JP2015215107A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015215107A
JP2015215107A JP2014096775A JP2014096775A JP2015215107A JP 2015215107 A JP2015215107 A JP 2015215107A JP 2014096775 A JP2014096775 A JP 2014096775A JP 2014096775 A JP2014096775 A JP 2014096775A JP 2015215107 A JP2015215107 A JP 2015215107A
Authority
JP
Japan
Prior art keywords
indoor
temperature
difference
air
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014096775A
Other languages
Japanese (ja)
Other versions
JP6225819B2 (en
Inventor
和明 光嶋
Kazuaki Mitsushima
和明 光嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014096775A priority Critical patent/JP6225819B2/en
Publication of JP2015215107A publication Critical patent/JP2015215107A/en
Application granted granted Critical
Publication of JP6225819B2 publication Critical patent/JP6225819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which suppresses repeating of operating/stopping of a compressor, and in which energy consumption efficiency is improved.SOLUTION: An air conditioner includes: a refrigeration cycle including a compressor 11 and an indoor heat exchanger 21; an indoor blower 22 for blowing indoor air to the indoor heat exchanger 21; an outdoor temperature sensor 16 for measuring outdoor temperature T; a storage unit 31 for storing indoor set temperature Tm; and a control unit 32 for controlling rotational frequency of the compressor 11 and an indoor fan motor 22b. The control unit 32 performs control for decreasing the rotational frequency of the indoor blower 22 and the compressor 11 according as a difference between the outdoor temperature T measured by the outdoor temperature sensor 16 and the indoor set temperature Tm becomes narrow.

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

従来の空気調和機には、例えば特許文献1のように、室内機の風量が「強風」「弱風」「微風」のように複数の設定風量に分けられ、ユーザーが任意で選択できるようになっているものがある。また、ユーザーが選択した設定風量は、運転開始時の空調負荷の大小又は空調負荷の時間的な変化に関わらず、一定風量で動作するように設定されていることが多く、例えばユーザーが「強風」のように選択できる設定風量のうち最大の設定風量を選択すると、室内機は常にその空気調和機に設定されている最大の設定風量で運転を行う。   In conventional air conditioners, as in Patent Document 1, for example, the air volume of an indoor unit is divided into a plurality of set air volumes such as “strong wind”, “weak wind”, and “slight wind” so that the user can arbitrarily select them. There is something that has become. Also, the set air volume selected by the user is often set to operate at a constant air volume regardless of the magnitude of the air conditioning load at the start of operation or the temporal change of the air conditioning load. When the maximum set air volume among the set air volumes that can be selected is selected, the indoor unit always operates with the maximum set air volume set in the air conditioner.

また、従来の空気調和機には、例えば特許文献2のように、圧縮機の回転数を制御することにより、空調能力を空調負荷に応じて制御するものがある。具体的には、室内の冷房時に室外温度が高い場合では、室外から室内へ移動する熱量が増加するため、空調負荷が高くなり、室内の温度を一定に保つには、空調負荷に応じて圧縮機の回転数を増加させて空調能力を増加させる必要がある。また、逆に室内の冷房時に室外温度が低い場合では、室外から室内へ移動する熱量は減少するため、空調負荷は低くなり、圧縮機の回転数を減少させて空調能力を減少させる必要がある。   Further, some conventional air conditioners control the air conditioning capacity according to the air conditioning load by controlling the number of revolutions of the compressor as disclosed in Patent Document 2, for example. Specifically, when the outdoor temperature is high during indoor cooling, the amount of heat that moves from the outdoor to the indoor increases, so the air conditioning load increases, and in order to keep the indoor temperature constant, compression is performed according to the air conditioning load. It is necessary to increase the air conditioning capacity by increasing the number of revolutions of the machine. Conversely, when the outdoor temperature is low during indoor cooling, the amount of heat that moves from the outdoor to the indoor space decreases, so the air conditioning load is reduced, and the compressor speed needs to be reduced to reduce the air conditioning capacity. .

特開2011−252655号公報JP 2011-252655 A 特開2007−10200号公報JP 2007-10200 A

一般的に、圧縮機は、信頼性の観点から運転可能な最低回転数を有している。そのため、特許文献2のように圧縮機の回転数操作による空調能力の制御を行うと、圧縮機の最低回転数時の空調能力よりも低い空調負荷には圧縮機の回転数の制御だけでは対応することができず、圧縮機の運転・停止を繰り返すことによって空調能力を調整する。しかし、圧縮機の運転・停止を繰り返すと、室内温度の変化頻度が多くユーザーが不快に感じてしまう。また、圧縮機の運転の再運転時には室内空気だけでなく冷媒や室内の熱交換器などの空気調和機を構成する部材も冷却又は加熱する必要がある点、圧縮機の起動時に消費電力が増加する点より、圧縮機の運転・停止を繰り返すことでエネルギー消費量が多くなってしまう。   Generally, the compressor has a minimum rotation speed that can be operated from the viewpoint of reliability. Therefore, if the air conditioning capacity is controlled by operating the compressor speed as in Patent Document 2, the control of the compressor speed alone can cope with an air conditioning load lower than the air conditioning capacity at the minimum compressor speed. The air conditioning capacity is adjusted by repeating the operation / stop of the compressor. However, if the operation / stop of the compressor is repeated, the indoor temperature changes frequently and the user feels uncomfortable. In addition, when restarting the compressor operation, it is necessary to cool or heat not only the indoor air but also the components of the air conditioner such as the refrigerant and the indoor heat exchanger, and the power consumption increases when the compressor is started. From this point, the energy consumption increases by repeating the operation / stop of the compressor.

また、室内機の風量が大きいほど室内の熱交換器と室内空気の熱交換量が増大するため、室内機の風量の増加に応じて空気調和機の空調能力も増加する。そのため、特にユーザーが選択できる設定風量のうち最大の設定風量を選択している場合では、圧縮機の最低回転数時の空調能力も大きくなり、圧縮機の運転・停止の発生頻度も多くなってしまう。   Further, since the amount of heat exchange between the indoor heat exchanger and room air increases as the air volume of the indoor unit increases, the air conditioning capacity of the air conditioner also increases as the air volume of the indoor unit increases. Therefore, especially when the maximum set air volume that can be selected by the user is selected, the air conditioning capacity at the minimum speed of the compressor increases, and the frequency of occurrence of operation / stop of the compressor also increases. End up.

本発明は、上記を鑑みてなされたものであって、圧縮機の運転・停止の繰り返しを抑制し、エネルギー消費効率が改善された空気調和機を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the air conditioner by which the repetition of the driving | operation / stop of a compressor was suppressed and energy consumption efficiency was improved.

本発明の空気調和機は、冷媒を圧縮する圧縮機と、前記冷媒により室内空気の加熱又は冷却を行う室内熱交換器と、を備えた冷凍サイクルと、前記室内熱交換器に前記室内空気を送風する室内送風機と、室外空気の温度を測定する室外温度センサと、予め設定された室内設定温度を記憶する記憶手段と、前記圧縮機及び前記室内送風機の回転数を制御する制御手段と、を有し、前記制御手段は、前記室外温度センサで測定した室外温度と前記室内設定温度の差が狭まるに従い、前記室内送風機及び前記圧縮機の回転数を低下させる制御を行うことを特徴とする   The air conditioner of the present invention includes a compressor that compresses a refrigerant, an indoor heat exchanger that heats or cools indoor air using the refrigerant, and the indoor air that is supplied to the indoor heat exchanger. An indoor fan for blowing air, an outdoor temperature sensor for measuring the temperature of outdoor air, a storage means for storing a preset indoor set temperature, and a control means for controlling the rotation speed of the compressor and the indoor fan. And the control means performs control to reduce the rotation speed of the indoor blower and the compressor as a difference between the outdoor temperature measured by the outdoor temperature sensor and the indoor set temperature becomes narrower.

本発明に係る空気調和機は、室外温度センサで測定した室外温度と設定温度の差が狭まるに従い、圧縮機の回転数だけでなく室内送風機の回転数も低下させるため、圧縮機の運転・停止を繰り返される室外温度と設定温度の差が狭まり、頻繁な圧縮機の運転・停止を抑制され、エネルギー消費効率が改善する。   The air conditioner according to the present invention reduces not only the rotation speed of the compressor but also the rotation speed of the indoor blower as the difference between the outdoor temperature measured by the outdoor temperature sensor and the set temperature is reduced. The difference between the outdoor temperature and the set temperature is repeated, and frequent compressor operation / stop is suppressed, improving energy consumption efficiency.

本発明に係る空気調和機の冷房運転時の概略図である。It is the schematic at the time of the cooling operation of the air conditioner which concerns on this invention. 本発明に係る空気調和機の暖房運転時の概略図である。It is the schematic at the time of heating operation of the air conditioner which concerns on this invention. 本発明に係る空気調和機のブロック線図である。It is a block diagram of the air conditioner concerning the present invention. 従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する 空調負荷と空気調和機の空調能力を表したグラフである。It is the graph showing the air-conditioning load and the air-conditioning capability of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation related to the conventional air conditioner. 従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する 室内ファンモータの回転数を表したグラフである。It is the graph showing the rotation speed of the indoor fan motor with respect to the difference of the outdoor temperature at the time of the cooling operation which concerns on the conventional air conditioner, and indoor setting temperature. 従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する 圧縮機の回転数を表したグラフである。It is the graph showing the rotation speed of the compressor with respect to the difference of the outdoor temperature at the time of the cooling operation which concerns on the conventional air conditioner, and indoor setting temperature. 実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差 に対する空調負荷と空気調和機の空調能力を表したグラフである。6 is a graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during cooling operation according to the air conditioner of Embodiment 1. 実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差 に対する室内ファンモータの回転数を表したグラフである。5 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of Embodiment 1. 実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差 に対する圧縮機の回転数を表したグラフである4 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during cooling operation according to the air conditioner of Embodiment 1. 実施の形態1の空気調和機に係る冷房運転時の空調能力の制御のフローチ ャートである。2 is a flowchart for controlling the air conditioning capability during cooling operation according to the air conditioner of Embodiment 1. FIG. 実施の形態1の変形例における室内設定温度Tmと閾温度T12の対応表 である。7 is a correspondence table between indoor set temperature Tm and threshold temperature T12 in a modification of the first embodiment. 実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の 差に対する空調負荷と空気調和機の空調能力を表したグラフである。5 is a graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of Embodiment 1. FIG. 実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の 差に対する室内ファンモータの回転数を表したグラフである。6 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of Embodiment 1. 実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の 差に対する圧縮機の回転数を表したグラフである。6 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of Embodiment 1. 実施の形態1の空気調和機に係る暖房運転時の空調能力の制御のフローチ ャートである。3 is a flowchart for controlling the air-conditioning capability during the heating operation according to the air conditioner of Embodiment 1. FIG. 実施の形態2の空気調和機に係る冷房運転時の室外温度と室内設定温度の 差に対する室内ファンモータの回転数を表したグラフである。6 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of Embodiment 2. 実施の形態2の空気調和機に係る冷房運転時の室外温度と室内設定温度の 差に対する圧縮機の回転数を表したグラフである。6 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during cooling operation according to the air conditioner of Embodiment 2. 実施の形態2の空気調和機に係る冷房運転時の空調能力の制御のフローチ ャートである。6 is a flowchart for controlling the air-conditioning capacity during cooling operation according to the air conditioner of Embodiment 2. FIG. 実施の形態2の空気調和機に係る暖房運転時の空調能力の制御のフローチ ャートである。6 is a flowchart for controlling the air-conditioning capacity during heating operation according to the air conditioner of Embodiment 2. FIG. 実施の形態3の空気調和機に係る冷房運転時の室外温度と室内設定温度の 差に対する室内ファンモータの回転数を表したグラフである。10 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of Embodiment 3. 実施の形態3の空気調和機に係る冷房運転時の室外温度と室内設定温度の 差に対する圧縮機の回転数を表したグラフである。10 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during cooling operation according to the air conditioner of Embodiment 3. 実施の形態3の空気調和機に係る冷房運転時の空調能力の制御のフローチ ャートである。6 is a flowchart for controlling the air-conditioning capacity during cooling operation according to the air conditioner of Embodiment 3. FIG. 実施の形態3の空気調和機に係る暖房運転時の空調能力の制御のフローチ ャートである。6 is a flowchart for controlling the air-conditioning capacity during heating operation according to the air conditioner of Embodiment 3. FIG.

実施の形態1.
まずは本発明に係る空気調和機の構成について説明を行う。図1は、本発明に係る空気調和機の冷房運転時の概略図である。図2は、本発明に係る空気調和機の暖房運転時の概略図である。空気調和機1は、室外機10と室内機20とによって構成されており、室外機10は室外に配置され、室内機20は室内に配置される。また、室外機10と室内機20は冷媒配管及び通信線によって接続されている。
Embodiment 1 FIG.
First, the configuration of the air conditioner according to the present invention will be described. FIG. 1 is a schematic view of the air conditioner according to the present invention during cooling operation. FIG. 2 is a schematic view during the heating operation of the air conditioner according to the present invention. The air conditioner 1 is composed of an outdoor unit 10 and an indoor unit 20, and the outdoor unit 10 is disposed outdoors and the indoor unit 20 is disposed indoors. The outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe and a communication line.

室外機10の内部には、冷媒を吸入し圧縮してから吐出する圧縮機11と、Aポート、Bポート、Cポート及びDポートの4つの接続口を有する四方弁12と、冷媒の減圧を行う膨張弁13と、冷媒と室外空気の間で熱交換を行わせる室外熱交換器14と、室外熱交換器14に室外空気を送風する室外送風機15と、室外空気の温度を測定する室外温度センサ16が設けられている。また、室内機20の内部には、冷媒と室内空気の間で熱交換を行わせる室内熱交換器21と、室内熱交換器21に室内空気を送風する室内送風機22が設けられている。室内送風機22は、回転することで室内空気の流れを形成する室内ファン22aと、室内ファン22aを回転させる室内ファンモータ22bより構成されている。そのため、室内送風機22の回転数は室内ファンモータ22bの回転数が該当する。   In the outdoor unit 10, a compressor 11 that sucks and compresses the refrigerant and discharges it, a four-way valve 12 having four connection ports of A port, B port, C port and D port, and decompression of the refrigerant. An expansion valve 13 to be performed, an outdoor heat exchanger 14 that exchanges heat between the refrigerant and the outdoor air, an outdoor fan 15 that blows outdoor air to the outdoor heat exchanger 14, and an outdoor temperature that measures the temperature of the outdoor air A sensor 16 is provided. An indoor heat exchanger 21 that exchanges heat between the refrigerant and room air and an indoor blower 22 that blows room air to the indoor heat exchanger 21 are provided inside the indoor unit 20. The indoor blower 22 includes an indoor fan 22a that rotates to form a flow of indoor air, and an indoor fan motor 22b that rotates the indoor fan 22a. Therefore, the rotation speed of the indoor fan 22 corresponds to the rotation speed of the indoor fan motor 22b.

空気調和機1には、圧縮機11、四方弁12、膨張弁13、室外熱交換器14及び室内熱交換器21が冷媒配管で接続されることによって、内部に冷媒が循環する冷凍サイクルが構成されている。具体的には、四方弁12のAポートは室内熱交換器21と、Bポートは圧縮機11の吐出口と、Cポートは室外熱交換器14と、Dポートは圧縮機11の吸入口と、それぞれ冷媒配管によって接続され、室外熱交換器14と室内熱交換器21は膨張弁13を介して冷媒配管によって接続されることで、冷凍サイクルは構成されている。冷凍サイクルは、四方弁12によって冷媒の流れが切り替わることにより、室内の空気を冷却する冷房運転と、室内の空気を加熱する暖房運転を切り替えることができる。   The air conditioner 1 includes a compressor 11, a four-way valve 12, an expansion valve 13, an outdoor heat exchanger 14, and an indoor heat exchanger 21 connected by a refrigerant pipe, thereby configuring a refrigeration cycle in which refrigerant circulates. Has been. Specifically, the A port of the four-way valve 12 is the indoor heat exchanger 21, the B port is the outlet of the compressor 11, the C port is the outdoor heat exchanger 14, and the D port is the inlet of the compressor 11. The refrigeration cycle is configured by connecting the outdoor heat exchanger 14 and the indoor heat exchanger 21 via the expansion valve 13 and the refrigerant pipe, respectively. The refrigeration cycle can be switched between a cooling operation for cooling indoor air and a heating operation for heating indoor air by switching the refrigerant flow by the four-way valve 12.

冷房運転時では、図1のように四方弁12はAポートとDポートを接続し、BポートとCポートを接続する。冷房運転時には、圧縮機11より吐出した高温高圧の気体状態の冷媒は、四方弁12を経由して室外熱交換器14へ送られる。室外熱交換器14は凝縮器として機能し、冷媒は室外空気に熱を放出し、低温高圧の液体状態に変化する。液体状態に変化した冷媒は、膨張弁13を通過することで減圧膨張し、低温低圧の液体状態となって室内熱交換器21へ流入する。室内熱交換器21は蒸発器として機能するため、冷媒は室内空気より熱を吸熱し気化し、高温低圧のガス状態に変化する。高温低圧のガス状態の冷媒は四方弁12を経由して圧縮機11に吸入され、圧縮機11により再び高温高圧の気体状態に戻る。冷房運転時にはこのように冷媒が循環するため、室内の空気は室内熱交換器21へ流入する低温低圧の冷媒によって冷却される。   During the cooling operation, as shown in FIG. 1, the four-way valve 12 connects the A port and the D port, and connects the B port and the C port. During the cooling operation, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 11 is sent to the outdoor heat exchanger 14 via the four-way valve 12. The outdoor heat exchanger 14 functions as a condenser, and the refrigerant releases heat to the outdoor air and changes to a low-temperature and high-pressure liquid state. The refrigerant that has changed to the liquid state expands under reduced pressure by passing through the expansion valve 13, enters a low-temperature low-pressure liquid state, and flows into the indoor heat exchanger 21. Since the indoor heat exchanger 21 functions as an evaporator, the refrigerant absorbs heat from the indoor air and vaporizes, and changes to a high-temperature and low-pressure gas state. The high-temperature and low-pressure gas state refrigerant is sucked into the compressor 11 via the four-way valve 12, and returns to the high-temperature and high-pressure gas state again by the compressor 11. Since the refrigerant circulates in this way during the cooling operation, the indoor air is cooled by the low-temperature and low-pressure refrigerant flowing into the indoor heat exchanger 21.

暖房運転時では、図2のように四方弁12はAポートとBポートを接続し、CポートとDポートを接続する。暖房運転時には、圧縮機11より吐出した高温高圧の気体状態の冷媒は、四方弁12を経由して室内熱交換器21へ送られる。室内熱交換器21は凝縮器として機能し、冷媒は室内空気に熱を放出し、低温高圧の液体状態に変化する。液体状態に変化した冷媒は、膨張弁13を通過することで減圧膨張し、低温低圧の液体状態となって室外熱交換器14へ流入する。室外熱交換器14は蒸発器として機能するため、冷媒は室外空気より熱を吸熱し気化し、高温低圧のガス状態に変化する。高温低圧のガス状態の冷媒は四方弁12を経由して圧縮機11に吸入され、圧縮機11により再び高温高圧の気体状態に戻る。暖房運転時にはこのように冷媒が循環するため、室内の空気は室内熱交換器21へ流入する高温高圧の冷媒によって加熱される。   During the heating operation, the four-way valve 12 connects the A port and the B port and connects the C port and the D port as shown in FIG. During the heating operation, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 11 is sent to the indoor heat exchanger 21 via the four-way valve 12. The indoor heat exchanger 21 functions as a condenser, and the refrigerant releases heat to the indoor air and changes to a low-temperature and high-pressure liquid state. The refrigerant that has changed to a liquid state expands under reduced pressure by passing through the expansion valve 13, enters a low-temperature low-pressure liquid state, and flows into the outdoor heat exchanger 14. Since the outdoor heat exchanger 14 functions as an evaporator, the refrigerant absorbs heat from the outdoor air and vaporizes, and changes to a high-temperature and low-pressure gas state. The high-temperature and low-pressure gas state refrigerant is sucked into the compressor 11 via the four-way valve 12, and returns to the high-temperature and high-pressure gas state again by the compressor 11. Since the refrigerant circulates in this way during the heating operation, the indoor air is heated by the high-temperature and high-pressure refrigerant flowing into the indoor heat exchanger 21.

また、圧縮機11の回転数が上がるほど冷媒の単位時間あたりの流量は増加するため、室内熱交換21へ流入する冷媒と室内空気との熱交換量が多くなるので、空気調和機1の空調能力は増加する。さらに、室内ファンモータ22bの回転数RFが上がるほど室内熱交換器21へ送風される室内空気の流量が増加するため、より多くの室内空気が室内熱交換器21と熱交換を行うので、空気調和機1の空調能力は増加する。   Further, since the flow rate of the refrigerant per unit time increases as the rotational speed of the compressor 11 increases, the amount of heat exchange between the refrigerant flowing into the indoor heat exchange 21 and the room air increases, so that the air conditioner 1 is air-conditioned. Ability increases. Furthermore, since the flow rate of the indoor air blown to the indoor heat exchanger 21 increases as the rotational frequency RF of the indoor fan motor 22b increases, more indoor air exchanges heat with the indoor heat exchanger 21. The air conditioning capacity of the harmony machine 1 increases.

図3は、本発明に係る空気調和機のブロック線図である。空気調和機1には、制御装置30と、少なくともユーザーが室内設定温度Tm及び室内機20の風量の選択が可能な操作部40が設けられている。制御装置30には、少なくとも圧縮機11、四方弁12、室外温度センサ16、室内ファンモータ22b及び操作部40が通信可能に接続されている。また、制御装置30には、操作部40より選択された室内設定温度Tm及び風量と、予め定められた閾温度差T1を記憶する記憶部31と、圧縮機11,四方弁12及び室内ファンモータ22bの制御を行う制御部32と、室内設定温度Tmと室外温度Tの温度差を演算する演算部33と、室内設定温度Tmと室外温度Tの温度差を閾温度差T1と比較する判定部34と、を有している。   FIG. 3 is a block diagram of the air conditioner according to the present invention. The air conditioner 1 is provided with a control device 30 and an operation unit 40 that allows at least a user to select the indoor set temperature Tm and the air volume of the indoor unit 20. At least the compressor 11, the four-way valve 12, the outdoor temperature sensor 16, the indoor fan motor 22b, and the operation unit 40 are communicably connected to the control device 30. The control device 30 also includes a storage unit 31 that stores the indoor set temperature Tm and air volume selected by the operation unit 40 and a predetermined threshold temperature difference T1, the compressor 11, the four-way valve 12, and the indoor fan motor. A control unit 32 that performs control of 22b, a calculation unit 33 that calculates a temperature difference between the indoor set temperature Tm and the outdoor temperature T, and a determination unit that compares the temperature difference between the indoor set temperature Tm and the outdoor temperature T with a threshold temperature difference T1. 34.

さらに、記憶部31は、予め異なった風量がそれぞれ設定された複数の設定風量と、それぞれの設定風量に相当する室内ファンモータ22bの回転数である設定回転数RFと、設定風量に対応しており当該設定風量(本発明の第1の設定風量に相当)に相当する設定回転数RF(本発明の第1の設定回転数に相当)よりも低く予め設定された低下設定回転数RF(本発明の第3の設定回転数に相当)と、を記憶している。低下設定回転数RFは、当該低下設定回転数RFに対応した設定風量より一つ下の段階の設定風量(本発明の第2の設定風量に相当)における設定回転数RF(本発明の第2の設定回転数に相当)よりも高い回転数に設定されている。例えば「強」「中」「弱」の3段階の設定風量を用意しており、「強」の設定回転数をRFL1、「強」の低下設定回転数をRFL2、「中」の設定回転数をRFM1、「中」の低下設定回転数をRFM2、「弱」の設定回転数をRFS1、「弱」の低下設定回転数をRFS2とした場合、RFL1>RFL2>RFM1>RFM2>RFS1>RFS2の関係が成立する。この例の場合、本発明における第1の設定風量を「強」と仮定すると、第2の設定風量は「中」に、第1の設定回転数はRFL1に、第2の設定回転数はRFM1に、第3の設定回転数はRFL2に、それぞれ相当する。さらに第1の設定風量を「中」と仮定すると、第2の設定風量は「弱」に、第1の設定回転数はRFM1に、第2の設定回転数はRFS1に、第3の設定回転数はRFM2に、それぞれ相当する。また、室内ファンモータ22bの回転数が小さくなりすぎると、回転むらによる振動や、冷房運転時に室内熱交換器21で冷媒が十分に気化せず液体状態で圧縮機11に吸入されて故障の原因になるなどの問題が生じるため、室内ファンモータ22bには最低回転数が設定されていることが多い。このため、最も風量が少ない設定風量における低下設定回転数RFは、室内ファンモータ22bの最低回転数よりも高く設定されている。 Further, the storage unit 31 corresponds to a plurality of set air volumes each having a different air volume set in advance, a set rotation speed RF 1 that is the rotation speed of the indoor fan motor 22b corresponding to each set air volume, and the set air volume. the set airflow is set rotational speed RF corresponding to the (first set air volume corresponding to the present invention) 1 (first set corresponding to the rotational speed of the present invention) preset reduced set rotational speed RF lower than 2 (corresponding to the third set rotational speed of the present invention). Lowering speed setting RF 2 is set air volume of the stage of one lower than the set air amount corresponding to the decrease speed setting RF 2 set rotational speed RF 1 (present invention in (a second corresponding to the set air volume of the present invention) Is equivalent to the second set rotational speed). For example, “High”, “Medium”, and “Low” are set in three stages. The “High” setting speed is set to RF L1 , the “Low” setting speed is set to RF L2 , and “Medium” is set. When the rotational speed is RF M1 , the lower setting rotational speed of “medium” is RF M2 , the lower rotational speed setting of “weak” is RF S1, and the lower rotational speed setting of “weak” is RF S2 , RF L1 > RF L2 > The relationship RF M1 > RF M2 > RF S1 > RF S2 is established. In this example, assuming that the first set air volume in the present invention is “strong”, the second set air volume is “medium”, the first set speed is RF L1 , and the second set speed is The third set rotational speed corresponds to RF M1 and RF L2 , respectively. Further, assuming that the first set air volume is “medium”, the second set air volume is “weak”, the first set speed is RF M1 , the second set speed is RF S1 , and the third The set rotational speed corresponds to RF M2 . Also, if the rotational speed of the indoor fan motor 22b becomes too small, vibration due to uneven rotation, or the refrigerant is not sufficiently vaporized in the indoor heat exchanger 21 during the cooling operation and is sucked into the compressor 11 in a liquid state, causing the failure. Therefore, the indoor fan motor 22b is often set to a minimum rotational speed. Therefore, most air volume decrease setting rotational speed RF 2 in a small set air amount is set higher than the minimum rotational speed of the indoor fan motor 22b.

