WO2011061792A1 - Refrigeration cycle device and information propagation method adapted thereto - Google Patents

Refrigeration cycle device and information propagation method adapted thereto Download PDF

Info

Publication number
WO2011061792A1
WO2011061792A1 PCT/JP2009/006177 JP2009006177W WO2011061792A1 WO 2011061792 A1 WO2011061792 A1 WO 2011061792A1 JP 2009006177 W JP2009006177 W JP 2009006177W WO 2011061792 A1 WO2011061792 A1 WO 2011061792A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
refrigerant
unit
refrigeration cycle
Prior art date
Application number
PCT/JP2009/006177
Other languages
French (fr)
Japanese (ja)
Inventor
松井賢治
▲高▼田茂生
薮内宏典
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/006177 priority Critical patent/WO2011061792A1/en
Priority to CN200980162495.5A priority patent/CN102695929B/en
Priority to EP09851418.5A priority patent/EP2503266B1/en
Priority to US13/510,150 priority patent/US20120222440A1/en
Priority to JP2011541733A priority patent/JP5642085B2/en
Publication of WO2011061792A1 publication Critical patent/WO2011061792A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters

Definitions

  • the present invention relates to a refrigeration cycle apparatus applied to an air conditioning apparatus or an air conditioning and hot water supply complex system and an information transmission method applied thereto, and relates to a refrigeration cycle apparatus designed to improve the system COP and an information transmission method applied thereto. Is.
  • an air conditioning and hot water supply complex system that can simultaneously supply a cooling load, a heating load, and a hot water supply load, including an air conditioning and hot water supply complex system as described in Patent Document 1, the cooling load, the heating load, and the hot water supply load are balanced. It has been conventionally known that the system COP is improved. However, in reality, the air conditioning load and hot water supply load required by the user have different time zones and required amounts, so that efficient operation with improved system COP has not necessarily been realized. . For example, in summer, the cooling load increases mainly during the daytime, and the hot water supply load increases during the night when many baths and showers are used, and the operating time corresponds to the air conditioning load and hot water load. Usually the bands are different.
  • the motor efficiency of the compressor operated at a low speed by the inverter is deteriorated at the time of small capacity operation, so that the energy consumption efficiency is deteriorated.
  • the operation condition is a heating overload and small capacity operation, the high pressure becomes too high, and the situation that the operation cannot be continued occurs. There was also.
  • the present invention has been made in order to solve the above-described problems, and is intended to balance the load balance (for example, the balance between the cooling load and the heating load, and the balance between the cooling load and the heating load and the hot water supply load).
  • An object of the present invention is to provide an improved refrigeration cycle apparatus and an information transmission method applied thereto.
  • the refrigeration cycle apparatus includes at least one heat source unit on which at least an air conditioning compressor and a heat source side heat exchanger are mounted, a plurality of usage side units on which at least a usage side heat exchanger is mounted, A refrigeration cycle apparatus comprising a heat source unit and the use side unit, and comprising at least one relay unit that transmits the heat or cold generated by the heat source side unit to the use side unit; The plurality of usage-side units are operated so as to balance the cooling load and the heating load executed by the plurality of usage-side units.
  • An information transmission method is an information transmission method applied to the above-described refrigeration cycle apparatus, wherein the heat source unit has a heat source unit controller, the relay unit has a relay unit controller, and the user side unit has an information transmission method.
  • the heat source unit has a heat source unit controller
  • the relay unit has a relay unit controller
  • the user side unit has an information transmission method.
  • Each is provided with a usage-side unit controller, and the load balance of the plurality of usage-side units can be determined by one of the controllers by transmitting information from each controller.
  • the plurality of usage-side units are operated so as to balance the cooling load and the heating load executed by the plurality of usage-side units, thereby improving the system COP and saving energy. It is possible to reduce the running cost while realizing it.
  • the information transmission method according to the present invention is applied to the above-described refrigeration cycle apparatus, so that stable operation can be continued efficiently.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to an embodiment of the present invention.
  • the refrigerant circuit configuration and operation of the refrigeration cycle apparatus 100 will be described based on FIG.
  • the refrigeration cycle apparatus 100 uses a refrigeration cycle that circulates refrigerant (air conditioning refrigerant) to simultaneously supply a cooling load (cooling load), a heating load, and a hot water supply load (heating load).
  • the case is shown as an example.
  • the relationship of the size of each component may be different from the actual one.
  • the refrigeration cycle apparatus 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are refrigerant-refrigerant heat exchangers. 41, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are configured to perform heat exchange in a heat medium-refrigerant heat exchanger 51 without mixing the refrigerant and water.
  • the refrigeration cycle apparatus 100 is equipped with a hot water supply unit F.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, an indoor unit B in charge of a cooling load or a heating load, an indoor unit C, a hot water supply heat source circuit D serving as a heat source for the hot water supply refrigeration cycle 2, and a relay unit E. It is constituted by. Among these, the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A. And the relay unit E installed between the heat source unit A, the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the indoor unit B, the indoor unit C, and the hot water supply heat source are switched. Each function as the circuit D is exhibited.
  • the heat source unit A has a function of supplying hot or cold to the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D.
  • an air conditioning compressor 101 a four-way valve 102, an outdoor heat exchanger (heat source side heat exchanger) 103, and an accumulator 104 are connected in series.
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator and a radiator (condenser), exchanges heat between air supplied from a blower (not shown) and the air-conditioning refrigerant, and converts the air-conditioning refrigerant into an evaporative gas. Or it is condensed and liquefied.
  • the accumulator 104 is disposed on the suction side of the air conditioning compressor 101, and stores excess air conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the heat source unit A is supplied with a flow of air-conditioning refrigerant only in a predetermined direction (direction from the heat source unit A to the relay unit E) through the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. Allow the flow of air-conditioning refrigerant only in a predetermined direction (direction from the relay unit E to the heat source unit A) to the check valve 105a and the low-pressure side connection pipe 107 between the four-way valve 102 and the relay unit E.
  • a check valve 105b is provided.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are a first connection pipe 130 that connects the upstream side (connection portion a) of the check valve 105a and the upstream side (connection portion c) of the check valve 105b.
  • the second connection pipe 131 connecting the downstream side (connection portion b) of the check valve 105a and the downstream side (connection portion d) of the check valve 105b is connected.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the indoor unit B and the indoor unit C have a function of receiving heating or cooling supply from the heat source unit A and taking charge of heating load or cooling load.
  • an air conditioning throttle means 117 and an indoor heat exchanger (use side heat exchanger) 118 are connected in series and mounted. Further, the indoor unit B and the indoor unit C are illustrated as an example in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the relay unit E determines, for example, that the indoor unit B is in charge of the cooling load and the indoor unit C is in charge of the heating load.
  • the connecting pipe connecting the relay unit E to the indoor heat exchanger 118 is called a connecting pipe 133
  • the connecting pipe connecting the relay unit E to the air conditioning throttle means 117 is called a connecting pipe 134.
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) and an evaporator, and performs heat exchange between air supplied from a blower (not shown) and the air-conditioning refrigerant to condense or liquefy the air-conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D has a function of supplying the hot or cold heat from the heat source unit A to the hot water supply refrigeration cycle 2 via the refrigerant-refrigerant heat exchanger 41.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected via the refrigerant-refrigerant heat exchanger 41.
  • connection pipe connecting the relay unit E to the refrigerant-refrigerant heat exchanger 41 is connected to the connection pipe 135, and the connection pipe connecting the relay unit E to the hot water supply heat source throttle means 119 is the connection pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E connects the use side unit (the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D) and the heat source unit A and either the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, or the refrigerant-refrigerant heat exchanger 41 is a chiller or a hot water heater.
  • This relay unit E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay unit E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
  • the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the operation of the refrigeration cycle 1 for air conditioning will be described.
  • the operation when the indoor unit B is in charge of the cooling load, the indoor unit C is in charge of the heating load, and the hot water supply heat source circuit D is in charge of the hot water supply load will be described.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay unit E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the indoor air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, heat is supplied to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the unit C joins at the first meeting part 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling.
  • This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109b is Then, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second relay throttle unit 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the indoor unit in the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, accumulator Return to the air-conditioning compressor 101 via the radiator 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected via the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives heat from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41 and evaporates, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the hot water circulation pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to a relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed.
  • FIG. 1 the case where two or more indoor units B and C are connected is shown as an example, but the number of connected units is not particularly limited. For example, one or more indoor units B are It is sufficient that there is no indoor unit C or one or more indoor units C are connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of cycle 2 high (for example, condensing temperature 85 ° C.), and when there is another heating load, it is not necessary to increase even the condensing temperature (for example 50 ° C.) of indoor unit C. So it becomes energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
  • high-temperature hot water supply demand for example, 80 ° C.
  • Hot water supply unit F In the hot water supply unit F, a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22 are mounted. ing.
  • the hot water supply unit F includes a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, a whole of the hot water supply refrigeration cycle 2, and a hot water supply through the heat medium-refrigerant heat exchanger 51. A part of the load 3 is accommodated.
  • FIG. 2 is a schematic configuration diagram for explaining information transmission in the refrigeration cycle apparatus 100 according to the embodiment of the present invention. Based on FIG.1 and FIG.2, the information transmission which the refrigeration cycle apparatus 100 performs is demonstrated.
  • two indoor units indoor unit B, indoor unit C
  • two hot water supply units F hot water supply unit F1, hot water supply unit F2
  • the refrigeration cycle apparatus 100 in a connected state is shown as an example.
  • the heat source unit A and the relay unit E are connected by the refrigerant pipe 5 (the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107).
  • the side unit is connected by a refrigerant pipe 6 (connection pipe 133, connection pipe 134, connection pipe 135, connection pipe 136) and constitutes one refrigerant circuit system (air-conditioning refrigeration cycle 1).
  • the heat source unit A has a heat source unit controller 61
  • the relay unit E has a relay unit controller 62
  • the indoor units B and C have an indoor unit controller (use side unit controller) 63
  • the hot water supply unit F has A hot water supply unit controller (use side unit controller) 64 is provided.
  • the heat source unit A is the heat source unit controller 61
  • the relay unit E is the relay unit controller 62
  • the indoor unit B and the indoor unit C are the indoor unit controller 63
  • the hot water supply unit F is the hot water supply unit controller. 64. Each is controlled.
  • the heat source unit controller 61 and the relay unit controller 62 are connected via the transmission line 7 so as to be able to transmit information to each other.
  • the relay unit controller 62 and the indoor unit controller 63 are connected via the transmission line 8 so as to be able to transmit information to each other.
  • the relay unit controller 62 and the hot water supply unit controller 64 are connected via the transmission line 8 so as to be able to transmit information to each other.
  • the indoor unit controller 63 and the hot water supply unit controller 64 are connected to each other via a remote controller 65 and a transmission line 9 so as to be able to transmit information to each other.
  • heat source unit controller 61 is connected to a heat source unit controller (not shown) of another refrigerant system via the transmission line 10.
  • a centralized controller 66 for centrally managing the refrigeration cycle apparatus 100 is further connected to the transmission line 10.
  • the heat source unit controller 61, the relay unit controller 62, the indoor unit controller 63, the hot water supply unit controller 64, the remote controller 65, and the centralized controller 66 are each assigned a unique address, and when the system is started by manual setting processing or automatic discrimination processing It is designed to know the address of the communication partner. Further, the heat source unit controller 61 is configured to grasp the driving capabilities of all indoor units B, indoor units C, and hot water supply units F connected to the relay unit E by communication at the time of system startup.
  • FIG. 3 is a schematic diagram schematically showing a connection state in the hot water supply unit F of the refrigeration cycle apparatus 100 according to the embodiment of the present invention. Based on FIG. 3, the connection state in the hot water supply unit F will be described.
  • the hot water supply unit F is provided with a hot water storage tank 32.
  • the hot water storage tank 32 detects the temperature of a water supply valve 33 provided at a water supply port (not shown), a drain valve 34 provided at a water discharge port (not shown), and water and hot water stored in the hot water storage tank 32.
  • a water temperature sensor 35 for detecting the amount of water and hot water stored in the hot water storage tank 32 (water level) is provided.
  • the hot water supply unit controller 64 is connected to the water temperature sensor 35 and the water amount sensor 36, and can grasp the water temperature and the water amount of the hot water storage tank 32 based on information transmitted from these.
  • the hot water supply unit controller 64 is connected to the water supply valve 33 and controls the opening and closing of the water supply valve 33. That is, the hot water supply unit controller 64 can replenish cold water into the hot water storage tank 32 by opening the water supply valve 33.
  • the hot water supply unit controller 64 is connected to the drain valve 34 and controls the opening and closing of the drain valve 34. That is, the hot water supply unit controller 64 can discharge hot water outside the hot water storage tank 32 by opening the drain valve 34.
  • FIG. 4 is a flowchart showing a flow of communication / operation processing executed by the heat source unit controller 61. Based on FIG. 4, a flow of communication / operation processing executed by the heat source unit controller 61 will be described. Note that steps S100 to S106 shown in FIG. 4 show processing executed by the heat source unit controller 61.
  • the hot water supply unit F1 will be described as an example.
  • the user operates the remote controller 65 to set a set temperature for the hot water supply unit F1.
  • the user can set a binary set temperature.
  • the binary set temperature refers to the hot water supply temperature originally required by the hot water supply unit F1 (first set temperature) and the temperature at which the hot water supply unit F1 is automatically operated for the purpose of energy saving or continuation of stable operation of the entire system. (Second set temperature).
  • the second set temperature is set to a value higher than the first set temperature. For example, the user sets 55 ° C. as the first set temperature and 60 ° C. as the second set temperature.
  • the remote controller 65 stores the set binary set temperature in the memory and transmits it to the hot water supply unit controller 64 via the transmission line 9.
  • the hot water supply unit controller 64 that has received the set binary set temperature stores the received binary set temperature in a memory and transmits it to the relay unit controller 62 via the transmission line 8.
  • the binary set temperature is further transmitted to the centralized controller 66 via the transmission line 8, the transmission line 7, and the transmission line 10.
  • the relay unit controller 62 that has received the binary set temperature transmits the binary set temperature of each hot water supply unit F to the heat source unit controller 61 via the transmission line 7.
  • the user should not set the second set temperature.
  • the user can also set the binary set temperature by operating the centralized controller 66.
  • the centralized controller 66 stores the set binary set temperature in a memory and transmits the temperature to the hot water supply unit controller 64 via the transmission line 10, the transmission line 7, and the transmission line 8.
  • the hot water supply unit controller 64 that has received the set binary set temperature transmits the received binary set temperature to the relay unit controller 62 via the transmission line 8, and further remotely via the transmission line 9.
  • the data is also transmitted to the controller 65.
  • the heat source unit controller 61 can own the automatic operation propriety information regarding all the hot water supply units F connected on the refrigerant circuit.
  • the heat source unit controller 61 performs newly received communication analysis processing (step S101).
  • the communication received here is the operation / stop state of all the indoor units B, indoor units C, and hot water supply units F connected on the refrigerant circuit, and whether or not automatic operation is possible.
  • the heat source unit controller 61 determines whether automatic operation is possible (step S102). For example, it is determined that automatic operation is possible when one or more hot water supply units F that can be automatically operated are stopped or are in automatic operation. This is because even if the hot water supply unit F is set to be capable of automatic operation, it can be assumed that the normal operation should not be stopped automatically when the normal operation is started by the user's operation.
  • step S102 When automatic operation is possible (step S102; Y), the heat source unit controller 61 operates / stops, pressure, temperature, compression of all indoor units B, indoor units C, and hot water supply units F connected on the refrigerant circuit.
  • the operating capacity, load state, system COP, etc. are analyzed from various data such as machine operating frequency and current (step S103). For example, the total capacity of the indoor unit B and the indoor unit C that are turned on in the cooling thermostat, the total capacity of the indoor unit B and the indoor unit C that is turned on in the heating thermostat, and the total capacity of the hot water supply unit F that is turned on in the thermostat The balance between the cooling load, the heating load and the hot water supply load is determined.
  • the heating load when the heating load is small without the cooling load and the compressor operating frequency is low, it can be determined that the heating is a small capacity operation, and when both the outside air temperature and the indoor temperature are high and the high pressure is high. It can be determined that the heating overload small capacity operation.
  • the heat source unit controller 61 determines whether or not the operation state can be improved by operating and stopping the hot water supply unit F capable of automatic operation (step S104). For example, when the cooling load is larger than the heating load and the hot water supply load, when the difference between the cooling load, the heating load and the hot water supply load is reduced by operating the hot water supply unit F that can be automatically operated, the hot water supply unit F is It can be determined that the system COP is improved by operating. Moreover, when the indoor unit C which carries out heating operation by the operation operation increases from that state, and the heating load and the hot water supply load become larger than the cooling load, the hot water supply unit F which is automatically operated is stopped. It can be determined that the system COP is improved while suppressing the switching from the cooling main operation to the heating main operation.
  • the heating small capacity operation state it can be determined that the motor efficiency of the air-conditioning compressor 101 is improved by operating the hot water supply unit F capable of automatic operation, and the energy saving operation is performed. Furthermore, from this state, when the number of indoor units C that perform heating operation increases due to operation, and the heating capacity increases, power consumption can be reduced by stopping the hot water supply unit F that is automatically operated. Can be determined. In the case of the heating overload small capacity operation, it can be determined that the high pressure can be reduced by operating the hot water supply unit F capable of automatic operation and the stable operation can be continued. Thereafter, when the high pressure is sufficiently reduced due to a change in the number of operating units, it can be determined that the power consumption can be reduced by stopping the hot water supply unit F that is automatically operated.
  • the hot water supply unit F to be changed is determined.
  • the priority order for example, a manual setting method in advance can be considered. This priority order may be set according to uses such as hotel rooms and employee rooms, for example. Alternatively, a method of setting the priority order according to the address of the hot water supply unit controller 64 is also possible. In this case, it can be realized by setting the numerical value of the address in ascending order or descending order according to the priority order.
  • the heat source unit controller 61 transmits information on the hot water supply unit F to be operated / stopped to the relay unit controller. It transmits to 62 (step S105). After the completion of the transmission process, the heat source unit controller 61 performs normal processes such as capturing of sensor input and actuator control (step S106). By the way, the heat source unit controller 61 determines that the operation state cannot be improved by operating / stopping the hot water supply unit F capable of automatic operation when it is determined that automatic operation is impossible (step S102; N). If this happens (step S104; N), normal processing is performed (step S106).
  • the relay unit controller 62 When the relay unit controller 62 receives the automatic operation / stop command for the hot water supply unit F from the heat source unit controller 61, the relay unit controller 62 transmits the automatic operation / stop command to the target hot water supply unit controller 64. When the relay unit controller 62 receives a change in the operation state from the indoor unit controller 63 or the hot water supply unit controller 64, the relay unit controller 62 transmits the change in the operation state to the heat source unit controller 61.
  • the hot water supply unit controller 64 When the hot water supply unit controller 64 receives the automatic operation / stop command from the relay unit controller 62, the hot water supply unit controller 64 changes the operation state according to the command, and transmits the change in the operation state to the remote controller 65 and the centralized controller 66.
  • the hot water supply unit controller 64 receives a normal operation / stop command from the remote controller 65 or the centralized controller 66, the hot water supply unit controller 64 changes the operation state according to the command and transmits the change in the operation state to the relay unit controller 62. Further, the hot water supply unit controller 64 identifies and holds its own operation state as normal operation and automatic operation, and also identifies and transmits the information to the remote controller 65 and the centralized controller 66.
  • the hot water supply unit controller 64 is operated for the purpose of causing the water temperature to reach the first set temperature in the normal operation, and when the water temperature reaches the first set temperature, the thermostat is turned off. Continues the thermo-ON until the water temperature reaches the second set temperature. This is because the hot water supply unit F can be continuously operated for a long time for the purpose of energy saving of the entire system or continuation of stable operation.
  • the water supply valve 33 is opened, the cold water is replenished to lower the water temperature, and the operation is continued.
  • this cold water discharge control can be selected by separately providing a priority order determination means for continuing automatic operation.
  • the remote controller 65 and the centralized controller 66 When the remote controller 65 and the centralized controller 66 receive a change in the automatic operation / stop state from the hot water supply unit controller 64, the remote controller 65 and the centralized controller 66 recognize the information and reflect it in the display. At this time, regarding the display, normal operation and automatic operation may be identified and displayed. The purpose is to make the user recognize that automatic driving is being performed, and to distinguish it from forgetting to turn off the remote controller (remote controller 65). Further, when the user performs operation / stop by the user, the remote controller 65 and the centralized controller 66 recognize the information, reflect the information on the display, and transmit the information to the hot water supply unit controller 64.
  • the means for operating the hot water supply unit F is provided in the heat source unit controller 61 as an example in FIG. 4, other means for operating the hot water supply unit F may be provided.
  • the heat source unit controller 61 is provided with means for operating the hot water supply unit F
  • the heat source unit A can perform control judgment using data such as its own pressure, temperature, compressor operating frequency, and current. The amount of communication can be suppressed.
  • the centralized controller 66 with means for operating the hot water supply unit F. The advantage of this method is that an optimum operation schedule of the hot water supply unit F can be predicted and created by making a determination using schedule setting information of the entire system held by the centralized controller 66.
  • the indoor unit controller 63 with means for operating the hot water supply unit F.
  • An advantage of this method is that it can be controlled by a simple algorithm such as operating / stopping the hot water supply unit F in conjunction with the operation / stopping of the indoor unit B and the indoor unit C. It is also possible to provide the hot water supply unit controller 64 itself with means for operating the hot water supply unit F. An advantage of this method is that the hot water supply unit F can contribute to energy saving while suppressing changes in the water temperature by autonomous control.
  • the hot water supply load when the cooling load is larger than the heating load and the hot water supply load, the hot water supply load is operated to improve the system COP and realize energy saving while running. Costs can be reduced. Further, according to the refrigeration cycle apparatus 100, it is possible to improve the motor efficiency of the air-conditioning compressor 101 by operating the hot water supply load during the heating and small capacity operation, further reducing energy consumption and reducing running cost. It becomes. Further, according to the refrigeration cycle apparatus 100, when the heating overload and small capacity operation is performed, the hot water supply load is operated, so that the high pressure can be reduced and the stable operation can be continued.
  • the refrigeration cycle apparatus 100 in which the secondary refrigerant (hot water) of the hot water supply unit F is used as a heat storage medium has been described as an example.
  • the configuration of the refrigeration cycle apparatus 100 is limited to this. is not.
  • an air conditioner as shown in FIG. 5 (with a system in which heat is transferred from the direct expansion air conditioning to another secondary refrigerant) can be considered in the same manner.
  • the case where there is a hot water supply unit F has been described as an example. However, even if there is no hot water supply unit F, the air conditioning load of the indoor unit B and the entire indoor unit C may be balanced. Needless to say.
  • FIG. 5 is a refrigerant circuit diagram showing another example of the refrigerant circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to the embodiment of the present invention. Based on FIG. 5, the refrigerant circuit configuration and operation of the refrigeration cycle apparatus 100A will be described.
  • FIG. 5 shows an example in which the refrigeration cycle apparatus 100A is an air conditioner that can simultaneously supply a cooling load and a heating load (or hot water supply load) by using a refrigeration cycle that circulates a refrigerant (heat source refrigerant). It shows.
  • the difference from FIG. 1 will be mainly described, and the same parts as those in FIG. 1 will be denoted by the same reference numerals and the description thereof will be omitted.
  • a heat source unit A and a relay unit (hereinafter referred to as a relay unit E1) are connected via a heat exchanger related to heat medium 71a and a heat exchanger related to heat medium 71b provided in the relay unit E1.
  • the refrigerant pipes 5 (the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107) are connected.
  • the relay unit E1 and the indoor unit (hereinafter referred to as indoor unit B1) are also connected by the refrigerant pipe 6 via the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b. Note that all the indoor units shown in FIG. 5 are referred to as an indoor unit B1 for convenience.
  • An indoor heat exchanger 118 is mounted on each of the indoor units B1. That is, the indoor unit B1 is different from the indoor unit B in that the air conditioning throttle means 117 is not mounted.
  • the indoor heat exchanger 118 is connected to the heat medium flow control device 75 and the second heat medium flow switching device 76 of the relay unit E1 by the refrigerant pipe 6.
  • FIG. 5 shows an example in which four indoor units B1 are connected to the relay unit E1, but the number of indoor units B1 connected is not limited to four.
  • the relay unit E1 includes two heat exchangers for heat medium 71, two expansion devices 72, two switching devices 73, two second refrigerant flow switching devices 74, two pumps 80, 4 Two first heat medium flow switching devices 77, four second heat medium flow switching devices 76, and four heat medium flow control devices 75 are mounted.
  • the two heat exchangers between heat media 71 function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the heat source unit A and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 71a is provided between the expansion device 72a and the second refrigerant flow switching device 74a, and serves to cool the heat medium in the cooling / heating mixed operation mode.
  • the heat exchanger related to heat medium 71b is provided between the expansion device 72b and the second refrigerant flow switching device 74b, and serves to heat the heat medium in the cooling / heating mixed operation mode.
  • the two expansion devices 72 have functions as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 72a is provided on the upstream side of the heat exchanger related to heat medium 71a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 72b is provided on the upstream side of the heat exchanger related to heat medium 71b in the flow of the heat source side refrigerant during the cooling operation.
  • the two throttling devices 72 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 73 are configured by two-way valves or the like and open / close the refrigerant pipe 5.
  • the opening / closing device 73a is provided in the refrigerant pipe 5 on the inlet side of the heat source side refrigerant.
  • the switchgear 73b is provided in a pipe connecting the refrigerant pipe 5 on the inlet side and outlet side of the heat source side refrigerant.
  • the two second refrigerant flow switching devices 74 are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode. Is.
  • the second refrigerant flow switching device 74a is provided on the downstream side of the heat exchanger related to heat medium 71a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 74b is provided on the downstream side of the heat exchanger related to heat medium 71b in the flow of the heat source side refrigerant during the cooling only operation.
  • the two pumps 80 (pump 80a and pump 80b) circulate a heat medium that is conducted through the refrigerant pipe 6.
  • the pump 80 a is provided in the refrigerant pipe 6 between the heat exchanger related to heat medium 71 a and the second heat medium flow switching device 76.
  • the pump 80 b is provided in the refrigerant pipe 6 between the heat exchanger related to heat medium 71 b and the second heat medium flow switching device 76.
  • the two pumps 80 may be constituted by, for example, pumps capable of capacity control.
  • the four first heat medium flow switching devices 77 are configured by a three-way valve or the like, and switch the flow path of the heat medium.
  • the number of first heat medium flow switching devices 77 is set according to the number of indoor units B1 installed (here, four).
  • one of the three sides is in the heat exchanger 71a, one of the three is in the heat exchanger 71b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 75 and provided on the outlet side of the heat medium flow path of the indoor heat exchanger 118.
  • the four second heat medium flow switching devices 76 are configured by a three-way valve or the like, and switch the flow path of the heat medium.
  • the number of the second heat medium flow switching devices 76 is set according to the number of indoor units B installed (here, four).
  • one of the three sides is in the heat exchanger 71a, one of the three is in the heat exchanger 71b, and one of the three is indoor heat exchange.
  • the four heat medium flow control devices 75 are configured by, for example, a two-way valve using a stepping motor, and the like, and the opening degree of the refrigerant pipe 6 serving as the heat medium flow path can be changed to adjust the flow rate of the heat medium. Is.
  • the number of heat medium flow control devices 75 (four in this case) according to the number of installed indoor units B1 is provided.
  • One of the heat medium flow control devices 75 is connected to the indoor heat exchanger 118 and the other is connected to the first heat medium flow switching device 77, and is provided on the outlet side of the heat medium flow channel of the indoor heat exchanger 118.
  • the heat medium flow control device 75 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 118.
  • the heat source unit A and the relay unit E1 are connected via the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b provided in the relay unit E1, and the relay unit E1.
  • the indoor unit B1 are also connected via a heat exchanger related to heat medium 71a and a heat exchanger related to heat medium 71b. That is, in the refrigeration cycle apparatus 100A, the heat source side refrigerant circulating in the air conditioning refrigeration cycle 1 and the heat medium circulation circuit (for example, for hot water supply described in FIG. 1) in the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b. Heat is exchanged with the heat medium circulating in the refrigeration cycle 2).
  • the refrigeration cycle apparatus 100A configured as described above, when the cooling load is large with respect to the heating load (or hot water supply load), operating the hot water supply load improves the system COP and realizes energy saving. However, the running cost can be reduced. Further, according to the refrigeration cycle apparatus 100A, by operating a heating load (or hot water supply load) at the time of heating small capacity operation, the motor efficiency of the air-conditioning compressor 101 is improved and energy saving is further realized while running cost is reduced. It becomes possible to reduce. Further, according to the refrigeration cycle apparatus 100A, when the heating overload and small capacity operation is performed, the high pressure can be reduced and the stable operation can be continued by operating the heating load (or hot water supply load).

Abstract

Disclosed is a refrigeration cycle device, and an information propagation method adapted thereto, which aims to balance loads (for example, to balance an air conditioner load and an air heater load, or to balance an air conditioner load, an air heater load, and a hot water load) and increase the system COP. A refrigeration cycle device (100) operates multiple indoor units such that the cooling load and heating load of the multiple indoor units are balanced.

Description

冷凍サイクル装置及びそれに適用される情報伝達方法Refrigeration cycle apparatus and information transmission method applied thereto
 本発明は、空気調和装置あるいは空調給湯複合システムに適用される冷凍サイクル装置及びそれに適用される情報伝達方法に関し、システムCOPの向上を図るようにした冷凍サイクル装置及びそれに適用される情報伝達方法に関するものである。 The present invention relates to a refrigeration cycle apparatus applied to an air conditioning apparatus or an air conditioning and hot water supply complex system and an information transmission method applied thereto, and relates to a refrigeration cycle apparatus designed to improve the system COP and an information transmission method applied thereto. Is.
 従来から、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムも存在している。そのようなものとして、「1台の圧縮機を備え、該圧縮機と、室外熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器とを接続した冷媒回路により構成され、それぞれの熱交換器への冷媒の流れを切り換えることにより、冷暖房・給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可能とする冷凍サイクルを構成してなる多機能ヒートポンプシステム」が提案されている(たとえば、特許文献1参照)。 Conventionally, there are air-conditioning and hot-water supply complex systems that can simultaneously supply a cooling load, a heating load, and a hot water supply load. As such, “comprising a refrigerant circuit comprising one compressor and connecting the compressor to an outdoor heat exchanger, an indoor heat exchanger, a cold storage heat tank, and a hot water supply heat exchanger, A "multifunctional heat pump system that constitutes a refrigeration cycle that enables independent operation of air conditioning, hot water supply, heat storage, and cold storage and their combined operation by switching the flow of refrigerant to the heat exchanger" has been proposed ( For example, see Patent Document 1).
特開平11-270920号公報(図1等)Japanese Patent Laid-Open No. 11-270920 (FIG. 1 etc.)
 特許文献1に記載されているような空調給湯複合システムを含め、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムにおいては、冷房負荷と、暖房負荷および給湯負荷と、をバランスさせることによりシステムCOPが向上することが従来から知られている。しかしながら、実際には、利用者が必要とする空調負荷、給湯負荷は、時間帯や必要量に差異があるため、必ずしもシステムCOPを向上させた効率のよい運転が実現できているわけではなかった。たとえば、夏季においては、冷房負荷が大きくなるのは主に日中であり、給湯負荷が大きくなるのは風呂やシャワー等が多く利用される夜間であり、空調負荷、給湯負荷に対応する運転時間帯が異なっているのが通常である。 In an air conditioning and hot water supply complex system that can simultaneously supply a cooling load, a heating load, and a hot water supply load, including an air conditioning and hot water supply complex system as described in Patent Document 1, the cooling load, the heating load, and the hot water supply load are balanced. It has been conventionally known that the system COP is improved. However, in reality, the air conditioning load and hot water supply load required by the user have different time zones and required amounts, so that efficient operation with improved system COP has not necessarily been realized. . For example, in summer, the cooling load increases mainly during the daytime, and the hot water supply load increases during the night when many baths and showers are used, and the operating time corresponds to the air conditioning load and hot water load. Usually the bands are different.
 また、従来の空調給湯複合システムにおいては、小容量運転時に、インバーターで低速運転される圧縮機のモーター効率が悪くなるため、エネルギーの消費効率が悪化してしまうという問題もあった。さらに、従来の空調給湯複合システムにおいては、運転条件が暖房過負荷小容量運転となった場合に、高圧圧力が高くなり過ぎるため、運転を継続できなくなってしまうという事態が発生してしまうという問題もあった。 Further, in the conventional combined air-conditioning and hot-water supply system, the motor efficiency of the compressor operated at a low speed by the inverter is deteriorated at the time of small capacity operation, so that the energy consumption efficiency is deteriorated. Furthermore, in the conventional air-conditioning and hot-water supply complex system, when the operation condition is a heating overload and small capacity operation, the high pressure becomes too high, and the situation that the operation cannot be continued occurs. There was also.
 本発明は、上記の課題を解決するためになされたもので、負荷バランス(たとえば、冷房負荷と暖房負荷のバランス、冷房負荷と暖房負荷および給湯負荷のバランス)の均衡化を図り、システムCOPを向上させるようにした冷凍サイクル装置及びそれに適用される情報伝達方法を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and is intended to balance the load balance (for example, the balance between the cooling load and the heating load, and the balance between the cooling load and the heating load and the hot water supply load). An object of the present invention is to provide an improved refrigeration cycle apparatus and an information transmission method applied thereto.
 本発明に係る冷凍サイクル装置は、少なくとも空調圧縮機及び熱源側熱交換器が搭載された少なくとも1台の熱源ユニットと、少なくとも利用側熱交換器が搭載された複数台の利用側ユニットと、前記熱源ユニットと前記利用側ユニットとの間に介在し、前記熱源側ユニットで生成された温熱又は冷熱を前記利用側ユニットに伝達する少なくとも1台の中継ユニットとを備えた冷凍サイクル装置であって、前記複数台の利用側ユニットが実行する冷却負荷と加熱負荷とを均衡させるように前記複数台の利用側ユニットを運転させることを特徴とする。 The refrigeration cycle apparatus according to the present invention includes at least one heat source unit on which at least an air conditioning compressor and a heat source side heat exchanger are mounted, a plurality of usage side units on which at least a usage side heat exchanger is mounted, A refrigeration cycle apparatus comprising a heat source unit and the use side unit, and comprising at least one relay unit that transmits the heat or cold generated by the heat source side unit to the use side unit; The plurality of usage-side units are operated so as to balance the cooling load and the heating load executed by the plurality of usage-side units.
 本発明に係る情報伝達方法は、上記の冷凍サイクル装置に適用される情報伝達方法であって、前記熱源ユニットには熱源ユニットコントローラーが、前記中継ユニットには中継ユニットコントローラーが、前記利用側ユニットには利用側ユニットコントローラーが、それぞれ設けられており、各コントローラーの情報伝達によって、前記コントローラーのいずれかで前記複数台の利用側ユニットの負荷バランスを判定可能にしていることを特徴とする。 An information transmission method according to the present invention is an information transmission method applied to the above-described refrigeration cycle apparatus, wherein the heat source unit has a heat source unit controller, the relay unit has a relay unit controller, and the user side unit has an information transmission method. Each is provided with a usage-side unit controller, and the load balance of the plurality of usage-side units can be determined by one of the controllers by transmitting information from each controller.
 本発明に係る冷凍サイクル装置によれば、複数台の利用側ユニットが実行する冷却負荷と加熱負荷とを均衡させるように複数台の利用側ユニットを運転させるので、システムCOPを向上させ、省エネを実現しつつランニングコストの低減を図ることが可能になる。 According to the refrigeration cycle apparatus according to the present invention, the plurality of usage-side units are operated so as to balance the cooling load and the heating load executed by the plurality of usage-side units, thereby improving the system COP and saving energy. It is possible to reduce the running cost while realizing it.
 本発明に係る情報伝達方法によれば、上記の冷凍サイクル装置に適用されるので、安定した運転を効率的に継続させることが可能となる。 The information transmission method according to the present invention is applied to the above-described refrigeration cycle apparatus, so that stable operation can be continued efficiently.
本発明の実施の形態に係る冷凍サイクル装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigerant circuit structure of the refrigeration cycle apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置における情報伝達を説明するための概略構成図である。It is a schematic block diagram for demonstrating the information transmission in the refrigerating-cycle apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置の給湯ユニット内における接続状態を模式的に示す模式図である。It is a schematic diagram which shows typically the connection state in the hot water supply unit of the refrigeration cycle apparatus which concerns on embodiment of this invention. 熱源ユニットコントローラーが実行する通信・動作処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the communication and the operation process which a heat source unit controller performs. 本発明の実施の形態に係る冷凍サイクル装置の冷媒回路構成の別の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows another example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on embodiment of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る冷凍サイクル装置100の冷媒回路構成の一例を示す冷媒回路図である。図1に基づいて、冷凍サイクル装置100の冷媒回路構成及び動作について説明する。図1では、冷凍サイクル装置100が、冷媒(空調用冷媒)を循環させる冷凍サイクルを利用することで冷房負荷(冷却負荷)、暖房負荷及び給湯負荷(加熱負荷)を同時に供給できる空調給湯複合システムである場合を例に示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to an embodiment of the present invention. The refrigerant circuit configuration and operation of the refrigeration cycle apparatus 100 will be described based on FIG. In FIG. 1, the refrigeration cycle apparatus 100 uses a refrigeration cycle that circulates refrigerant (air conditioning refrigerant) to simultaneously supply a cooling load (cooling load), a heating load, and a hot water supply load (heating load). The case is shown as an example. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 冷凍サイクル装置100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。また、冷凍サイクル装置100には、給湯ユニットFが搭載されている。 The refrigeration cycle apparatus 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3. The air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are refrigerant-refrigerant heat exchangers. 41, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are configured to perform heat exchange in a heat medium-refrigerant heat exchanger 51 without mixing the refrigerant and water. The refrigeration cycle apparatus 100 is equipped with a hot water supply unit F.
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源ユニットAと、冷房負荷又は暖房負荷を担当する室内ユニットB、室内ユニットCと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継ユニットEと、によって構成されている。このうち、室内ユニットB、室内ユニットC及び給湯熱源用回路Dは、熱源ユニットAに対して並列となるように接続されて搭載されている。そして、熱源ユニットAと、室内ユニットB、室内ユニットC及び給湯熱源用回路Dとの、間に設置される中継ユニットEが冷媒の流れを切り換えることで、室内ユニットB、室内ユニットC及び給湯熱源用回路Dとしてのそれぞれの機能を発揮させるようになっている。
[Refrigeration cycle 1 for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit A, an indoor unit B in charge of a cooling load or a heating load, an indoor unit C, a hot water supply heat source circuit D serving as a heat source for the hot water supply refrigeration cycle 2, and a relay unit E. It is constituted by. Among these, the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A. And the relay unit E installed between the heat source unit A, the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the indoor unit B, the indoor unit C, and the hot water supply heat source are switched. Each function as the circuit D is exhibited.
{熱源ユニットA}
 熱源ユニットAは、室内ユニットB、室内ユニットC及び給湯熱源用回路Dに温熱又は冷熱を供給する機能を有している。この熱源ユニットAには、空調用圧縮機101と、四方弁102と、室外熱交換器(熱源側熱交換器)103と、アキュムレーター104とが直列に接続されて搭載されている。
{Heat source unit A}
The heat source unit A has a function of supplying hot or cold to the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D. In this heat source unit A, an air conditioning compressor 101, a four-way valve 102, an outdoor heat exchanger (heat source side heat exchanger) 103, and an accumulator 104 are connected in series.
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機等から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター104は、空調用圧縮機101の吸入側に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレーター104は、過剰な空調用冷媒を貯留できる容器であればよい。 The air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state. The four-way valve 102 switches the flow of the air conditioning refrigerant. The outdoor heat exchanger 103 functions as an evaporator and a radiator (condenser), exchanges heat between air supplied from a blower (not shown) and the air-conditioning refrigerant, and converts the air-conditioning refrigerant into an evaporative gas. Or it is condensed and liquefied. The accumulator 104 is disposed on the suction side of the air conditioning compressor 101, and stores excess air conditioning refrigerant. The accumulator 104 may be any container that can store excess air-conditioning refrigerant.
 また、熱源ユニットAには、室外熱交換器103と中継ユニットEとの間における高圧側接続配管106に所定の方向(熱源ユニットAから中継ユニットEへの方向)のみに空調用冷媒の流れを許容する逆止弁105a、及び、四方弁102と中継ユニットEとの間における低圧側接続配管107に所定の方向(中継ユニットEから熱源ユニットAへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが設けられている。 The heat source unit A is supplied with a flow of air-conditioning refrigerant only in a predetermined direction (direction from the heat source unit A to the relay unit E) through the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. Allow the flow of air-conditioning refrigerant only in a predetermined direction (direction from the relay unit E to the heat source unit A) to the check valve 105a and the low-pressure side connection pipe 107 between the four-way valve 102 and the relay unit E. A check valve 105b is provided.
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側(接続部分a)と逆止弁105bの上流側(接続部分c)を接続する第1接続配管130と、逆止弁105aの下流側(接続部分b)と逆止弁105bの下流側(接続部分d)を接続する第2接続配管131とで接続されている。第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。 The high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are a first connection pipe 130 that connects the upstream side (connection portion a) of the check valve 105a and the upstream side (connection portion c) of the check valve 105b. The second connection pipe 131 connecting the downstream side (connection portion b) of the check valve 105a and the downstream side (connection portion d) of the check valve 105b is connected. The first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. The second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
{室内ユニットB及び室内ユニットC}
 室内ユニットB及び室内ユニットCは、熱源ユニットAからの温熱又は冷熱の供給を受けて暖房負荷又は冷房負荷を担当する機能を有している。室内ユニットB及び室内ユニットCには、空調用絞り手段117と、室内熱交換器(利用側熱交換器)118とが、直列に接続されて搭載されている。また、室内ユニットB及び室内ユニットCには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。
{Indoor unit B and indoor unit C}
The indoor unit B and the indoor unit C have a function of receiving heating or cooling supply from the heat source unit A and taking charge of heating load or cooling load. In the indoor unit B and the indoor unit C, an air conditioning throttle means 117 and an indoor heat exchanger (use side heat exchanger) 118 are connected in series and mounted. Further, the indoor unit B and the indoor unit C are illustrated as an example in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
 そして、中継ユニットEによって、たとえば室内ユニットBが冷房負荷を、室内ユニットCが暖房負荷を担当するように決定される。なお、便宜的に、中継ユニットEから室内熱交換器118に接続している接続配管を接続配管133と、中継ユニットEから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。 Then, the relay unit E determines, for example, that the indoor unit B is in charge of the cooling load and the indoor unit C is in charge of the heating load. For convenience, the connecting pipe connecting the relay unit E to the indoor heat exchanger 118 is called a connecting pipe 133, and the connecting pipe connecting the relay unit E to the air conditioning throttle means 117 is called a connecting pipe 134. Shall be explained.
