けられている。これにより、二方弁125を閉じ状態として分岐点Aと分岐点Cとの間の区間を閉止することで、図13に示す前記沸上・冷房運転時における、圧縮機14吐出側→前記配管部18d→分岐点A→前記配管部25j→前記配管部25l→・・の冷媒流れと、・・→前記室外熱交換器17→前記配管部18d→分岐点B→配管部18f→・・の冷媒流れと、を確実に分離することができる。 Moreover, particularly in this embodiment, a two-way valve 125 for opening and closing the section is provided between the branch point A and the branch point B in the pipe portion 18d. As a result, the two-way valve 125 is closed and the section between the branch point A and the branch point C is closed, so that during the boiling/cooling operation shown in FIG. Refrigerant flow of part 18d → branch point A → pipe part 25j → pipe part 25l → . can be reliably separated from the refrigerant flow.

また、本実施形態では特に、前記二方弁122によって、分岐点Eよりも前記室内熱交換器27側の前記配管部25i、前記配管部25f、前記配管部25d、前記連通管路104、前記配管部26aを閉止可能に構成され、また、前記膨張弁112によって、分岐点Dよりも前記室内熱交換器27側の前記配管部25g、前記連通管路103、前記配管部26bを閉止可能に構成されている。すなわち、これら二方弁122及び膨張弁112を閉じ状態とすることで、二方弁122~前記配管部25f~前記配管部25d~前記連通管路104~前記配管部26a~前記室内熱交換器27~前記配管部26b~前記連通管路103~膨張弁112の間を閉止区間とし、この区間内の冷媒を封じ込めて、冷媒流動をなくすことができる。 In addition, particularly in this embodiment, the two-way valve 122 allows the piping portion 25i, the piping portion 25f, the piping portion 25d, the communication pipe line 104, the piping portion 25d, the piping portion 25f, the piping portion 25d, and the indoor heat exchanger 27 side of the branch point E to The pipe portion 26a is configured to be closable, and the expansion valve 112 enables the pipe portion 25g on the indoor heat exchanger 27 side of the branch point D, the communication pipe line 103, and the pipe portion 26b to be closable. It is configured. That is, by closing the two-way valve 122 and the expansion valve 112, the two-way valve 122-the piping portion 25f-the piping portion 25d-the communicating pipe line 104-the piping portion 26a-the indoor heat exchanger 27-the pipe portion 26b-the communication pipe 103-the expansion valve 112 is defined as a closed section, and the refrigerant in this section can be confined to eliminate refrigerant flow.

これにより、前記四方弁31を前記冷房位置とすれば、前記図11に示すように、圧縮機14吐出側→前記配管部25j→前記配管部25l→水冷媒熱交換器15→配管部25c→前記配管部25e→前記配管部18e→前記室外熱交換器17→配管部18f→圧縮機14吸込側の経路にて、貯湯タンク2内の湯水の加温を行う前記夏期沸上運転を実現することができる。すなわちこの場合、前記冷房運転(図12参照)及び前記沸上・冷房運転(図13参照)と共通の四方弁31の切替位置(前記冷房位置)で、沸上運転を実現することができる。この結果、前記冷房運転、前記沸上・冷房運転、前記夏期沸上運転、相互間の運転切替を、四方弁31の切替を行うことなく実行することができる。 As a result, if the four-way valve 31 is placed in the cooling position, as shown in FIG. 11, the compressor 14 discharge side→the piping portion 25j→the piping portion 25l→the water-refrigerant heat exchanger 15→the piping portion 25c→ The hot water in the hot water storage tank 2 is heated in the route of the piping portion 25e→the piping portion 18e→the outdoor heat exchanger 17→the piping portion 18f→the suction side of the compressor 14, thereby realizing the summer boiling-up operation. be able to. That is, in this case, the boiling operation can be realized at the switching position (the cooling position) of the four-way valve 31 common to the cooling operation (see FIG. 12) and the boiling/cooling operation (see FIG. 13). As a result, the cooling operation, the boiling/cooling operation, and the summer boiling operation can be switched without switching the four-way valve 31 .