室内機20の風量の設定は、操作部40よりユーザーが設定風量の中よりいずれか一つを選択し、選択された設定風量に応じて室内ファンモータ22bの回転数RFを設定回転数RFに制御することにより達成している。例えば、操作部40より設定風量の中から「強」を選択されると、室内ファンモータ22bは回転数RFL1で回転し、室内機20の風量は「強」の風量に設定される。 Air volume setting of the indoor unit 20, operation unit 40 from the user selects one from among the set air volume, the selected set airflow indoor fan motor 22b rpm RF setting rotational speed RF 1 in response to It has been achieved by controlling. For example, when “strong” is selected from the set air volume from the operation unit 40, the indoor fan motor 22b rotates at the rotation speed RF L1 , and the air volume of the indoor unit 20 is set to the “strong” air volume.

次に従来の空気調和機の場合における空調能力の制御について説明を行う。図4は、従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する空調負荷と空気調和機の空調能力を表したグラフである。図5は、従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する室内ファンモータの回転数を表したグラフである。図6は、従来の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する圧縮機の回転数を表したグラフである。なお、従来の空気調和機の構成は実施の形態1の空気調和機1と同様であり、図1のように四方弁はAポートとDポートを接続し、BポートとCポートを接続され空気調和機は冷房運転の状態である。Tmは、操作部40で選択された室内空気の室内設定温度であり、制御部32は、室内の温度を室内設定温度Tmで保つように空気調和機の制御を行う。なお、図4、図5及び図6のグラフは、室内温度はTmと等しい場合におけるグラフである。   Next, the control of the air conditioning capacity in the case of a conventional air conditioner will be described. FIG. 4 is a graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation of the conventional air conditioner. FIG. 5 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the conventional air conditioner. FIG. 6 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation of the conventional air conditioner. The configuration of the conventional air conditioner is the same as that of the air conditioner 1 of the first embodiment. As shown in FIG. 1, the four-way valve connects the A port and the D port, and connects the B port and the C port. The conditioner is in a cooling operation state. Tm is the indoor set temperature of the indoor air selected by the operation unit 40, and the control unit 32 controls the air conditioner so as to keep the indoor temperature at the indoor set temperature Tm. In addition, the graph of FIG.4, FIG5 and FIG.6 is a graph in case room temperature is equal to Tm.

本発明における空調負荷は、室内の温度,湿度又はエンタルピー等の空気状態を一定に保つために室外から室内へ侵入する熱量を除くために必要な熱負荷である。そのため、空調負荷は、一般的に室外温度Tと室内温度つまり室内設定温度Tmの差が拡大するほど大きくなる。また、室外温度Tと室内設定温度Tmの差が0になるTm=Tの場合では、室外から室内へ侵入する熱量は無くなるため、空調負荷も0となる。また、図4は冷房運転時を想定しているため、室外温度が室内設定温度Tmに比べて小さい、Tm>Tの場合における空調負荷は0と考える。つまり、Tm≧Tの場合では空調負荷は0となり、Tm<Tの場合では室外温度Tと室内設定温度Tmの差が拡大するほど、つまり(T−Tm)の値が大きいほど空調負荷が大きくなるため図4のようなグラフとなる。   The air conditioning load in the present invention is a heat load necessary for removing the amount of heat entering the room from the outside in order to keep the air condition such as the room temperature, humidity or enthalpy constant. Therefore, the air conditioning load generally increases as the difference between the outdoor temperature T and the indoor temperature, that is, the indoor set temperature Tm increases. Further, in the case of Tm = T where the difference between the outdoor temperature T and the indoor set temperature Tm is 0, the amount of heat entering the room from the outside disappears, so the air conditioning load is also 0. Further, since FIG. 4 assumes a cooling operation, the air conditioning load is considered to be 0 when the outdoor temperature is smaller than the indoor set temperature Tm and Tm> T. That is, when Tm ≧ T, the air conditioning load is 0. When Tm <T, the air conditioning load increases as the difference between the outdoor temperature T and the indoor set temperature Tm increases, that is, as the value of (T−Tm) increases. Therefore, the graph is as shown in FIG.

従来の空気調和機の場合では、制御装置30は、室外温度センサ16が測定した室外温度Tを取得し、予め記憶部31に記憶されている室内設定温度Tmと、選択された設定風量と、測定した室外温度Tに応じて圧縮機11の回転数を制御し、空調能力を空調負荷と略同等になるように制御をする。この際、圧縮機11の回転数RCの制御方法は、制御装置30が室外温度Tと室内設定温度Tmの差より空調負荷を演算し、その演算結果と選択された設定風量に応じて決定する方法、又は予め室外温度Tと室内設定温度Tmの差及び設定風量によって圧縮機11の回転数が特定されるように関連付けが制御装置30に記憶されており、その関連付けと制御時の室内設定温度Tmと室外温度Tに応じて決定する方法がある。また、室内ファンモータ22bの回転数RFは、室内設定温度と室外温度に関わらず、操作部40より選択された設定風量に応じた設定回転数RFで一定であり、例えば「強」が設定されている場合は、室内ファンモータ22bの回転数RFはRFL1で一定である。 In the case of the conventional air conditioner, the control device 30 acquires the outdoor temperature T measured by the outdoor temperature sensor 16, the indoor set temperature Tm stored in the storage unit 31 in advance, the selected set air volume, The rotational speed of the compressor 11 is controlled according to the measured outdoor temperature T, and the air conditioning capacity is controlled to be substantially equal to the air conditioning load. At this time, the control method of the rotational speed RC of the compressor 11 is determined by the control device 30 calculating the air conditioning load from the difference between the outdoor temperature T and the indoor set temperature Tm according to the calculation result and the selected set air volume. The association is stored in the control device 30 so that the rotational speed of the compressor 11 is specified by the method or the difference between the outdoor temperature T and the indoor set temperature Tm and the set air volume, and the association and the indoor set temperature at the time of control are stored. There is a method of determining according to Tm and outdoor temperature T. The rotational speed RF of the indoor fan motor 22b, regardless of the indoor set temperature and the outdoor temperature is constant at the set rotational speed RF 1 in accordance with the set air amount that has been selected by the operation section 40, for example, "HIGH" setting If it is, the rotational frequency RF of the indoor fan motor 22b is constant at RF L1 .

室内ファンモータ22bの回転数RFが操作部40より選択された設定風量に応じた設定回転数RFであり、圧縮機11の回転数が最低回転数RCminである場合の空調能力と同等の空調負荷となる室外温度Tと室内設定温度Tmの差を限界温度差T2とする。従来の空気調和機では、(T−Tm)≧T2の場合は圧縮機11の回転数を制御することで空調能力を空調負荷と略同等になるように制御ができるが、(T−Tm)<T2の場合は圧縮機11を最低回転数RCminとしても空調能力が空調負荷を上回るため、圧縮機11は運転・停止を繰り返さなければならない。そのため、(T−Tm)<T2の場合は、圧縮機11が停止時に冷媒及び冷凍サイクルを構成する部材がそれぞれ室内温度又は室外温度へ近づいてしまい、圧縮機11を運転する際には冷媒及び冷凍サイクルを構成する部材を再び冷凍サイクル運転時の温度に戻す必要がある。また、一般的に圧縮機11において、起動を開始するための消費電力と、回転を維持するための消費電力では、起動を開始するための消費電力の方が多い。このため、最低回転数RCminで連続運転する場合よりも運転・停止を繰り返す場合の方が、エネルギー消費効率は悪化する。 A set rotational speed RF 1 the rotational speed RF of the indoor fan motor 22b is corresponding to the set air amount is selected from the operation unit 40, the air-conditioning capacity equivalent to the case where the rotational speed of the compressor 11 is minimum rotational speed RC min The difference between the outdoor temperature T, which is an air conditioning load, and the indoor set temperature Tm is defined as a limit temperature difference T2. In the conventional air conditioner, when (T−Tm) ≧ T2, the air conditioning capacity can be controlled to be substantially equal to the air conditioning load by controlling the rotation speed of the compressor 11, but (T−Tm). <for exceeding the air conditioning capability is the air conditioning load even minimum rotation speed RC min compressor 11 in the case of T2, the compressor 11 must repeat the operation and stop. Therefore, when (T−Tm) <T2, when the compressor 11 is stopped, the refrigerant and the members constituting the refrigeration cycle approach the indoor temperature or the outdoor temperature, respectively. It is necessary to return the members constituting the refrigeration cycle to the temperature during the refrigeration cycle operation again. Further, in general, in the compressor 11, the power consumption for starting activation is larger in the power consumption for starting activation and the power consumption for maintaining rotation. Therefore, towards the case of repeating operation and stop than when continuous operation for a minimum rotational speed RC min is the energy consumption efficiency is deteriorated.

次に本発明の実施の形態1の空気調和機の場合における空調能力の制御について説明を行う。図7は、実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する空調負荷と空気調和機の空調能力を表したグラフである。図8は、実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する室内ファンモータの回転数を表したグラフである。図9は、実施の形態1の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する圧縮機の回転数を表したグラフである。また、空気調和機は、図1のように四方弁はAポートとDポートを接続し、BポートとCポートを接続され、冷房運転の状態である。   Next, control of the air conditioning capability in the case of the air conditioner of Embodiment 1 of the present invention will be described. FIG. 7 is a graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation of the air conditioner of the first embodiment. FIG. 8 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the first embodiment. FIG. 9 is a graph showing the number of rotations of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the first embodiment. In the air conditioner, the four-way valve is connected to the A port and the D port, and the B port and the C port are connected as shown in FIG.

実施の形態1の空気調和機1の場合では、制御装置30は、室外温度センサ16が測定した室外温度Tを取得し、予め記憶されている室内設定温度Tmと測定した室外温度Tを基に圧縮機11及び室内ファンモータ22bの回転数を制御し、空調能力を空調負荷と略同等になるように制御をする。具体的には、室内ファンモータ22bの回転数RFは、室外温度Tと室内設定温度Tmの差が予め設定された閾温度差T1以上の場合には、操作部40より選択された設定風量に応じた設定回転数RFで回転し、閾温度差T1よりも小さい場合には、操作部40より選択された設定風量に応じた低下設定回転数RFで回転する。例えば、設定風量が「強」を選択されている場合では、(T−Tm)≧T1の領域では室内ファンモータ22bは設定回転数のRFL1で回転し、(T−Tm)<T1の領域では室内ファンモータ22bは低下設定回転数のRFL2で回転する。なお、閾温度差T1は、限界温度差T2よりも高い温度差に設定され、T2<T1が成立する。 In the case of the air conditioner 1 according to the first embodiment, the control device 30 acquires the outdoor temperature T measured by the outdoor temperature sensor 16, and based on the stored indoor set temperature Tm and the measured outdoor temperature T. The number of revolutions of the compressor 11 and the indoor fan motor 22b is controlled to control the air conditioning capacity so as to be substantially equal to the air conditioning load. Specifically, when the difference between the outdoor temperature T and the indoor set temperature Tm is equal to or greater than a preset threshold temperature difference T1, the rotational frequency RF of the indoor fan motor 22b is set to the set air volume selected from the operation unit 40. rotates at the set rotational speed RF 1 in accordance, it is smaller than the threshold temperature difference T1 rotates at a reduced speed setting RF 2 in accordance with the set air amount is selected from the operation unit 40. For example, when “strong” is selected as the set air volume, the indoor fan motor 22b rotates at the set rotation speed RF L1 in the region of (T−Tm) ≧ T1, and the region of (T−Tm) <T1. Then, the indoor fan motor 22b rotates at RF L2 which is the lower set rotational speed. The threshold temperature difference T1 is set to a temperature difference higher than the limit temperature difference T2, and T2 <T1 is established.

また、圧縮機11は、制御装置30によって空調能力を空調負荷と略同等になるように制御される。従来の空気調和機とは異なり、室外温度Tと室内設定温度Tmの差が閾温度差T1の場合に室内ファンモータ22bの回転数が変更されるため、それに応じて圧縮機11の回転数も閾温度差T1で変化する。ただし、室内ファンモータ22bの回転数は室外温度Tと室内設定温度Tmによって確定するため、従来の空気調和機と同じく、制御装置30は室内設定温度Tmと、測定した室外温度Tと、選択された設定風量に応じて圧縮機11の回転数を制御することができる。   Further, the compressor 11 is controlled by the control device 30 so that the air conditioning capability is substantially equal to the air conditioning load. Unlike the conventional air conditioner, when the difference between the outdoor temperature T and the indoor set temperature Tm is the threshold temperature difference T1, the rotational speed of the indoor fan motor 22b is changed, and accordingly the rotational speed of the compressor 11 is also changed. It changes with the threshold temperature difference T1. However, since the rotation speed of the indoor fan motor 22b is determined by the outdoor temperature T and the indoor set temperature Tm, the control device 30 selects the indoor set temperature Tm and the measured outdoor temperature T as in the conventional air conditioner. The rotational speed of the compressor 11 can be controlled according to the set air volume.

実施の形態1において、空調能力の制御を行うためのフローチャートについて説明をする。図10は、実施の形態1の空気調和機に係る冷房運転時の空調能力の制御のフローチャートである。ステップS1では、制御装置30は、室外温度Tを室外温度センサ16より取得する。室外温度Tを取得後、ステップS2に進み、演算部33は、ステップS1で取得した室外温度Tと記憶部31に記憶されている室内設定温度Tmの差(T−Tm)を演算する。(T−Tm)の演算後、ステップS3に進み、判定部34は、(T−Tm)の演算結果と予め設定されている閾温度差T1とを比較し閾温度差T1の方が高いか、つまり(T−Tm)<T1の条件を満たすかを判定する。条件を満たす場合はステップS4へ進み、制御部32は、室内ファンモータ22bの回転数RFを操作部40より選択された設定風量に応じた低下設定回転数RFに制御する。条件を満たさない場合はステップS5に進み、制御部32は、室内ファンモータ22bの回転数RFを操作部40より選択された設定風量に応じた設定回転数RFに制御する。ステップS4及びステップS5において室内ファンモータ22bの回転数RFを制御後、ステップS6に進み、制御部32は、圧縮機11の回転数RCを室外温度Tと、室内設定温度Tmと、選択された設定風量に基づき制御する。圧縮機11の回転数を制御後、ステップS1へ戻る。 In the first embodiment, a flowchart for controlling the air conditioning capability will be described. FIG. 10 is a flowchart of control of the air conditioning capability during the cooling operation according to the air conditioner of the first embodiment. In step S <b> 1, the control device 30 acquires the outdoor temperature T from the outdoor temperature sensor 16. After acquiring the outdoor temperature T, the process proceeds to step S <b> 2, and the calculation unit 33 calculates the difference (T−Tm) between the outdoor temperature T acquired in step S <b> 1 and the indoor set temperature Tm stored in the storage unit 31. After the calculation of (T−Tm), the process proceeds to step S3, and the determination unit 34 compares the calculation result of (T−Tm) with a preset threshold temperature difference T1 to determine whether the threshold temperature difference T1 is higher. That is, it is determined whether or not the condition of (T−Tm) <T1 is satisfied. If the condition is satisfied, the process proceeds to step S4, the control unit 32 controls the lowering speed setting RF 2 in accordance with the set air amount is selected from the operation unit 40 the rotational speed RF of the indoor fan motor 22b. If the condition is not satisfied processing proceeds to a step S5, the control unit 32 controls the setting rotational speed RF 1 in accordance with the set air amount is selected from the operation unit 40 the rotational speed RF of the indoor fan motor 22b. In step S4 and step S5, after controlling the rotational speed RF of the indoor fan motor 22b, the process proceeds to step S6, and the control unit 32 selects the rotational speed RC of the compressor 11 as the outdoor temperature T and the indoor set temperature Tm. Control based on the set air volume. After controlling the rotation speed of the compressor 11, the process returns to step S1.

実施の形態1における空気調和機1は(T−Tm)<T1の場合では室内ファンモータ22bは設定回転数RFよりも低い回転数である低下設定回転数RFで回転する。そのため、実施の形態1における空気調和機1は室内ファンモータ22bの回転数がRFであり、圧縮機11の回転数が最低回転数RCminとした場合の空調能力と同等の空調負荷となる室外温度Tと室内設定温度Tmの差である第二限界温度差T3まで下げることができる。設定回転数RFと低下設定回転数RFの関係は、RF>RFであるので、限界温度差T2と第二限界温度差T3の間には、T2>T3の関係が成り立ち、実施の形態1における空気調和機1は従来の空気調和機よりも空調能力を空調負荷と略同等になるように制御できる範囲が広い。つまり、実施の形態1における空気調和機1の方が、従来の空気調和機よりも圧縮機の運転・停止を繰り返しが発生する室外温度Tと室内設定温度Tmの差がより狭くなり、頻繁な圧縮機の運転・停止が抑制される。そのため、圧縮機の運転・停止の繰り返しによるエネルギー消費量が抑制され、エネルギー消費効率が改善する。 Air conditioner 1 of the first embodiment is rotated in the (T-Tm) <In the case of T1 indoor fan motor 22b is lower rpm than the set rotating speed RF 1 drop speed setting RF 2. Therefore, the air conditioner 1 according to Embodiment 1 has an air conditioning load equivalent to the air conditioning capacity when the rotation speed of the indoor fan motor 22b is RF 2 and the rotation speed of the compressor 11 is the minimum rotation speed RC min. It can be lowered to a second limit temperature difference T3, which is the difference between the outdoor temperature T and the indoor set temperature Tm. Since the relationship between the set rotational speed RF 1 and the lower set rotational speed RF 2 is RF 1 > RF 2 , a relationship of T2> T3 is established between the limit temperature difference T2 and the second limit temperature difference T3. The air conditioner 1 in the first embodiment has a wider range in which the air conditioning capability can be controlled to be substantially equal to the air conditioning load, as compared with the conventional air conditioner. That is, in the air conditioner 1 according to the first embodiment, the difference between the outdoor temperature T and the indoor set temperature Tm at which the compressor is repeatedly operated / stopped is narrower than that of the conventional air conditioner. The operation / stop of the compressor is suppressed. Therefore, energy consumption due to repeated operation / stop of the compressor is suppressed, and energy consumption efficiency is improved.

以上のように、実施の形態1の空気調和装置は、室外温度Tと、室内設定温度Tmの差が閾温度T1よりも低い場合に室内ファンモータ22bの回転数を下げるように制御するため、頻繁な圧縮機の運転・停止を抑制され、エネルギー消費効率が改善する。特に、設定風量が「強」の状態などの室内ファンモータ22bの回転数が他の設定風量と比べて高い場合では、圧縮機の運転・停止の繰り返しが発生する限界温度差T2が他の設定風量時と比べて高い温度差であるため、より高い効果を得ることができる。さらに、低下設定回転数RFは、当該低下設定回転数RFの設定風量より下の段階の設定風量における設定回転数RFよりも高い回転数であるため、室内ファンモータ22bの回転数は(T−Tm)<T1の場合であっても下の段階の設定風量以下にはならないため、ユーザーが室内機の風量の変化に気づきにくくなる。 As described above, the air conditioner of Embodiment 1 performs control so as to decrease the rotational speed of the indoor fan motor 22b when the difference between the outdoor temperature T and the indoor set temperature Tm is lower than the threshold temperature T1. Frequent compressor operation / stop is suppressed, improving energy consumption efficiency. In particular, when the rotational speed of the indoor fan motor 22b is high compared to other set air volumes, such as when the set air volume is "strong", the limit temperature difference T2 at which the compressor is repeatedly operated / stopped is set to another setting. Since the temperature difference is higher than that at the time of air flow, a higher effect can be obtained. Furthermore, lowering speed setting RF 2 are the rotational speed higher than the set rotational speed RF 1 in set air volume stage below the set air volume of the drop speed setting RF 2, the rotation speed of the indoor fan motor 22b is Even in the case of (T−Tm) <T1, the air volume does not become lower than the lower set air volume, so that the user is less likely to notice the change in the air volume of the indoor unit.

なお、実施の形態1では設定風量が「強」の状態のみを例にして説明をしているが、これに限らず、例えば設定風量が「中」又は設定風量が「小」の状態では、(T−Tm)≧T1の場合において室内ファンモータ22bの回転数をそれぞれの設定回転数であるRFM1又はRFS1に制御し、(T−Tm)<T1において室内ファンモータ22bの回転数をRFM1又はRFS1よりも低く定められたそれぞれの低下設定回転数であるRFM2又はRFS2に制御するようにしても良い。つまり、複数段階の設定風量が設定できる場合において、各設定風量に応じて、室内ファンモータ22bの設定回転数RFよりも低い低下設定回転数RFを予めそれぞれ設定し、(T−Tm)<T1の条件を満たす場合は、室内ファンモータ22bを低下設定回転数RFに制御するような構成でも良い。なお、いずれの場合も低下設定回転数は下の段階の設定風量の設定回転数を下回らないように設定することで、ユーザーが室内機の風量の変化に気づきにくくなる。また、設定回転数RFと低下設定回転数RFの差が騒音値−2dB以下に相当するような回転数にそれぞれ設定することにより、さらにユーザーは室内機の風量の変化に気づきにくくなる。 In the first embodiment, only the state where the set air volume is “strong” is described as an example. However, the present invention is not limited to this. For example, in the state where the set air volume is “medium” or the set air volume is “small”, In the case of (T−Tm) ≧ T1, the rotational speed of the indoor fan motor 22b is controlled to RF M1 or RF S1 , which is the set rotational speed, and the rotational speed of the indoor fan motor 22b is set to (T−Tm) <T1. You may make it control to RF M2 or RF S2 which is each fall setting rotation speed defined lower than RF M1 or RF S1 . That is, when a plurality of stages of set air volume can be set, a lower set rotation speed RF 2 lower than the set rotation speed RF 1 of the indoor fan motor 22b is set in advance according to each set air volume, and (T−Tm). <satisfies the conditions of T1 may be configured so as to control the indoor fan motor 22b to decrease speed setting RF 2. In any case, the lower setting rotational speed is set so as not to be lower than the setting rotational speed of the lower set air volume, thereby making it difficult for the user to notice a change in the air volume of the indoor unit. Further, by setting each of the rotation speed, such as the difference between the set rotational speed RF 1 and lowering speed setting RF 2 corresponds to less noise value -2 dB, further users hardly notice the change in the air volume of the indoor unit.

また、複数の設定風量から風量を設定できる場合において、空調能力の制御を行う際に室内ファンモータ22bの制御を行わない設定風量があっても良い。例えば、設定風量が「強」「中」は、図10のフローチャートに従い、室外温度Tと室内設定温度Tmに応じて室内ファンモータ22bの回転数RFを変更し、設定風量が「弱」の場合は室外温度Tと室内設定温度Tmに関係なく室内ファンモータを設定回転数RFS1で回転するよう制御しても良い。 Further, when the air volume can be set from a plurality of set air volumes, there may be a set air volume that does not control the indoor fan motor 22b when controlling the air conditioning capability. For example, when the set air volume is “strong” and “medium”, the rotational speed RF of the indoor fan motor 22b is changed according to the outdoor temperature T and the indoor set temperature Tm according to the flowchart of FIG. May control the indoor fan motor to rotate at the set rotational speed RF S1 regardless of the outdoor temperature T and the indoor set temperature Tm.

さらに、室内設定温度Tmに応じて閾温度差T1の値を変更しても良い。室内設定温度Tmに応じて閾温度差T1の値を変更する場合は、(T−Tm)=T1の場合における外気温度Tが35℃よりも小さくなるように、室内設定温度Tmに応じた閾温度差T1を設定することが望ましい。例えば、室内設定温度Tmが28℃に設定されている場合は、T1は7℃よりも低い値に設定される方が望ましい。これは、JIS C9612には冷房運転時の空調能力試験では外気温度は35℃と定められており、外気温度35℃において空気調和機1が最高の空調能力を発揮できるように設定した方が望ましいからである。   Furthermore, the value of the threshold temperature difference T1 may be changed according to the indoor set temperature Tm. When the value of the threshold temperature difference T1 is changed according to the indoor set temperature Tm, the threshold according to the indoor set temperature Tm is set so that the outside air temperature T becomes smaller than 35 ° C. when (T−Tm) = T1. It is desirable to set the temperature difference T1. For example, when the indoor set temperature Tm is set to 28 ° C., it is desirable to set T1 to a value lower than 7 ° C. This is because in JIS C9612, the outside air temperature is determined to be 35 ° C. in the air conditioning capability test during the cooling operation, and it is desirable that the air conditioner 1 is set so as to exhibit the maximum air conditioning capability at the outside air temperature of 35 ° C. Because.

また、実施の形態1では、室外温度Tと室内設定温度Tmの差が閾温度差T1以下である場合に室内ファンモータ22bを低下設定回転数RFに制御しているが、これに限らず、室内設定温度Tmに応じた閾温度T12が記憶部31に記憶され、室外温度Tが閾温度T12よりも高い場合は室内ファンモータ22bを設定回転数RFで制御し、室外温度Tが閾温度T12よりも低い場合は室内ファンモータ22bを低下設定回転数RFに制御しても良い。例えば、図11の実施の形態1の変形例における室内設定温度Tmと閾温度T12の対応表のように、室内設定温度Tmに対して閾温度T12が決定され、決定された閾温度T12と室外温度Tを比較して室内ファンモータ22bの回転数を変更しても良い。また、JIS C9612より閾温度T12は、35℃以下に設定した方が望ましい。 In the first embodiment, but controls the indoor fan motor 22b to decrease speed setting RF 2 if the difference between the outdoor temperature T and the indoor set temperature Tm is equal to or less than the threshold temperature difference T1, not limited to this , threshold temperature T12 in response to the indoor set temperature Tm is stored in the storage unit 31, if the outdoor temperature T is higher than the threshold temperature T12 controls the indoor fan motor 22b in the set rotational speed RF 1, the outdoor temperature T threshold If lower than the temperature T12 may control the indoor fan motor 22b to decrease speed setting RF 2. For example, as shown in the correspondence table between the indoor set temperature Tm and the threshold temperature T12 in the modification of the first embodiment in FIG. 11, the threshold temperature T12 is determined for the indoor set temperature Tm, and the determined threshold temperature T12 and the outdoor temperature are determined. The rotational speed of the indoor fan motor 22b may be changed by comparing the temperature T. Further, the threshold temperature T12 is preferably set to 35 ° C. or lower from JIS C9612.

