JP2006124462A - Refrigerant composition - Google Patents

Refrigerant composition Download PDF

Info

Publication number
JP2006124462A
JP2006124462A JP2004312269A JP2004312269A JP2006124462A JP 2006124462 A JP2006124462 A JP 2006124462A JP 2004312269 A JP2004312269 A JP 2004312269A JP 2004312269 A JP2004312269 A JP 2004312269A JP 2006124462 A JP2006124462 A JP 2006124462A
Authority
JP
Japan
Prior art keywords
refrigerant
propane
butane
isobutane
refrigerant composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004312269A
Other languages
Japanese (ja)
Inventor
Seijuro Yonetani
盛壽郎 米谷
Osamu Nakagome
理 中込
Shinobu Haiyama
忍 灰山
Toshifumi Hatanaka
利文 畑中
Toshihiro Wada
年弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
NKK Co Ltd
Original Assignee
Japan Petroleum Exploration Co Ltd
NKK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd, NKK Co Ltd filed Critical Japan Petroleum Exploration Co Ltd
Priority to JP2004312269A priority Critical patent/JP2006124462A/en
Publication of JP2006124462A publication Critical patent/JP2006124462A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe and non-toxic refrigerant composition free from the ozonosphere destruction problem and having extremely small global warming coefficient and excellent performance by mixing propane, n-butane and isobutane. <P>SOLUTION: The refrigerant composition for a freezing machine contains 40-70 wt.% propane, 10-40 wt.% n-butane and 5-30 wt.% isobutane based on the total weight of propane, n-butane and isobutane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーエアコン、業務用・家庭用エアコン及びガスヒートポンプ(GHP)・エレクトリカルヒートポンプ(EHP)に使用される、プロパン、n−ブタン及びイソブタンを含有する冷媒組成物に関る。   The present invention relates to a refrigerant composition containing propane, n-butane and isobutane, which is used in car air conditioners, commercial / household air conditioners, and gas heat pumps (GHP) / electrical heat pumps (EHP).

これまでフロン(CFCフルオロカーボン、HCFCハイドロフルオロカーボン)は優れた冷媒能力を有するので全世界で冷凍機やエアコン用の冷媒として広く使用されてきた。しかしながら、現在、フロンは塩素を含んでいるのでオゾン層を破壊するということから、1996年、日本及び欧米先進国において特定フロンのうちCFCの生産が全廃された。その同じ特定フロンであるHCFC(ハイドロフルオロフロン)も2004年以降順次生産が規制され、ヨーロッパでは2010年までに、その他の先進国でも2020年までに全廃されることになっている。   Until now, chlorofluorocarbon (CFC fluorocarbon, HCFC hydrofluorocarbon) has an excellent refrigerant capacity and has been widely used as a refrigerant for refrigerators and air conditioners all over the world. However, since CFCs contain chlorine and destroy the ozone layer, the production of CFCs out of specific CFCs was abolished in 1996 in Japan and Europe and America. The same specific chlorofluorocarbon, HCFC (Hydrofluorofluorocarbon), will be regulated in sequence since 2004, and will be completely abolished by 2010 in Europe and by 2020 in other developed countries.

また、上記特定フロンに替わる代替フロン(HFCハイドロフルオロカーボン、PFC,SP6)は、オゾン層破壊係数ゼロ、低毒性、不燃、満足できる特性、性能を有するものの、鉱油との非相溶性、潤滑性の劣化という課題を有している。特に、この代替フロンは、オゾン層を破壊しないものの地球温暖化係数が非常に高いことから、現在具体的な規制がなく、業界の自主行動に任されているものの、近い将来その使用が廃止または大きく規制されることになるであろう。   In addition, alternative chlorofluorocarbon (HFC hydrofluorocarbon, PFC, SP6), which replaces the above-mentioned specific chlorofluorocarbon, has zero ozone depletion coefficient, low toxicity, non-combustibility, satisfactory characteristics and performance, but is incompatible with mineral oil and lubricity. It has a problem of deterioration. In particular, this alternative chlorofluorocarbon does not destroy the ozone layer but has a very high global warming potential.Therefore, although there is no specific regulation and it is left to the voluntary action of the industry, its use will be abolished in the near future. It will be greatly regulated.

最近、開発が進められている、二酸化炭素、アンモニア、水及び空気などの自然系冷媒もオゾン層破壊係数ゼロ、温暖化係数ほぼゼロの特徴を有するものの、安全性、性能、利便性などにそれぞれ難点がある。すなわち、二酸化炭素は不燃・低毒性であるものの低効率・超高圧(12MPa)である。アンモニアはHFCと同等効率を有するが、毒性、刺激臭、銅との不適合性がある。水・空気は不燃・無毒であるものの極めて低効率である。   Recently developed natural refrigerants such as carbon dioxide, ammonia, water, and air also have features of zero ozone depletion coefficient and almost zero global warming coefficient, but safety, performance, convenience, etc. There are difficulties. That is, carbon dioxide is incombustible and has low toxicity, but has low efficiency and ultrahigh pressure (12 MPa). Ammonia is as efficient as HFC, but has toxicity, irritating odor, and incompatibility with copper. Water and air are non-combustible and non-toxic, but very low efficiency.

本発明は、オゾン層破壊の危険性がなく、地球温暖化に及ぼす悪影響が小さく、毒性のない冷媒組成物を提供することを目的とする。   An object of the present invention is to provide a refrigerant composition that has no risk of ozone layer destruction, has a small adverse effect on global warming, and has no toxicity.

本発明は、プロパン、n−ブタンとイソブタンの全重量を基準として、40〜70重量%のプロパン、10〜40重量%のn−ブタン、5〜30重量%のイソブタンを含有することを特徴とする冷凍機用冷媒組成物に関る。これにより、オゾン層を破壊することのない、地球温暖化係数が極めて小さく(GWPが約3)毒性がなく、優れた冷房能力を有する冷媒を提供することができる。   The present invention is characterized by containing 40 to 70% by weight of propane, 10 to 40% by weight of n-butane, and 5 to 30% by weight of isobutane based on the total weight of propane, n-butane and isobutane. The present invention relates to a refrigerant composition for a refrigerator. Thereby, the ozone layer is not destroyed, the global warming potential is extremely small (GWP is about 3), there is no toxicity, and the refrigerant | coolant which has the outstanding cooling capability can be provided.

以下、本発明の好適な実施態様について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

冷房システムの原理は、物質(冷媒)が気化する時、周辺媒体から熱エネルギーを奪う潜熱と周辺媒体との連続的な熱交換に基づいている。また、冷媒の蒸発温度は圧力に依存するため、圧力を下げれば蒸発温度も低下するので、より低い温度が得られる。   The principle of the cooling system is based on the continuous heat exchange between the surrounding medium and the latent heat that takes heat energy from the surrounding medium when the substance (refrigerant) is vaporized. Further, since the evaporation temperature of the refrigerant depends on the pressure, if the pressure is lowered, the evaporation temperature also decreases, so that a lower temperature can be obtained.

一方、暖房/給湯システムの原理は、冷媒の蒸発により周辺から熱を奪い、更に圧縮された高温の気体となるため、水や空気等との連続的な熱交換により成し遂げられる。   On the other hand, the principle of the heating / hot water supply system is achieved by continuous heat exchange with water, air, or the like because it takes heat from the surroundings by evaporation of the refrigerant and becomes a compressed high-temperature gas.

このような冷房/暖房システムの原理に基づく冷房・暖房/給湯システムは、冷媒の蒸発から圧縮の連続的なプロセスを行えるシステムとして、圧縮器、凝縮器、膨張弁、蒸発器及びこれらの機器を冷媒が循環するパイプから構成されたサイクル(冷房−暖房基準サイクル)システムである。このサイクルシステムの非限定的な例を図1に示す。これら機器の役割を以下に示す。
・EQ1圧縮器:蒸発器で気体となった冷たい冷媒を吸引圧縮して高温高圧気体とする。
・EQ2凝縮器:圧縮器から吐出された高温高圧気体媒体を水や空気(外気)で冷やして凝縮させ、液体とする(暖房/給湯用)。
・EQ3膨張弁:高温高圧の液体冷媒を膨張させ低温低圧の冷媒とする。
・EQ4蒸発器:膨張弁の出口で低温低圧の冷媒を周辺気体と接触させてその熱を奪うことで蒸発・気化させ、気体とする(冷房用)。
The cooling / heating / hot water supply system based on the principle of the cooling / heating system includes a compressor, a condenser, an expansion valve, an evaporator, and these devices as a system that can perform a continuous process from evaporation of refrigerant to compression. This is a cycle (cooling-heating reference cycle) system composed of pipes through which refrigerant circulates. A non-limiting example of this cycle system is shown in FIG. The role of these devices is shown below.
-EQ1 compressor: The cold refrigerant turned into a gas in the evaporator is sucked and compressed into a high-temperature and high-pressure gas.
-EQ2 condenser: The high-temperature high-pressure gaseous medium discharged from the compressor is cooled and condensed with water or air (outside air) to form a liquid (for heating / hot water supply).
-EQ3 expansion valve: A high-temperature and high-pressure liquid refrigerant is expanded into a low-temperature and low-pressure refrigerant.
-EQ4 evaporator: A low-temperature and low-pressure refrigerant is brought into contact with the surrounding gas at the outlet of the expansion valve, and the heat is removed to evaporate and vaporize the gas (for cooling).

実際に冷媒の冷房/暖房/給湯能力を評価するためには、上述の基準サイクルを数値モデル化し、汎用の数値ケミカルプロセスシミュレーターを用いて、公知の方法(例えば、宮良等の「非共沸混合冷媒ヒートポンプサイクルの性能に及ぼす熱交換器の伝熱特性の影響」日本冷凍協会論文集第7巻、第1号、65−73頁、1990年等を参照)により、その能力を解析・評価することができる。汎用の数値ケミカルプロセスシミュレーターは多種多様な成分の熱力学物性のデータベースを内蔵し、さまざまなシステムの機械工学的機能に対応した化学成分相互の平衡熱力学計算を行う。   In order to actually evaluate the cooling / heating / hot-water supply capacity of the refrigerant, the above-mentioned reference cycle is numerically modeled, and a known method (for example, “non-azeotropic mixing” by Miyara et al. Is used by using a general-purpose numerical chemical process simulator. The effect of heat transfer characteristics of the heat exchanger on the performance of the refrigerant heat pump cycle is analyzed and evaluated according to the Japan Refrigeration Association Proceedings Vol. 7, No. 1, pages 65-73, 1990, etc.) be able to. A general-purpose numerical chemical process simulator has a built-in database of thermodynamic properties of various components, and performs equilibrium thermodynamic calculations between chemical components corresponding to the mechanical engineering functions of various systems.

数値シミュレーションでは、冷媒が循環する圧縮器、循環器、膨張弁、蒸発器を構成するシステムを各々数値化し、圧縮器出口圧力(P1)、凝縮器出口温度(T2)、蒸発器温度(T3)及び冷媒組成物成分の濃度をパラメーターとし、冷房/暖房/給湯能力を成績係数(COP)として評価する。   In the numerical simulation, the systems constituting the compressor, the circulator, the expansion valve, and the evaporator in which the refrigerant circulates are digitized, and the compressor outlet pressure (P1), the condenser outlet temperature (T2), and the evaporator temperature (T3). The cooling / heating / hot water supply capacity is evaluated as a coefficient of performance (COP) using the concentration of the refrigerant composition component as a parameter.

冷房の成績係数=冷房の蒸発器での総吸収熱量÷圧縮器動力量
暖房/給湯の成績係数=冷媒の凝縮器での総排熱量÷圧縮器動力
Coefficient of performance of cooling = total absorbed heat in the evaporator of the cooling ÷ compressor power factor Coefficient of performance of heating / hot water = total amount of exhaust heat in the condenser of the refrigerant ÷ compressor power

本発明の冷媒組成物を好適に使用できる冷凍機としては、カーエアコン、業務用・家庭用エアコン及びガスヒートポンプ(GHP)・エレクトリカルヒートポンプ(EHP)等があるが、これらに限定されない。また、本発明の冷媒組成物は、R22等の既存の冷媒が使用されているカーエアコン、業務用・家庭用エアコン及びGHP・EHP等に原則的にそのまま使用することができる。しかしながら、本発明の冷媒組成物の物性を考慮して、凝縮器やピストン等の機構面を本発明の冷媒組成物に適合させるように改良・設計することが更に望ましい。   Refrigerators that can suitably use the refrigerant composition of the present invention include, but are not limited to, car air conditioners, commercial / household air conditioners, gas heat pumps (GHP), and electrical heat pumps (EHP). In addition, the refrigerant composition of the present invention can be used as it is in principle for car air conditioners, commercial / home air conditioners, GHP / EHP, etc. in which existing refrigerants such as R22 are used. However, in view of the physical properties of the refrigerant composition of the present invention, it is further desirable to improve and design the mechanical surfaces such as the condenser and the piston so as to be adapted to the refrigerant composition of the present invention.

(実施例)
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。
(Example)
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

プロパン/n−ブタン/イソブタン3元系冷媒組成物の冷媒特性を評価するため、図1の冷媒循環システムをベースにその冷媒能力をシミュレートした。システムは圧縮器、凝縮器、膨張弁及び蒸発器から構成された冷房サイクルである。数値ケミカルプロセスシミュレーターを用いてシミュレーションを以下の手順で行った。   In order to evaluate the refrigerant characteristics of the propane / n-butane / isobutane ternary refrigerant composition, the refrigerant capacity was simulated based on the refrigerant circulation system of FIG. The system is a cooling cycle consisting of a compressor, a condenser, an expansion valve and an evaporator. The simulation was performed by the following procedure using a numerical chemical process simulator.

シミュレーション手順
図1のサイクルにおける各ライン上(1〜4)の状態量を算定しシステムの冷房に係る成績係数(COP)を決定する。
Simulation Procedure The state quantities on each line (1 to 4) in the cycle of FIG. 1 are calculated to determine the coefficient of performance (COP) related to cooling of the system.

COPはEQ4での吸熱エネルギーに対する圧縮器の駆動エネルギーの比とする。
計算条件:次の量を一定として与える。
T2(凝縮器出口温度)=38℃又は35℃
T3/T4=約2℃(T3とT4の中間値が約2℃になるように設定)
P3(膨張弁出口圧力)
P1(圧縮器出口圧力)を変動パラメーターとした。
COP is the ratio of the drive energy of the compressor to the endothermic energy at EQ4.
Calculation conditions: The following amount is given as a constant.
T2 (condenser outlet temperature) = 38 ° C. or 35 ° C.
T3 / T4 = about 2 ° C (set so that the intermediate value between T3 and T4 is about 2 ° C)
P3 (Expansion valve outlet pressure)
P1 (compressor outlet pressure) was taken as a variable parameter.

以上説明したシミュレーターを用いて、プロパン/n−ブタン/イソブタン3元系混合冷媒組成物、比較としてプロパン単独についてCOPを以下のように得た。   Using the simulator described above, COPs were obtained for the propane / n-butane / isobutane ternary mixed refrigerant composition and, for comparison, propane alone as follows.

図1のシステムにおいて、膨張弁出口圧力(P3)=0.27MPaとして、プロパン55重量%、n−ブタン31.5重量%及びイソブタン13.5重量%の冷媒組成物につきシミュレーションを行った。ここで、圧縮器出口圧力(P1)を0.92MPa、凝縮器出口温度(T2)を38℃とした場合(実験番号1)と、圧縮器出口圧力を0.85MPa、凝縮器出口温度を35℃とした場合(実験番号2)についてCOPを算出した。得られた結果を表1に示す。   In the system of FIG. 1, a simulation was performed for a refrigerant composition of 55 wt% propane, 31.5 wt% n-butane, and 13.5 wt% isobutane with an expansion valve outlet pressure (P3) = 0.27 MPa. Here, when the compressor outlet pressure (P1) is 0.92 MPa and the condenser outlet temperature (T2) is 38 ° C. (experiment number 1), the compressor outlet pressure is 0.85 MPa and the condenser outlet temperature is 35. The COP was calculated for the case of 0 ° C. (Experiment No. 2). The obtained results are shown in Table 1.

同一システムにおいて、膨張弁出口圧力=0.25MPaとして、プロパン50重量%、n−ブタン38重量%及びイソブタン12重量%の冷媒組成物につきシミュレーションを行った。ここで、圧縮器出口圧力を0.87MPa、凝縮器出口温度を38℃とした場合(実験番号3)と、圧縮器出口圧力を0.80MPa、凝縮器出口温度を35℃とした場合(実験番号4)についてCOPを算出した。得られた結果を表1に示す。   In the same system, a simulation was performed for a refrigerant composition of 50% by weight of propane, 38% by weight of n-butane, and 12% by weight of isobutane with an expansion valve outlet pressure = 0.25 MPa. Here, when the compressor outlet pressure is 0.87 MPa and the condenser outlet temperature is 38 ° C. (experiment number 3), and when the compressor outlet pressure is 0.80 MPa and the condenser outlet temperature is 35 ° C. (experiment The COP was calculated for number 4). The obtained results are shown in Table 1.

同一システムにおいて、膨張弁出口圧力=0.30MPaとして、プロパン60重量%、n−ブタン14重量%及びイソブタン26重量%の冷媒組成物につきシミュレーションを行った。ここで、圧縮器出口圧力を0.99MPa、凝縮器出口温度を38℃とした場合(実験番号5)と、圧縮器出口圧力を0.91MPa、凝縮器出口温度を35℃とした場合(実験番号6)についてCOPを算出した。得られた結果を表1に示す。   In the same system, a simulation was performed for a refrigerant composition of 60% by weight of propane, 14% by weight of n-butane and 26% by weight of isobutane with an expansion valve outlet pressure = 0.30 MPa. Here, when the compressor outlet pressure is 0.99 MPa and the condenser outlet temperature is 38 ° C. (experiment number 5), and when the compressor outlet pressure is 0.91 MPa and the condenser outlet temperature is 35 ° C. (experiment The COP was calculated for number 6). The obtained results are shown in Table 1.

(比較例1)
同一システムにおいて、膨張弁出口圧力=0.50MPaとして、プロパン100重量%の冷媒組成物につきシミュレーションを行った。ここで、圧縮器出口圧力を1.3MPa、凝縮器出口温度を38℃とした場合(実験番号7)と、圧縮器出口圧力を1.3MPa、凝縮器出口温度を35℃とした場合(実験番号8)についてCOPを算出した。得られた結果を表1に示す。
(Comparative Example 1)
In the same system, simulation was performed for a refrigerant composition of 100% by weight of propane, with an expansion valve outlet pressure = 0.50 MPa. Here, when the compressor outlet pressure is 1.3 MPa, the condenser outlet temperature is 38 ° C. (experiment number 7), and when the compressor outlet pressure is 1.3 MPa and the condenser outlet temperature is 35 ° C. (experiment) The COP was calculated for number 8). The obtained results are shown in Table 1.

Figure 2006124462
Figure 2006124462

表1から明らかな通り、実施例1〜3において、プロパン単独の場合に較べて低い圧縮器圧力で高いCOPを示し、冷房効果が良好(蒸発器出口温度が10℃以下)である冷媒組成物が得られることが分かる。   As is clear from Table 1, in Examples 1 to 3, the refrigerant composition exhibits a high COP at a lower compressor pressure than that of propane alone, and has a good cooling effect (evaporator outlet temperature is 10 ° C. or lower). It can be seen that

上記の結果から、本発明の冷媒組成物は、凝縮器出口温度が35℃以下で作動するシステムにおいては、産業用・工業用空調(ヒートポンプ)・冷凍機用冷媒として、また、ヒートアイランド現象を緩和する地中熱を利用したコジェネレーション用冷媒としての利用が見込まれる。特に、本願発明の冷媒組成物は、地球温暖化係数がほぼゼロであること、毒性のない安全な物質であることから、カーエアコン、家庭用エアコン用冷媒としての利用が見込まれる。   From the above results, the refrigerant composition of the present invention is used as a refrigerant for industrial / industrial air conditioners (heat pumps) and refrigerators in a system that operates at a condenser outlet temperature of 35 ° C. or less, and alleviates the heat island phenomenon. It is expected to be used as a refrigerant for cogeneration using geothermal heat. In particular, the refrigerant composition of the present invention is expected to be used as a refrigerant for car air conditioners and household air conditioners because it has a global warming potential of almost zero and is a safe substance without toxicity.

プロパン/n−ブタン/イソブタン三元系混合冷媒サイクルシステム。Propane / n-butane / isobutane ternary mixed refrigerant cycle system.

Claims (3)

プロパン、n−ブタンとイソブタンの全重量を基準として、40〜70重量%のプロパン、10〜40重量%のn−ブタン、5〜30重量%のイソブタンを含有することを特徴とする冷凍機用冷媒組成物。   For a refrigerator characterized by containing 40 to 70% by weight of propane, 10 to 40% by weight of n-butane and 5 to 30% by weight of isobutane based on the total weight of propane, n-butane and isobutane Refrigerant composition. プロパン、n−ブタンとイソブタンの全重量を基準として、40〜70重量%のプロパン、10〜40重量%のn−ブタン、5〜30重量%のイソブタンを含有する冷媒組成物を冷凍機に使用する方法。   A refrigerant composition containing 40 to 70% by weight propane, 10 to 40% by weight n-butane and 5 to 30% by weight isobutane based on the total weight of propane, n-butane and isobutane is used in the refrigerator. how to. 冷凍機がカーエアコンである請求項2に記載の方法。   The method according to claim 2, wherein the refrigerator is a car air conditioner.
JP2004312269A 2004-10-27 2004-10-27 Refrigerant composition Withdrawn JP2006124462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312269A JP2006124462A (en) 2004-10-27 2004-10-27 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312269A JP2006124462A (en) 2004-10-27 2004-10-27 Refrigerant composition

Publications (1)

Publication Number Publication Date
JP2006124462A true JP2006124462A (en) 2006-05-18

Family

ID=36719510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312269A Withdrawn JP2006124462A (en) 2004-10-27 2004-10-27 Refrigerant composition

Country Status (1)

Country Link
JP (1) JP2006124462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081672A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system
CN114207080A (en) * 2019-08-21 2022-03-18 Lg电子株式会社 Non-azeotropic mixed refrigerant and refrigeration equipment using non-azeotropic mixed refrigerant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081672A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system
WO2009081673A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system
CN101918507A (en) * 2007-12-26 2010-12-15 新川佳伸 Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system
KR101205442B1 (en) 2007-12-26 2012-11-27 요시노부 신카와 Hydrocarbon mixed refrigerant, freezing/refrigerating or cooling/heating air-conditioning system, freezing/refrigerating or cooling/heating air-conditioning method, and method for manufacturing freezing/refrigerating or cooling/heating air-conditioning system
JP2014051668A (en) * 2007-12-26 2014-03-20 Hiroyoshi Hosomura Hydrocarbon mixture refrigerant
JP2014111724A (en) * 2007-12-26 2014-06-19 Hiroyoshi Hosomura Hydrocarbon mixture refrigerant
JP5633088B2 (en) * 2007-12-26 2014-12-03 弘義 細村 Hydrocarbon mixed refrigerant, refrigeration or air conditioning method
CN114207080A (en) * 2019-08-21 2022-03-18 Lg电子株式会社 Non-azeotropic mixed refrigerant and refrigeration equipment using non-azeotropic mixed refrigerant

Similar Documents

Publication Publication Date Title
JP5674157B2 (en) Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
JP7060017B2 (en) Working medium for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP5407052B2 (en) Refrigerant composition
JP2011116822A (en) Mixed refrigerant and mixed refrigerant circulation system
Akintunde Experimental study of R134a, R406A and R600a blends as alternative to freon 12
JP2006241221A (en) Coolant composition for car air conditioner
CN110869461A (en) Azeotropic or azeotrope-like composition, working medium for heat cycle, and heat cycle system
JPS63205386A (en) Cooling medium and machine having circuit cooled by cooling medium
JP5008235B2 (en) Heat pump water heater
JP6856294B1 (en) Thermal medium
JP2006124462A (en) Refrigerant composition
JPH07502774A (en) Compositions useful as refrigerants
JP2007145922A (en) Refrigerant composition
Bolaji et al. Thermodynamic analysis of performance of vapour compression refrigeration system working with R290 and R600a mixtures
JP2006143898A (en) Coolant composition
JP6725639B2 (en) Refrigeration cycle equipment
JPH08176537A (en) Hydraulic fluid
JPH08151569A (en) Working fluid
JPH08199158A (en) Working fluid
JP2005344057A (en) Mixture refrigerant of dimethyl ether and carbon dioxide
JPH09318182A (en) Absorption room cooler
Wang Refrigerants and Refrigeration Cycles
JPH08151571A (en) Working fluid
Hwang et al. Opportunities with alternative refrigerants
JPH01139676A (en) Working medium mixture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108