あるいは、前記四方弁31を前記暖房位置とすれば、前記図6に示すように、圧縮機14吐出側→前記配管部18b→前記配管部25m→前記配管部25a→前記配管部25b→水冷媒熱交換器15→前記配管部25c→前記配管部25e→前記配管部18e→前記室外熱交換器17→前記配管部18d→圧縮機14吸込側の経路にて、貯湯タンク2内の湯水の加温を行う冬期沸上運転を実現することができる。すなわちこの場合、前記暖房運転(図8参照)及び前記沸上・暖房運転(図9参照)と共通の四方弁31の切替位置(前記暖房位置)で、沸上運転を実現することができる。この結果、前記暖房運転、前記沸上・暖房運転、前記冬期沸上運転、相互間の運転切替を、四方弁31の切替を行うことなく実行することができる。 Alternatively, if the four-way valve 31 is set to the heating position, as shown in FIG. The hot water in the hot water storage tank 2 is heated through the route of the heat exchanger 15 → the pipe portion 25c → the pipe portion 25e → the pipe portion 18e → the outdoor heat exchanger 17 → the pipe portion 18d → the suction side of the compressor 14. It is possible to realize a winter boiling operation that heats. That is, in this case, the heating operation (see FIG. 8) and the boiling/heating operation (see FIG. 9) can be performed at the switching position (heating position) of the four-way valve 31 common to the heating operation. As a result, the heating operation, the boiling/heating operation, and the winter boiling operation can be performed without switching the four-way valve 31 .

なお、本発明は以上の態様に限定されることなく、その趣旨を変更しない範囲で適用可能なものである。以下、そのような変形例を説明する。 It should be noted that the present invention is not limited to the embodiments described above, and can be applied without changing the gist of the present invention. Such modifications will be described below.

(1)冬期沸上運転・夏期沸上運転を自動切り替えする場合
前記したように、ヒートポンプ給湯機1においては、沸上運転の態様として、図6を用いて説明した前記冬期沸上運転と、図11を用いて説明した前記夏期沸上運転と、のいずれかを選択的に実行可能である。これに対応して、前記リモコン60等を介して沸上運転の指示がなされた際、所定の運転切替因子(後述)に応じて、自動的に前記冬期沸上運転及び前記夏期沸上運転のいずれか一方が選択されるようにしてもよい。そのような変形例を図16を用いて説明する。
(1) Case of automatic switching between winter boiling-up operation and summer boiling-up operation As described above, in the heat pump water heater 1, the winter boiling-up operation described with reference to FIG. and the summer boiling operation described with reference to FIG. 11 can be selectively executed. Correspondingly, when the boiling-up operation is instructed via the remote controller 60 or the like, the winter boiling-up operation and the summer boiling-up operation are automatically switched according to a predetermined operation switching factor (described later). Either one may be selected. Such a modified example will be described with reference to FIG.

図16は、本変形例において前記ヒーポン制御部410、前記貯湯制御部420、及び前記エアコン制御部430が互いに協働して行う(あるいはこれらのうち少なくとも1つが他と連携して行っても良い)制御手順を表すフローチャートである。この例では、前記運転切替因子として、前記外気温度センサ22により検出される外気温度Tairを用いた場合を説明する。 FIG. 16 shows that the heat pump control unit 410, the hot water storage control unit 420, and the air conditioner control unit 430 cooperate with each other in this modification (or at least one of them may cooperate with others). ) is a flow chart showing a control procedure. In this example, a case will be described in which the outside air temperature Tair detected by the outside air temperature sensor 22 is used as the operation switching factor.

図16において、まずステップS10で、前記ヒーポン制御部410、前記貯湯制御部420、及び前記エアコン制御部430(以下適宜、単に「制御部410等」と称する)は、前記リモコン60から前記沸上運転の指示がなされたか否かを判定する。沸上運転の指示がなければ判定が満たされず(S10:NO)、このフローを終了する。沸上運転の指示があったら判定が満たされ(S10:YES)、ステップS20に移る。 In FIG. 16, first, in step S10, the heat pump control unit 410, the hot water storage control unit 420, and the air conditioner control unit 430 (hereinafter simply referred to as "control unit 410, etc.") It is determined whether or not an instruction to drive has been given. If there is no boiling-up operation instruction, the determination is not satisfied (S10: NO), and this flow ends. If there is an instruction for boiling operation, the determination is satisfied (S10: YES), and the process moves to step S20.

ステップS20では、前記制御部410等は、前記外気温度センサ22により検出された前記外気温度Tairが、予め定められた所定温度(例えば10℃~20℃の範囲にある適宜の温度、例えば15℃等)以下であるか否かを判定する。前記所定温度を超えていれば判定が満たされず(S20:NO)後述のステップS50に移り、前記所定温度以下であれば判定が満たされ(S20:YES)、ステップS30に移る。 In step S20, the control unit 410 or the like controls that the outside air temperature Tair detected by the outside air temperature sensor 22 is a predetermined temperature (for example, an appropriate temperature in the range of 10°C to 20°C, such as 15°C). etc.) is determined as follows. If the temperature exceeds the predetermined temperature, the determination is not satisfied (S20: NO), and the process proceeds to step S50, which will be described later.

ステップS30では、前記制御部410等は、前記四方弁制御部410Aにより、前記四方弁31を前記暖房位置に切り替える。その後、ステップS40に移る。 In step S30, the controller 410 and the like switch the four-way valve 31 to the heating position by the four-way valve controller 410A. After that, the process moves to step S40.

ステップS40では、前記制御部410等は、前記二方弁制御部410E,420Cにより、二方弁121,125を全開状態かつ二方弁123,122,126,124を全閉状態に切り替え、前記膨張弁制御部410Cにより、前記膨張弁112,114を全閉状態かつ前記膨張弁111を全開状態とし前記膨張弁113に△H制御を行うことで、前記図6を用いて前述した前記冬期沸上運転を実行する。その後、このフローを終了する。 In step S40, the control unit 410 and the like switch the two-way valves 121 and 125 to the fully open state and the two-way valves 123, 122, 126 and 124 to the fully closed state by the two-way valve control units 410E and 420C. The expansion valve control unit 410C sets the expansion valves 112 and 114 to the fully closed state and the expansion valve 111 to the fully open state, and performs the ΔH control on the expansion valve 113, so that the winter boiling time described above with reference to FIG. Run up. After that, this flow ends.

一方、前記ステップS20の判定が満たされずに移行したステップS50では、前記制御部410等は、前記四方弁制御部410Aにより、前記四方弁31を前記冷房位置に切り替える。その後、ステップS60に移る。 On the other hand, in step S50 where the determination in step S20 is not satisfied, the controller 410 and the like switch the four-way valve 31 to the cooling position by the four-way valve controller 410A. After that, the process moves to step S60.

ステップS60では、前記制御部410等は、前記二方弁制御部410E,420Cにより、二方弁123,126を全開状態かつ二方弁121,122,125,124を全閉状態に切り替え、前記膨張弁制御部410Cにより、前記膨張弁112,114を全閉状態かつ前記膨張弁111を全開状態とし前記膨張弁113に△H制御を行うことで、前記図11を用いて前述した前記夏期沸上運転を実行する。その後、このフローを終了する。 In step S60, the control unit 410 and the like switch the two-way valves 123 and 126 to the fully open state and the two-way valves 121, 122, 125 and 124 to the fully closed state by the two-way valve control units 410E and 420C. The expansion valve control unit 410C sets the expansion valves 112 and 114 to the fully closed state and the expansion valve 111 to the fully open state, and performs the ΔH control on the expansion valve 113, so that the summer boiling described above with reference to FIG. Run up. After that, this flow ends.

なお、前記二方弁制御部410E,420C及び前記膨張弁制御部410Cによる各弁の制御機能のうち、前記二方弁123及び前記膨張弁112を開閉制御する機能が、開閉制御手段に相当している。 Among the valve control functions of the two-way valve control units 410E and 420C and the expansion valve control unit 410C, the function of controlling the opening and closing of the two-way valve 123 and the expansion valve 112 corresponds to opening/closing control means. ing.

本変形例においては、前記のように、リモコン60を介し前記沸上運転の指示がなされた場合には、冷房運転等に対応した前記冷房位置とすべきか暖房運転等に対応した前記暖房位置とすべきかの指標となる、所定の運転切替因子(前記の例では外気温度Tair)に応じて、四方弁31の切替制御が行われる。 In the present modification, as described above, when the heating operation is instructed via the remote controller 60, whether the cooling position corresponding to the cooling operation or the like should be set or the heating position corresponding to the heating operation or the like. Switching control of the four-way valve 31 is performed according to a predetermined operation switching factor (the outside air temperature Tair in the above example), which serves as an index of whether to switch.

すなわち、前記沸上運転が行われる際に、例えば前記外気温度Tairが比較的低かった場合は、四方弁31は、前記暖房運転等に対応して切り替えるべきとみなされ、前記暖房位置へと切り替えられる。これにより、四方弁31を暖房位置に切り替えた状態での前記冬期沸上運転が実行されるので、その後、さらに前記暖房運転もしくは前記沸上・暖房運転へと移行する指示がなされた場合であっても、四方弁31を同じ暖房位置とした状態のままで円滑に運転の移行を行うことができる。この結果、四方弁31の切替位置の変更が生じる場合のような、運転中断による室温低下(暖房感の低下)を確実に防止することができる。 That is, when the boiling-up operation is performed, for example, when the outside air temperature Tair is relatively low, the four-way valve 31 is considered to be switched to correspond to the heating operation, etc., and is switched to the heating position. be done. As a result, the winter boiling operation is executed with the four-way valve 31 switched to the heating position. However, the four-way valve 31 remains in the same heating position, and the operation can be smoothly shifted. As a result, it is possible to reliably prevent a decrease in room temperature (decrease in feeling of heating) due to suspension of operation such as when the switching position of the four-way valve 31 is changed.

逆に、前記沸上運転が行われる際、例えば前記外気温度Tairが比較的高かった場合においては、四方弁31は、前記冷房運転等に対応して切り替えるべきとみなされ、前記冷房位置へと切り替えられる。これにより、四方弁31を冷房位置に切り替えた状態での前記夏期沸上運転が実行されるので、その後、さらに前記冷房運転もしくは前記沸上・冷房運転へと移行する指示がなされた場合であっても、四方弁31を同じ冷房位置とした状態のままで円滑に運転の移行を行うことができる。 Conversely, when the boiling-up operation is performed, for example, when the outside air temperature Tair is relatively high, the four-way valve 31 is considered to be switched to correspond to the cooling operation, etc., and is switched to the cooling position. can be switched. As a result, the summer boiling operation is executed with the four-way valve 31 switched to the cooling position. However, the four-way valve 31 remains in the same cooling position, and the operation can be smoothly shifted.

これらの結果、本変形例によれば、四方弁31の切替位置の変更が生じる場合のような、運転中断による室温上昇(冷房感の低下)を確実に防止することができる。 As a result, according to this modified example, it is possible to reliably prevent an increase in room temperature (decrease in cooling sensation) due to suspension of operation such as when the switching position of the four-way valve 31 is changed.

なお、前記においては、運転切替因子の例として、前記外気温度センサ22により検出された前記外気温度Tairを用いたが、これに限られない。すなわち、前記外気温度Tairの所定期間(例えば過去の複数日)内における平均値や、貯湯タンク2へ前記給水管7へ給水される給水温度又はその前記所定期間内における平均値や、所定期間(例えば過去の複数日)内における前記冷房運転又は前記暖房運転の運転態様の実績(又は運転態様の指示実績)等、を用いても良い。前記給水温度を用いる場合は、例えば前記ステップS20において、当該給水温度が所定値以下の場合はステップS30へ移行し、当該給水温度が所定値を超える場合はステップS50へ移行する。前記運転実績(又は前記運転指示実績)を用いる場合は、例えば前記ステップS20において、主に暖房運転又は沸上・暖房運転の実績が多かった場合はステップS30へ移行し、主に冷房運転又は沸上・冷房運転の実績が多かった場合はステップS50へ移行する。これらの場合も前記と同様の効果を得る。
また、前記の例では、前記リモコン60等を介した沸上運転の指示がなされた際に、前記冬期沸上運転若しくは前記夏期沸上運転の選択が実行されるようにしたが、選択のタイミングはこれに限られるものではない。すなわち例えば、予め定められたタイミング若しくは所望のタイミングで定期的・周期的に行われる沸上運転(通常毎日深夜に行われる夜間沸上運転等)において、そのタイミングで前記運転切替因子に応じて前記冬期沸上運転及び前記夏期沸上運転のいずれか一方が選択されるようにしてもよい。また、沸上運転の実行に関係なく、予め定められたタイミング若しくは所望のタイミング(特定の期日や特定の時刻等)において、前記運転切替因子に応じて、前記四方弁31を前記暖房位置又は前記冷房位置へ切り替える(まだ沸上運転は行われないが、沸上運転が行われるよりも前に事前に切り替え済としておく)ようにしてもよい。
In the above description, the outside air temperature Tair detected by the outside air temperature sensor 22 is used as an example of the operation switching factor, but it is not limited to this. That is, the average value of the outside air temperature Tair within a predetermined period (for example, a plurality of days in the past), the temperature of the water supplied to the hot water storage tank 2 to the water supply pipe 7, or the average value within the predetermined period, or the predetermined period ( For example, the performance of the operation mode of the cooling operation or the heating operation (or the instruction performance of the operation mode) within a plurality of days in the past may be used. When the water supply temperature is used, for example, in step S20, if the water supply temperature is equal to or lower than a predetermined value, the process proceeds to step S30, and if the water supply temperature exceeds the predetermined value, the process proceeds to step S50. When using the actual operation performance (or the actual operation instruction performance), for example, in step S20, if the performance of mainly heating operation or boiling/heating operation is large, the process proceeds to step S30, and mainly the cooling operation or heating operation is performed. If the performance of the top/cooling operation is large, the process proceeds to step S50. In these cases, the same effect as described above is obtained.
Further, in the above example, when the instruction for the boiling operation is given via the remote control 60 or the like, the selection of the winter boiling operation or the summer boiling operation is executed. is not limited to this. That is, for example, in a boiling operation that is regularly and periodically performed at a predetermined timing or a desired timing (such as a nighttime boiling operation that is usually performed at midnight every day), at that timing, according to the operation switching factor Either one of the winter boiling-up operation and the summer boiling-up operation may be selected. Further, regardless of the execution of the boiling-up operation, the four-way valve 31 is set to the heating position or the It may be switched to the cooling position (although the boiling operation is not performed yet, the switch may be completed in advance before the boiling operation is performed).