図12は、実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の差に対する空調負荷と空気調和機の空調能力を表したグラフである。図13は、実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の差に対する室内ファンモータの回転数を表したグラフである。図14は、実施の形態1の空気調和機に係る暖房運転時の室外温度と室内設定温度の差に対する圧縮機の回転数を表したグラフである。実施の形態1では、空気調和機1が冷房運転の時のみについて説明を行ったが、暖房運転の時にも同様の制御が行える。暖房運転の場合は、室外温度が室内設定温度Tmに比べて大きい、Tm<Tの場合における空調負荷は0と考える。つまり、Tm≦Tの場合では空調負荷は0となり、Tm>Tの場合では室外温度Tと室内設定温度Tmの差(Tm−T)が拡大するほど空調負荷が大きくなる。そのため、冷房運転の場合では、室外温度Tと室内設定温度Tmの差を(T−Tm)で導出していたが、暖房運転の場合は(Tm−T)で導出することを除くと略同様の制御が適応できる。なお、閾温度差T1、設定回転数RF及び低下設定回転数RFは、冷房運転時と暖房運転時と異なっても良いし、また同じであっても構わない。 FIG. 12 is a graph showing the air conditioning load and the air conditioning capability of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of the first embodiment. FIG. 13 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of the first embodiment. FIG. 14 is a graph showing the rotation speed of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the heating operation according to the air conditioner of the first embodiment. In Embodiment 1, the air conditioner 1 has been described only when it is in the cooling operation, but the same control can be performed during the heating operation. In the case of the heating operation, the air conditioning load is considered to be 0 when the outdoor temperature is larger than the indoor set temperature Tm and Tm <T. That is, when Tm ≦ T, the air conditioning load becomes 0. When Tm> T, the air conditioning load increases as the difference (Tm−T) between the outdoor temperature T and the indoor set temperature Tm increases. Therefore, in the case of the cooling operation, the difference between the outdoor temperature T and the indoor set temperature Tm is derived by (T−Tm), but in the case of the heating operation, it is substantially the same except that it is derived by (Tm−T). Can be adapted. Incidentally, the threshold temperature difference T1, the set rotational speed RF 1 and lowering speed setting RF 2 may be different from the cooling operation and the heating operation, also may be the same.

また、暖房運転時に室内設定温度Tmに応じて閾温度差T1の値を変更する場合は、室内設定温度Tmと閾温度差T1の差、つまり(Tm−T)=T1の場合における外気温度Tが7℃よりも小さくなるように、室内設定温度Tmに応じた閾温度差T1を設定することが望ましい。例えば室内設定温度Tmが20℃に設定されている場合は、T1は13℃よりも低い値に設定される方が望ましい。これはJIS C9612には暖房運転時の空調能力試験では外気温度は7℃と定められており、外気温度7℃において空気調和機1が最高の空調能力を発揮できるように設定した方が望ましいからである。   Further, when the value of the threshold temperature difference T1 is changed according to the indoor set temperature Tm during the heating operation, the difference between the indoor set temperature Tm and the threshold temperature difference T1, that is, the outside air temperature T when (Tm−T) = T1. It is desirable to set the threshold temperature difference T1 in accordance with the indoor set temperature Tm so that is smaller than 7 ° C. For example, when the indoor set temperature Tm is set to 20 ° C., it is desirable to set T1 to a value lower than 13 ° C. This is because in JIS C9612, the outside air temperature is determined to be 7 ° C. in the air conditioning capability test during heating operation, and it is desirable that the air conditioner 1 is set so as to exhibit the maximum air conditioning capability at the outside air temperature of 7 ° C. It is.

図15は、実施の形態1の空気調和機に係る暖房運転時の空調能力の制御のフローチャートである。冷房運転時と異なる点はステップS12及びステップS13のみであり、ステップS11,S14,S15,S16は、それぞれステップS1,S4,S5,S6と同様の処理を行う。ステップS12において、演算部33は、記憶部31に記憶されている室内設定温度TmとステップS11で取得した室外温度Tの差(Tm−T)を演算する。(Tm−T)の演算後、ステップS13に進み、判定部34は、(Tm−T)の演算結果と予め設定されている閾温度差T1とを比較し閾温度差T1の方が高いか、つまり(Tm−T)<T1の条件を満たすかを判定する。条件を満たす場合はステップS14へ進み、満たさない場合はステップS15へと進む。   FIG. 15 is a flowchart of control of the air conditioning capability during the heating operation according to the air conditioner of the first embodiment. The only difference from the cooling operation is step S12 and step S13, and steps S11, S14, S15, and S16 perform the same processing as steps S1, S4, S5, and S6, respectively. In step S12, the calculation unit 33 calculates the difference (Tm−T) between the indoor set temperature Tm stored in the storage unit 31 and the outdoor temperature T acquired in step S11. After the calculation of (Tm−T), the process proceeds to step S13, and the determination unit 34 compares the calculation result of (Tm−T) with a preset threshold temperature difference T1 to determine whether the threshold temperature difference T1 is higher. That is, it is determined whether the condition of (Tm−T) <T1 is satisfied. If the condition is satisfied, the process proceeds to step S14. If not satisfied, the process proceeds to step S15.

実施の形態2.
実施の形態2の空気調和機の場合における空調能力の制御について説明を行う。図16は、実施の形態2の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する室内ファンモータの回転数を表したグラフである。図17は、実施の形態2の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する圧縮機の回転数を表したグラフである。記憶部31に各設定風量時の第二限界温度差T3が記憶され、判定部34が第二限界温度差T3と、室外温度Tと室内設定温度Tmの差を比較すること以外は、実施の形態1と同様であるので割愛する。また、実施の形態2の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する空調負荷と空気調和機の空調能力を表したグラフは、図7と同様であるため、割愛する。
Embodiment 2. FIG.
Control of the air conditioning capability in the case of the air conditioner of Embodiment 2 will be described. FIG. 16 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the second embodiment. FIG. 17 is a graph showing the rotation speed of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the second embodiment. The storage unit 31 stores the second limit temperature difference T3 at each set air volume, and the determination unit 34 compares the second limit temperature difference T3 with the difference between the outdoor temperature T and the indoor set temperature Tm. Since it is the same as that of form 1, it omits. Further, the graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of Embodiment 2 is the same as FIG. .

実施の形態2の空気調和機1では、実施の形態1と同じく、制御装置30は、室外温度センサ16が測定した室外温度Tを取得し、予め記憶されている室内設定温度Tmと測定した室外温度Tを基に圧縮機11及び室内ファンモータ22bの回転数を制御し、空調能力を空調負荷と略同等になるように制御をする。具体的には、室内ファンモータ22bは、室外温度Tと室内設定温度Tmの差が予め設定された閾温度差T1以上の場合には、操作部40より選択された設定風量に応じた設定回転数RFで回転し、閾温度差T1よりも小さい場合には、室外温度Tと室内設定温度Tmの差が小さくなるに従って連続的又は段階的に回転数が減少するように制御される。室内ファンモータ22bの回転数の下限は、低下設定回転数RFに設定されており、室内ファンモータ22bの回転数が低下設定回転数RFであり圧縮機11の回転数が最低回転数RCminとした場合の空調能力と同等の空調負荷となる室外温度Tと室内設定温度Tmの差が第二限界温度差T3となる。また、第二限界温度差T3は低下設定回転数RFに応じて変化するため、第二限界温度差T3は設定風量に対応して記憶部31に記憶されている。室内ファンモータ22bは、室外温度Tと室内設定温度Tmの差が、第二限界温度差T3より小さい場合には、低下設定回転数RFで回転する。つまり、室内ファンモータ22bの回転数RFは、(T−Tm)>T1の場合には設定回転数RFに設定され、T1>(T−Tm)>T3の場合にはRF>RF>RFを満たす回転数RFに設定され、T3>(T−Tm)の場合には低下設定回転数RFに設定される。また、T1>(T−Tm)>T3の場合の室内ファンモータ22bの回転数RFは、室外温度Tと室内設定温度Tmの差と、設定風量とに関連付けられて設定されており、その関連付けは制御装置30に設定されている。つまり、室内ファンモータ22bの回転数RFは室内設定温度Tmと、測定した室外温度Tと、選択された設定風量と、に応じて予め設定された回転数に制御される。さらに、低下設定回転数RFは、当該低下設定回転数RFの設定風量より下の段階の設定風量における設定回転数RFよりも高い回転数に設定されている。 In the air conditioner 1 of the second embodiment, as in the first embodiment, the control device 30 acquires the outdoor temperature T measured by the outdoor temperature sensor 16, and the outdoor set temperature Tm stored in advance is measured. The rotational speeds of the compressor 11 and the indoor fan motor 22b are controlled based on the temperature T, and the air conditioning capability is controlled to be substantially equal to the air conditioning load. Specifically, when the difference between the outdoor temperature T and the indoor set temperature Tm is equal to or greater than a preset threshold temperature difference T1, the indoor fan motor 22b rotates according to the set air volume selected from the operation unit 40. When the rotational speed is a number RF 1 and is smaller than the threshold temperature difference T1, the rotational speed is controlled to decrease continuously or stepwise as the difference between the outdoor temperature T and the indoor set temperature Tm decreases. Rotational speed of the lower limit of the indoor fan motor 22b is set to decrease speed setting RF 2, the rotation speed of the indoor fan motor 22b is reduced speed setting RF 2 speed minimum rotational speed RC of the compressor 11 The difference between the outdoor temperature T and the indoor set temperature Tm, which is an air conditioning load equivalent to the air conditioning capacity when min , is the second limit temperature difference T3. Further, since the second temperature difference limit T3 which changes according to the lowering speed setting RF 2, the second threshold temperature difference T3 is stored in the storage unit 31 in correspondence to the set air volume. Indoor fan motor 22b, the difference between the outdoor temperature T and the indoor set temperature Tm is, if less than the second threshold temperature difference T3 is rotated at a reduced speed setting RF 2. That is, the rotation speed RF of the indoor fan motor 22b, the set in the setting rotational speed RF 1 in the case of (T-Tm)> T1, T1>(T-Tm)> T3 RF 1> RF in the case of> The rotational speed RF that satisfies RF 2 is set, and when T3> (T−Tm), the lower rotational speed RF 2 is set. Further, the rotational frequency RF of the indoor fan motor 22b in the case of T1>(T−Tm)> T3 is set in association with the difference between the outdoor temperature T and the indoor set temperature Tm, and the set air volume. Is set in the control device 30. That is, the rotation speed RF of the indoor fan motor 22b is controlled to a rotation speed set in advance according to the indoor set temperature Tm, the measured outdoor temperature T, and the selected set air volume. Furthermore, lowering speed setting RF 2 is set to a rotational speed higher than the set rotational speed RF 1 in set air volume stage below the set air volume of the drop speed setting RF 2.

また、圧縮機11は、制御装置30によって空調能力を空調負荷と略同等になるように制御される。T1>(T−Tm)>T3の場合も室内ファンモータ22bの回転数は室内設定温度Tmと、室外温度Tと、設定風量により特定できるため、実施の形態1と同じく、室内ファンモータ22bの回転数は室外温度Tと、室内設定温度Tmと、設定風量によって確定する。そのため、従来の空気調和機と同じく、制御装置30は室内設定温度Tmと、測定した室外温度Tと、選択された設定風量に応じて圧縮機11の回転数を制御することができる。   Further, the compressor 11 is controlled by the control device 30 so that the air conditioning capability is substantially equal to the air conditioning load. When T1> (T−Tm)> T3, the rotational speed of the indoor fan motor 22b can be specified by the indoor set temperature Tm, the outdoor temperature T, and the set air volume. The number of revolutions is determined by the outdoor temperature T, the indoor set temperature Tm, and the set air volume. Therefore, like the conventional air conditioner, the control device 30 can control the rotation speed of the compressor 11 according to the indoor set temperature Tm, the measured outdoor temperature T, and the selected set air volume.