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風機等から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。 The air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118 functions as a radiator (condenser) and an evaporator, and performs heat exchange between air supplied from a blower (not shown) and the air-conditioning refrigerant to condense or liquefy the air-conditioning refrigerant. Evaporative gasification. The air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
{給湯熱源用回路D}
 給湯熱源用回路Dは、熱源ユニットAからの温熱又は冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。給湯熱源用回路Dには、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されている。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41を介してカスケード接続されているのである。なお、便宜的に、中継ユニットEから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継ユニットEから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
{Circuit D for hot water supply heat source}
The hot water supply heat source circuit D has a function of supplying the hot or cold heat from the heat source unit A to the hot water supply refrigeration cycle 2 via the refrigerant-refrigerant heat exchanger 41. The hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected via the refrigerant-refrigerant heat exchanger 41. For convenience, the connection pipe connecting the relay unit E to the refrigerant-refrigerant heat exchanger 41 is connected to the connection pipe 135, and the connection pipe connecting the relay unit E to the hot water supply heat source throttle means 119 is the connection pipe. It shall be described as 136.
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。 The hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant. The hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
{中継ユニットE}
 中継ユニットEは、利用側ユニット(室内ユニットB、室内ユニットC及び給湯熱源用回路D)と、熱源ユニットAとを、接続し、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器又は蒸発器とするか、冷媒-冷媒熱交換器41を冷水器又は給湯機とするかを決定する機能を有している。この中継ユニットEは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
{Relay unit E}
The relay unit E connects the use side unit (the indoor unit B, the indoor unit C, and the hot water supply heat source circuit D) and the heat source unit A and either the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, or the refrigerant-refrigerant heat exchanger 41 is a chiller or a hot water heater. . This relay unit E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat. The exchanger 113 and the second relay stop means 114 are configured.
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。 In the first distribution unit 109, the connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe). The pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108. Further, in the first distribution unit 109, the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant. Valve means 109b that may or may not be provided is provided.
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。 In the second distribution unit 110, the connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe). A pipe 136b) is connected at the second meeting part 116. In the second distribution unit 110, the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b. A stop valve 110b is provided.
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。 The first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111. The second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113. The second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111. To the low-pressure side connection pipe 107.
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。 The gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other. The first distributor 115 is connected to the second distributor 110. The first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes. The 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched. The first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. . The first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted. The second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure. As with the first relay unit throttle unit 112, the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube. The refrigerant flow rate adjusting means may be used.
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継ユニットEを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。 As described above, the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle. Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay unit E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. Further, the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
 ここで、空調用冷凍サイクル1の動作について説明する。ここでは、室内ユニットBが冷房負荷を担当し、室内ユニットCが暖房負荷を担当し、給湯熱源用回路Dが給湯負荷を担当する場合における動作について説明する。 Here, the operation of the refrigeration cycle 1 for air conditioning will be described. Here, the operation when the indoor unit B is in charge of the cooling load, the indoor unit C is in charge of the heating load, and the hot water supply heat source circuit D is in charge of the hot water supply load will be described.
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継ユニットEの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、室内ユニットCや給湯熱源用回路Dに流入するようになっている。 First, the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay unit E in the superheated gas state. The superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open. Here, the refrigerant for air conditioning in the superheated gas state flows into the indoor unit C and the hot water supply heat source circuit D.
 室内ユニットCに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、室内ユニットCから流出した空調用冷媒と第1会合部115で合流する。 The air-conditioning refrigerant flowing into the indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the indoor air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115. The air conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, heat is supplied to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119. The air-conditioning refrigerant that has flowed out of the unit C joins at the first meeting part 115.
 一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(室内ユニットCや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。 On the other hand, a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. The degree of supercooling is obtained by heat exchange. Then, the air-conditioning refrigerant used for air-conditioning (flowing into the indoor unit C or the hot water supply heat source circuit D through the first relaying device throttle means 112 and flowing into the indoor heat exchanger 118 or the refrigerant-refrigerant heat exchanger) And the first meeting part 115 merge.
 なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。 It should be noted that a part of the superheated gas-conditioning refrigerant passing through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、室内ユニットBに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で室内ユニットBを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。 The air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open. Here, the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109b is Then, the low pressure side connecting pipe 107 joins. The air-conditioning refrigerant that has passed through the second relay throttle unit 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the indoor unit in the low-pressure side connection pipe 107. Combined with the air conditioning refrigerant that has flowed out of B. The air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, accumulator Return to the air-conditioning compressor 101 via the radiator 104.
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。
[Refrigeration cycle 2 for hot water supply]
The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit.
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。 The hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state. The hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51を介してカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected via the heat medium-refrigerant heat exchanger 51. The hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it. The hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1. The type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
 ここで、給湯用冷凍サイクル2の動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
Here, the operation of the hot water supply refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51. In the heat medium-refrigerant heat exchanger 51, the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3. This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1. The expanded hot water supply refrigerant receives heat from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41 and evaporates, and returns to the hot water supply compressor 21.
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
[Load 3 for hot water supply]
The hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit. The hot water circulation pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。 The water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3. For example, the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure. As described above, the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do. The hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
 ここで、給湯用負荷3の動作について説明する。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。
Here, the operation of the hot water supply load 3 will be described.
First, the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31. The water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to a relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。 Note that, as described above, the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1). 2 refrigerant circuits), the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。 In addition, when a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. . However, generally, when the refrigerant in the heat dissipation process is in a supercritical state, the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP. The On the other hand, in general, a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。 Furthermore, considering that the recommended temperature of water stored in the hot water storage tank 32 for suppressing the growth of Legionella bacteria and the like is 60 ° C. or higher, it is assumed that the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done. Based on the above, a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost. When the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図1では、室内ユニットBと室内ユニットCとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば室内ユニットBが1台以上、室内ユニットCがないか若しくは1台以上を接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。 Moreover, although the case where the excess refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed. Furthermore, in FIG. 1, the case where two or more indoor units B and C are connected is shown as an example, but the number of connected units is not particularly limited. For example, one or more indoor units B are It is sufficient that there is no indoor unit C or one or more indoor units C are connected. And the capacity | capacitance of each indoor unit which comprises the refrigerating cycle 1 for an air conditioning may be made all the same, and you may make it differ from large to small.
 以上のように、この実施の形態に係る冷凍サイクル装置100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、室内ユニットCの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。 As described above, in the refrigeration cycle apparatus 100 according to this embodiment, the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of cycle 2 high (for example, condensing temperature 85 ° C.), and when there is another heating load, it is not necessary to increase even the condensing temperature (for example 50 ° C.) of indoor unit C. So it becomes energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
[給湯ユニットF]
 給湯ユニットFには、冷媒-冷媒熱交換器41と、給湯熱源用絞り手段119と、熱媒体-冷媒熱交換器51と、給湯用圧縮機21と、給湯用絞り手段22と、が搭載されている。つまり、給湯ユニットFには、冷媒-冷媒熱交換器41を介して空調用冷凍サイクル1の一部、給湯用冷凍サイクル2の全部、及び、熱媒体-冷媒熱交換器51を介して給湯用負荷3の一部が収容されているのである。
[Hot water supply unit F]
In the hot water supply unit F, a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22 are mounted. ing. In other words, the hot water supply unit F includes a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, a whole of the hot water supply refrigeration cycle 2, and a hot water supply through the heat medium-refrigerant heat exchanger 51. A part of the load 3 is accommodated.
 図2は、本発明の実施の形態に係る冷凍サイクル装置100における情報伝達を説明するための概略構成図である。図1及び図2に基づいて、冷凍サイクル装置100が実行する情報伝達について説明する。なお、図2では、1台の熱源ユニットAに対して、2台の室内ユニット(室内ユニットB、室内ユニットC)と、2台の給湯ユニットF(給湯ユニットF1、給湯ユニットF2)と、が接続されている状態の冷凍サイクル装置100を例に示している。 FIG. 2 is a schematic configuration diagram for explaining information transmission in the refrigeration cycle apparatus 100 according to the embodiment of the present invention. Based on FIG.1 and FIG.2, the information transmission which the refrigeration cycle apparatus 100 performs is demonstrated. In FIG. 2, two indoor units (indoor unit B, indoor unit C) and two hot water supply units F (hot water supply unit F1, hot water supply unit F2) are provided for one heat source unit A. The refrigeration cycle apparatus 100 in a connected state is shown as an example.
 図1で説明したように、冷凍サイクル装置100においては、熱源ユニットAと中継ユニットEとは、冷媒配管5(高圧側接続配管106、低圧側接続配管107)で接続され、中継ユニットEと利用側ユニットとは、冷媒配管6(接続配管133、接続配管134、接続配管135、接続配管136)で接続され、1つの冷媒回路系(空調用冷凍サイクル1)を構成している。また、熱源ユニットAには熱源ユニットコントローラー61が、中継ユニットEには中継ユニットコントローラー62が、室内ユニットB及び室内ユニットCには室内ユニットコントローラー(利用側ユニットコントローラー)63が、給湯ユニットFには給湯ユニットコントローラー(利用側ユニットコントローラー)64が、それぞれ設けられている。 As described with reference to FIG. 1, in the refrigeration cycle apparatus 100, the heat source unit A and the relay unit E are connected by the refrigerant pipe 5 (the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107). The side unit is connected by a refrigerant pipe 6 (connection pipe 133, connection pipe 134, connection pipe 135, connection pipe 136) and constitutes one refrigerant circuit system (air-conditioning refrigeration cycle 1). The heat source unit A has a heat source unit controller 61, the relay unit E has a relay unit controller 62, the indoor units B and C have an indoor unit controller (use side unit controller) 63, and the hot water supply unit F has A hot water supply unit controller (use side unit controller) 64 is provided.
 そして、冷凍サイクル装置100においては、熱源ユニットAは熱源ユニットコントローラー61で、中継ユニットEは中継ユニットコントローラー62で、室内ユニットB及び室内ユニットCは室内ユニットコントローラー63で、給湯ユニットFは給湯ユニットコントローラー64で、それぞれ制御される。 In the refrigeration cycle apparatus 100, the heat source unit A is the heat source unit controller 61, the relay unit E is the relay unit controller 62, the indoor unit B and the indoor unit C are the indoor unit controller 63, and the hot water supply unit F is the hot water supply unit controller. 64. Each is controlled.
 熱源ユニットコントローラー61と中継ユニットコントローラー62とは、伝送線7を介して相互に情報伝達可能に接続されている。中継ユニットコントローラー62と室内ユニットコントローラー63とは、伝送線8を介して相互に情報伝達可能に接続されている。同様に、中継ユニットコントローラー62と給湯ユニットコントローラー64とは、伝送線8を介して相互に情報伝達可能に接続されている。室内ユニットコントローラー63及び給湯ユニットコントローラー64はそれぞれリモートコントローラー65と伝送線9を介して相互に情報伝達可能に接続されている。 The heat source unit controller 61 and the relay unit controller 62 are connected via the transmission line 7 so as to be able to transmit information to each other. The relay unit controller 62 and the indoor unit controller 63 are connected via the transmission line 8 so as to be able to transmit information to each other. Similarly, the relay unit controller 62 and the hot water supply unit controller 64 are connected via the transmission line 8 so as to be able to transmit information to each other. The indoor unit controller 63 and the hot water supply unit controller 64 are connected to each other via a remote controller 65 and a transmission line 9 so as to be able to transmit information to each other.
 また、熱源ユニットコントローラー61は、他の冷媒系統の熱源ユニットコントローラー(図示省略)と伝送線10を介して接続されている。伝送線10には、さらに冷凍サイクル装置100を集中管理するための集中コントローラー66が接続されている。 Further, the heat source unit controller 61 is connected to a heat source unit controller (not shown) of another refrigerant system via the transmission line 10. A centralized controller 66 for centrally managing the refrigeration cycle apparatus 100 is further connected to the transmission line 10.
 熱源ユニットコントローラー61、中継ユニットコントローラー62、室内ユニットコントローラー63、給湯ユニットコントローラー64、リモートコントローラー65、及び、集中コントローラー66は、各々ユニークなアドレスを付与され、手動設定処理または自動判別処理によってシステム起動時には通信相手のアドレスを把握するようになっている。また、熱源ユニットコントローラー61は、システム起動時の通信によって、中継ユニットEに接続されている全ての室内ユニットB、室内ユニットC及び給湯ユニットFの運転能力を把握するようになっている。 The heat source unit controller 61, the relay unit controller 62, the indoor unit controller 63, the hot water supply unit controller 64, the remote controller 65, and the centralized controller 66 are each assigned a unique address, and when the system is started by manual setting processing or automatic discrimination processing It is designed to know the address of the communication partner. Further, the heat source unit controller 61 is configured to grasp the driving capabilities of all indoor units B, indoor units C, and hot water supply units F connected to the relay unit E by communication at the time of system startup.
 図3は、本発明の実施の形態に係る冷凍サイクル装置100の給湯ユニットF内における接続状態を模式的に示す模式図である。図3に基づいて、給湯ユニットF内における接続状態について説明する。図1で説明したように、給湯ユニットFには貯湯タンク32が設けられている。この貯湯タンク32には、図示省略の給水口に備えられた給水バルブ33と、図示省略の排水口に備えられた排水バルブ34と、貯湯タンク32に蓄えられた水や湯等の温度を検知する水温センサー35と、貯湯タンク32に蓄えられた水や湯等の量(水位)を検知する水量センサー36と、が設けられている。 FIG. 3 is a schematic diagram schematically showing a connection state in the hot water supply unit F of the refrigeration cycle apparatus 100 according to the embodiment of the present invention. Based on FIG. 3, the connection state in the hot water supply unit F will be described. As described with reference to FIG. 1, the hot water supply unit F is provided with a hot water storage tank 32. The hot water storage tank 32 detects the temperature of a water supply valve 33 provided at a water supply port (not shown), a drain valve 34 provided at a water discharge port (not shown), and water and hot water stored in the hot water storage tank 32. A water temperature sensor 35 for detecting the amount of water and hot water stored in the hot water storage tank 32 (water level) is provided.
 そして、給湯ユニットコントローラー64は、水温センサー35及び水量センサー36と接続され、これらから伝達される情報に基づいて貯湯タンク32の水温及び水量を把握することができるようになっている。また、給湯ユニットコントローラー64は、給水バルブ33と接続され、給水バルブ33の開閉を制御するようになっている。つまり、給湯ユニットコントローラー64は、給水バルブ33を開くことにより貯湯タンク32内に冷水を補充できるようになっている。さらに、給湯ユニットコントローラー64は、排水バルブ34と接続され、排水バルブ34の開閉を制御するようになっている。つまり、給湯ユニットコントローラー64は、排水バルブ34を開くことにより貯湯タンク32外に温水を排出できるようになっている。 And the hot water supply unit controller 64 is connected to the water temperature sensor 35 and the water amount sensor 36, and can grasp the water temperature and the water amount of the hot water storage tank 32 based on information transmitted from these. The hot water supply unit controller 64 is connected to the water supply valve 33 and controls the opening and closing of the water supply valve 33. That is, the hot water supply unit controller 64 can replenish cold water into the hot water storage tank 32 by opening the water supply valve 33. Furthermore, the hot water supply unit controller 64 is connected to the drain valve 34 and controls the opening and closing of the drain valve 34. That is, the hot water supply unit controller 64 can discharge hot water outside the hot water storage tank 32 by opening the drain valve 34.
 図4は、熱源ユニットコントローラー61が実行する通信・動作処理の流れを示すフローチャートである。図4に基づいて、熱源ユニットコントローラー61が実行する通信・動作処理の流れについて説明する。なお、図4に示すステップS100~ステップS106は、熱源ユニットコントローラー61が実行する処理を示している。また、給湯ユニットF1を例に説明する。 FIG. 4 is a flowchart showing a flow of communication / operation processing executed by the heat source unit controller 61. Based on FIG. 4, a flow of communication / operation processing executed by the heat source unit controller 61 will be described. Note that steps S100 to S106 shown in FIG. 4 show processing executed by the heat source unit controller 61. The hot water supply unit F1 will be described as an example.
 まず、給湯ユニットF1の設定温度設定時の通信内容について説明する。
 使用者は、リモートコントローラー65を操作し、給湯ユニットF1に対しての設定温度の設定を行なう。このとき、使用者は、二値の設定温度を設定可能とする。二値の設定温度とは、給湯ユニットF1が本来必要とする給湯温度(第一設定温度)、及び、システム全体の省エネまたは安定運転継続を目的として給湯ユニットF1を自動的に運転する際の温度(第二設定温度)のことである。なお、第二設定温度は、第一設定温度よりも高い値にする。たとえば、使用者は、第一設定温度として55℃、第二設定温度として60℃というように設定する。
First, the contents of communication when the set temperature of the hot water supply unit F1 is set will be described.
The user operates the remote controller 65 to set a set temperature for the hot water supply unit F1. At this time, the user can set a binary set temperature. The binary set temperature refers to the hot water supply temperature originally required by the hot water supply unit F1 (first set temperature) and the temperature at which the hot water supply unit F1 is automatically operated for the purpose of energy saving or continuation of stable operation of the entire system. (Second set temperature). The second set temperature is set to a value higher than the first set temperature. For example, the user sets 55 ° C. as the first set temperature and 60 ° C. as the second set temperature.
 リモートコントローラー65は、設定温度が入力された際に、設定された二値の設定温度をメモリーに保存し、伝送線9を介して給湯ユニットコントローラー64に送信する。設定された二値の設定温度を受信した給湯ユニットコントローラー64は、受信した二値の設定温度をメモリーに保存し、伝送線8を介して中継ユニットコントローラー62に送信する。この二値の設定温度は、さらに伝送線8、伝送線7、及び、伝送線10を経由して集中コントローラー66に送信される。また、二値の設定温度を受信した中継ユニットコントローラー62は、各給湯ユニットFの二値の設定温度を伝送線7を介して熱源ユニットコントローラー61に送信する。 When the set temperature is input, the remote controller 65 stores the set binary set temperature in the memory and transmits it to the hot water supply unit controller 64 via the transmission line 9. The hot water supply unit controller 64 that has received the set binary set temperature stores the received binary set temperature in a memory and transmits it to the relay unit controller 62 via the transmission line 8. The binary set temperature is further transmitted to the centralized controller 66 via the transmission line 8, the transmission line 7, and the transmission line 10. Also, the relay unit controller 62 that has received the binary set temperature transmits the binary set temperature of each hot water supply unit F to the heat source unit controller 61 via the transmission line 7.
 使用者は、給湯ユニットFの自動運転をさせたくない場合には、第二設定温度を設定しないようにすればよい。あるいは、給湯ユニットFにおける自動運転の可否を、たとえば熱源ユニットAに設けられているディップスイッチ等を介して設定可能としておく方法もある。なお、使用者は、集中コントローラー66を操作することによっても二値の設定温度を設定可能とする。この場合、集中コントローラー66は、設定された二値の設定温度をメモリーに保存し、伝送線10、伝送線7、及び、伝送線8を経由して給湯ユニットコントローラー64に送信する。 If the user does not want to automatically operate the hot water supply unit F, the user should not set the second set temperature. Alternatively, there is a method in which whether or not automatic operation in the hot water supply unit F can be set, for example, via a dip switch or the like provided in the heat source unit A. The user can also set the binary set temperature by operating the centralized controller 66. In this case, the centralized controller 66 stores the set binary set temperature in a memory and transmits the temperature to the hot water supply unit controller 64 via the transmission line 10, the transmission line 7, and the transmission line 8.
 そして、設定された二値の設定温度を受信した給湯ユニットコントローラー64は、受信した二値の設定温度を伝送線8を介して中継ユニットコントローラー62に送信し、さらに伝送線9を経由してリモートコントローラー65にも送信する。このような通信によって、熱源ユニットコントローラー61は、冷媒回路上に接続された全ての給湯ユニットFに関して、自動運転の可否情報を所有することができる。 Then, the hot water supply unit controller 64 that has received the set binary set temperature transmits the received binary set temperature to the relay unit controller 62 via the transmission line 8, and further remotely via the transmission line 9. The data is also transmitted to the controller 65. Through such communication, the heat source unit controller 61 can own the automatic operation propriety information regarding all the hot water supply units F connected on the refrigerant circuit.
 次に、熱源ユニットコントローラー61の運転時の制御内容について説明する。
 まず、熱源ユニットコントローラー61は、新たに受信した通信の解析処理を行なう(ステップS101)。ここで受信する通信は、冷媒回路上に接続された全ての室内ユニットB、室内ユニットC及び給湯ユニットFの運転・停止状態、及び、自動運転の可否情報である。解析処理実施後、熱源ユニットコントローラー61は、自動運転の可否状態を判断する(ステップS102)。たとえば、自動運転可能な給湯ユニットFの中で、停止中または自動運転中のものが1台以上存在する場合に、自動運転が可能と判断する。これは、自動運転可能と設定されている給湯ユニットFであっても、使用者の操作によって通常運転を開始している場合は、自動で停止してはならないという使い方も想定できるためである。
Next, the control contents during operation of the heat source unit controller 61 will be described.
First, the heat source unit controller 61 performs newly received communication analysis processing (step S101). The communication received here is the operation / stop state of all the indoor units B, indoor units C, and hot water supply units F connected on the refrigerant circuit, and whether or not automatic operation is possible. After performing the analysis process, the heat source unit controller 61 determines whether automatic operation is possible (step S102). For example, it is determined that automatic operation is possible when one or more hot water supply units F that can be automatically operated are stopped or are in automatic operation. This is because even if the hot water supply unit F is set to be capable of automatic operation, it can be assumed that the normal operation should not be stopped automatically when the normal operation is started by the user's operation.
 自動運転が可能な場合(ステップS102;Y)、熱源ユニットコントローラー61は、冷媒回路上に接続された全ての室内ユニットB、室内ユニットC及び給湯ユニットFの運転・停止状態、圧力、温度、圧縮機運転周波数、電流等の種々のデータから運転容量、負荷状態、システムCOP等の分析を行なう(ステップS103)。たとえば、冷房サーモONしている室内ユニットB及び室内ユニットCの合計容量と、暖房サーモONしている室内ユニットB及び室内ユニットCの合計容量と、サーモONしている給湯ユニットFの合計容量から、冷房負荷と、暖房負荷及び給湯負荷と、のバランスを判定する。また、冷房負荷なしの状態で暖房負荷も小さく、圧縮機運転周波数の低い場合には暖房小容量運転と判定することができ、更に外気温度、室内温度が共に高く、高圧圧力が高い場合には暖房過負荷小容量運転と判定することができる。 When automatic operation is possible (step S102; Y), the heat source unit controller 61 operates / stops, pressure, temperature, compression of all indoor units B, indoor units C, and hot water supply units F connected on the refrigerant circuit. The operating capacity, load state, system COP, etc. are analyzed from various data such as machine operating frequency and current (step S103). For example, the total capacity of the indoor unit B and the indoor unit C that are turned on in the cooling thermostat, the total capacity of the indoor unit B and the indoor unit C that is turned on in the heating thermostat, and the total capacity of the hot water supply unit F that is turned on in the thermostat The balance between the cooling load, the heating load and the hot water supply load is determined. In addition, when the heating load is small without the cooling load and the compressor operating frequency is low, it can be determined that the heating is a small capacity operation, and when both the outside air temperature and the indoor temperature are high and the high pressure is high. It can be determined that the heating overload small capacity operation.
 分析処理の実施後、熱源ユニットコントローラー61は、自動運転が可能な給湯ユニットFを運転・停止させることによって運転状態を改善できるかどうか判定する(ステップS104)。たとえば、冷房負荷が暖房負荷及び給湯負荷に比較して大きい場合、自動運転可能な給湯ユニットFを運転することにより冷房負荷と暖房負荷及び給湯負荷の差異が小さくなる場合には、給湯ユニットFを運転させることによってシステムCOPが向上すると判定できる。また、その状態から、運転操作によって暖房運転する室内ユニットCが増加し、暖房負荷及び給湯負荷が冷房負荷に比較して大きくなった場合には、自動運転させた給湯ユニットFを停止させることによって冷房主体運転から暖房主体運転に切り替わることを抑制しながら、システムCOPが向上すると判定できる。 After the execution of the analysis process, the heat source unit controller 61 determines whether or not the operation state can be improved by operating and stopping the hot water supply unit F capable of automatic operation (step S104). For example, when the cooling load is larger than the heating load and the hot water supply load, when the difference between the cooling load, the heating load and the hot water supply load is reduced by operating the hot water supply unit F that can be automatically operated, the hot water supply unit F is It can be determined that the system COP is improved by operating. Moreover, when the indoor unit C which carries out heating operation by the operation operation increases from that state, and the heating load and the hot water supply load become larger than the cooling load, the hot water supply unit F which is automatically operated is stopped. It can be determined that the system COP is improved while suppressing the switching from the cooling main operation to the heating main operation.
 さらに、暖房小容量運転状態の場合、自動運転可能な給湯ユニットFを運転させることによって空調用圧縮機101のモーター効率を改善し省エネ運転となると判断できる。さらにまた、その状態から、運転操作によって暖房運転する室内ユニットCが増加し、暖房容量が大きくなった場合には、自動運転させた給湯ユニットFを停止させることによって消費電力を小さくすることができると判定できる。暖房過負荷小容量運転の状態の場合、自動運転可能な給湯ユニットFを運転させることによって高圧圧力を低下させ、安定した運転を継続できると判定できる。その後、運転台数の変化等により充分に高圧圧力が低下した場合には、自動運転させた給湯ユニットFを停止させることによって消費電力を小さくすることができると判定できる。 Furthermore, in the case of the heating small capacity operation state, it can be determined that the motor efficiency of the air-conditioning compressor 101 is improved by operating the hot water supply unit F capable of automatic operation, and the energy saving operation is performed. Furthermore, from this state, when the number of indoor units C that perform heating operation increases due to operation, and the heating capacity increases, power consumption can be reduced by stopping the hot water supply unit F that is automatically operated. Can be determined. In the case of the heating overload small capacity operation, it can be determined that the high pressure can be reduced by operating the hot water supply unit F capable of automatic operation and the stable operation can be continued. Thereafter, when the high pressure is sufficiently reduced due to a change in the number of operating units, it can be determined that the power consumption can be reduced by stopping the hot water supply unit F that is automatically operated.
 ここで、自動運転可能な給湯ユニットFが複数台存在し、その内の一部の給湯ユニットFのみを変化させることによって、最も運転状態を改善できる場合には、あらかじめ設定された優先順位に従って、変化させる給湯ユニットFを決定する。ここで優先順位とは、たとえば予め手動設定する方法が考えられる。この優先順位は、たとえばホテルの客室と従業員室等の用途によって設定するとよい。または、給湯ユニットコントローラー64のアドレスによって優先順位を設定する方法も可能であり、この場合は優先順位に従ってアドレスの数値を昇順または降順で設定することで実現可能となる。 Here, when there are a plurality of hot water supply units F that can be automatically operated, and the operation state can be improved most by changing only some of the hot water supply units F, according to a preset priority order, The hot water supply unit F to be changed is determined. Here, as the priority order, for example, a manual setting method in advance can be considered. This priority order may be set according to uses such as hotel rooms and employee rooms, for example. Alternatively, a method of setting the priority order according to the address of the hot water supply unit controller 64 is also possible. In this case, it can be realized by setting the numerical value of the address in ascending order or descending order according to the priority order.
 さらに、各給湯ユニットFの運転積算時間によって優先順位を判定する方法もある。この方法の場合、運転積算時間の小さい給湯ユニットFを優先して動かすことにより、運転積算時間を平準化させ、特定の給湯ユニットFのみの製品寿命が短くなるという問題を回避することが可能となる。またさらに、各給湯ユニットFの貯湯タンク32の水温と設定温度の差の値によって優先順位を判定する方法もある。この方法の場合、温度差が大きい給湯ユニットFから動かすことによって、長時間運転継続可能となる。 Furthermore, there is also a method for determining the priority order based on the accumulated operation time of each hot water supply unit F. In this method, it is possible to preferentially move the hot water supply unit F with a short accumulated operation time, thereby leveling the accumulated operation time and avoiding the problem that the product life of only a specific hot water unit F is shortened. Become. Furthermore, there is a method of determining the priority order based on the difference between the water temperature of the hot water storage tank 32 of each hot water supply unit F and the set temperature. In the case of this method, the operation can be continued for a long time by moving from the hot water supply unit F having a large temperature difference.
 自動運転が可能な給湯ユニットFを運転・停止させることによって運転状態を改善できると判定した場合(ステップS104;Y)、熱源ユニットコントローラー61は、運転・停止させる給湯ユニットFの情報を中継ユニットコントローラー62に送信する(ステップS105)。送信処理完了後、熱源ユニットコントローラー61は、たとえばセンサー入力の取り込み、アクチュエーター制御等の通常の処理を行なう(ステップS106)。ところで、熱源ユニットコントローラー61は、自動運転が不可能であると判断した場合(ステップS102;N)、あるいは、自動運転が可能な給湯ユニットFを運転・停止させることによって運転状態を改善できないと判定した場合(ステップS104;N)にも通常の処理を行なう(ステップS106)。 When it is determined that the operation state can be improved by operating / stopping the hot water supply unit F capable of automatic operation (step S104; Y), the heat source unit controller 61 transmits information on the hot water supply unit F to be operated / stopped to the relay unit controller. It transmits to 62 (step S105). After the completion of the transmission process, the heat source unit controller 61 performs normal processes such as capturing of sensor input and actuator control (step S106). By the way, the heat source unit controller 61 determines that the operation state cannot be improved by operating / stopping the hot water supply unit F capable of automatic operation when it is determined that automatic operation is impossible (step S102; N). If this happens (step S104; N), normal processing is performed (step S106).
 次に、中継ユニットコントローラー62の動作について説明する。
 中継ユニットコントローラー62は、熱源ユニットコントローラー61から給湯ユニットFの自動運転・停止指令を受信した場合、対象となる給湯ユニットコントローラー64に自動運転・停止指令を送信する。また、中継ユニットコントローラー62は、室内ユニットコントローラー63または給湯ユニットコントローラー64から運転状態の変化を受信した場合には、熱源ユニットコントローラー61に運転状態の変化を送信する。
Next, the operation of the relay unit controller 62 will be described.
When the relay unit controller 62 receives the automatic operation / stop command for the hot water supply unit F from the heat source unit controller 61, the relay unit controller 62 transmits the automatic operation / stop command to the target hot water supply unit controller 64. When the relay unit controller 62 receives a change in the operation state from the indoor unit controller 63 or the hot water supply unit controller 64, the relay unit controller 62 transmits the change in the operation state to the heat source unit controller 61.
 次に、給湯ユニットコントローラー64の動作について説明する。
 給湯ユニットコントローラー64は、中継ユニットコントローラー62から自動運転・停止指令を受信した場合、指令に従って運転状態を変化させ、運転状態の変化をリモートコントローラー65及び集中コントローラー66に送信する。また、給湯ユニットコントローラー64は、リモートコントローラー65または集中コントローラー66から通常運転・停止指令を受信した場合、指令に従って運転状態を変化させ、運転状態の変化を中継ユニットコントローラー62に送信する。さらに、給湯ユニットコントローラー64は、自分自身の運転状態を、通常運転と自動運転に識別して保持し、リモートコントローラー65及び集中コントローラー66に対しても識別してその情報を送信する。
Next, the operation of the hot water supply unit controller 64 will be described.
When the hot water supply unit controller 64 receives the automatic operation / stop command from the relay unit controller 62, the hot water supply unit controller 64 changes the operation state according to the command, and transmits the change in the operation state to the remote controller 65 and the centralized controller 66. When the hot water supply unit controller 64 receives a normal operation / stop command from the remote controller 65 or the centralized controller 66, the hot water supply unit controller 64 changes the operation state according to the command and transmits the change in the operation state to the relay unit controller 62. Further, the hot water supply unit controller 64 identifies and holds its own operation state as normal operation and automatic operation, and also identifies and transmits the information to the remote controller 65 and the centralized controller 66.
 給湯ユニットコントローラー64は、通常運転の場合は水温を第一設定温度に到達させることを目標に運転し、水温が第一設定温度に到達した際にはサーモOFF状態とするが、自動運転の場合は水温が第二設定温度に到達するまではサーモONを継続する。これは、システム全体の省エネまたは安定運転継続を目的として、給湯ユニットFを長時間運転継続可能とするためである。ここで、水温が第二設定温度に近付いた場合、貯湯タンク32の容量に空きがあれば、給水バルブ33を開き、冷水を補充することにより水温を下げて、運転を継続する。また、貯湯タンク32の容量に空きがない場合、排水バルブ34を開き一定量の温水を排出した後、冷水を補充して運転を継続する。ここで、この冷水の排出制御は、自動運転継続との優先順位判定手段を別途備えることで選択可能とする。 The hot water supply unit controller 64 is operated for the purpose of causing the water temperature to reach the first set temperature in the normal operation, and when the water temperature reaches the first set temperature, the thermostat is turned off. Continues the thermo-ON until the water temperature reaches the second set temperature. This is because the hot water supply unit F can be continuously operated for a long time for the purpose of energy saving of the entire system or continuation of stable operation. Here, when the water temperature approaches the second set temperature, if there is an empty capacity in the hot water storage tank 32, the water supply valve 33 is opened, the cold water is replenished to lower the water temperature, and the operation is continued. If there is no space in the hot water storage tank 32, the drain valve 34 is opened and a certain amount of hot water is discharged, and then the operation is continued by replenishing cold water. Here, this cold water discharge control can be selected by separately providing a priority order determination means for continuing automatic operation.
 次に、リモートコントローラー65及び集中コントローラー66の動作について説明する。
 リモートコントローラー65及び集中コントローラー66は、給湯ユニットコントローラー64から自動運転・停止状態の変化を受信した場合、情報を認識して表示に反映させる。このとき、表示に関しても通常運転と自動運転を識別して表示するとよい。この目的は、使用者に自動運転を実施していることを認識させ、リモコン(リモートコントローラー65)の切り忘れ等と区別させるためである。また、リモートコントローラー65及び集中コントローラー66は、使用者によって運転・停止を行なわれた場合、情報を認識して表示に反映させ、情報を給湯ユニットコントローラー64に送信する。
Next, operations of the remote controller 65 and the centralized controller 66 will be described.
When the remote controller 65 and the centralized controller 66 receive a change in the automatic operation / stop state from the hot water supply unit controller 64, the remote controller 65 and the centralized controller 66 recognize the information and reflect it in the display. At this time, regarding the display, normal operation and automatic operation may be identified and displayed. The purpose is to make the user recognize that automatic driving is being performed, and to distinguish it from forgetting to turn off the remote controller (remote controller 65). Further, when the user performs operation / stop by the user, the remote controller 65 and the centralized controller 66 recognize the information, reflect the information on the display, and transmit the information to the hot water supply unit controller 64.
 なお、図4では給湯ユニットFを運転させる手段を熱源ユニットコントローラー61に備えている場合を例に示しているが、その他のコントローラーに給湯ユニットFを運転させる手段を備えるようにしてもよい。給湯ユニットFを運転させる手段を熱源ユニットコントローラー61に備える方式の利点としては、熱源ユニットAが自分自身の圧力、温度、圧縮機運転周波数、電流等のデータを用いて制御判定を行なえるために通信量が抑制できることである。また、給湯ユニットFを運転させる手段を集中コントローラー66に備えることも可能である。この方式の利点としては、集中コントローラー66が保持しているシステム全体のスケジュール設定情報を用いて判定を行なうことにより、給湯ユニットFの最適な運転スケジュールを予測して作成することができることである。 In addition, although the case where the means for operating the hot water supply unit F is provided in the heat source unit controller 61 is shown as an example in FIG. 4, other means for operating the hot water supply unit F may be provided. As an advantage of the method in which the heat source unit controller 61 is provided with means for operating the hot water supply unit F, the heat source unit A can perform control judgment using data such as its own pressure, temperature, compressor operating frequency, and current. The amount of communication can be suppressed. It is also possible to provide the centralized controller 66 with means for operating the hot water supply unit F. The advantage of this method is that an optimum operation schedule of the hot water supply unit F can be predicted and created by making a determination using schedule setting information of the entire system held by the centralized controller 66.
 給湯ユニットFを運転させる手段を室内ユニットコントローラー63に備えることも可能である。この方式の利点としては、室内ユニットB及び室内ユニットCの運転・停止に連動させて給湯ユニットFを運転・停止させるというような、簡易的なアルゴリズムによる制御ができることである。また、給湯ユニットFを運転させる手段を給湯ユニットコントローラー64自身に備えることも可能である。この方式の利点としては、給湯ユニットFが自律制御により水温の変更を抑制しつつ、省エネに寄与できるということがある。 It is possible to provide the indoor unit controller 63 with means for operating the hot water supply unit F. An advantage of this method is that it can be controlled by a simple algorithm such as operating / stopping the hot water supply unit F in conjunction with the operation / stopping of the indoor unit B and the indoor unit C. It is also possible to provide the hot water supply unit controller 64 itself with means for operating the hot water supply unit F. An advantage of this method is that the hot water supply unit F can contribute to energy saving while suppressing changes in the water temperature by autonomous control.
 以上のように、冷凍サイクル装置100によれば、暖房負荷及び給湯負荷に対して冷房負荷が大きい場合には、給湯負荷を運転させることにより、システムCOPを向上させ、省エネを実現しつつ、ランニングコストを低減することが可能となる。また、冷凍サイクル装置100によれば、暖房小容量運転時に給湯負荷を運転させることにより、空調用圧縮機101のモーター効率を改善し、省エネを更に実現しつつ、ランニングコストを低減することが可能となる。さらに、冷凍サイクル装置100によれば、暖房過負荷小容量運転となった場合に給湯負荷を運転させることにより、高圧圧力を低下させ、安定した運転を継続できる。 As described above, according to the refrigeration cycle apparatus 100, when the cooling load is larger than the heating load and the hot water supply load, the hot water supply load is operated to improve the system COP and realize energy saving while running. Costs can be reduced. Further, according to the refrigeration cycle apparatus 100, it is possible to improve the motor efficiency of the air-conditioning compressor 101 by operating the hot water supply load during the heating and small capacity operation, further reducing energy consumption and reducing running cost. It becomes. Further, according to the refrigeration cycle apparatus 100, when the heating overload and small capacity operation is performed, the hot water supply load is operated, so that the high pressure can be reduced and the stable operation can be continued.
 なお、本実施の形態では、給湯ユニットFの二次側冷媒(温水)を蓄熱媒体として用いるようにした冷凍サイクル装置100を例に説明したが、冷凍サイクル装置100の構成をこれに限定するものではない。たとえば、図5に示すような空気調和装置(直膨空調から他の2次冷媒に熱移動させる方式のもの)でも同様に考えることができるのは言うまでもない。また、本実施の形態では、給湯ユニットFがある場合を例に説明したが、給湯ユニットFがない場合であっても、室内ユニットB及び室内ユニットC全体の空調負荷をバランスさせればよいことは言うまでもない。 In the present embodiment, the refrigeration cycle apparatus 100 in which the secondary refrigerant (hot water) of the hot water supply unit F is used as a heat storage medium has been described as an example. However, the configuration of the refrigeration cycle apparatus 100 is limited to this. is not. For example, it goes without saying that an air conditioner as shown in FIG. 5 (with a system in which heat is transferred from the direct expansion air conditioning to another secondary refrigerant) can be considered in the same manner. In the present embodiment, the case where there is a hot water supply unit F has been described as an example. However, even if there is no hot water supply unit F, the air conditioning load of the indoor unit B and the entire indoor unit C may be balanced. Needless to say.
 図5は、本発明の実施の形態に係る冷凍サイクル装置(以下、冷凍サイクル装置100Aと称する)の冷媒回路構成の別の一例を示す冷媒回路図である。図5に基づいて、冷凍サイクル装置100Aの冷媒回路構成及び動作について説明する。図5では、冷凍サイクル装置100Aが、冷媒(熱源用冷媒)を循環させる冷凍サイクルを利用することで冷房負荷、及び、暖房負荷(又は給湯負荷)を同時に供給できる空気調和装置である場合を例に示している。なお、図5では図1との相違点を中心に説明し、図1と同一部分には、同一符号を付して説明を省略するものとする。 FIG. 5 is a refrigerant circuit diagram showing another example of the refrigerant circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to the embodiment of the present invention. Based on FIG. 5, the refrigerant circuit configuration and operation of the refrigeration cycle apparatus 100A will be described. FIG. 5 shows an example in which the refrigeration cycle apparatus 100A is an air conditioner that can simultaneously supply a cooling load and a heating load (or hot water supply load) by using a refrigeration cycle that circulates a refrigerant (heat source refrigerant). It shows. In FIG. 5, the difference from FIG. 1 will be mainly described, and the same parts as those in FIG. 1 will be denoted by the same reference numerals and the description thereof will be omitted.
 図5に示すように、熱源ユニットAと中継ユニット(以下、中継ユニットE1と称する)とが、中継ユニットE1に備えられている熱媒体間熱交換器71a及び熱媒体間熱交換器71bを介して冷媒配管5(高圧側接続配管106、低圧側接続配管107)で接続されている。また、中継ユニットE1と室内ユニット(以下、室内ユニットB1と称する)とも、熱媒体間熱交換器71a及び熱媒体間熱交換器71bを介して冷媒配管6で接続されている。なお、図5に示す室内ユニットの全部を便宜的に室内ユニットB1と称している。 As shown in FIG. 5, a heat source unit A and a relay unit (hereinafter referred to as a relay unit E1) are connected via a heat exchanger related to heat medium 71a and a heat exchanger related to heat medium 71b provided in the relay unit E1. The refrigerant pipes 5 (the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107) are connected. The relay unit E1 and the indoor unit (hereinafter referred to as indoor unit B1) are also connected by the refrigerant pipe 6 via the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b. Note that all the indoor units shown in FIG. 5 are referred to as an indoor unit B1 for convenience.
[室内ユニットB1]
 室内ユニットB1には、それぞれ室内熱交換器118が搭載されている。つまり、室内ユニットB1は、空調用絞り手段117が搭載されていない点で室内ユニットBと相違している。この室内熱交換器118は、冷媒配管6によって中継ユニットE1の熱媒体流量調整装置75と第2熱媒体流路切替装置76に接続するようになっている。この図5では、4台の室内ユニットB1が中継ユニットE1に接続されている場合を例に示しているが、室内ユニットB1の接続台数を4台に限定するものではない。
[Indoor unit B1]
An indoor heat exchanger 118 is mounted on each of the indoor units B1. That is, the indoor unit B1 is different from the indoor unit B in that the air conditioning throttle means 117 is not mounted. The indoor heat exchanger 118 is connected to the heat medium flow control device 75 and the second heat medium flow switching device 76 of the relay unit E1 by the refrigerant pipe 6. FIG. 5 shows an example in which four indoor units B1 are connected to the relay unit E1, but the number of indoor units B1 connected is not limited to four.
[中継ユニットE1]
 中継ユニットE1には、2つの熱媒体間熱交換器71と、2つの絞り装置72と、2つの開閉装置73と、2つの第2冷媒流路切替装置74と、2つのポンプ80と、4つの第1熱媒体流路切替装置77と、4つの第2熱媒体流路切替装置76と、4つの熱媒体流量調整装置75と、が搭載されている。
[Relay unit E1]
The relay unit E1 includes two heat exchangers for heat medium 71, two expansion devices 72, two switching devices 73, two second refrigerant flow switching devices 74, two pumps 80, 4 Two first heat medium flow switching devices 77, four second heat medium flow switching devices 76, and four heat medium flow control devices 75 are mounted.
 2つの熱媒体間熱交換器71(熱媒体間熱交換器71a、熱媒体間熱交換器71b)は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、熱源ユニットAで生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器71aは、絞り装置72aと第2冷媒流路切替装置74aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器71bは、絞り装置72bと第2冷媒流路切替装置74bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。 The two heat exchangers between heat media 71 (heat medium heat exchanger 71a, heat medium heat exchanger 71b) function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the heat source unit A and stored in the heat source side refrigerant is transmitted to the heat medium. The heat exchanger related to heat medium 71a is provided between the expansion device 72a and the second refrigerant flow switching device 74a, and serves to cool the heat medium in the cooling / heating mixed operation mode. The heat exchanger related to heat medium 71b is provided between the expansion device 72b and the second refrigerant flow switching device 74b, and serves to heat the heat medium in the cooling / heating mixed operation mode.
 2つの絞り装置72(絞り装置72a、絞り装置72b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置72aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器71aの上流側に設けられている。絞り装置72bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器71bの上流側に設けられている。2つの絞り装置72は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。 The two expansion devices 72 (the expansion device 72a and the expansion device 72b) have functions as a pressure reducing valve and an expansion valve, and expand the heat source side refrigerant by reducing the pressure. The expansion device 72a is provided on the upstream side of the heat exchanger related to heat medium 71a in the flow of the heat source side refrigerant during the cooling operation. The expansion device 72b is provided on the upstream side of the heat exchanger related to heat medium 71b in the flow of the heat source side refrigerant during the cooling operation. The two throttling devices 72 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 2つの開閉装置73(開閉装置73a、開閉装置73b)は、二方弁等で構成されており、冷媒配管5を開閉するものである。開閉装置73aは、熱源側冷媒の入口側における冷媒配管5に設けられている。開閉装置73bは、熱源側冷媒の入口側と出口側の冷媒配管5を接続した配管に設けられている。2つの第2冷媒流路切替装置74(第2冷媒流路切替装置74a、第2冷媒流路切替装置74b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置74aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器71aの下流側に設けられている。第2冷媒流路切替装置74bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器71bの下流側に設けられている。 The two opening / closing devices 73 (the opening / closing device 73a and the opening / closing device 73b) are configured by two-way valves or the like and open / close the refrigerant pipe 5. The opening / closing device 73a is provided in the refrigerant pipe 5 on the inlet side of the heat source side refrigerant. The switchgear 73b is provided in a pipe connecting the refrigerant pipe 5 on the inlet side and outlet side of the heat source side refrigerant. The two second refrigerant flow switching devices 74 (second refrigerant flow switching device 74a and second refrigerant flow switching device 74b) are configured by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode. Is. The second refrigerant flow switching device 74a is provided on the downstream side of the heat exchanger related to heat medium 71a in the flow of the heat source side refrigerant during the cooling operation. The second refrigerant flow switching device 74b is provided on the downstream side of the heat exchanger related to heat medium 71b in the flow of the heat source side refrigerant during the cooling only operation.
 2つのポンプ80(ポンプ80a、ポンプ80b)は、冷媒配管6を導通する熱媒体を循環させるものである。ポンプ80aは、熱媒体間熱交換器71aと第2熱媒体流路切替装置76との間における冷媒配管6に設けられている。ポンプ80bは、熱媒体間熱交換器71bと第2熱媒体流路切替装置76との間における冷媒配管6に設けられている。2つのポンプ80は、たとえば容量制御可能なポンプ等で構成するとよい。 The two pumps 80 (pump 80a and pump 80b) circulate a heat medium that is conducted through the refrigerant pipe 6. The pump 80 a is provided in the refrigerant pipe 6 between the heat exchanger related to heat medium 71 a and the second heat medium flow switching device 76. The pump 80 b is provided in the refrigerant pipe 6 between the heat exchanger related to heat medium 71 b and the second heat medium flow switching device 76. The two pumps 80 may be constituted by, for example, pumps capable of capacity control.
 4つの第1熱媒体流路切替装置77は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置77は、室内ユニットB1の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置77は、三方のうちの一つが熱媒体間熱交換器71aに、三方のうちの一つが熱媒体間熱交換器71bに、三方のうちの一つが熱媒体流量調整装置75に、それぞれ接続され、室内熱交換器118の熱媒体流路の出口側に設けられている。 The four first heat medium flow switching devices 77 are configured by a three-way valve or the like, and switch the flow path of the heat medium. The number of first heat medium flow switching devices 77 is set according to the number of indoor units B1 installed (here, four). In the first heat medium flow switching device 77, one of the three sides is in the heat exchanger 71a, one of the three is in the heat exchanger 71b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 75 and provided on the outlet side of the heat medium flow path of the indoor heat exchanger 118.
 4つの第2熱媒体流路切替装置76は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置76は、室内ユニットBの設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置76は、三方のうちの一つが熱媒体間熱交換器71aに、三方のうちの一つが熱媒体間熱交換器71bに、三方のうちの一つが室内熱交換器118に、それぞれ接続され、室内熱交換器118の熱媒体流路の入口側に設けられている。 The four second heat medium flow switching devices 76 are configured by a three-way valve or the like, and switch the flow path of the heat medium. The number of the second heat medium flow switching devices 76 is set according to the number of indoor units B installed (here, four). In the second heat medium flow switching device 76, one of the three sides is in the heat exchanger 71a, one of the three is in the heat exchanger 71b, and one of the three is indoor heat exchange. Connected to the heat exchanger 118 and provided on the inlet side of the heat medium flow path of the indoor heat exchanger 118.
 4つの熱媒体流量調整装置75は、たとえばステッピングモーターを用いた二方弁等で構成されており、熱媒体流路となる冷媒配管6の開度を変更可能にし、熱媒体の流量を調整するものである。熱媒体流量調整装置75は、室内ユニットB1の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置75は、一方が室内熱交換器118に、他方が第1熱媒体流路切替装置77に、それぞれ接続され、室内熱交換器118の熱媒体流路の出口側に設けられている。なお、熱媒体流量調整装置75を室内熱交換器118の熱媒体流路の入口側に設けてもよい。 The four heat medium flow control devices 75 are configured by, for example, a two-way valve using a stepping motor, and the like, and the opening degree of the refrigerant pipe 6 serving as the heat medium flow path can be changed to adjust the flow rate of the heat medium. Is. The number of heat medium flow control devices 75 (four in this case) according to the number of installed indoor units B1 is provided. One of the heat medium flow control devices 75 is connected to the indoor heat exchanger 118 and the other is connected to the first heat medium flow switching device 77, and is provided on the outlet side of the heat medium flow channel of the indoor heat exchanger 118. ing. The heat medium flow control device 75 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 118.
 よって、冷凍サイクル装置100Aでは、熱源ユニットAと中継ユニットE1とが、中継ユニットE1に設けられている熱媒体間熱交換器71a及び熱媒体間熱交換器71bを介して接続され、中継ユニットE1と室内ユニットB1とも、熱媒体間熱交換器71a及び熱媒体間熱交換器71bを介して接続されている。すなわち、冷凍サイクル装置100Aでは、熱媒体間熱交換器71a及び熱媒体間熱交換器71bで空調用冷凍サイクル1を循環する熱源側冷媒と熱媒体循環回路(たとえば、図1で説明した給湯用冷凍サイクル2)を循環する熱媒体とが熱交換するようになっている。 Therefore, in the refrigeration cycle apparatus 100A, the heat source unit A and the relay unit E1 are connected via the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b provided in the relay unit E1, and the relay unit E1. And the indoor unit B1 are also connected via a heat exchanger related to heat medium 71a and a heat exchanger related to heat medium 71b. That is, in the refrigeration cycle apparatus 100A, the heat source side refrigerant circulating in the air conditioning refrigeration cycle 1 and the heat medium circulation circuit (for example, for hot water supply described in FIG. 1) in the heat exchanger related to heat medium 71a and the heat exchanger related to heat medium 71b. Heat is exchanged with the heat medium circulating in the refrigeration cycle 2).
 以上のような構成の冷凍サイクル装置100Aによれば、暖房負荷(又は給湯負荷)に対して冷房負荷が大きい場合には、給湯負荷を運転させることにより、システムCOPを向上させ、省エネを実現しつつ、ランニングコストを低減することが可能となる。また、冷凍サイクル装置100Aによれば、暖房小容量運転時に暖房負荷(又は給湯負荷)を運転させることにより、空調用圧縮機101のモーター効率を改善し、省エネを更に実現しつつ、ランニングコストを低減することが可能となる。さらに、冷凍サイクル装置100Aによれば、暖房過負荷小容量運転となった場合に暖房負荷(又は給湯負荷)を運転させることにより、高圧圧力を低下させ、安定した運転を継続できる。 According to the refrigeration cycle apparatus 100A configured as described above, when the cooling load is large with respect to the heating load (or hot water supply load), operating the hot water supply load improves the system COP and realizes energy saving. However, the running cost can be reduced. Further, according to the refrigeration cycle apparatus 100A, by operating a heating load (or hot water supply load) at the time of heating small capacity operation, the motor efficiency of the air-conditioning compressor 101 is improved and energy saving is further realized while running cost is reduced. It becomes possible to reduce. Further, according to the refrigeration cycle apparatus 100A, when the heating overload and small capacity operation is performed, the high pressure can be reduced and the stable operation can be continued by operating the heating load (or hot water supply load).
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、5 冷媒配管、6 冷媒配管、7 伝送線、8 伝送線、9 伝送線、10 伝送線、21 給湯用圧縮機、22 給湯用絞り手段、31 水循環用ポンプ、32 貯湯タンク、33 給水バルブ、34 排水バルブ、35 水温センサー、36 水量センサー、41 冷媒熱交換器、45 冷媒配管、51 冷媒熱交換器、61 熱源ユニットコントローラー、62 中継ユニットコントローラー、63 室内ユニットコントローラー、64 給湯ユニットコントローラー、65 リモートコントローラー、66 集中コントローラー、71 熱媒体間熱交換器、71a 熱媒体間熱交換器、71b 熱媒体間熱交換器、72 絞り装置、72a 絞り装置、72b 絞り装置、73 開閉装置、73a 開閉装置、73b 開閉装置、74 冷媒流路切替装置、74a 冷媒流路切替装置、74b 冷媒流路切替装置、75 熱媒体流量調整装置、76 第2熱媒体流路切替装置、77 第1熱媒体流路切替装置、80 ポンプ、80a ポンプ、80b ポンプ、100 冷凍サイクル装置、100A 冷凍サイクル装置、101 空調用圧縮機、102 四方弁、103 室外熱交換器、104 アキュムレーター、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 第1分配部、109a 弁手段、109b 弁手段、110 第2分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 第1会合部、116 第2会合部、116a 第2会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 第1接続配管、131 第2接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、203 貯湯水循環用配管、A 熱源ユニット、B 室内ユニット、B1 室内ユニット、C 室内ユニット、D 給湯熱源用回路、E 中継ユニット、E1 中継ユニット、F 給湯ユニット、F1 給湯ユニット、F2 給湯ユニット、a 接続部分、b 接続部分、c 接続部分、d 接続部分。 1 Refrigeration cycle for air conditioning, 2 Refrigeration cycle for hot water supply, 3 Load for hot water supply, 5 Refrigerant piping, 6 Refrigerant piping, 7 Transmission line, 8 Transmission line, 9 Transmission line, 10 Transmission line, 21 Compressor for hot water supply, 22 For hot water supply Throttle means, 31 water circulation pump, 32 hot water storage tank, 33 water supply valve, 34 drainage valve, 35 water temperature sensor, 36 water quantity sensor, 41 refrigerant heat exchanger, 45 refrigerant piping, 51 refrigerant heat exchanger, 61 heat source unit controller, 62 Relay unit controller, 63 indoor unit controller, 64 hot water supply unit controller, 65 remote controller, 66 centralized controller, 71 heat exchanger between heat medium, 71a heat exchanger between heat medium, 71b heat exchanger between heat medium, 72 expansion device, 72a diaphragm device, 72b Throttle device, 73 opening / closing device, 73a opening / closing device, 73b opening / closing device, 74 refrigerant flow switching device, 74a refrigerant flow switching device, 74b refrigerant flow switching device, 75 heat medium flow control device, 76 second heat medium flow Switching device, 77 1st heat medium flow switching device, 80 pump, 80a pump, 80b pump, 100 refrigeration cycle device, 100A refrigeration cycle device, 101 air conditioning compressor, 102 four-way valve, 103 outdoor heat exchanger, 104 accum 105a check valve, 105c check valve, 105d check valve, 106 high pressure side connection piping, 107 low pressure side connection piping, 108 gas-liquid separator, 109 first distribution section, 109a valve means, 109b valve means, 110 second distributor, 110a check valve, 110b check valve, 1 1 Internal heat exchanger, 112 First throttle device, 113 Internal heat exchanger, 114 Second relay device, 115 First meeting part, 116 Second meeting part, 116a Second meeting part, 117 Air conditioning Throttle means, 118 indoor heat exchanger, 119 hot water heat source throttle means, 130 first connection piping, 131 second connection piping, 132 connection piping, 133 connection piping, 133a connection piping, 133b connection piping, 134 connection piping, 134a Connection piping, 134b connection piping, 135 connection piping, 135a connection piping, 135b connection piping, 136 connection piping, 136a connection piping, 136b connection piping, 203 hot water circulation piping, A heat source unit, B indoor unit, B1 indoor unit, C Indoor unit, D hot water supply heat source circuit, E relay unit , E1 relay unit, F hot water supply unit, F1 hot water supply unit, F2 hot water supply unit, a connection part, b connection part, c connection part, d connection part.

Claims (8)

  1.  少なくとも空調圧縮機及び熱源側熱交換器が搭載された少なくとも1台の熱源ユニットと、
     少なくとも利用側熱交換器が搭載された複数台の利用側ユニットと、
     前記熱源ユニットと前記利用側ユニットとの間に介在し、前記熱源側ユニットで生成された温熱又は冷熱を前記利用側ユニットに伝達する少なくとも1台の中継ユニットとを備えた冷凍サイクル装置であって、
     前記複数台の利用側ユニットが実行する冷却負荷と加熱負荷とを均衡させるように前記複数台の利用側ユニットを運転させる
     ことを特徴とする冷凍サイクル装置。
    At least one heat source unit equipped with at least an air conditioning compressor and a heat source side heat exchanger;
    A plurality of usage-side units equipped with at least usage-side heat exchangers;
    A refrigeration cycle apparatus comprising: at least one relay unit that is interposed between the heat source unit and the use side unit and transmits the heat or cold generated by the heat source side unit to the use side unit. ,
    The refrigeration cycle apparatus, wherein the plurality of usage-side units are operated so as to balance a cooling load and a heating load executed by the plurality of usage-side units.
  2.  加熱負荷運転を実行している利用側ユニットの負荷の合計に対して、冷却負荷運転を実行している利用側ユニットの負荷の合計が大きいとき、
     前記いずれの運転も実行していない利用側ユニットで加熱負荷運転を実行させる
     ことを特徴とする請求項1に記載の冷凍サイクル装置。
    When the total load on the user-side unit executing the cooling load operation is larger than the total load on the user-side unit executing the heating load operation,
    The refrigeration cycle apparatus according to claim 1, wherein the heating load operation is executed in a use side unit that is not executing any of the operations.
  3.  冷却負荷なしの状態で加熱負荷も小さく、圧縮機運転周波数が低いとき、あるいは、外気温度及び室内温度が共に高く、高圧圧力が高いとき、
     加熱負荷運転を実行している利用側ユニットの負荷の合計に対して、冷却負荷運転を実行している利用側ユニットの負荷の合計が大きいと判定する
     ことを特徴とする請求項2に記載の冷凍サイクル装置。
    When there is no cooling load and the heating load is small and the compressor operating frequency is low, or when the outside air temperature and the room temperature are both high and the high pressure is high,
    The total load of the usage-side unit that is executing the cooling load operation is determined to be larger than the total load of the usage-side unit that is executing the heating load operation. Refrigeration cycle equipment.
  4.  前記利用側ユニットが実行する加熱負荷運転が暖房運転又は給湯運転であり、
     前記利用側ユニットが実行する冷却負荷運転が冷房運転である
     ことを特徴とする請求項1~3のいずれか一項に記載の冷凍サイクル装置。
    The heating load operation performed by the use side unit is a heating operation or a hot water supply operation,
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the cooling load operation performed by the use side unit is a cooling operation.
  5.  前記利用側ユニットに対して、前記利用側ユニットが本来必要とする温度と、前記利用側ユニットを自動的に運転する際の温度との2つの温度を設定可能としている
     ことを特徴とする請求項2~4のいずれか一項に記載の冷凍サイクル装置。
    The temperature which is originally required by the usage-side unit and the temperature at which the usage-side unit is automatically operated can be set for the usage-side unit. 5. The refrigeration cycle apparatus according to any one of 2 to 4.
  6.  前記いずれの運転も実行していない利用側ユニットが複数台あるとき、
     予め設定されている優先順位に基づいて加熱負荷運転を実行させる
     ことを特徴とする請求項2~5のいずれか一項に記載の冷凍サイクル装置。
    When there are a plurality of usage-side units that are not performing any of the above operations,
    The refrigeration cycle apparatus according to any one of claims 2 to 5, wherein the heating load operation is executed based on a preset priority order.
  7.  前記いずれの運転も実行していない利用側ユニットがないとき、
     冷水を補充することによって加熱負荷運転を継続させる
     ことを特徴とする請求項4~6のいずれか一項に記載の冷凍サイクル装置。
    When there is no user unit that is not performing any of the above operations,
    The refrigeration cycle apparatus according to any one of claims 4 to 6, wherein the heating load operation is continued by replenishing cold water.
  8.  請求項1~7のいずれか一項に記載の冷凍サイクル装置に適用される情報伝達方法であって、
     前記熱源ユニットには熱源ユニットコントローラーが、前記中継ユニットには中継ユニットコントローラーが、前記利用側ユニットには利用側ユニットコントローラーが、それぞれ設けられており、
     各コントローラーの情報伝達によって、前記コントローラーのいずれかで前記複数台の利用側ユニットの負荷バランスを判定可能にしている
     ことを特徴とする情報伝達方法。
    An information transmission method applied to the refrigeration cycle apparatus according to any one of claims 1 to 7,
    The heat source unit is provided with a heat source unit controller, the relay unit is provided with a relay unit controller, and the use side unit is provided with a use side unit controller,
    The information transmission method, wherein the load balance of the plurality of usage-side units can be determined by any one of the controllers by information transmission from each controller.
PCT/JP2009/006177 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto WO2011061792A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/006177 WO2011061792A1 (en) 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto
CN200980162495.5A CN102695929B (en) 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto
EP09851418.5A EP2503266B1 (en) 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto
US13/510,150 US20120222440A1 (en) 2009-11-18 2009-11-18 Regrigeration cycle apparatus and information transfer method used therein
JP2011541733A JP5642085B2 (en) 2009-11-18 2009-11-18 Refrigeration cycle apparatus and information transmission method applied thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006177 WO2011061792A1 (en) 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto

Publications (1)

Publication Number Publication Date
WO2011061792A1 true WO2011061792A1 (en) 2011-05-26

Family

ID=44059296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006177 WO2011061792A1 (en) 2009-11-18 2009-11-18 Refrigeration cycle device and information propagation method adapted thereto

Country Status (5)

Country Link
US (1) US20120222440A1 (en)
EP (1) EP2503266B1 (en)
JP (1) JP5642085B2 (en)
CN (1) CN102695929B (en)
WO (1) WO2011061792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061399A1 (en) * 2011-10-24 2013-05-02 三菱電機株式会社 Heat pump system, control device, temperature adjustment method, and program
EP2781848A4 (en) * 2011-09-29 2015-06-24 Mitsubishi Electric Corp Combined air-conditioning/hot water supply system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404333B2 (en) * 2009-11-13 2014-01-29 三菱重工業株式会社 Heat source system
CN102893097B (en) * 2010-04-15 2015-08-05 三菱电机株式会社 Hot-water supply system's control device and hot-water supply system's control program and hot-water supply system's method of operation
KR101212698B1 (en) * 2010-11-01 2013-03-13 엘지전자 주식회사 Heat pump type speed heating apparatus
KR101203579B1 (en) * 2010-11-05 2012-11-21 엘지전자 주식회사 Speed heating apparatus with air conditioner and Control process of the same
EP2829823B1 (en) * 2012-03-15 2019-07-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2908070B1 (en) * 2012-10-10 2020-08-05 Mitsubishi Electric Corporation Air conditioning device
EP2933588B1 (en) * 2012-12-11 2019-10-02 Mitsubishi Electric Corporation Air conditioning hot water supply composite system
EP2937647B1 (en) * 2012-12-20 2021-11-10 Mitsubishi Electric Corporation Air-conditioning device
CN106662386B (en) * 2014-07-28 2019-06-18 三菱电机株式会社 Air-conditioning device
US10775056B2 (en) * 2014-09-08 2020-09-15 United Maintenance, Inc. Natatorium dehumidifier
EP3260690A4 (en) 2015-02-16 2018-10-17 Volvo Construction Equipment AB Torque control system for dpf regeneration
CN111486613B (en) * 2020-04-29 2022-05-20 广东美的暖通设备有限公司 Air conditioning system, control method and device thereof and storage medium
CN114992693A (en) * 2021-03-01 2022-09-02 艾欧史密斯(中国)热水器有限公司 Heat pump unit and control method and device thereof, heat pump system and combined supply system
EP4227605A1 (en) * 2022-02-11 2023-08-16 Daikin Europe N.V. Refrigeration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250056A (en) * 1988-08-10 1990-02-20 Daikin Ind Ltd Heat recovery type air conditioner
JPH09119736A (en) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd Multi-chamber type cooling and heating apparatus and operating method therefor
JPH11270920A (en) 1998-03-20 1999-10-05 Mitsubishi Electric Corp Multifunctional heat pump system and method of its operation control
JP2007232232A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Cooling/heating device
WO2009122477A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512372A (en) * 1978-07-11 1980-01-28 Daikin Ind Ltd Multi-chamber type air conditioner
JPH0633899B2 (en) * 1985-07-02 1994-05-02 三菱電機株式会社 Centralized monitoring device for air conditioners
JPS6334459A (en) * 1986-07-29 1988-02-15 株式会社東芝 Air conditioner
GB2215867B (en) * 1988-02-09 1992-09-02 Toshiba Kk Air conditioner system with control for optimum refrigerant temperature
JP2909187B2 (en) * 1990-10-26 1999-06-23 株式会社東芝 Air conditioner
JPH07225064A (en) * 1994-02-15 1995-08-22 Hitachi Ltd Heat pump hot water supplying apparatus
JP3643629B2 (en) * 1995-11-30 2005-04-27 三洋電機株式会社 Automatic operation setting method and air conditioning system in air conditioning system
US6848267B2 (en) * 2002-07-26 2005-02-01 Tas, Ltd. Packaged chilling systems for building air conditioning and process cooling
JP2001280749A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
CN1186576C (en) * 2000-12-08 2005-01-26 大金工业株式会社 Refrigerator
EP1275913A3 (en) * 2001-06-26 2003-08-13 Mitsubishi Heavy Industries, Ltd. Multiform gas heat pump type air conditioning system
JP3575484B2 (en) * 2002-03-29 2004-10-13 ダイキン工業株式会社 Heat source unit of air conditioner and air conditioner
JP3956784B2 (en) * 2002-07-04 2007-08-08 ダイキン工業株式会社 Refrigeration equipment
JP2005300006A (en) * 2004-04-12 2005-10-27 Hitachi Ltd Multiple type air conditioner
JP3781046B2 (en) * 2004-07-01 2006-05-31 ダイキン工業株式会社 Air conditioner
JP3984250B2 (en) * 2004-09-27 2007-10-03 三星電子株式会社 Multi-room air conditioner
US8033479B2 (en) * 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
JP2006283989A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Cooling/heating system
JP2007139265A (en) * 2005-11-16 2007-06-07 Mitsubishi Heavy Ind Ltd Operation control method and program for multiple type air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250056A (en) * 1988-08-10 1990-02-20 Daikin Ind Ltd Heat recovery type air conditioner
JPH09119736A (en) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd Multi-chamber type cooling and heating apparatus and operating method therefor
JPH11270920A (en) 1998-03-20 1999-10-05 Mitsubishi Electric Corp Multifunctional heat pump system and method of its operation control
JP2007232232A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Cooling/heating device
WO2009122477A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781848A4 (en) * 2011-09-29 2015-06-24 Mitsubishi Electric Corp Combined air-conditioning/hot water supply system
WO2013061399A1 (en) * 2011-10-24 2013-05-02 三菱電機株式会社 Heat pump system, control device, temperature adjustment method, and program
CN103890502A (en) * 2011-10-24 2014-06-25 三菱电机株式会社 Heat pump system, control device, temperature adjustment method, and program
JPWO2013061399A1 (en) * 2011-10-24 2015-04-02 三菱電機株式会社 Heat pump system, control device, temperature control method and program
US9644872B2 (en) 2011-10-24 2017-05-09 Mitsubishi Electric Corporation Heat pump system, control device, temperature adjustment method, and program

Also Published As

Publication number Publication date
EP2503266B1 (en) 2018-10-24
JPWO2011061792A1 (en) 2013-04-04
EP2503266A1 (en) 2012-09-26
EP2503266A4 (en) 2016-10-05
US20120222440A1 (en) 2012-09-06
JP5642085B2 (en) 2014-12-17
CN102695929A (en) 2012-09-26
CN102695929B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5642085B2 (en) Refrigeration cycle apparatus and information transmission method applied thereto
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
EP2527751B1 (en) Air conditioning-hot water supply combined system
US9285128B2 (en) Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units
KR101391775B1 (en) Heat pump system
CN103229006B (en) Supplying hot water air-conditioning set composite
JP5627606B2 (en) Heat pump system
WO2010098070A1 (en) Heat pump system
JPWO2009098751A1 (en) Air conditioning and hot water supply complex system
CN101438109A (en) Multi-loop air conditioner system with variable capacity
JP5264936B2 (en) Air conditioning and hot water supply complex system
WO2008113121A1 (en) A thermal transfer, recovery and management system
EP2584285B1 (en) Refrigerating air-conditioning device
US20210207834A1 (en) Air-conditioning system
JP2001074331A (en) Outdoor unit of air conditioner, and air conditioning system using the same
JP5642270B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541733

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009851418

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13510150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE