JP5187373B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5187373B2
JP5187373B2 JP2010235855A JP2010235855A JP5187373B2 JP 5187373 B2 JP5187373 B2 JP 5187373B2 JP 2010235855 A JP2010235855 A JP 2010235855A JP 2010235855 A JP2010235855 A JP 2010235855A JP 5187373 B2 JP5187373 B2 JP 5187373B2
Authority
JP
Japan
Prior art keywords
indoor
flow path
heat exchanger
refrigerant
radiation panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010235855A
Other languages
Japanese (ja)
Other versions
JP2012087998A (en
Inventor
敏浩 木澤
裕記 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010235855A priority Critical patent/JP5187373B2/en
Priority to EP11834368.0A priority patent/EP2631560B1/en
Priority to ES11834368T priority patent/ES2776986T3/en
Priority to CN201180049916.0A priority patent/CN103168205B/en
Priority to AU2011319038A priority patent/AU2011319038B2/en
Priority to PCT/JP2011/073988 priority patent/WO2012053529A1/en
Publication of JP2012087998A publication Critical patent/JP2012087998A/en
Application granted granted Critical
Publication of JP5187373B2 publication Critical patent/JP5187373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating

Description

本発明は、室内熱交換器と輻射パネルが並列に配置された空気調和機に関するものである。   The present invention relates to an air conditioner in which an indoor heat exchanger and a radiation panel are arranged in parallel.

空気調和機として、室内熱交換器および輻射パネルを有する室内機と、室内熱交換器および輻射パネルに冷媒を循環供給する室外機とを備えたものが知られている(例えば特許文献1参照)。この空気調和機の冷媒回路では、室内熱交換器が設けられた流路と、輻射パネルが設けられた流路が並列になっており、それぞれの流路に、冷媒回路内の圧力を調整するための膨張弁(減圧機構)が設けられている。   As an air conditioner, one having an indoor unit having an indoor heat exchanger and a radiation panel and an outdoor unit that circulates and supplies a refrigerant to the indoor heat exchanger and the radiation panel is known (see, for example, Patent Document 1). . In the refrigerant circuit of this air conditioner, the flow path provided with the indoor heat exchanger and the flow path provided with the radiation panel are arranged in parallel, and the pressure in the refrigerant circuit is adjusted to each flow path. An expansion valve (pressure reduction mechanism) is provided.

特開平5−280762号公報Japanese Patent Application Laid-Open No. 5-280762

この空気調和機では、例えば圧縮機の吐出温度制御を行う場合には、上述した2つの流路に設けられた2つの膨張弁を共に制御する必要があり、制御が複雑であった。そのため、適正な制御を短時間で行うことが困難であった。   In this air conditioner, for example, when controlling the discharge temperature of the compressor, it is necessary to control the two expansion valves provided in the two flow paths described above, and the control is complicated. For this reason, it is difficult to perform appropriate control in a short time.

そこで、本発明の目的は、容易に制御できる空気調和機を提供することである。   Accordingly, an object of the present invention is to provide an air conditioner that can be easily controlled.

第1の発明に係る空気調和機は、室内機と室外機とを接続する冷媒回路を備えた空気調和機であって、前記室内機が、その内部においてファンに対向するように設けられた室内熱交換器と、その表面に設けられた輻射パネルとを有しており、前記冷媒回路が、減圧機構、室外熱交換器及び圧縮機が順に設けられた主流路と、暖房運転時、前記主流路の前記圧縮機の下流側で且つ前記室内機の内部に設けられた分岐部と前記減圧機構の上流側で且つ前記室内機の内部に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、暖房運転時、前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射パネルが設けられた第2流路とを有しており、前記第1流路に電動弁が設けられておらず、且つ、暖房運転時、前記第2流路において前記輻射パネルの下流側に、前記輻射パネルの温度を制御するために前記輻射パネルに供給される冷媒の流量を調整する電動弁が設けられると共に、前記室外機が、前記圧縮機、前記室外熱交換器及び前記減圧機構を有し、前記室内機が、前記電動弁を有していることを特徴とする。 An air conditioner according to a first aspect of the present invention is an air conditioner including a refrigerant circuit that connects an indoor unit and an outdoor unit, wherein the indoor unit is provided so as to face a fan inside the air conditioner. A heat exchanger and a radiation panel provided on the surface thereof, wherein the refrigerant circuit includes a main flow path in which a decompression mechanism, an outdoor heat exchanger, and a compressor are provided in order, and the mainstream during heating operation. said compressor branch part provided and the inside of the indoor unit on the downstream side of the road, along with connecting the merging part and provided inside the indoor unit on the upstream side of the pressure reducing mechanism, the indoor A first flow path provided with a heat exchanger, and a second flow path provided with the radiation panel while connecting the branching section and the merging section in parallel with the first flow path during heating operation; the has an electric valve is not provided in the first flow path, and, An electric valve for adjusting the flow rate of the refrigerant supplied to the radiation panel for controlling the temperature of the radiation panel is provided on the downstream side of the radiation panel in the second flow path during the cell operation. A machine has the compressor, the outdoor heat exchanger, and the pressure reduction mechanism, and the indoor unit has the motor-operated valve.

この空気調和機では、主流路に設けられた減圧機構を制御するだけで、冷媒回路内の圧力を減圧できるので、第1流路と第2流路にそれぞれ減圧機構を設ける場合に比べて、制御(例えば、圧縮機の吐出温度に基づく制御など)を容易に行うことができる。また、第1流路および第2流路の一方に弁機構が設けられているため、室内熱交換器または輻射パネルを流れる冷媒の流量を調整することができる。   In this air conditioner, since the pressure in the refrigerant circuit can be reduced only by controlling the pressure reducing mechanism provided in the main flow path, compared with the case where the pressure reducing mechanisms are provided in the first flow path and the second flow path, respectively. Control (for example, control based on the discharge temperature of the compressor) can be easily performed. Moreover, since the valve mechanism is provided in one of the first flow path and the second flow path, the flow rate of the refrigerant flowing through the indoor heat exchanger or the radiation panel can be adjusted.

この空気調和機では、弁機構が第2流路に設けられているため、輻射パネルを流れる冷媒の流量を調整することができる。また、弁機構を閉弁することで、輻射パネルに冷媒を流さずに、室内熱交換器にのみ冷媒を流すことができる。   In this air conditioner, since the valve mechanism is provided in the second flow path, the flow rate of the refrigerant flowing through the radiation panel can be adjusted. Further, by closing the valve mechanism, it is possible to flow the refrigerant only through the indoor heat exchanger without flowing the refrigerant through the radiation panel.

この空気調和機では、暖房運転時の冷媒の流れ方向に関して輻射パネルの下流側に弁機構を設けているため、輻射パネルの上流側に弁機構を設ける場合よりも、弁機構を通過する冷媒の温度を低くできる。そのため、弁機構の耐久性を向上させることができる。また、弁機構を閉弁して冷房運転を行う際、低温の冷媒が輻射パネルに流れ込むのを完全に遮断できるため、輻射パネルの結露を防止できる。   In this air conditioner, since the valve mechanism is provided on the downstream side of the radiation panel in the flow direction of the refrigerant during the heating operation, the refrigerant that passes through the valve mechanism is disposed more than in the case where the valve mechanism is provided on the upstream side of the radiation panel. The temperature can be lowered. Therefore, the durability of the valve mechanism can be improved. Further, when the valve mechanism is closed and the cooling operation is performed, the low-temperature refrigerant can be completely blocked from flowing into the radiant panel, so that dew condensation on the radiant panel can be prevented.

この空気調和機では、減圧機構が室外機に設けられているので、減圧機構の切り換えに伴う音は、室内では聞こえない。つまり、減圧機構の切り換え時に、室内での騒音を防止できる。   In this air conditioner, since the decompression mechanism is provided in the outdoor unit, the sound accompanying switching of the decompression mechanism cannot be heard indoors. That is, indoor noise can be prevented when the pressure reducing mechanism is switched.

以上の説明に述べたように、本発明によれば、以下の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

第1の発明では、主流路に設けられた減圧機構を制御するだけで、冷媒回路内の圧力を減圧できるので、第1流路と第2流路にそれぞれ減圧機構を設ける場合に比べて、制御(例えば、圧縮機の吐出温度に基づく制御など)を容易に行うことができる。また、第1流路および第2流路の一方に弁機構が設けられているため、室内熱交換器または輻射パネルを流れる冷媒の流量を調整することができる。   In the first invention, since the pressure in the refrigerant circuit can be reduced only by controlling the pressure reducing mechanism provided in the main flow path, compared with the case where the pressure reducing mechanisms are provided in the first flow path and the second flow path, respectively. Control (for example, control based on the discharge temperature of the compressor) can be easily performed. Moreover, since the valve mechanism is provided in one of the first flow path and the second flow path, the flow rate of the refrigerant flowing through the indoor heat exchanger or the radiation panel can be adjusted.

第1の発明では、弁機構が第2流路に設けられているため、輻射パネルを流れる冷媒の流量を調整することができる。また、弁機構を閉弁することで、輻射パネルに冷媒を流さずに、室内熱交換器にのみ冷媒を流すことができる。   In the first invention, since the valve mechanism is provided in the second flow path, the flow rate of the refrigerant flowing through the radiation panel can be adjusted. Further, by closing the valve mechanism, it is possible to flow the refrigerant only through the indoor heat exchanger without flowing the refrigerant through the radiation panel.

第1の発明では、暖房運転時の冷媒の流れ方向に関して輻射パネルの下流側に弁機構を設けているため、輻射パネルの上流側に弁機構を設ける場合よりも、弁機構を通過する冷媒の温度がを低くできる。そのため、弁機構の耐久性を向上させることができる。また、弁機構を閉弁して冷房運転を行う際、低温の冷媒が輻射パネルに流れ込むのを完全に遮断できるため、輻射パネルの結露を防止できる。   In the first invention, since the valve mechanism is provided on the downstream side of the radiant panel with respect to the flow direction of the refrigerant during the heating operation, the refrigerant that passes through the valve mechanism is provided rather than the valve mechanism provided on the upstream side of the radiant panel. The temperature can be lowered. Therefore, the durability of the valve mechanism can be improved. Further, when the valve mechanism is closed and the cooling operation is performed, the low-temperature refrigerant can be completely blocked from flowing into the radiant panel, so that dew condensation on the radiant panel can be prevented.

第1の発明では、減圧機構が室外機に設けられているので、減圧機構の切り換えに伴う音は、室内では聞こえない。つまり、減圧機構の切り換え時に、室内での騒音を防止できる。   In the first invention, since the decompression mechanism is provided in the outdoor unit, the sound accompanying switching of the decompression mechanism cannot be heard indoors. That is, indoor noise can be prevented when the pressure reducing mechanism is switched.

本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、室内電動弁を閉弁して冷房運転または暖房運転を行っているときの冷媒の流れを示す図である。It is a circuit diagram showing the schematic structure of the air harmony machine concerning the embodiment of the present invention, and is a figure showing the flow of the refrigerant at the time of closing the indoor motor operated valve and performing the cooling operation or the heating operation. 本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、室内電動弁を開弁して暖房運転を行っているときの冷媒の流れを示す図である。It is a circuit diagram showing the schematic structure of the air conditioner concerning the embodiment of the present invention, and is a figure showing the flow of the refrigerant when opening the indoor motor operated valve and performing the heating operation. 空気調和機を制御する制御部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control part which controls an air conditioner. 本発明の他の実施形態に係る空気調和機の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the air conditioner which concerns on other embodiment of this invention.

以下、本発明に係る空気調和機1の実施の形態について説明する。   Hereinafter, an embodiment of an air conditioner 1 according to the present invention will be described.

図1および図2に示すように、本実施形態の空気調和機1は、室内に設置される室内機2と、室外に設置される室外機3と、リモコン4(図3参照)とを備えている。
室内機2は、室内熱交換器20と、室内熱交換器20の近傍に配置された室内ファン21と、輻射パネル22と、室内電動弁(弁機構)23と、室内の気温を検出するための室内温度センサ24とを備えている。また、室外機3は、圧縮機30と、四路切換弁31と、室外熱交換器32と、室外熱交換器32の近傍に配置された室外ファン33と、室外電動弁(減圧機構)34とを備えている。室内機2と室外機3とは環状の冷媒回路10で接続されている。冷媒回路10は、主流路11と第1流路12と第2流路13を有している。
As shown in FIGS. 1 and 2, the air conditioner 1 of the present embodiment includes an indoor unit 2 installed indoors, an outdoor unit 3 installed outdoor, and a remote controller 4 (see FIG. 3). ing.
The indoor unit 2 detects an indoor heat exchanger 20, an indoor fan 21 disposed in the vicinity of the indoor heat exchanger 20, a radiation panel 22, an indoor electric valve (valve mechanism) 23, and an indoor air temperature. The indoor temperature sensor 24 is provided. The outdoor unit 3 includes a compressor 30, a four-way switching valve 31, an outdoor heat exchanger 32, an outdoor fan 33 disposed in the vicinity of the outdoor heat exchanger 32, and an outdoor electric valve (decompression mechanism) 34. And. The indoor unit 2 and the outdoor unit 3 are connected by an annular refrigerant circuit 10. The refrigerant circuit 10 includes a main channel 11, a first channel 12, and a second channel 13.

主流路11には、室外電動弁34、室外熱交換器32、および圧縮機30がこの順に設けられている。また、主流路11には、四路切換弁31が設けられており、四路切換弁31を切り換えることにより、圧縮機30の吐出側と吸入側のいずれかが室外熱交換器32が接続される。主流路11における圧縮機30の吸入側と四路切換弁31との間にはアキュムレータ35が設けられており、主流路11における圧縮機30の吐出側と四路切換弁31との間には、吐出温度センサ36が設けられている。また、室外熱交換器32には、室外熱交温度センサ28が付設されている。室外電動弁34は、その開度を変更可能であって、減圧機構として機能する。また、主流路11において、圧縮機30の吸入側が室外熱交換器32に接続されたとき(図2に示した暖房運転時)に、圧縮機30の下流側には、分岐部11aが設けられており、室外電動弁34の上流側には、合流部11bが設けられている。   The main flow path 11 is provided with an outdoor electric valve 34, an outdoor heat exchanger 32, and a compressor 30 in this order. Further, the four-way switching valve 31 is provided in the main flow path 11, and by switching the four-way switching valve 31, either the discharge side or the suction side of the compressor 30 is connected to the outdoor heat exchanger 32. The An accumulator 35 is provided between the suction side of the compressor 30 in the main flow path 11 and the four-way switching valve 31, and between the discharge side of the compressor 30 in the main flow path 11 and the four-way switching valve 31. A discharge temperature sensor 36 is provided. An outdoor heat exchanger temperature sensor 28 is attached to the outdoor heat exchanger 32. The outdoor electric valve 34 can change its opening degree and functions as a pressure reducing mechanism. Further, in the main flow path 11, when the suction side of the compressor 30 is connected to the outdoor heat exchanger 32 (at the time of heating operation shown in FIG. 2), the branch portion 11 a is provided on the downstream side of the compressor 30. A junction portion 11b is provided on the upstream side of the outdoor electric valve 34.

第1流路12および第2流路13は、分岐部11aと合流部11bとの間に設けられ、並列に接続されている。第1流路12には、室内熱交換器20が設けられており、第2流路13には、分岐部11a側から順に、輻射パネル22および室内電動弁23が設けられている。本実施形態では、冷媒回路10において、第1流路12及び第2流路13を除いた流路であって、分岐部11aと合流部11bとの間の流路が、主流路となる。   The 1st flow path 12 and the 2nd flow path 13 are provided between the branch part 11a and the junction part 11b, and are connected in parallel. The first flow path 12 is provided with an indoor heat exchanger 20, and the second flow path 13 is provided with a radiation panel 22 and an indoor motorized valve 23 in order from the branching portion 11 a side. In the present embodiment, in the refrigerant circuit 10, the flow path excluding the first flow path 12 and the second flow path 13, and the flow path between the branching portion 11 a and the merging portion 11 b becomes the main flow path.

室内熱交換器20は、室内機2の内部において室内ファン21と対向するように設けられ、室内ファン21の風上側に配置されている。したがって、室内機2では、室内熱交換器20との熱交換により加熱または冷却された空気が、室内ファン21によって温風または冷風として室内に吹き出されることで、温風暖房または冷房が行われる。また、室内熱交換器20には、室内熱交温度センサ27が設けられている。   The indoor heat exchanger 20 is provided inside the indoor unit 2 so as to face the indoor fan 21, and is disposed on the windward side of the indoor fan 21. Therefore, in the indoor unit 2, the air heated or cooled by heat exchange with the indoor heat exchanger 20 is blown into the room as hot air or cold air by the indoor fan 21, so that hot air heating or cooling is performed. . The indoor heat exchanger 20 is provided with an indoor heat exchanger temperature sensor 27.

輻射パネル22は、室内機2の表面に配置されており、その裏面側には、冷媒が流れる配管が設けられている。したがって、室内機2では、この輻射パネル22の配管を流れる冷媒の熱が室内に輻射されることで輻射暖房が行われる。また、第2流路13における輻射パネル22の両側には、パネル入温度センサ25と、パネル出温度センサ26が設けられている。   The radiation panel 22 is disposed on the surface of the indoor unit 2, and a pipe through which a refrigerant flows is provided on the back side thereof. Therefore, in the indoor unit 2, radiant heating is performed by radiating the heat of the refrigerant flowing through the piping of the radiant panel 22 into the room. Further, a panel entry temperature sensor 25 and a panel exit temperature sensor 26 are provided on both sides of the radiation panel 22 in the second flow path 13.

室内電動弁23は、輻射パネル22に供給される冷媒の流量を調整するために設けられている。室内電動弁23は、後述する輻射暖房運転時および輻射微風暖房運転時の冷媒の流れ方向における輻射パネル22の下流側に設けられている。   The indoor motor operated valve 23 is provided to adjust the flow rate of the refrigerant supplied to the radiation panel 22. The indoor motor-operated valve 23 is provided on the downstream side of the radiation panel 22 in the refrigerant flow direction during a radiation heating operation and a radiation breeze heating operation, which will be described later.

本実施形態の空気調和機1は、冷房運転、温風暖房運転、輻射暖房運転、および輻射微風暖房運転を行うことができる。冷房運転は、輻射パネル22に冷媒を流さないで室内熱交換器20に冷媒を流して冷房を行う運転であって、温風暖房運転は、輻射パネル22に冷媒を流さないで室内熱交換器20に冷媒を流して温風暖房を行う運転である。輻射暖房運転は、室内熱交換器20に冷媒を流して温風暖房を行うと共に、輻射パネル22に冷媒を流して輻射暖房を行う運転である。輻射微風暖房運転は、温風暖房運転時および輻射暖房運転時よりも低風量で且つ一定の風量の温風暖房を行うと共に、輻射パネル22に冷媒を流して輻射暖房を行う運転である。   The air conditioner 1 of the present embodiment can perform a cooling operation, a warm air heating operation, a radiant heating operation, and a radiant light wind heating operation. The cooling operation is an operation in which the refrigerant is allowed to flow through the indoor heat exchanger 20 without flowing the refrigerant through the radiant panel 22, and the hot air heating operation is the indoor heat exchanger without flowing the refrigerant through the radiant panel 22. 20 is an operation in which a refrigerant is passed through to perform hot air heating. The radiant heating operation is an operation in which the refrigerant is passed through the indoor heat exchanger 20 to perform hot air heating, and the refrigerant is passed through the radiant panel 22 to perform radiant heating. The radiant light breeze heating operation is an operation of performing radiant heating by flowing a refrigerant through the radiant panel 22 while performing a warm air heating with a lower air volume and a constant air volume than during the warm air heating operation and the radiant heating operation.

各運転時における冷媒回路10の冷媒の流れについて図1および図2を用いて説明する。
冷房運転時には、室内電動弁23が閉弁されると共に、四路切換弁31が図1中破線で示す状態に切り換えられる。そのため、図1中破線の矢印で示すように、圧縮機30から吐出された高温高圧冷媒は、四路切換弁31を通って、室外熱交換器32に流入する。そして、室外熱交換器32において凝縮した冷媒は、室外電動弁34で減圧された後、室内熱交換器20に流入する。そして、室内熱交換器20において蒸発した冷媒は、四路切換弁31およびアキュムレータ35を介して、圧縮機30に流入する。
The flow of the refrigerant in the refrigerant circuit 10 during each operation will be described with reference to FIGS. 1 and 2.
During the cooling operation, the indoor electric valve 23 is closed, and the four-way switching valve 31 is switched to the state indicated by the broken line in FIG. Therefore, as indicated by the dashed arrows in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 30 flows into the outdoor heat exchanger 32 through the four-way switching valve 31. The refrigerant condensed in the outdoor heat exchanger 32 is decompressed by the outdoor motor operated valve 34 and then flows into the indoor heat exchanger 20. Then, the refrigerant evaporated in the indoor heat exchanger 20 flows into the compressor 30 via the four-way switching valve 31 and the accumulator 35.

温風暖房運転時には、室内電動弁23が閉弁されると共に、四路切換弁31が図1中実線で示す状態に切り換えられる。そのため、図1中実線の矢印で示すように、圧縮機30から吐出された高温高圧冷媒は、四路切換弁31を通って、室内熱交換器20に流入する。そして、室内熱交換器20において凝縮した冷媒は、室外電動弁34で減圧された後、室外熱交換器32に流入する。そして、室外熱交換器32において蒸発した冷媒は、四路切換弁31およびアキュムレータ35を介して、圧縮機30に流入する。   During the hot air heating operation, the indoor motor operated valve 23 is closed and the four-way switching valve 31 is switched to the state shown by the solid line in FIG. Therefore, as indicated by the solid arrow in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 30 flows into the indoor heat exchanger 20 through the four-way switching valve 31. The refrigerant condensed in the indoor heat exchanger 20 is decompressed by the outdoor motor operated valve 34 and then flows into the outdoor heat exchanger 32. The refrigerant evaporated in the outdoor heat exchanger 32 flows into the compressor 30 via the four-way switching valve 31 and the accumulator 35.

輻射暖房運転時および輻射微風暖房運転時には、室内電動弁23が開弁されると共に、四路切換弁31が図2中実線で示す状態に切り換えられる。そのため、図2中実線の矢印で示すように、圧縮機30から吐出された高温高圧冷媒は、四路切換弁31を通って、室内熱交換器20と輻射パネル22に流入する。そして、室内熱交換器20と輻射パネル22において凝縮した冷媒は、室外電動弁34で減圧された後、室外熱交換器32に流入する。そして、室外熱交換器32において蒸発した冷媒は、四路切換弁31およびアキュムレータ35を介して、圧縮機30に流入する。   During the radiant heating operation and the radiant breeze heating operation, the indoor motor-operated valve 23 is opened, and the four-way switching valve 31 is switched to the state indicated by the solid line in FIG. Therefore, as indicated by the solid arrows in FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 30 flows into the indoor heat exchanger 20 and the radiation panel 22 through the four-way switching valve 31. Then, the refrigerant condensed in the indoor heat exchanger 20 and the radiation panel 22 is decompressed by the outdoor motor operated valve 34 and then flows into the outdoor heat exchanger 32. The refrigerant evaporated in the outdoor heat exchanger 32 flows into the compressor 30 via the four-way switching valve 31 and the accumulator 35.

リモコン4では、ユーザによって、運転の開始/停止の操作、運転モードの設定、室内温度の目標温度(室内設定温度)の設定、吹出風量の設定などが行われる。温風暖房運転時および冷房運転時には、風量設定として「風量自動」または「強」〜「弱」を選択できる。なお、本実施形態では、輻射暖房運転時および輻射微風暖房運転時には、風量は自動的に制御される。   In the remote controller 4, the user performs operation start / stop operation, operation mode setting, indoor temperature target temperature setting (indoor set temperature), blowing air volume setting, and the like. During the warm air heating operation and the cooling operation, “air volume automatic” or “strong” to “weak” can be selected as the air volume setting. In the present embodiment, the air volume is automatically controlled during the radiant heating operation and the radiant light wind heating operation.

次に、空気調和機1を制御する制御部5について図3を参照しつつ説明する。
図3に示すように、制御部5は、記憶部(記憶手段)50と、室内電動弁制御部52と、室内ファン制御部53と、圧縮機制御部(制御手段)54と、室外電動弁制御部55とを有している。
Next, the control part 5 which controls the air conditioner 1 is demonstrated, referring FIG.
As shown in FIG. 3, the control unit 5 includes a storage unit (storage unit) 50, an indoor motorized valve control unit 52, an indoor fan control unit 53, a compressor control unit (control unit) 54, and an outdoor motorized valve. And a control unit 55.

記憶部50には、空気調和機1に関する種々の運転設定や、制御プログラムや、その制御プログラムの実行に必要なデータテーブルなどが記憶されている。運転設定には、室内温度の目標温度(室内設定温度)のように、ユーザによってリモコン4が操作されることで設定されるものと、空気調和機1に対して予め設定されたものとがある。本実施形態の空気調和機1では、輻射パネル22の目標温度範囲は、予め所定の温度範囲(例えば50〜55℃)に設定されている。なお、リモコン4の操作によって輻射パネル22の目標温度範囲を設定できるようになっていてもよい。   The storage unit 50 stores various operation settings related to the air conditioner 1, control programs, data tables necessary for executing the control programs, and the like. The operation settings include those set by operating the remote controller 4 by the user, such as a target temperature of the room temperature (room set temperature), and those set in advance for the air conditioner 1. . In the air conditioner 1 of this embodiment, the target temperature range of the radiation panel 22 is set in advance to a predetermined temperature range (for example, 50 to 55 ° C.). Note that the target temperature range of the radiation panel 22 may be set by operating the remote controller 4.

室内電動弁制御部52は、室内電動弁23の開度を制御する。冷房運転時または温風暖房運転時には、室内電動弁制御部52は、室内電動弁23を閉弁する。また、輻射暖房運転時または輻射微風暖房運転時には、室内電動弁制御部52は、輻射パネル22の温度に基づいて室内電動弁23の開度を制御する。具体的には、パネル入温度センサ25およびパネル出温度センサ26でそれぞれ検出された温度の平均値に基づいて、輻射パネル22の表面温度(予測値)を算出し、この輻射パネル22の表面温度の予測値(以下、単に輻射パネル温度という)が、パネル目標温度範囲(例えば50〜55℃)となるように、室内電動弁23の開度を制御する。なお、本実施形態では、輻射パネル温度を算出するために、パネル入温度センサ25とパネル出温度センサ26の検出温度の両方を用いているが、パネル入温度センサ25の検出温度のみを用いてもよく、パネル出温度センサ26の検出温度のみを用いてもよい。   The indoor motorized valve control unit 52 controls the opening degree of the indoor motorized valve 23. During the cooling operation or the hot air heating operation, the indoor motor operated valve control unit 52 closes the indoor motor operated valve 23. In addition, during the radiant heating operation or the radiant breeze heating operation, the indoor motor-operated valve control unit 52 controls the opening degree of the indoor motor-operated valve 23 based on the temperature of the radiant panel 22. Specifically, the surface temperature (predicted value) of the radiation panel 22 is calculated based on the average value of the temperatures detected by the panel entry temperature sensor 25 and the panel exit temperature sensor 26, and the surface temperature of the radiation panel 22 is calculated. Of the indoor motor-operated valve 23 is controlled so that the predicted value (hereinafter, simply referred to as “radiant panel temperature”) falls within the panel target temperature range (for example, 50 to 55 ° C.). In this embodiment, in order to calculate the radiation panel temperature, both the detected temperature of the panel input temperature sensor 25 and the panel output temperature sensor 26 are used, but only the detected temperature of the panel input temperature sensor 25 is used. Alternatively, only the temperature detected by the panel temperature sensor 26 may be used.

室内ファン制御部53は、室内ファン21の回転数を制御する。
温風暖房運転もしくは冷房運転時の風量自動運転時、または輻射暖房運転時には、室内ファン制御部53は、室内温度センサ24で検出される室内温度や室内設定温度等に基づいて、室内ファン21の回転数を制御する。また、温風暖房運転もしくは冷房運転であって、風量設定として「強」〜「弱」が設定された場合、または輻射微風暖房運転時には、それぞれ予め設定されたファンタップに対応する回転数に室内ファン21を制御する。
The indoor fan control unit 53 controls the rotational speed of the indoor fan 21.
During the air volume automatic operation during the hot air heating operation or the cooling operation, or during the radiant heating operation, the indoor fan control unit 53 determines whether the indoor fan 21 is in accordance with the indoor temperature or the indoor set temperature detected by the indoor temperature sensor 24. Control the number of revolutions. Also, in the warm air heating operation or the cooling operation, when “strong” to “weak” is set as the air volume setting, or during the radiant light air heating operation, the indoor speed is set to the rotation speed corresponding to each preset fan tap. The fan 21 is controlled.

圧縮機制御部54は、室内温度や室内設定温度、室内熱交温度センサ27で検出される熱交温度等に基づいて、圧縮機30の運転周波数を制御する。   The compressor control unit 54 controls the operating frequency of the compressor 30 based on the indoor temperature, the indoor set temperature, the heat exchange temperature detected by the indoor heat exchange temperature sensor 27, and the like.

室外電動弁制御部55は、室外電動弁34の開度を制御する。詳細には、吐出温度センサ36で検出される温度が、その運転状態での最適温度となるように、室外電動弁34の開度を制御する。最適温度は、室内熱交温度センサ27で検出される温度および室外熱交温度センサ28で検知される温度などに基づいて決定される。   The outdoor electric valve control unit 55 controls the opening degree of the outdoor electric valve 34. Specifically, the opening degree of the outdoor electric valve 34 is controlled so that the temperature detected by the discharge temperature sensor 36 becomes the optimum temperature in the operating state. The optimum temperature is determined based on the temperature detected by the indoor heat exchange temperature sensor 27, the temperature detected by the outdoor heat exchange temperature sensor 28, and the like.

以上説明した本実施形態の空気調和機1によると、主流路11に設けられた減圧機構(室外電動弁)34を制御するだけで、冷媒回路10内の圧力を減圧できるので、第1流路12と第2流路13にそれぞれ減圧機構を設ける場合に比べて、制御を容易に行うことができる。   According to the air conditioner 1 of the present embodiment described above, the pressure in the refrigerant circuit 10 can be reduced only by controlling the pressure reducing mechanism (outdoor motor operated valve) 34 provided in the main flow path 11, so that the first flow path Compared with the case where a pressure reducing mechanism is provided in each of 12 and the second flow path 13, the control can be easily performed.

また、本実施形態では、室内電動弁23が第2流路13に設けられている。そのため、輻射パネル22を流れる冷媒の流量を調整することができる。また、室内電動弁23を閉弁することで、輻射パネル22に冷媒を流さずに、室内熱交換器20にのみ冷媒を流すことができる。   Further, in the present embodiment, the indoor motor operated valve 23 is provided in the second flow path 13. Therefore, the flow rate of the refrigerant flowing through the radiation panel 22 can be adjusted. In addition, by closing the indoor motor-operated valve 23, the refrigerant can flow only to the indoor heat exchanger 20 without flowing the refrigerant to the radiation panel 22.

また、本実施形態では、輻射暖房運転時および輻射微風暖房運転時の冷媒の流れ方向に関して輻射パネル22の下流側に、室内電動弁23を設けている。したがって、輻射パネル22の上流側に室内電動弁23を設ける場合よりも、室内電動弁23を通過する冷媒の温度を低くできる。そのため、室内電動弁23の耐久性を向上させることができる。また、室内電動弁23を閉弁して冷房運転を行う際、低温の冷媒が輻射パネル22に流れ込むのを完全に遮断できるため、輻射パネル22の結露を防止できる。   Moreover, in this embodiment, the indoor motor operated valve 23 is provided in the downstream of the radiation panel 22 regarding the flow direction of the refrigerant | coolant at the time of a radiation heating operation and a radiation breeze heating operation. Therefore, the temperature of the refrigerant passing through the indoor motor-operated valve 23 can be made lower than when the indoor motor-operated valve 23 is provided upstream of the radiation panel 22. Therefore, the durability of the indoor motor operated valve 23 can be improved. In addition, when the indoor motor-operated valve 23 is closed and the cooling operation is performed, the low-temperature refrigerant can be completely blocked from flowing into the radiation panel 22, so that condensation on the radiation panel 22 can be prevented.

また、従来の空気調和機のように、輻射パネルが設けられた流路と室内熱交換器が設けられた流路にそれぞれ減圧機構が配置された構成において、減圧機構が室内機に設けられる場合、減圧機構の切り換えに伴う騒音が室内で発生するという問題が起こる。また、輻射パネルが設けられた流路と室内熱交換器が設けられた流路との合流部を室外機に設けて、減圧機構を室外機に設けることも可能であるが、この場合、室内機と室外機とを接続する配管の数が増えてしまう。
一方、本実施形態では、主流路11に室外電動弁34を設けているため、室内機2と室外機3とを接続する配管の数を増やすことなく、室外電動弁34を室外機3に設けることができる。そのため、室外電動弁34の切り換えに伴う音は、室内では聞こえない。つまり、室外電動弁34の切り換え時に、室内での騒音を防止できる。
In addition, when a pressure reducing mechanism is provided in each of a flow path provided with a radiation panel and a flow path provided with an indoor heat exchanger as in a conventional air conditioner, the pressure reducing mechanism is provided in the indoor unit. There is a problem that noise accompanying the switching of the decompression mechanism is generated indoors. Further, it is possible to provide the outdoor unit with a junction between the flow path provided with the radiant panel and the flow path provided with the indoor heat exchanger, and the pressure reducing mechanism may be provided in the outdoor unit. The number of pipes connecting the machine and the outdoor unit will increase.
On the other hand, in this embodiment, since the outdoor electric valve 34 is provided in the main flow path 11, the outdoor electric valve 34 is provided in the outdoor unit 3 without increasing the number of pipes connecting the indoor unit 2 and the outdoor unit 3. be able to. Therefore, the sound accompanying the switching of the outdoor electric valve 34 cannot be heard indoors. That is, indoor noise can be prevented when the outdoor motor operated valve 34 is switched.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

上記実施形態では、室内電動弁23は、輻射暖房運転時および輻射微風暖房運転時の冷媒の流れ方向において輻射パネル22の下流側に設けられているが、上流側に設けられていてもよい。   In the above embodiment, the indoor motor operated valve 23 is provided on the downstream side of the radiation panel 22 in the refrigerant flow direction during the radiant heating operation and the radiant light wind heating operation, but may be provided on the upstream side.

上記実施形態では、空気調和機1が、輻射パネル22に冷媒を流さないで室内熱交換器20に冷媒を流して温風暖房を行う温風暖房運転を行うことができるが、この温風暖房運転を行わない場合には、第2流路13に室内電動弁23を設ける代わりに、例えば図4に示す空気調和機101のように、第1流路112に室内電動弁123を設けると共に、第2流路113における輻射パネル22と合流部11bとの間に逆止弁129を設けてもよい。逆止弁129は、第2流路113において、輻射パネル22から合流部11bに向かってだけ冷媒を流し、合流部11bから輻射パネル22に向かって冷媒を流さないものである。図4中の実線の矢印は、輻射暖房運転時または輻射微風暖房運転時の冷媒の流れを示しており、図4中の破線の矢印は、冷房運転時の冷媒の流れを示している。室内電動弁123によって、室内熱交換器20に供給される冷媒の流量を調整することができる。また、室内電動弁123を閉弁することで、室内熱交換器20に冷媒を流さずに輻射パネル22にのみ冷媒を流して輻射暖房のみを行うことが可能となる。また、逆止弁129によって、冷房運転時に、輻射パネル22に低温の冷媒が流れるのを防止できる。なお、図4では、室内電動弁123を室内熱交換器20の合流部11b側に設けているが、分岐部11a側に設けてもよい。   In the above embodiment, the air conditioner 1 can perform the hot air heating operation in which the refrigerant flows through the indoor heat exchanger 20 without causing the refrigerant to flow through the radiation panel 22. In the case where the operation is not performed, instead of providing the indoor electric valve 23 in the second flow path 13, for example, as in the air conditioner 101 shown in FIG. 4, the indoor electric valve 123 is provided in the first flow path 112, A check valve 129 may be provided between the radiation panel 22 and the merging portion 11 b in the second flow path 113. In the second flow path 113, the check valve 129 allows the refrigerant to flow only from the radiation panel 22 toward the merging portion 11b, and does not cause the refrigerant to flow from the merging portion 11b toward the radiating panel 22. A solid line arrow in FIG. 4 indicates the flow of the refrigerant during the radiant heating operation or the radiant breeze heating operation, and a broken line arrow in FIG. 4 indicates the flow of the refrigerant during the cooling operation. The flow rate of the refrigerant supplied to the indoor heat exchanger 20 can be adjusted by the indoor motor operated valve 123. Moreover, by closing the indoor motor operated valve 123, it is possible to perform only the radiant heating by flowing the refrigerant only to the radiation panel 22 without flowing the refrigerant to the indoor heat exchanger 20. Further, the check valve 129 can prevent the low-temperature refrigerant from flowing through the radiation panel 22 during the cooling operation. In addition, in FIG. 4, although the indoor motor operated valve 123 is provided in the junction part 11b side of the indoor heat exchanger 20, you may provide in the branch part 11a side.

本発明を利用すれば、空気調和機の制御を容易に行うことができる。   If this invention is utilized, control of an air conditioner can be performed easily.

1 空気調和機
2 室内機
3 室外機
20 室内熱交換器
22 輻射パネル
23 室内電動弁(弁機構)
30 圧縮機
32 室外熱交換器
34 室外電動弁(減圧機構)
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 3 Outdoor unit 20 Indoor heat exchanger 22 Radiation panel 23 Indoor motor operated valve (valve mechanism)
30 Compressor 32 Outdoor heat exchanger 34 Outdoor motor operated valve (pressure reduction mechanism)

Claims (1)

室内機と室外機とを接続する冷媒回路を備えた空気調和機であって、
前記室内機が、その内部においてファンに対向するように設けられた室内熱交換器と、その表面に設けられた輻射パネルとを有しており、
前記冷媒回路が、
減圧機構、室外熱交換器及び圧縮機が順に設けられた主流路と、
暖房運転時、前記主流路の前記圧縮機の下流側で且つ前記室内機の内部に設けられた分岐部と前記減圧機構の上流側で且つ前記室内機の内部に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、
暖房運転時、前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射パネルが設けられた第2流路とを有しており、
前記第1流路に電動弁が設けられておらず、且つ、暖房運転時、前記第2流路において前記輻射パネルの下流側に、前記輻射パネルの温度を制御するために前記輻射パネルに供給される冷媒の流量を調整する電動弁が設けられると共に、
前記室外機が、前記圧縮機、前記室外熱交換器及び前記減圧機構を有し、
前記室内機が、前記電動弁を有していることを特徴とする空気調和機。
An air conditioner including a refrigerant circuit that connects an indoor unit and an outdoor unit,
The indoor unit has an indoor heat exchanger provided so as to face the fan in the interior, and a radiation panel provided on the surface thereof,
The refrigerant circuit is
A main flow path in which a decompression mechanism, an outdoor heat exchanger and a compressor are provided in order;
Heating operation, and the provided inside of and the indoor unit downstream of the compressor of the main flow path branching portion, and said merging portion and provided inside of the indoor unit on the upstream side of the pressure reducing mechanism And a first flow path provided with the indoor heat exchanger,
During the heating operation, the branch portion and the merging portion are connected in parallel with the first flow path, and the second flow path is provided with the radiation panel.
An electric valve is not provided in the first flow path, and is supplied to the radiation panel to control the temperature of the radiation panel downstream of the radiation panel in the second flow path during heating operation. A motorized valve for adjusting the flow rate of the refrigerant to be
The outdoor unit includes the compressor, the outdoor heat exchanger, and the pressure reducing mechanism;
The indoor unit has the motor operated valve.
JP2010235855A 2010-10-20 2010-10-20 Air conditioner Active JP5187373B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010235855A JP5187373B2 (en) 2010-10-20 2010-10-20 Air conditioner
EP11834368.0A EP2631560B1 (en) 2010-10-20 2011-10-19 Air conditioner
ES11834368T ES2776986T3 (en) 2010-10-20 2011-10-19 Air conditioner
CN201180049916.0A CN103168205B (en) 2010-10-20 2011-10-19 Air conditioner
AU2011319038A AU2011319038B2 (en) 2010-10-20 2011-10-19 Air conditioner
PCT/JP2011/073988 WO2012053529A1 (en) 2010-10-20 2011-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235855A JP5187373B2 (en) 2010-10-20 2010-10-20 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013010464A Division JP2013076565A (en) 2013-01-23 2013-01-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012087998A JP2012087998A (en) 2012-05-10
JP5187373B2 true JP5187373B2 (en) 2013-04-24

Family

ID=45975240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235855A Active JP5187373B2 (en) 2010-10-20 2010-10-20 Air conditioner

Country Status (6)

Country Link
EP (1) EP2631560B1 (en)
JP (1) JP5187373B2 (en)
CN (1) CN103168205B (en)
AU (1) AU2011319038B2 (en)
ES (1) ES2776986T3 (en)
WO (1) WO2012053529A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240938B (en) * 2015-10-12 2017-11-24 珠海格力电器股份有限公司 A kind of air-conditioning system
CN115013317A (en) * 2017-03-23 2022-09-06 艾默生环境优化技术(苏州)有限公司 Vortex assembly, vortex compressor and compressor heat pump system
US20200282808A1 (en) * 2019-03-04 2020-09-10 Denso International America, Inc. Unidirectional Heat Exchanger
CN209605441U (en) * 2019-03-08 2019-11-08 晏飞 Air-conditioning/heat pump expanding function case and air-conditioning/heat pump accumulation of heat refrigeration system
CN110989717A (en) * 2019-12-18 2020-04-10 山东大学 Decision method and system for regulating and controlling time of temperature control system
CN112524780B (en) * 2020-12-09 2022-09-06 青岛海尔空调器有限总公司 Control method and control device for air conditioner and air conditioner indoor unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181032A (en) * 1988-01-13 1989-07-19 Toshiba Corp Air conditioner
JP2508528Y2 (en) * 1990-07-16 1996-08-28 三菱重工業株式会社 Air conditioner
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner
JPH05280762A (en) * 1992-03-30 1993-10-26 Toshiba Corp Indoor unit with radiation panel
JP2003322388A (en) * 2002-05-02 2003-11-14 Toshiba Kyaria Kk Air conditioner
JP2005188784A (en) * 2003-12-24 2005-07-14 Toshiba Corp Refrigerator
JP4797727B2 (en) * 2006-03-22 2011-10-19 ダイキン工業株式会社 Refrigeration equipment
JP5229031B2 (en) * 2009-03-18 2013-07-03 ダイキン工業株式会社 air conditioner
CN201377865Y (en) * 2009-04-17 2010-01-06 王福山 Air conditioner with air-source heat pump

Also Published As

Publication number Publication date
JP2012087998A (en) 2012-05-10
EP2631560A4 (en) 2014-04-30
ES2776986T3 (en) 2020-08-03
AU2011319038B2 (en) 2015-04-09
CN103168205B (en) 2016-02-24
WO2012053529A1 (en) 2012-04-26
AU2011319038A1 (en) 2013-05-23
EP2631560B1 (en) 2019-12-18
EP2631560A1 (en) 2013-08-28
CN103168205A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
JP5187373B2 (en) Air conditioner
WO2012046850A1 (en) Air conditioner
AU2012207833B2 (en) Air conditioner
JP5131359B2 (en) Air conditioner
JP5507231B2 (en) Air conditioner
CN111043712A (en) Defrosting control method and system for heating mode of air conditioner and air conditioner
JP6667719B2 (en) Air conditioner
JPWO2015173909A1 (en) Outside air processing machine and air conditioner
JP2010159926A (en) Air conditioner
JP2016099032A (en) Heater and air conditioner
JP5619056B2 (en) Air conditioner
WO2012050066A1 (en) Remote controller and air conditioner equipped with same
JP2013076565A (en) Air conditioner
JP2012083103A (en) Air conditioner
JP2018063091A (en) Heat pump water heater with cooling function
JP6230701B2 (en) Air conditioner and air conditioning system
JP2018036002A (en) Air Conditioning Hot Water Supply System
JPWO2016166873A1 (en) Heat pump system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP6918221B2 (en) Air conditioner
JP2016038184A (en) Air conditioner
JP6467271B2 (en) Hot water heating system
JP2005037003A (en) Air-conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5187373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3