(2)その他
例えば、前記二方弁121~125のうち少なくとも1つを、閉止機能付きの膨張弁で置き換えても良い。また、前記膨張弁111~114に代え、減圧器としてエジェクターを用いても良い。
(2) Others For example, at least one of the two-way valves 121 to 125 may be replaced with an expansion valve with a closing function. Also, instead of the expansion valves 111 to 114, an ejector may be used as a decompressor.

また、図16に示すフローチャートは本発明を上記フローに示す手順に限定するものではなく、発明の趣旨及び技術的思想を逸脱しない範囲内で手順の追加・削除又は順番の変更等をしてもよい。 Also, the flowchart shown in FIG. 16 does not limit the present invention to the procedures shown in the above flow, and additions, deletions, or changes in the order of procedures may be made within the scope of the gist and technical idea of the invention. good.

また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to the methods already described above, the methods according to the above-described embodiments and modifications may be appropriately combined and used.

その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not exemplified one by one, the present invention can be implemented with various modifications within the scope of the invention.

1 ヒートポンプ給湯機
2 貯湯タンク
4 加熱循環回路(湯水循環回路)
5 加熱往き管(湯水配管)
6 加熱戻り管(湯水配管)
14 圧縮機
15 水冷媒熱交換器
15a 冷媒側の流路
15b 水側の流路
17 室外熱交換器(ヒートポンプ熱交換器)
18 冷媒配管
18b 配管部(第3管路)
18d 配管部(第1管路)
18e 配管部(第2管路)
18f 配管部(第6管路)
25a 配管部(第7管路)
25b 配管部(第7管路)
25c 配管部(第5管路)
25d 配管部(第3管路)
25e 配管部(第2管路)
25f 配管部(第3管路)
25g 配管部(第2管路)
25i 配管部(第3管路)
25j 配管部(第4管路)
25l 配管部(第4管路)
25m 配管部(第3管路)
26a 配管部(第3管路)
26b 配管部(第2管路)
27 室内熱交換器
30 冷媒循環回路
31 四方弁
67 室外ファン
77 室内ファン
100 貯湯ユニット
103 連通管路(第2管路)
104 連通管路(第3管路)
111 膨張弁
112 膨張弁(第5開閉弁)
113 膨張弁
114 膨張弁
121 二方弁
122 二方弁(第4開閉弁)
123 二方弁(第1開閉弁)
124 二方弁
125 二方弁(第3開閉弁)
126 二方弁(第2開閉弁)
200 ヒートポンプユニット(室外機)
300 エアコンユニット(室内機)
410 ヒーポン制御部
410A 四方弁制御部(四方弁制御手段)
410C 膨張弁制御部
410E 二方弁制御部
420 貯湯制御部
420C 二方弁制御部
430 エアコン制御部
A 分岐点(第1分岐点)
B 分岐点(第3分岐点)
C 分岐点(第4分岐点)
D 分岐点(第2分岐点)
Tair 外気温度
1 heat pump water heater 2 hot water storage tank 4 heating circulation circuit (hot water circulation circuit)
5 Heating pipe (hot water pipe)
6 Heating return pipe (hot water pipe)
14 compressor 15 water-refrigerant heat exchanger 15a refrigerant-side flow path 15b water-side flow path 17 outdoor heat exchanger (heat pump heat exchanger)
18 refrigerant pipe 18b pipe portion (third pipe line)
18d piping section (first pipeline)
18e Piping part (second pipe line)
18f Piping section (6th pipeline)
25a piping section (seventh pipeline)
25b piping section (seventh pipeline)
25c piping part (5th pipeline)
25d piping section (third pipeline)
25e piping section (second pipeline)
25f piping section (third pipeline)
25g piping section (second pipeline)
25i piping section (third pipeline)
25j Piping section (4th pipeline)
25l piping section (4th pipeline)
25m piping section (third pipeline)
26a piping section (third pipeline)
26b piping section (second pipeline)
27 indoor heat exchanger 30 refrigerant circulation circuit 31 four-way valve 67 outdoor fan 77 indoor fan 100 hot water storage unit 103 communication pipe (second pipe)
104 Communication conduit (third conduit)
111 expansion valve 112 expansion valve (fifth on-off valve)
113 Expansion valve 114 Expansion valve 121 Two-way valve 122 Two-way valve (fourth on-off valve)
123 two-way valve (first on-off valve)
124 two-way valve 125 two-way valve (third on-off valve)
126 two-way valve (second on-off valve)
200 heat pump unit (outdoor unit)
300 air conditioner unit (indoor unit)
410 heat pump control unit 410A four-way valve control unit (four-way valve control means)
410C expansion valve control unit 410E two-way valve control unit 420 hot water storage control unit 420C two-way valve control unit 430 air conditioner control unit A branch point (first branch point)
B branch point (third branch point)
C branch point (fourth branch point)
D branch point (second branch point)
Tair outside temperature

Claims (5)