実施の形態2において、空調能力の制御を行うためのフローチャートについて説明をする。図18は、実施の形態2の空気調和機に係る冷房運転時の空調能力の制御のフローチャートである。ステップS21では、制御装置30は、室外温度Tを室外温度センサ16より取得する。室外温度Tを取得後、ステップS22に進み、演算部33は、ステップS21で取得した室外温度Tと記憶部31に記憶されている室内設定温度Tmの差、(T−Tm)を演算する。(T−Tm)の演算後、ステップS23に進み、判定部34は、(T−Tm)の演算結果と記憶部31に記憶されている閾温度差T1とを比較し閾温度差T1の方が高いか、つまり(T−Tm)<T1の条件を満たすかを判定する。ステップS23の条件を満たす場合はステップS24へ進む。ステップS24では、判定部34は、(T−Tm)の演算結果と記憶部31に記憶された設定風量に応じた第二限界温度差T3とを比較し、(T−Tm)が第二限界温度差T3以下であるか、つまり(T−Tm)≦T3の条件を満たすかを判定する。ステップS24の条件を満たす場合は、ステップS25に進み、制御部32は、室内ファンモータ22bの回転数RFを設定風量に応じた低下設定回転数RFに制御する。ステップS24の条件を満たさない場合は、ステップS26に進み、制御部32は、室内ファンモータ22bの回転数RFをRF>RF>RFを満たし、室外温度Tと、室内設定温度Tmと、設定風量と、に関連付けられて設定された回転数に制御される。また、ステップS23の条件を満たさない場合は、ステップS27に進み、制御部32は、室内ファンモータ22bの回転数RFを設定風量に応じた設定回転数RFに制御する。ステップS25、ステップS26及びステップS27において室内ファンモータ22bの回転数を制御後、ステップS28に進み、制御装置30は、圧縮機11の回転数を室外温度T、室内設定温度Tmに基づき制御する。圧縮機11の回転数RCを制御後、ステップS21へ戻る。 In the second embodiment, a flowchart for controlling the air conditioning capability will be described. FIG. 18 is a flowchart of the control of the air conditioning capability during the cooling operation according to the air conditioner of the second embodiment. In step S <b> 21, the control device 30 acquires the outdoor temperature T from the outdoor temperature sensor 16. After acquiring the outdoor temperature T, the process proceeds to step S22, and the calculation unit 33 calculates a difference (T−Tm) between the outdoor temperature T acquired in step S21 and the indoor set temperature Tm stored in the storage unit 31. After the calculation of (T−Tm), the process proceeds to step S23, and the determination unit 34 compares the calculation result of (T−Tm) with the threshold temperature difference T1 stored in the storage unit 31 to determine the threshold temperature difference T1. Is high, that is, whether the condition of (T−Tm) <T1 is satisfied. If the condition of step S23 is satisfied, the process proceeds to step S24. In step S24, the determination unit 34 compares the calculation result of (T−Tm) with the second limit temperature difference T3 corresponding to the set air volume stored in the storage unit 31, and (T−Tm) is the second limit. It is determined whether the temperature difference is equal to or less than T3, that is, whether the condition of (T−Tm) ≦ T3 is satisfied. If conditions are satisfied step S24, the process proceeds to step S25, the control unit 32 controls the rotational speed RF of the indoor fan motor 22b to decrease speed setting RF 2 in accordance with the set air volume. When the condition of step S24 is not satisfied, the process proceeds to step S26, and the control unit 32 satisfies the rotation frequency RF of the indoor fan motor 22b satisfying RF 1 >RF> RF 2 , the outdoor temperature T, the indoor set temperature Tm, It is controlled to the set air volume and the rotation speed set in association with it. Further, if the condition is not satisfied in step S23, the process proceeds to step S27, the control unit 32 controls the rotational speed RF of the indoor fan motor 22b to set the rotational speed RF 1 corresponding to the set air volume. In step S25, step S26, and step S27, after controlling the rotation speed of the indoor fan motor 22b, it progresses to step S28, and the control apparatus 30 controls the rotation speed of the compressor 11 based on the outdoor temperature T and the indoor set temperature Tm. After controlling the rotational speed RC of the compressor 11, the process returns to step S21.

実施の形態2のように空調能力の制御を行うことによって、実施の形態1と同様の効果を奏する。さらに、実施の形態1では閾温度差T1を境に室内ファンモータ22bの回転数を設定回転数RF又は低下設定回転数RFに変更していたが、実施の形態2ではT1>(T−Tm)>T3の場合において、連続的又は段階的に室内ファンモータ22bの回転数を変更するため、室内風量が急激に変更されず、ユーザーは室内機の風量の変化に気づきにくくなる。 By controlling the air conditioning capability as in the second embodiment, the same effect as in the first embodiment is obtained. Furthermore, had been changed to Embodiment 1, the threshold temperature difference T1 indoor fan motor 22b set rotational speed RF 1 or lowering speed setting RF 2 the rotational speed of the boundary of the implementation, in the second embodiment T1> (T In the case of -Tm)> T3, since the rotation speed of the indoor fan motor 22b is changed continuously or stepwise, the indoor air volume is not rapidly changed, and the user is less likely to notice the change in the air volume of the indoor unit.

なお、実施の形態2ではT1>(T−Tm)>T3の場合のみ、室内ファンモータ22bの回転数RFは、室外温度Tと室内設定温度Tmの差と設定風量とに関連付けられて設定されているが、これに限らず、(T−Tm)>T1の範囲では設定回転数RF、T3>(T−Tm)の範囲では低下設定回転数RFになるように、それぞれ室外温度Tと室内設定温度Tmの差(T−Tm)と、設定風量とに関連付けられて設定され、(T−Tm)の演算を行った後に、(T−Tm)と設定風量に応じた風量に設定し、(T−Tm)を閾温度差T1及び第二限界温度差T3と比較せずに室内ファンモータ22bの回転数RFを制御しても良い。 In the second embodiment, only when T1>(T−Tm)> T3, the rotational frequency RF of the indoor fan motor 22b is set in association with the difference between the outdoor temperature T and the indoor set temperature Tm and the set air volume. However, the present invention is not limited to this, and the outdoor temperature T is set so that the set rotational speed RF 1 is in the range of (T−Tm)> T1 and the decreased rotational speed RF 2 is in the range of T3> (T−Tm). Is set in association with the difference (T−Tm) and the set air volume, and after calculating (T−Tm), the air volume is set according to (T−Tm) and the set air volume. Then, the rotational frequency RF of the indoor fan motor 22b may be controlled without comparing (T−Tm) with the threshold temperature difference T1 and the second limit temperature difference T3.

また、実施の形態1と同様に、実施の形態2においても室外温度Tと室内設定温度Tmの差を(Tm−T)で導出することで暖房運転時にも同様の制御が行える。図19は、実施の形態2の空気調和機に係る暖房運転時の空調能力の制御のフローチャートである。冷房運転時と異なる点はステップS32,ステップS33及びステップS34のみであり、ステップS31,S35,S36,S37,S38はそれぞれステップS21,S25,S26,S27,S28と同様である。ステップS32では、演算部33は、予め設定されている室内設定温度Tmと、ステップS31で取得した室外温度Tの差、(Tm−T)を演算する。(Tm−T)の演算後、ステップS33に進み、判定部34は、(Tm−T)の演算結果と予め設定されている閾温度差T1とを比較し閾温度差T1の方が高いか、つまり(Tm−T)<T1の条件を満たすかを判定する。ステップS33の条件を満たす場合はステップS34へ進み、満たさない場合はステップS37へ進む。ステップS34では、判定部34は、(Tm−T)の演算結果と記憶部31に記憶された設定風量に応じた第二限界温度差T3とを比較し、(Tm−T)が第二限界温度差T3以下か、つまり(Tm−T)≦T3の条件を満たすかを判定する。ステップS34の条件を満たす場合はステップS35に進み、満たさない場合はステップS36へ進む。   Similarly to the first embodiment, in the second embodiment, the same control can be performed during the heating operation by deriving the difference between the outdoor temperature T and the indoor set temperature Tm as (Tm−T). FIG. 19 is a flowchart of the control of the air conditioning capability during the heating operation according to the air conditioner of the second embodiment. The only difference from the cooling operation is steps S32, S33 and S34, and steps S31, S35, S36, S37 and S38 are the same as steps S21, S25, S26, S27 and S28, respectively. In step S32, the calculating part 33 calculates the difference (Tm-T) between the preset indoor set temperature Tm and the outdoor temperature T acquired in step S31. After the calculation of (Tm−T), the process proceeds to step S33, and the determination unit 34 compares the calculation result of (Tm−T) with a preset threshold temperature difference T1 to determine whether the threshold temperature difference T1 is higher. That is, it is determined whether the condition of (Tm−T) <T1 is satisfied. If the condition of step S33 is satisfied, the process proceeds to step S34, and if not, the process proceeds to step S37. In step S34, the determination unit 34 compares the calculation result of (Tm−T) with the second limit temperature difference T3 corresponding to the set air volume stored in the storage unit 31, and (Tm−T) is the second limit. It is determined whether the temperature difference is equal to or less than T3, that is, whether the condition of (Tm−T) ≦ T3 is satisfied. If the condition of step S34 is satisfied, the process proceeds to step S35. Otherwise, the process proceeds to step S36.

さらに、実施の形態1と同様に、低下設定回転数RFを、当該低下設定回転数RFの設定風量より一つ下の段階の設定風量における設定回転数RFよりも低い回転数に設定することによって、ユーザーは室内機の風量の変化により気づきにくくなる。また、複数段階の設定風量が設定できる場合において、各設定風量に応じて低下設定回転数RFを予めそれぞれ設定しても良いし、空調能力の制御時に室内ファンモータ22bの制御を行わない設定風量があっても良い。 Further setting, as in the first embodiment, the reduction setting rotational speed RF 2, the rotational speed lower than the set rotational speed RF 1 in set air volume of the stage of one lower than the set air volume of the drop speed setting RF 2 This makes it difficult for the user to notice the change in the air volume of the indoor unit. Further, in the case where a plurality of set air volumes can be set, the lower set rotational speed RF 2 may be set in advance according to each set air volume, or the setting for not controlling the indoor fan motor 22b when controlling the air conditioning capacity. There may be air volume.

実施の形態3.
実施の形態3の空気調和機の場合における空調能力の制御について説明を行う。図20は、実施の形態3の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する室内ファンモータの回転数を表したグラフである。図21は、実施の形態3の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する圧縮機の回転数を表したグラフである。なお、空気調和機の構成については、記憶部31に各設定風量時の限界温度差T2及び第二限界温度差T3が記憶され、判定部34が限界温度差T2及び第二限界温度差T3と、室外温度Tと室内設定温度Tmの差を比較すること以外は、実施の形態1と同様であるので割愛する。また、実施の形態3の空気調和機に係る冷房運転時の室外温度と室内設定温度の差に対する空調負荷と空気調和機の空調能力を表したグラフは、図7と同様であるため、割愛する。
Embodiment 3 FIG.
The control of the air conditioning capability in the case of the air conditioner of Embodiment 3 will be described. FIG. 20 is a graph showing the number of rotations of the indoor fan motor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the third embodiment. FIG. 21 is a graph showing the rotation speed of the compressor with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of the third embodiment. Regarding the configuration of the air conditioner, the storage unit 31 stores the limit temperature difference T2 and the second limit temperature difference T3 for each set air volume, and the determination unit 34 determines the limit temperature difference T2 and the second limit temperature difference T3. Since it is the same as that of Embodiment 1 except for comparing the difference between the outdoor temperature T and the indoor set temperature Tm, it is omitted. Further, the graph showing the air conditioning load and the air conditioning capacity of the air conditioner with respect to the difference between the outdoor temperature and the indoor set temperature during the cooling operation according to the air conditioner of Embodiment 3 is the same as FIG. .

実施の形態3の空気調和機1では、実施の形態1と同じく、制御装置30は、室外温度センサ16が測定した室外温度Tを取得し、予め記憶されている室内設定温度Tmと測定した室外温度Tを基に圧縮機11及び室内ファンモータ22bの回転数を制御し、空調能力を空調負荷と略同等になるように制御をする。具体的には、室内ファンモータ22bは、室外温度Tと室内設定温度Tmの差が限界温度差T2以上の場合は、設定風量に応じた設定回転数RFで回転し、限界温度差T2よりも小さい場合には室外温度Tと室内設定温度Tmの差が小さくなるに従って連続的又は段階的に回転数が減少するように制御される。実施の形態2と同じく、室内ファンモータ22bの回転数の下限は、低下設定回転数RFに設定されており、室内ファンモータ22bの回転数が低下設定回転数RFであり圧縮機11の回転数が最低回転数RCminとした場合の空調能力と同等の空調負荷となる室外温度Tと室内設定温度Tmの差が第二限界温度差T3となる。また、限界温度差T2は設定回転数RFに応じて変化し、第二限界温度差T3は低下設定回転数RFに応じて変化するため、限界温度差T2及び第二限界温度差T3は設定風量に関連付けられて記憶部31に記憶されている。室内ファンモータ22bは、室外温度Tと室内設定温度Tmの差が、第二限界温度差T3より小さい場合には、低下設定回転数RFで回転する。つまり、室内ファンモータ22bの回転数RFは、(T−Tm)>T2の場合には設定回転数RFに設定され、T2>(T−Tm)>T3の場合にはRF>RF>RFを満たす回転数RFに設定され、T3>(T−Tm)の場合には低下設定回転数RFに設定される。また、T2>(T−Tm)>T3の場合の室内ファンモータ22bの回転数RFは、室外温度Tと室内設定温度Tmの差と、設定風量と、圧縮機11の最低回転数時の能力より圧縮機11の最低回転数時に空調能力が空調負荷と略同等となる室内ファンモータの回転数RFになるよう記憶部31に設定されている。圧縮機11の最低回転数時の能力は同じ圧縮機11であれば一定であるので、室内ファンモータ22bの回転数RFは室内設定温度Tmと、測定した室外温度Tと、設定風量と、に応じて予め設定された回転数に制御される。さらに、低下設定回転数RFは、当該低下設定回転数RFの設定風量より下の段階の設定風量における設定回転数RFよりも高い回転数に設定されている。 In the air conditioner 1 of the third embodiment, as in the first embodiment, the control device 30 acquires the outdoor temperature T measured by the outdoor temperature sensor 16, and the outdoor set temperature Tm stored in advance is measured. The rotational speeds of the compressor 11 and the indoor fan motor 22b are controlled based on the temperature T, and the air conditioning capability is controlled to be substantially equal to the air conditioning load. Specifically, the indoor fan motor 22b, if the difference between the outdoor temperature T and the indoor set temperature Tm is equal to or higher than the critical temperature difference T2, rotates at the set rotational speed RF 1 in accordance with the set air amount, than the limit temperature difference T2 If it is smaller, the rotational speed is controlled to decrease continuously or stepwise as the difference between the outdoor temperature T and the indoor set temperature Tm decreases. As with the second embodiment, the rotational speed of the lower limit of the indoor fan motor 22b is set to decrease speed setting RF 2, the rotation speed of the indoor fan motor 22b is reduced speed setting RF 2 of the compressor 11 the difference of the outdoor temperature T and the indoor set temperature Tm that speed becomes the same air conditioning load and the air conditioning capacity of the case of the minimum rotational speed RC min becomes the second threshold temperature difference T3. Further, the temperature difference limit T2 is varied in accordance with the set rotation speed RF 1, since the second temperature difference limit T3 which changes according to the lowering speed setting RF 2, limit temperature difference T2 and the second temperature difference limit T3 is It is associated with the set air volume and stored in the storage unit 31. Indoor fan motor 22b, the difference between the outdoor temperature T and the indoor set temperature Tm is, if less than the second threshold temperature difference T3 is rotated at a reduced speed setting RF 2. That is, the rotation speed RF of the indoor fan motor 22b, the set in the setting rotational speed RF 1 in the case of (T-Tm)> T2, T2>(T-Tm)> T3 RF 1> RF in the case of> The rotational speed RF that satisfies RF 2 is set, and when T3> (T−Tm), the lower rotational speed RF 2 is set. In addition, when T2>(T−Tm)> T3, the rotational speed RF of the indoor fan motor 22b is the difference between the outdoor temperature T and the indoor set temperature Tm, the set air volume, and the capacity at the minimum speed of the compressor 11. Further, the storage unit 31 is set so that the air conditioning capacity at the minimum rotational speed of the compressor 11 becomes the rotational frequency RF of the indoor fan motor that is substantially equal to the air conditioning load. Since the capacity at the minimum rotation speed of the compressor 11 is constant if the compressor 11 is the same, the rotation speed RF of the indoor fan motor 22b is set to the indoor set temperature Tm, the measured outdoor temperature T, and the set air volume. Accordingly, the number of revolutions is controlled in advance. Furthermore, lowering speed setting RF 2 is set to a rotational speed higher than the set rotational speed RF 1 in set air volume stage below the set air volume of the drop speed setting RF 2.