冷媒と外気との熱交換を行う、凝縮器又は蒸発器として選択的に機能可能なヒートポンプ熱交換器と、
前記ヒートポンプ熱交換器に接続される圧縮機と、
湯水を貯湯する貯湯タンクと、
前記冷媒と水との熱交換を行う、凝縮器としての水冷媒熱交換器と、
前記冷媒と室内空気との熱交換を行う、凝縮器又は蒸発器として選択的に機能可能な室内熱交換器と
を有し、
前記水冷媒熱交換器の水側と前記貯湯タンクとを湯水配管で環状に接続して湯水循環回路を形成し、
前記ヒートポンプ熱交換器、前記圧縮機、前記水冷媒熱交換器の冷媒側、及び、前記室内熱交換器を冷媒配管で接続して冷媒循環回路を形成する冷暖房機能付きヒートポンプ給湯機において、
前記圧縮機の吐出側を凝縮器としての前記ヒートポンプ熱交換器に連通させるとともに前記圧縮機の吸込側を蒸発器としての前記室内熱交換器に連通させる第1切替位置、及び、前記圧縮機の吐出側を凝縮器としての前記室内熱交換器に連通させるとともに前記圧縮機の吸込側を蒸発器としての前記ヒートポンプ熱交換器に連通させる第2切替位置、に切替可能な四方弁と、
一方側が前記第1切替位置の前記四方弁を介し前記圧縮機の吐出側に連通されると共に、他方側が凝縮器としての前記ヒートポンプ熱交換器の入口側に接続される、第1管路と、
凝縮器としての前記ヒートポンプ熱交換器の出口側と蒸発器としての前記室内熱交換器の入口側とを接続する、第2管路と、
一方側が前記第1切替位置の前記四方弁を介し前記圧縮機の吸込側に連通されると共に、他方側が蒸発器としての前記室内熱交換器の出口側に接続される、第3管路と、
一方側が前記第1管路に設けた第1分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の入口側に接続される、第4管路と、
一方側が前記第2管路に設けた第2分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の出口側に接続される、第5管路と、
一方側が前記第1管路に設けた第3分岐点から分岐して設けられて蒸発器としての前記ヒートポンプ熱交換器の出口側に接続され、他方側が前記第3管路に設けた第4分岐点から分岐して設けられて前記第1切替位置の前記四方弁を介し前記圧縮機の吸込側に連通される、第6管路と、
前記四方弁を前記第1切替位置及び前記第2切替位置のいずれかに切り替える四方弁制御手段と、
一方側が前記第3管路に設けた第5分岐点から分岐して設けられると共に、他方側が凝縮器としての前記水冷媒熱交換器の入口側に接続される、第7管路と、
を有し、
前記四方弁が前記第2切替位置にある場合において、
前記第3管路は、
前記圧縮機の吐出側と凝縮器としての前記室内熱交換器の入口側とを接続し、
前記第1管路は、
前記圧縮機の吸込側と蒸発器としての前記ヒートポンプ熱交換器の出口側とを接続し、
前記第2管路は、
凝縮器としての前記室内熱交換器の出口側と蒸発器としての前記ヒートポンプ熱交換器の入口側とを接続する
ことを特徴とする冷暖房機能付きヒートポンプ給湯機。
a heat pump heat exchanger capable of selectively functioning as a condenser or an evaporator for heat exchange between refrigerant and ambient air;
a compressor connected to the heat pump heat exchanger;
a hot water storage tank for storing hot water;
a water-refrigerant heat exchanger as a condenser that exchanges heat between the refrigerant and water;
an indoor heat exchanger capable of selectively functioning as a condenser or an evaporator for exchanging heat between the refrigerant and indoor air;
forming a hot water circulation circuit by annularly connecting the water side of the water-refrigerant heat exchanger and the hot water storage tank with a hot water pipe;
In a heat pump water heater with a cooling and heating function in which the heat pump heat exchanger, the compressor, the refrigerant side of the water-refrigerant heat exchanger, and the indoor heat exchanger are connected by refrigerant pipes to form a refrigerant circulation circuit,
a first switching position in which the discharge side of the compressor is communicated with the heat pump heat exchanger as a condenser and the suction side of the compressor is communicated with the indoor heat exchanger as an evaporator; a four-way valve that can be switched to a second switching position that communicates the discharge side with the indoor heat exchanger as a condenser and communicates the suction side of the compressor with the heat pump heat exchanger as an evaporator;
a first pipeline, one side of which communicates with the discharge side of the compressor via the four-way valve in the first switching position and the other side of which is connected to the inlet side of the heat pump heat exchanger as a condenser;
a second pipeline connecting the outlet side of the heat pump heat exchanger as a condenser and the inlet side of the indoor heat exchanger as an evaporator;
a third pipeline, one side of which communicates with the suction side of the compressor via the four-way valve in the first switching position, and the other side of which is connected to the outlet side of the indoor heat exchanger as an evaporator;
a fourth pipeline having one side branched from a first branch point provided in the first pipeline and having the other side connected to the inlet side of the water-refrigerant heat exchanger as a condenser;
a fifth pipeline having one side branched from a second branch point provided in the second pipeline and having the other side connected to the outlet side of the water-refrigerant heat exchanger as a condenser;
One side is branched from a third branch point provided in the first pipeline and connected to the outlet side of the heat pump heat exchanger as an evaporator, and the other side is a fourth branch provided in the third pipeline. a sixth pipe branching from a point and communicating with the suction side of the compressor via the four-way valve in the first switching position;
four-way valve control means for switching the four-way valve between the first switching position and the second switching position;
a seventh pipeline having one side branched from a fifth branch point provided in the third pipeline and having the other side connected to the inlet side of the water-refrigerant heat exchanger as a condenser;
has
When the four-way valve is in the second switching position,
The third conduit is
connecting the discharge side of the compressor and the inlet side of the indoor heat exchanger as a condenser;
The first conduit is
connecting the suction side of the compressor and the outlet side of the heat pump heat exchanger as an evaporator;
The second conduit is
connecting the outlet side of the indoor heat exchanger as a condenser and the inlet side of the heat pump heat exchanger as an evaporator;
A heat pump water heater with a cooling and heating function, characterized by:
前記第4管路に設けられ、当該第4管路を開閉する第1開閉弁と、
前記第6管路に設けられ、当該第6管路を開閉する第2開閉弁と、
を有することを特徴とする請求項1記載の冷暖房機能付きヒートポンプ給湯機。
a first on-off valve provided in the fourth pipeline for opening and closing the fourth pipeline;
a second on-off valve provided in the sixth pipeline for opening and closing the sixth pipeline;
The heat pump water heater with a cooling and heating function according to claim 1 , characterized by comprising:
前記第1管路における前記第1分岐点と前記第3分岐点との間の区間に設けられ、当該区間を開閉する第3開閉弁を有する
ことを特徴とする請求項2記載の冷暖房機能付きヒートポンプ給湯機。
3. The cooling/heating function according to claim 2 , further comprising a third on-off valve that is provided in a section between the first branch point and the third branch point in the first pipeline and that opens and closes the section. heat pump water heater.
前記第3管路における前記第5分岐点よりも前記室内熱交換器側を閉止可能な第4開閉弁と、
前記第2管路における前記第2分岐点よりも前記室内熱交換器側を閉止可能な第5開閉弁と、
を有することを特徴とする請求項2記載の冷暖房機能付きヒートポンプ給湯機。
a fourth on-off valve capable of closing the indoor heat exchanger side of the third pipeline with respect to the fifth branch point;
a fifth on-off valve capable of closing the indoor heat exchanger side of the second branch point in the second pipeline;
3. The heat pump water heater with cooling and heating function according to claim 2 , characterized by comprising:
前記四方弁制御手段は、所定の運転切替因子に応じて、前記四方弁を前記第1切替位置又は前記第2切替位置のいずれか一方に切り替える
ことを特徴とする請求項1~4の何れか1項に記載の冷暖房機能付きヒートポンプ給湯機。
5. The four-way valve control means switches the four -way valve to either the first switching position or the second switching position according to a predetermined operation switching factor. The heat pump water heater with cooling and heating functions according to item 1.
JP2019006443A 2019-01-17 2019-01-17 Heat pump water heater with air conditioning function Active JP7160699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006443A JP7160699B2 (en) 2019-01-17 2019-01-17 Heat pump water heater with air conditioning function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006443A JP7160699B2 (en) 2019-01-17 2019-01-17 Heat pump water heater with air conditioning function

Publications (2)

Publication Number Publication Date
JP2020115061A JP2020115061A (en) 2020-07-30
JP7160699B2 true JP7160699B2 (en) 2022-10-25

Family

ID=71778449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006443A Active JP7160699B2 (en) 2019-01-17 2019-01-17 Heat pump water heater with air conditioning function

Country Status (1)

Country Link
JP (1) JP7160699B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020681A (en) 2015-07-08 2017-01-26 ダイキン工業株式会社 Air conditioning/hot water supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241147Y2 (en) * 1972-08-17 1977-09-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020681A (en) 2015-07-08 2017-01-26 ダイキン工業株式会社 Air conditioning/hot water supply system

Also Published As

Publication number Publication date
JP2020115061A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US20110232308A1 (en) Air conditioner
JP6792057B2 (en) Refrigeration cycle equipment
WO2011061792A1 (en) Refrigeration cycle device and information propagation method adapted thereto
CN104094070B (en) Flow passage selector device and there is the conditioner of this flow passage selector device
JP6728535B2 (en) Heat pump water heater with cooling function
JP2005077084A (en) Air-conditioner, and control method therefor
JP4553761B2 (en) Air conditioner
JP6703468B2 (en) Air conditioner with hot water supply function
JP2006071137A (en) Refrigeration unit
JPWO2019053876A1 (en) Air conditioner
JP6640695B2 (en) Heat pump water heater with air conditioning function
JP2006292329A (en) Heat source system, and control device and control method thereof
JP6718786B2 (en) Heat pump water heater with heating function
JP7105029B2 (en) Water heater with air conditioning function
WO2020067189A1 (en) Air-conditioning system
JP2009264717A (en) Heat pump hot water system
JP2018066538A (en) Heat pump water heater with air-conditioning function
JP6675961B2 (en) Heat pump water heater with cooling function
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP6679461B2 (en) Heat pump water heater with heating function
JP7160699B2 (en) Heat pump water heater with air conditioning function
JP7265368B2 (en) Cooling waste heat utilization heat pump water heater
JP2005016881A (en) Air conditioning system
JP7041037B2 (en) Hot water storage type water heater with air conditioning function
JP6281736B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221013

R150 Certificate of patent or registration of utility model

Ref document number: 7160699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150