実施の形態3において、空調能力の制御を行うためのフローチャートについて説明をする。図22は、実施の形態3の空気調和機に係る冷房運転時の空調能力の制御のフローチャートである。ステップS41では、制御装置30は、室外温度Tを室外温度センサ16より取得する。室外温度Tを取得後、ステップS42に進み、演算部33は、ステップS41で取得した室外温度Tと記憶部31に記憶されている室内設定温度Tmの差、(T−Tm)を演算する。(T−Tm)の演算後、ステップS43に進み、判定部34は、(T−Tm)の演算結果と記憶部31に記憶されている限界温度差T2とを比較し限界温度差T2の方が高いか、つまり(T−Tm)<T2の条件を満たすかを判定する。ステップS43の条件を満たす場合はステップS44へ進む。ステップS44では、判定部34は、(T−Tm)の演算結果と記憶部31に記憶されている第二限界温度差T3とを比較し、(T−Tm)が第二限界温度差T3以下であるか、つまり(T−Tm)≦T3の条件を満たすかを判定する。ステップS44の条件を満たす場合は、ステップS45に進み、制御部32は、室内ファンモータ22bの回転数RFを設定風量に応じた低下設定回転数RFに制御する。ステップS44の条件を満たさない場合は、ステップS46に進み、制御部32は、室内ファンモータ22bの回転数RFをRF>RF>RFを満たし、室外温度Tと、室内設定温度Tmと、設定風量と、に応じて予め設定された回転数に制御される。また、ステップS43の条件を満たさない場合はステップS47へ進み、制御部32は、室内ファンモータ22bの回転数RFを設定風量に応じた設定回転数RFに制御する。ステップS45、ステップS46及びステップS47において室内ファンモータ22bの回転数を制御後、ステップS48に進み、圧縮機11の回転数RCを室外温度Tと、室内設定温度Tmと、設定風量に基づき制御し、制御の終了後にステップS41へ戻る。 In the third embodiment, a flowchart for controlling the air conditioning capability will be described. FIG. 22 is a flowchart of control of the air conditioning capability during the cooling operation according to the air conditioner of the third embodiment. In step S <b> 41, the control device 30 acquires the outdoor temperature T from the outdoor temperature sensor 16. After acquiring the outdoor temperature T, the process proceeds to step S42, and the calculation unit 33 calculates the difference (T−Tm) between the outdoor temperature T acquired in step S41 and the indoor set temperature Tm stored in the storage unit 31. After the calculation of (T−Tm), the process proceeds to step S43, and the determination unit 34 compares the calculation result of (T−Tm) with the limit temperature difference T2 stored in the storage unit 31, and determines the limit temperature difference T2 Is high, that is, whether the condition of (T−Tm) <T2 is satisfied. If the condition of step S43 is satisfied, the process proceeds to step S44. In step S44, the determination unit 34 compares the calculation result of (T−Tm) with the second limit temperature difference T3 stored in the storage unit 31, and (T−Tm) is equal to or less than the second limit temperature difference T3. That is, whether or not the condition of (T−Tm) ≦ T3 is satisfied is determined. If conditions are satisfied step S44, the process proceeds to step S45, the control unit 32 controls the rotational speed RF of the indoor fan motor 22b to decrease speed setting RF 2 in accordance with the set air volume. When the condition of step S44 is not satisfied, the process proceeds to step S46, and the control unit 32 satisfies the rotation frequency RF of the indoor fan motor 22b satisfying RF 1 >RF> RF 2 , the outdoor temperature T, the indoor set temperature Tm, The number of rotations is controlled in advance according to the set air volume. Further, if the condition is not satisfied in step S43 advances to step S47, the control unit 32 controls the rotational speed RF of the indoor fan motor 22b to set the rotational speed RF 1 corresponding to the set air volume. In step S45, step S46 and step S47, after controlling the rotational speed of the indoor fan motor 22b, the process proceeds to step S48, and the rotational speed RC of the compressor 11 is controlled based on the outdoor temperature T, the indoor set temperature Tm, and the set air volume. After the end of control, the process returns to step S41.

また、圧縮機11は、制御装置30によって空調能力を空調負荷と略同等になるように制御される。T2>(T−Tm)>T3の場合も室内ファンモータ22bの回転数は室内設定温度Tmと、室外温度Tと、設定風量により特定できるため、実施の形態1と同じく、室内ファンモータ22bの回転数は室外温度Tと、室内設定温度Tmと、設定風量によって確定する。そのため、従来の空気調和機と同じく、制御装置30は室内設定温度Tmと、測定した室外温度Tと、選択された設定風量に応じて圧縮機11の回転数を制御することができる。   Further, the compressor 11 is controlled by the control device 30 so that the air conditioning capability is substantially equal to the air conditioning load. Also in the case of T2> (T−Tm)> T3, since the rotation speed of the indoor fan motor 22b can be specified by the indoor set temperature Tm, the outdoor temperature T, and the set air volume, the indoor fan motor 22b The number of revolutions is determined by the outdoor temperature T, the indoor set temperature Tm, and the set air volume. Therefore, like the conventional air conditioner, the control device 30 can control the rotation speed of the compressor 11 according to the indoor set temperature Tm, the measured outdoor temperature T, and the selected set air volume.

実施の形態2のように空調能力の制御を行うことによって、実施の形態1と同様の効果を奏する。さらに、実施の形態1では閾温度差T1を境に室内ファンモータ22bの回転数を設定回転数RF又は低下設定回転数RFに変更していたが、実施の形態3では圧縮機11が最低回転数RCminに達するまで室内ファンモータ22bの回転数を変更しないため、ユーザーは室内機の風量の変化に気づきにくくなる。 By controlling the air conditioning capability as in the second embodiment, the same effect as in the first embodiment is obtained. Furthermore, had changed the threshold temperature difference T1 in the first embodiment the rotation speed of the indoor fan motor 22b to set the rotational speed RF 1 or lowering speed setting RF 2 as a boundary, the compressor 11 in the third embodiment Since the rotation speed of the indoor fan motor 22b is not changed until the minimum rotation speed RCmin is reached, the user is less likely to notice a change in the air volume of the indoor unit.

なお、実施の形態3ではT2>(T−Tm)>T3の場合のみ、室内ファンモータ22bの回転数RFは、室外温度Tと室内設定温度Tmの差と設定風量とに関連付けられて設定されているが、これに限らず、(T−Tm)>T2の範囲では設定回転数RF、T3>(T−Tm)の範囲では低下設定回転数RFになるように、それぞれ室外温度Tと室内設定温度Tmの差(T−Tm)と、設定風量と、に関連付けられて設定され、(T−Tm)の演算を行った後に、(T−Tm)と設定風量に応じた風量に設定し、(T−Tm)を限界温度差T2及び第二限界温度差T3と比較せずに室内ファンモータ22bの回転数RFを制御しても良い。 In the third embodiment, only when T2>(T−Tm)> T3, the rotational frequency RF of the indoor fan motor 22b is set in association with the difference between the outdoor temperature T and the indoor set temperature Tm and the set air volume. However, the present invention is not limited to this, and the outdoor temperature T is set so that the set rotational speed RF 1 is in the range of (T−Tm)> T2 and the decreased rotational speed RF 2 is in the range of T3> (T−Tm). After the calculation of (T-Tm), the air volume corresponding to (T-Tm) and the set air volume is set. The rotational frequency RF of the indoor fan motor 22b may be controlled without comparing (T−Tm) with the limit temperature difference T2 and the second limit temperature difference T3.

また、実施の形態1と同様に、実施の形態2においても室外温度Tと室内設定温度Tmの差を(Tm−T)で導出することで暖房運転時にも同様の制御が行える。図23は、実施の形態3の空気調和機に係る暖房運転時の空調能力の制御のフローチャートである。冷房運転時と異なる点はステップS52,ステップS53及びステップS54のみであり、ステップS51,S55,S56,S57,S58はそれぞれステップS41,S45,S46,S47,S48と同様である。ステップS52では、演算部33は、予め設定されている室内設定温度Tmと、ステップS51で取得した室外温度Tの差、(Tm−T)を演算する。(Tm−T)の演算後、ステップS53に進み、判定部34は、(Tm−T)の演算結果と予め設定されている限界温度差T2とを比較し限界温度差T2の方が高いか、つまり(Tm−T)<T2の条件を満たすかを判定する。ステップS53の条件を満たす場合はステップS54へ進み、満たさない場合はステップS57へ進む。ステップS54では、判定部54は、(Tm−T)の演算結果と記憶部31に記憶された設定風量に応じた第二限界温度差T3とを比較し、(Tm−T)が第二限界温度差T3以下か、つまり(Tm−T)≦T3の条件を満たすかを判定する。ステップS54の条件を満たす場合はステップS55に進み、満たさない場合はステップS56へ進む。   Similarly to the first embodiment, in the second embodiment, the same control can be performed during the heating operation by deriving the difference between the outdoor temperature T and the indoor set temperature Tm as (Tm−T). FIG. 23 is a flowchart of control of the air conditioning capability during the heating operation according to the air conditioner of the third embodiment. The only difference from the cooling operation is steps S52, S53 and S54, and steps S51, S55, S56, S57 and S58 are the same as steps S41, S45, S46, S47 and S48, respectively. In step S52, the calculation unit 33 calculates a difference (Tm−T) between the preset indoor set temperature Tm and the outdoor temperature T acquired in step S51. After the calculation of (Tm−T), the process proceeds to step S53, and the determination unit 34 compares the calculation result of (Tm−T) with a preset limit temperature difference T2 to determine whether the limit temperature difference T2 is higher. That is, it is determined whether or not the condition of (Tm−T) <T2 is satisfied. If the condition of step S53 is satisfied, the process proceeds to step S54. If not satisfied, the process proceeds to step S57. In step S54, the determination unit 54 compares the calculation result of (Tm−T) with the second limit temperature difference T3 corresponding to the set air volume stored in the storage unit 31, and (Tm−T) is the second limit. It is determined whether the temperature difference is equal to or less than T3, that is, whether the condition of (Tm−T) ≦ T3 is satisfied. When the condition of step S54 is satisfied, the process proceeds to step S55, and when not satisfied, the process proceeds to step S56.

さらに、実施の形態1と同様に、低下設定回転数RFを、当該低下設定回転数RFの設定風量より一つ下の段階の設定風量における設定回転数RFよりも低い回転数に設定することによって、ユーザーは室内機の風量の変化により気づきにくくなる。また、複数段階の設定風量が設定できる場合において、各設定風量に応じて低下設定回転数RFを予めそれぞれ設定しても良いし、空調能力の制御時に室内ファンモータ22bの制御を行わない設定風量があっても良い。 Further setting, as in the first embodiment, the reduction setting rotational speed RF 2, the rotational speed lower than the set rotational speed RF 1 in set air volume of the stage of one lower than the set air volume of the drop speed setting RF 2 This makes it difficult for the user to notice the change in the air volume of the indoor unit. Further, in the case where a plurality of set air volumes can be set, the lower set rotational speed RF 2 may be set in advance according to each set air volume, or the setting for not controlling the indoor fan motor 22b when controlling the air conditioning capacity. There may be air volume.

1 空気調和機、10 室外機、11 圧縮機、12 四方弁、13 膨張弁、14 室外熱交換器、15 室外送風機、16 室外温度センサ、20 室内機、21 室内熱交換器、22 室内送風機、22a 室内ファン、22b 室内ファンモータ、30 制御装置、31 記憶部、32 制御部、33 演算部、34 判定部、40 操作部 DESCRIPTION OF SYMBOLS 1 Air conditioner, 10 Outdoor unit, 11 Compressor, 12 Four-way valve, 13 Expansion valve, 14 Outdoor heat exchanger, 15 Outdoor fan, 16 Outdoor temperature sensor, 20 Indoor unit, 21 Indoor heat exchanger, 22 Indoor fan, 22a indoor fan, 22b indoor fan motor, 30 control device, 31 storage unit, 32 control unit, 33 calculation unit, 34 determination unit, 40 operation unit

Claims (6)

冷媒を圧縮する圧縮機と、前記冷媒により室内空気の加熱又は冷却を行う室内熱交換器と、を備えた冷凍サイクルと、
前記室内熱交換器に前記室内空気を送風する室内送風機と、
室外空気の温度を測定する室外温度センサと、
予め設定された室内設定温度を記憶する記憶手段と、
前記圧縮機及び前記室内送風機の回転数を制御する制御手段と、を有し、
前記制御手段は、前記室外温度センサで測定した室外温度と前記室内設定温度の差が狭まるに従い、前記室内送風機及び前記圧縮機の回転数を低下させる制御を行うことを特徴とする空気調和機。
A refrigeration cycle comprising: a compressor that compresses the refrigerant; and an indoor heat exchanger that heats or cools indoor air using the refrigerant;
An indoor blower for blowing the indoor air to the indoor heat exchanger;
An outdoor temperature sensor for measuring the temperature of outdoor air;
Storage means for storing a preset indoor set temperature;
Control means for controlling the rotation speed of the compressor and the indoor fan,
The air conditioner is characterized in that the control means performs control to reduce the rotational speed of the indoor blower and the compressor as a difference between an outdoor temperature measured by the outdoor temperature sensor and the indoor set temperature is narrowed.
前記記憶手段には、第1の設定風量と、前記第1の設定風量よりも低い風量に設定された第2の設定風量と、前記第1の設定風量に相当する第1の設定回転数と、前記第2の設定風量に相当する第2の設定回転数と、前記第1の設定回転数よりも低く前記第2の設定回転数よりも高い回転数に設定された第3の設定回転数と、を記憶しており、
前記室内送風機の風量は、前記第1の設定風量に設定されることが可能であり、
前記室内送風機の風量が前記第1の設定風量に設定されている場合に、前記制御手段は、前記室内送風機の回転数を、前記第1の設定回転数以下であり前記第3の設定回転数以上の範囲で回転数を制御することを特徴とする請求項1に記載の空気調和機。
The storage means includes a first set air volume, a second set air volume set to be lower than the first set air volume, and a first set rotational speed corresponding to the first set air volume. , A second set speed corresponding to the second set air volume, and a third set speed set to a speed lower than the first set speed and higher than the second set speed. And remember
The air volume of the indoor fan can be set to the first set air volume,
When the air volume of the indoor blower is set to the first set air volume, the control means sets the rotation speed of the indoor blower to be equal to or less than the first set rotation speed and the third set rotation speed. The air conditioner according to claim 1, wherein the rotational speed is controlled in the above range.
前記記憶手段には、予め設定された閾温度差が記憶されており、
前記制御手段は、前記室外温度と前記室内設定温度の差が前記閾温度差以下の場合は、前記室内送風機の回転数を前記第1の設定回転数に制御し、前記閾温度差よりも小さい場合は、前記室内送風機の回転数を前記第1の設定回転数よりも低く前記第3の設定回転数以上の回転数に制御することを特徴とする請求項2に記載の空気調和機。
The storage means stores a preset threshold temperature difference,
When the difference between the outdoor temperature and the indoor set temperature is equal to or less than the threshold temperature difference, the control means controls the rotation speed of the indoor blower to the first set rotation speed, and is smaller than the threshold temperature difference. 3. The air conditioner according to claim 2, wherein the rotation speed of the indoor blower is controlled to be lower than the first set rotation speed and higher than the third set rotation speed.
前記制御手段は、前記室外温度と前記室内設定温度の差が前記閾温度差以下の場合は、前記室内送風機の回転数を前記第3の設定回転数に制御することを特徴とする請求項3に記載の空気調和機。 The said control means controls the rotation speed of the said indoor air blower to a said 3rd setting rotation speed, when the difference of the said outdoor temperature and the said indoor setting temperature is below the said threshold temperature difference. Air conditioner as described in. 前記制御手段は、前記室外温度と前記室内設定温度の差が前記閾温度差以下の場合は、前記室内送風機の回転数を、前記室外温度と前記室内設定温度の差が狭まるに従い、低下させる制御を行うことを特徴とする請求項3に記載の空気調和機。 When the difference between the outdoor temperature and the indoor set temperature is equal to or less than the threshold temperature difference, the control means controls to reduce the rotational speed of the indoor blower as the difference between the outdoor temperature and the indoor set temperature decreases. The air conditioner according to claim 3, wherein: 前記圧縮機は、運転可能な最低回転数が予め定められており、
前記制御手段は、前記室外温度センサで計測した室外温度と室内設定温度の差が、前記室内送風機の回転数が前記第1の設定回転数であり前記圧縮機の回転数が前記最低回転数である場合の空調能力と空調負荷が等しくなる限界温度差以上の場合には、前記室内送風機の回転数を前記第1の設定回転数にし、前記圧縮機の回転数を前記室外温度と前記室内設定温度の差が狭まるに従い低下させる制御を行い、
前記室外温度センサで計測した室外温度と室内設定温度の差が、前記限界温度差より小さい場合は、前記圧縮機の回転数を前記最低回転数にし、前記圧縮機の回転数を前記室外温度と前記室内設定温度の差が狭まるに従い低下させる制御を行うことを特徴とする請求項2に記載の空気調和機。
The compressor has a predetermined minimum rotational speed that can be operated,
The control means is configured such that the difference between the outdoor temperature measured by the outdoor temperature sensor and the indoor set temperature is such that the rotational speed of the indoor fan is the first set rotational speed and the rotational speed of the compressor is the minimum rotational speed. In a case where the air conditioning capacity and air conditioning load in a certain case are equal to or greater than a limit temperature difference, the rotational speed of the indoor fan is set to the first set rotational speed, and the rotational speed of the compressor is set to the outdoor temperature and the indoor setting. Control to decrease as the temperature difference narrows,
When the difference between the outdoor temperature measured by the outdoor temperature sensor and the indoor set temperature is smaller than the limit temperature difference, the rotational speed of the compressor is set to the minimum rotational speed, and the rotational speed of the compressor is set to the outdoor temperature. The air conditioner according to claim 2, wherein control is performed to reduce the difference in the indoor set temperature as the difference between the indoor set temperatures becomes narrower.
JP2014096775A 2014-05-08 2014-05-08 Air conditioner Expired - Fee Related JP6225819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014096775A JP6225819B2 (en) 2014-05-08 2014-05-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014096775A JP6225819B2 (en) 2014-05-08 2014-05-08 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015215107A true JP2015215107A (en) 2015-12-03
JP6225819B2 JP6225819B2 (en) 2017-11-08

Family

ID=54752151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096775A Expired - Fee Related JP6225819B2 (en) 2014-05-08 2014-05-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP6225819B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138133A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Hot water/cold water air-conditioning system
CN107388490A (en) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 Operation of air conditioner control method
CN107514734A (en) * 2017-07-12 2017-12-26 青岛海尔空调器有限总公司 Air-conditioning strength refrigeration control method
JP2018063091A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
WO2018073954A1 (en) * 2016-10-21 2018-04-26 株式会社Fhアライアンス Method for constructing air conditioner system and method for designing air conditioner system
JP2019143950A (en) * 2018-02-23 2019-08-29 ダイキン工業株式会社 Air conditioner
CN111207495A (en) * 2018-11-05 2020-05-29 奥克斯空调股份有限公司 Method for improving air conditioning capacity and air conditioner using same
CN111219841A (en) * 2019-11-27 2020-06-02 珠海格力电器股份有限公司 Continuous refrigeration control method and device at high temperature and air conditioning equipment
CN111780359A (en) * 2020-06-02 2020-10-16 海信(山东)空调有限公司 Air conditioner
JP2020204466A (en) * 2020-10-06 2020-12-24 株式会社Fhアライアンス Method for constructing air conditioning system and method for designing the air conditioning system
WO2021090905A1 (en) * 2019-11-07 2021-05-14 Koa株式会社 Shunt resistance module, and implementation structure of shunt resistance module
CN112944576A (en) * 2021-03-18 2021-06-11 宁波奥克斯电气股份有限公司 Frequency control method and device for air conditioner compressor and air conditioner
CN115654646A (en) * 2022-10-19 2023-01-31 珠海格力电器股份有限公司 Control method and control device of air conditioner and air conditioner
CN115789911A (en) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 Air conditioner control method and device, electronic equipment and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271848B (en) * 2019-07-17 2021-07-06 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner thereof
CN111271847B (en) * 2019-07-17 2021-07-13 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197030A (en) * 1997-01-07 1998-07-31 Sanyo Electric Co Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197030A (en) * 1997-01-07 1998-07-31 Sanyo Electric Co Ltd Air conditioner

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138133A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Hot water/cold water air-conditioning system
JP2018063091A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with cooling function
JP2018063092A (en) * 2016-10-14 2018-04-19 株式会社コロナ Heat pump water heater with heating function
CN109477647B (en) * 2016-10-21 2022-04-15 株式会社Fh联合 Construction method of air conditioning system and design method of air conditioning system
WO2018073954A1 (en) * 2016-10-21 2018-04-26 株式会社Fhアライアンス Method for constructing air conditioner system and method for designing air conditioner system
CN109477647A (en) * 2016-10-21 2019-03-15 株式会社Fh联合 The construction method of air-conditioning system and the design method of air-conditioning system
JPWO2018073954A1 (en) * 2016-10-21 2019-08-15 株式会社Fhアライアンス Air conditioning system construction method and air conditioning system design method
US11906198B2 (en) 2016-10-21 2024-02-20 Fh Alliance Inc. Air-conditioning system
US11441796B2 (en) 2016-10-21 2022-09-13 Fh Alliance Inc. Construction method and design method of air-conditioning system
US11098908B2 (en) 2016-10-21 2021-08-24 Fh Alliance Inc. Construction method and design method of air-conditioning system
CN107388490B (en) * 2017-07-12 2021-05-28 青岛海尔空调器有限总公司 Air conditioner operation control method
CN107514734A (en) * 2017-07-12 2017-12-26 青岛海尔空调器有限总公司 Air-conditioning strength refrigeration control method
CN107388490A (en) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 Operation of air conditioner control method
JP2019143950A (en) * 2018-02-23 2019-08-29 ダイキン工業株式会社 Air conditioner
WO2019163346A1 (en) * 2018-02-23 2019-08-29 ダイキン工業株式会社 Air conditioner
CN111207495A (en) * 2018-11-05 2020-05-29 奥克斯空调股份有限公司 Method for improving air conditioning capacity and air conditioner using same
CN111207495B (en) * 2018-11-05 2021-09-28 奥克斯空调股份有限公司 Method for improving air conditioning capacity and air conditioner using same
WO2021090905A1 (en) * 2019-11-07 2021-05-14 Koa株式会社 Shunt resistance module, and implementation structure of shunt resistance module
CN111219841A (en) * 2019-11-27 2020-06-02 珠海格力电器股份有限公司 Continuous refrigeration control method and device at high temperature and air conditioning equipment
CN111780359A (en) * 2020-06-02 2020-10-16 海信(山东)空调有限公司 Air conditioner
JP7042524B2 (en) 2020-10-06 2022-03-28 株式会社Fhアライアンス How to design an air conditioning system
JP2020204466A (en) * 2020-10-06 2020-12-24 株式会社Fhアライアンス Method for constructing air conditioning system and method for designing the air conditioning system
CN112944576A (en) * 2021-03-18 2021-06-11 宁波奥克斯电气股份有限公司 Frequency control method and device for air conditioner compressor and air conditioner
CN112944576B (en) * 2021-03-18 2022-03-29 宁波奥克斯电气股份有限公司 Frequency control method and device for air conditioner compressor and air conditioner
CN115654646A (en) * 2022-10-19 2023-01-31 珠海格力电器股份有限公司 Control method and control device of air conditioner and air conditioner
CN115654646B (en) * 2022-10-19 2024-05-31 珠海格力电器股份有限公司 Control method and control device of air conditioner and air conditioner
CN115789911A (en) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 Air conditioner control method and device, electronic equipment and storage medium
CN115789911B (en) * 2022-11-17 2024-05-03 中国联合网络通信集团有限公司 Air conditioner control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6225819B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6225819B2 (en) Air conditioner
JP4711020B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
WO2009119023A1 (en) Freezing apparatus
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
CN111928454A (en) Air conditioner and control method thereof
JP6618609B2 (en) Refrigeration equipment
JP6785987B2 (en) Refrigeration cycle equipment
JP2018112334A (en) Air conditioning device
JP6950191B2 (en) Air conditioner
JP5943869B2 (en) Air conditioner
JP2016053452A (en) Air conditioner
JP6576468B2 (en) Air conditioner
JPWO2020003490A1 (en) Air conditioner
JPWO2017119138A1 (en) Air conditioner
JP6964049B2 (en) Heat pump type cold water air conditioner
JPH08226721A (en) Operation controller for air conditioning equipment for multiple room
JP6881424B2 (en) Refrigerator
KR20190073870A (en) Air conditioner and control method of air conditioner
JP6415019B2 (en) Air conditioner
JP6978363B2 (en) Heat pump heat source machine
KR102564507B1 (en) Method for controlling operation of air conditioner
JP2017067320A (en) Air conditioner
JP2017044460A (en) Air conditioner
JP3462551B2 (en) Speed control device for blower for condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6225819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees