JP2006241221A - Coolant composition for car air conditioner - Google Patents

Coolant composition for car air conditioner Download PDF

Info

Publication number
JP2006241221A
JP2006241221A JP2005055755A JP2005055755A JP2006241221A JP 2006241221 A JP2006241221 A JP 2006241221A JP 2005055755 A JP2005055755 A JP 2005055755A JP 2005055755 A JP2005055755 A JP 2005055755A JP 2006241221 A JP2006241221 A JP 2006241221A
Authority
JP
Japan
Prior art keywords
refrigerant
carbon dioxide
dimethyl ether
dme
car air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005055755A
Other languages
Japanese (ja)
Inventor
Seijuro Yonetani
盛壽郎 米谷
Osamu Nakagome
理 中込
Hideyuki Suzuki
秀行 鈴木
Yasuhisa Kotani
靖久 小谷
Toshifumi Hatanaka
利文 畑中
Toshihiro Wada
年弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
Showa Denko Gas Products Co Ltd
NKK Co Ltd
Original Assignee
Japan Petroleum Exploration Co Ltd
Showa Tansan Co Ltd
NKK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd, Showa Tansan Co Ltd, NKK Co Ltd filed Critical Japan Petroleum Exploration Co Ltd
Priority to JP2005055755A priority Critical patent/JP2006241221A/en
Publication of JP2006241221A publication Critical patent/JP2006241221A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coolant which has excellent features, is not ozone-depleting, has an extremely low global warming potential, is safe and non-toxic by mixing a coolant, dimethyl ether and carbon dioxide. <P>SOLUTION: The coolant composition for car air conditioners contains 5-40 wt% of dimethyl ether and 95-60 wt% of carbon dioxide. Preferably, the coolant composition contains 8-12 wt% of dimethyl ether and 92-88 wt% of carbon dioxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主にカーエアコンに使用される、ジメチルエーテルと二酸化炭素を含有する冷媒組成物に関る。   The present invention relates to a refrigerant composition containing dimethyl ether and carbon dioxide, which is mainly used in car air conditioners.

これまでフロン(CFCクロロフルオロカーボン、HCFCハイドロクロロフルオロカーボン)は優れた冷媒能力を有するので全世界でカーエアコン等用の冷媒として広く使用されてきた。しかしながら、現在、フロンは塩素を含んでいるのでオゾン層を破壊するということから、1996年、日本及び欧米先進国において特定フロンのうちCFCの生産が全廃された。その同じ特定フロンであるHCFC(ハイドロクロロフルオロカーボン)も2004年以降順次生産が規制され、ヨーロッパでは2010年までに、その他の先進国でも2020年までに全廃されることになっている。   Until now, chlorofluorocarbon (CFC chlorofluorocarbon, HCFC hydrochlorofluorocarbon) has an excellent refrigerant capacity and thus has been widely used worldwide as a refrigerant for car air conditioners and the like. However, since CFCs contain chlorine and destroy the ozone layer, the production of CFCs out of specific CFCs was abolished in 1996 in Japan and Europe and America. The production of HCFC (hydrochlorofluorocarbon), which is the same specific chlorofluorocarbon, will be regulated after 2004, and will be completely abolished by 2010 in Europe and by 2020 in other developed countries.

また、上記特定フロンに替わる代替フロン(HFCハイドロフルオロカーボン、PFCパーフルオロカーボン,SP6)は、オゾン層破壊係数ゼロ、低毒性、不燃、満足できる特性、性能を有するものの、鉱油との非相溶性、潤滑性の劣化という課題を有している。特に、この代替フロンは、オゾン層を破壊しないものの地球温暖化係数が非常に高いことから、現在具体的な規制がなく、業界の自主行動に任されているものの、近い将来その使用が廃止または大きく規制されることになるであろう。   In addition, alternative chlorofluorocarbon (HFC hydrofluorocarbon, PFC perfluorocarbon, SP6), which replaces the above-mentioned specific chlorofluorocarbon, has zero ozone depletion coefficient, low toxicity, nonflammability, satisfactory characteristics and performance, but is incompatible with mineral oil, lubrication There is a problem of deterioration of the property. In particular, this alternative chlorofluorocarbon does not destroy the ozone layer but has a very high global warming potential.Therefore, although there is no specific regulation and it is left to the voluntary action of the industry, its use will be abolished in the near future. It will be greatly regulated.

最近、開発が進められている、二酸化炭素、アンモニア、水及び空気などの自然系冷媒もオゾン層破壊係数ゼロ、温暖化係数ほぼゼロの特徴を有するものの、安全性、性能、利便性などにそれぞれ難点がある。アンモニアはHFCと同等効率を有するが、毒性、刺激臭、銅との不適合性がある。水・空気は不燃・無毒であるものの極めて低効率である。   Recently developed natural refrigerants such as carbon dioxide, ammonia, water, and air also have features of zero ozone depletion coefficient and almost zero global warming coefficient, but safety, performance, convenience, etc. There are difficulties. Ammonia is as efficient as HFC, but has toxicity, irritating odor, and incompatibility with copper. Water and air are non-combustible and non-toxic, but very low efficiency.

一方、二酸化炭素は不燃・低毒性であり、顕熱効果が大きいので、暖房・温熱水供給用としてエコキュートなどのEHP冷媒に近年使用されている。しかしながら、二酸化炭素は、逆に潜熱効果が小さいので冷房用に使用するには極めて効率が悪い。更に、二酸化炭素をカーエアコン用の冷媒として用いる場合は、カーエアコンの凝縮器側の作動圧力は8MPa以上の高圧で超臨界(CO臨界圧力:7.4MPa、臨界温度:31℃)になり、この高圧気相冷媒を凝縮器での冷媒を液化するためには、COのモリエル線図からから分かるように、冷媒を31℃以下にする必要がある。このため、カーエアコンの凝縮器周囲を水で循環する、特殊な冷凍機用ガスで回して凝縮器を冷やすか、又はガスクーラーで取り入れる外気温度を十分に熱交換できる温度まで下げる等の特別な工夫が必要とされる。 On the other hand, carbon dioxide is nonflammable and has low toxicity, and has a large sensible heat effect. Therefore, carbon dioxide has recently been used for EHP refrigerants such as Ecocute for heating and supplying hot water. However, since carbon dioxide has a small latent heat effect, it is extremely inefficient to use for cooling. Furthermore, when carbon dioxide is used as a refrigerant for a car air conditioner, the operating pressure on the condenser side of the car air conditioner becomes supercritical (CO 2 critical pressure: 7.4 MPa, critical temperature: 31 ° C.) at a high pressure of 8 MPa or more. In order to liquefy the refrigerant in the condenser with this high-pressure gas-phase refrigerant, it is necessary to keep the refrigerant at 31 ° C. or lower, as can be seen from the Mollier diagram of CO 2 . For this reason, it circulates around the condenser of a car air conditioner with water, turns it with a special refrigerator gas, cools the condenser, or lowers the temperature of the outside air taken in with a gas cooler to a temperature at which it can sufficiently exchange heat. Ingenuity is required.

一方、ジメチルエーテル(DME)は潜熱効果が極めて高く、冷房用に使用するのに都合がよいことが知られているが、可燃性であるために安全性の点から実用上使用されていない。   On the other hand, dimethyl ether (DME) has a very high latent heat effect and is known to be convenient for use in cooling. However, since it is flammable, it is not practically used from the viewpoint of safety.

本発明は、オゾン層破壊の危険性がなく、地球温暖化に及ぼす悪影響が小さく、毒性のない、優れた冷房能力を有するカーエアコン用の冷媒組成物を提供することを目的とする。   An object of the present invention is to provide a refrigerant composition for a car air conditioner that has no risk of ozone layer destruction, has a small adverse effect on global warming, has no toxicity, and has an excellent cooling capacity.

本発明者等は、ジメチルエーテルに二酸化炭素が良く溶解することを知見し、更にジメチルエーテル(DME)の臨界温度が127℃と二酸化炭素に比べてはるかに高温であるため、ジメチルエーテル(DME)を二酸化炭素に混合することによって混合物として臨界温度を更に高めることができ、これにより、熱効率が高くかつ難燃性乃至不燃性の冷媒が得られるのではないかと考えて種々検討した結果、本発明に到達したものである。   The present inventors have found that carbon dioxide dissolves well in dimethyl ether. Furthermore, since the critical temperature of dimethyl ether (DME) is 127 ° C., which is much higher than that of carbon dioxide, dimethyl ether (DME) is converted into carbon dioxide. As a result of various studies on the possibility of obtaining a flame retardant or non-flammable refrigerant with high thermal efficiency, the present invention has been reached. Is.

即ち、本発明は、ジメチルエーテルと二酸化炭素の総重量を基準として、ジメチルエーテルを5〜40重量%、二酸化炭素を95〜60重量%、好ましくはジメチルエーテルを5〜12重量%、二酸化炭素を95〜88重量%含有するカーエアコン用冷媒組成物に関る。これにより、オゾン層を破壊することのない、地球温暖化係数が極めて小さく(GWPが約3)毒性がなく、優れた冷房能力を有する冷媒を提供することができる。更に、本発明の冷媒組成物をカーエアコンに使用することにより、凝縮器での冷媒の温度をより高温で作動させることができ、二酸化炭素単独冷媒のように凝縮器の周囲を冷やしたり、ガスクーラー等の特別な工夫が必要でなくなるという有利な効果を奏することができる。   That is, the present invention is based on the total weight of dimethyl ether and carbon dioxide, 5-40 wt% dimethyl ether, 95-60 wt% carbon dioxide, preferably 5-12 wt% dimethyl ether, 95-88 carbon dioxide. The present invention relates to a refrigerant composition for car air conditioners containing wt%. Thereby, the ozone layer is not destroyed, the global warming potential is extremely small (GWP is about 3), there is no toxicity, and the refrigerant | coolant which has the outstanding cooling capability can be provided. Furthermore, by using the refrigerant composition of the present invention for a car air conditioner, the temperature of the refrigerant in the condenser can be operated at a higher temperature. An advantageous effect is obtained that a special device such as a cooler is not required.

以下、本発明の好適な実施態様について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の冷媒組成物に使用されるジメチルエーテルは、例えば、石炭ガス化ガス、LNGタンクのBOG(Boil of Gas)、天然ガス、製鉄所の副生ガス、石油残渣、廃棄物及びバイオガスを原料として、水素と一酸化炭素から直接ジメチルエーテルを合成するか、水素と一酸化炭素から間接的にメタノール合成を経由して得られる。   The dimethyl ether used in the refrigerant composition of the present invention includes, for example, coal gasification gas, LNG tank BOG (Boil of Gas), natural gas, ironworks by-product gas, petroleum residue, waste, and biogas as raw materials. As described above, dimethyl ether is directly synthesized from hydrogen and carbon monoxide, or indirectly from methanol and carbon monoxide via methanol synthesis.

本発明の冷媒組成物に使用される二酸化炭素は、例えば、アンモニア合成ガスや重油脱硫用水素製造プラントなどから発生する副生ガスを原料として圧縮・液化・精製して得られる。   The carbon dioxide used in the refrigerant composition of the present invention can be obtained, for example, by compression, liquefaction and purification using by-product gas generated from ammonia synthesis gas or hydrogen production plant for heavy oil desulfurization as a raw material.

本発明の冷媒組成物におけるジメチルエーテルと二酸化炭素の混合割合は、冷媒が用いられるカーエアコン又は業務用・家庭用エアコン等の冷凍機の種類等に応じて適宜定められるが、本発明の冷媒組成物は、ジメチルエーテルと二酸化炭素の総重量を基準として、好ましくは、ジメチルエーテルを5〜40重量%、二酸化炭素を95〜60重量%、更に好ましくは、ジメチルエーテルを8〜12重量%、二酸化炭素を92〜88重量%、含有する。ジメチルエーテルが5重量%未満であると、後述する十分な成績係数が得られず、冷媒としての特性が劣る。一方、ジメチルエーテルが40重量%より大きいと、冷媒組成物が難燃性領域から外れて安全上好ましくない。   The mixing ratio of dimethyl ether and carbon dioxide in the refrigerant composition of the present invention is appropriately determined according to the type of refrigerator such as a car air conditioner or commercial / home air conditioner in which the refrigerant is used, but the refrigerant composition of the present invention. Is preferably 5 to 40% by weight of dimethyl ether, 95 to 60% by weight of carbon dioxide, more preferably 8 to 12% by weight of dimethyl ether and 92 to 92% of carbon dioxide, based on the total weight of dimethyl ether and carbon dioxide. Contains 88% by weight. When the dimethyl ether is less than 5% by weight, a sufficient coefficient of performance described later cannot be obtained, and the characteristics as a refrigerant are inferior. On the other hand, when dimethyl ether is larger than 40% by weight, the refrigerant composition is out of the flame-retardant region, which is not preferable for safety.

本発明の冷媒組成物は、例えば、カーエアコンの容量に応じて、サービス缶等の適量容器に液化ジメチルエーテル充填タンクから所定量の液化ジメチルエーテルを充填し、その後に液化二酸化炭素充填タンクから所定量の液化二酸化炭素を充填することにより、前記混合比の冷媒組成物を得ることができる。また、本発明の冷媒組成物は、カーエアコンの容量に応じてサービス缶等の適量容器に液化ジメチルエーテルを充填した後、容器の気相部に二酸化炭素のガスを充填し、ジメチルエーテルに加圧溶解、混合させて調製することもできる。   In the refrigerant composition of the present invention, for example, an appropriate amount container such as a service can is filled with a predetermined amount of liquefied dimethyl ether from a liquefied dimethyl ether filling tank according to the capacity of a car air conditioner, and then a predetermined amount from a liquefied carbon dioxide filling tank. By filling liquefied carbon dioxide, a refrigerant composition having the above-mentioned mixing ratio can be obtained. In addition, the refrigerant composition of the present invention is filled with liquefied dimethyl ether in an appropriate amount container such as a service can according to the capacity of a car air conditioner, and then filled with carbon dioxide gas in the gas phase portion of the container, and dissolved under pressure in dimethyl ether. It can also be prepared by mixing.

本発明の冷媒組成物は、ジメチルエーテルと二酸化炭素のみから構成されていてもよいし、当該混合媒体に加えて他の成分を含有していてもよい。本発明の冷媒組成物に加えることができる他の成分としては、エタノール等のアルコール類がある。   The refrigerant composition of the present invention may be composed only of dimethyl ether and carbon dioxide, or may contain other components in addition to the mixed medium. Other components that can be added to the refrigerant composition of the present invention include alcohols such as ethanol.

冷房システムの原理は、物質(冷媒)が気化する時、周辺媒体から熱エネルギーを奪う潜熱と周辺媒体との連続的な熱交換に基づいている。また、冷媒の蒸発温度は圧力に依存するため、圧力を下げれば蒸発温度も低下するので、より低い温度が得られる。   The principle of the cooling system is based on the continuous heat exchange between the surrounding medium and the latent heat that takes heat energy from the surrounding medium when the substance (refrigerant) is vaporized. Further, since the evaporation temperature of the refrigerant depends on the pressure, if the pressure is lowered, the evaporation temperature also decreases, so that a lower temperature can be obtained.

一方、暖房/給湯システムの原理は、冷媒の蒸発により周辺から熱を奪い、更に圧縮された高温の気体となるため、水や空気等との連続的な熱交換により成し遂げられる。   On the other hand, the principle of the heating / hot water supply system is achieved by continuous heat exchange with water, air, or the like because it takes heat from the surroundings by evaporation of the refrigerant and becomes a compressed high-temperature gas.

カーエアコン用システムも、このような冷房/暖房システムの原理に基本的に基づいており、圧縮器、凝縮器、膨張弁及び蒸発器から構成された冷媒サイクルシステムである。カーエアコン用冷媒サイクルシステムの非限定的な例を図1に示す。ここで、冷房空調は圧縮器で高圧高温化された冷媒が凝縮器で外気により冷やされ液相になる。この液相冷媒は蒸発器で車内空気との吸熱交換により蒸発し車内空気を冷却する。   The system for car air conditioners is also based on the principle of such a cooling / heating system, and is a refrigerant cycle system including a compressor, a condenser, an expansion valve, and an evaporator. A non-limiting example of a refrigerant cycle system for a car air conditioner is shown in FIG. Here, in the cooling air-conditioning, the high-pressure and high-temperature refrigerant in the compressor is cooled by the outside air in the condenser and becomes a liquid phase. This liquid-phase refrigerant evaporates by heat absorption exchange with the interior air in the evaporator, and cools the interior air.

図1の各機器の役割は以下の通りである。
・EQ1圧縮器:蒸発器で気体となった冷たい冷媒を吸引圧縮して高温高圧気体とする。
・EQ2凝縮器:圧縮器から吐出された高温高圧気体媒体を水や空気(外気)で冷やして凝縮させ、液体とする(暖房/給湯用)。
・EQ3膨張弁:高温高圧の液体冷媒を膨張させ低温低圧の冷媒とする。
・EQ4蒸発器:膨張弁の出口で低温低圧の冷媒を周辺気体と接触させてその熱を奪うことで蒸発・気化させ、気体とする(冷房用)。
The role of each device in FIG. 1 is as follows.
-EQ1 compressor: The cold refrigerant turned into a gas in the evaporator is sucked and compressed into a high-temperature and high-pressure gas.
-EQ2 condenser: The high-temperature high-pressure gaseous medium discharged from the compressor is cooled and condensed with water or air (outside air) to form a liquid (for heating / hot water supply).
-EQ3 expansion valve: A high-temperature and high-pressure liquid refrigerant is expanded into a low-temperature and low-pressure refrigerant.
-EQ4 evaporator: A low-temperature and low-pressure refrigerant is brought into contact with the surrounding gas at the outlet of the expansion valve, and the heat is removed to evaporate and vaporize the gas (for cooling).

実際に冷媒の冷房能力を評価するためには、上述の冷媒サイクルを数値モデル化し、汎用の数値ケミカルプロセスシミュレーターを用いて、公知の方法(例えば、宮良等の「非共沸混合冷媒ヒートポンプサイクルの性能に及ぼす熱交換器の伝熱特性の影響」日本冷凍協会論文集第7巻、第1号、65−73頁、1990年等を参照)により、その能力を解析・評価することができる。汎用の数値ケミカルプロセスシミュレーターは多種多様な成分の熱力学物性のデータベースを内蔵し、さまざまなシステムの機械工学的機能に対応した化学成分相互の平衡熱力学計算を行う。   In order to actually evaluate the cooling capacity of the refrigerant, the above-described refrigerant cycle is numerically modeled, and a general-purpose numerical chemical process simulator is used to perform a known method (for example, Miyara et al. The effect can be analyzed and evaluated according to “Effect of heat transfer characteristics of heat exchanger on performance” (see Japan Refrigeration Association, Vol. 7, No. 1, pages 65-73, 1990, etc.). A general-purpose numerical chemical process simulator has a built-in database of thermodynamic properties of various components, and performs equilibrium thermodynamic calculations between chemical components corresponding to the mechanical engineering functions of various systems.

数値シミュレーションでは、冷媒が循環する圧縮器、循環器、膨張弁、蒸発器を構成するシステムを各々数値化し、圧縮器出口圧力(以下、「圧縮圧力」と略記する)(P1)、凝縮器出口温度(T2)、蒸発器温度(T3)及び冷媒組成物成分の濃度をパラメーターとし、冷房/暖房/給湯能力を成績係数(COP)として評価する。   In the numerical simulation, each of the systems constituting the compressor, the circulator, the expansion valve, and the evaporator in which the refrigerant circulates is digitized, and the compressor outlet pressure (hereinafter abbreviated as “compression pressure”) (P1), the condenser outlet The temperature (T2), the evaporator temperature (T3) and the concentration of the refrigerant composition components are used as parameters, and the cooling / heating / hot water supply capacity is evaluated as a coefficient of performance (COP).

冷房の成績係数=冷房の蒸発器での総吸収熱量÷圧縮器動力量
暖房/給湯の成績係数=冷媒の凝縮器での総排熱量÷圧縮器動力
Coefficient of performance of cooling = total absorbed heat in the evaporator of the cooling ÷ compressor power factor Coefficient of performance of heating / hot water = total amount of exhaust heat in the condenser of the refrigerant ÷ compressor power

また、本発明においては、好ましくは、冷媒の熱力学物性値推定式として、溶解に関しては正則溶解モデル、状態方程式に関してはSPK(Soave−Redlich−Kwong)の式をそれぞれ適用してより高精度の評価をすることができる。   Further, in the present invention, it is preferable to apply a regular dissolution model for melting and an SPK (Soave-Redrich-Kwon) equation for the state equation as a thermodynamic property value estimation equation of the refrigerant, respectively. Can be evaluated.

本発明の冷媒組成物の物性を考慮して、凝縮器やピストン等の機構面を本発明の冷媒組成物に適合させるように改良・設計することが必要である。   In consideration of the physical properties of the refrigerant composition of the present invention, it is necessary to improve and design the mechanical surfaces such as the condenser and the piston so as to match the refrigerant composition of the present invention.

[実施例]
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。
[Example]
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

ジメチルエーテル/二酸化炭素の溶解性試験
ジメチルエーテル(DME)と二酸化炭素(CO)混合系の溶解の程度を調べるため、及び後述する給湯システムにおける混合冷媒の成績係数を求めるために、DME/COの溶解性試験を行った。試験方法は以下の通りである。
(1)圧力容器(500mL)に300gのジメチルエーテルを封入し、封入後の重量を電子天秤で測定する。
(2)恒温槽に圧力容器を入れ、一定温度にする。
(3)ブースターポンプで一定圧力まで、二酸化炭素を注入する。
(4)充填した二酸化炭素は充填前後の重量から算出する(d=0.1g)。
Dimethyl ether / To examine carbon dioxide solubility test dimethylether (DME) The degree of dissolution of carbon dioxide (CO 2) mixed system, and to determine the coefficient of performance of the mixed refrigerant in later-described hot water supply system, the DME / CO 2 A solubility test was performed. The test method is as follows.
(1) 300 g of dimethyl ether is sealed in a pressure vessel (500 mL), and the weight after sealing is measured with an electronic balance.
(2) Put a pressure vessel in a constant temperature bath and make it constant temperature.
(3) Carbon dioxide is injected to a certain pressure with a booster pump.
(4) The filled carbon dioxide is calculated from the weight before and after filling (d = 0.1 g).

尚、充填時には、DME/COが十分に混合するように圧力容器を上下に振とうさせ、縦置きに静置して試験を行った。 At the time of filling, the pressure vessel was shaken up and down so that DME / CO 2 was sufficiently mixed, and the test was carried out by standing vertically.

得られた結果を表1に示す。表1に示したとおり、CO及びDMEのK−volumeの値は、測定条件においてそれぞれ0.66<KDME<0.80及び2.59<KCO<3.42の範囲であり、DMEに二酸化炭素が良く溶解することが分かる。 The obtained results are shown in Table 1. As shown in Table 1, the K-volume values of CO 2 and DME are in the range of 0.66 <KDME <0.80 and 2.59 <KCO 2 <3.42, respectively, under the measurement conditions. It can be seen that carbon dioxide dissolves well.

Figure 2006241221
Figure 2006241221

(第1実施例)
図1に示す冷媒サイクルシステムにおけるジメチルエーテルと二酸化炭素との混合冷媒の成績係数(COP)を求める。数値ケミカルプロセスシミュレーターを用いてシミュレーションを以下の手順で行った。
(First embodiment)
The coefficient of performance (COP) of the mixed refrigerant of dimethyl ether and carbon dioxide in the refrigerant cycle system shown in FIG. 1 is obtained. The simulation was performed by the following procedure using a numerical chemical process simulator.

シミュレーション手順
図1の冷媒サイクルシステムにおけるストリーム(1)〜(4)の状態量(体積、エンタルピー、エントロピー等)をシミュレーションにより決定し、次式の成績係数COPを求める。
Simulation Procedure State quantities (volume, enthalpy, entropy, etc.) of streams (1) to (4) in the refrigerant cycle system of FIG. 1 are determined by simulation, and a coefficient of performance COP of the following equation is obtained.

COP=H1/H2
H1:冷媒の凝縮器での総排熱量
H2:(4)から(1)に至る圧縮器の動力量
このとき、以下の条件設定をした。
COP = H1 / H2
H1: Total exhaust heat amount in refrigerant condenser H2: Compressor power amount from (4) to (1) At this time, the following conditions were set.

(1)CO/DME混合冷媒
CO/DME混合冷媒の給湯能力を評価するために、圧縮器の吐出圧力、蒸気圧力、CO/DME混合比を変動パラメーターとして計算を行う。
P1=3.7〜7.5MPa
P3=1.05〜3.1MPa
冷媒蒸発温度:8℃前後
DME/CO混合比(5/95、8/92、10/90、12/88、15/85、20/80、30/70:重量比)
冷媒蒸発温度 前後
(1) CO 2 / DME Mixed Refrigerant In order to evaluate the hot water supply capability of the CO 2 / DME mixed refrigerant, calculation is performed using the discharge pressure of the compressor, the steam pressure, and the CO 2 / DME mixed ratio as fluctuation parameters.
P1 = 3.7 to 7.5 MPa
P3 = 1.05 to 3.1 MPa
Refrigerant evaporation temperature: around 8 ° C DME / CO 2 mixing ratio (5/95, 8/92, 10/90, 12/88, 15/85, 20/80, 30/70: weight ratio)
Refrigerant evaporation temperature

(2)CO単独冷媒
二酸化炭素単独については、本冷房サイクルでは凝縮器出口温度T2を31℃以下に下げる必要があり、カーエアコン凝縮器熱源の外気であり、31℃以上の外気の場合は上記冷房サイクルは成り立たないことから、本シミュレーションは行わなかった。
(2) CO 2 single refrigerant For carbon dioxide alone, in this cooling cycle, it is necessary to lower the condenser outlet temperature T2 to 31 ° C. or lower, and it is the outside air of the car air conditioner condenser heat source. This simulation was not performed because the cooling cycle was not established.

DME+CO 混合系の気液平衡物性値の推算
シミュレーション・スタディーにおいては、採用する物性推算モデルの精度が重要なファクターであり、その検討を以下のとおり行った。
In the simulation study of the vapor-liquid equilibrium physical property value of the DME + CO 2 mixed system, the accuracy of the physical property estimation model to be adopted is an important factor, and the examination was performed as follows.

一般に、気液平衡関係は次式で表される。   In general, the vapor-liquid equilibrium relationship is expressed by the following equation.

Figure 2006241221
Figure 2006241221

ここで、検討すべきは次の3点である。
(1)DMEに対するγ (0)モデル
(2)DMEとCOの相対的揮発性の程度
(3)エンタルピー及びエントロピーモデル
Here, the following three points should be examined.
(1) γ i for DME (0) model (2) degree of relative volatility of DME and CO 2 (3) enthalpy and entropy model

DMEは含酸素低分子化合物であるが、その代表例であるエタノールの沸点は78℃に対して、DMEの沸点は−25℃であることから、アルコール、アルデヒド、ケトン基等のように強い極性を持たないことが分かる。従って、DMEのγ (0)に対しては正則溶解モデルが適用できる。 DME is an oxygen-containing low molecular weight compound, but ethanol, which is a representative example, has a boiling point of 78 ° C., whereas DME has a boiling point of −25 ° C., so it has a strong polarity such as alcohol, aldehyde, and ketone groups. It turns out that it does not have. Therefore, a regular dissolution model can be applied to γ i (0) of DME.

前記で得たDME/COの溶解性試験データ(表1)から、CO及びDMEのK−volumeの値は、測定条件においてそれぞれ0.66<KDME<0.80及び2.59<KCO<3.42の範囲にあり、DMEとCOの揮発性にはそれほど大きな差がないことが分かる。これにより、f (0)に対しては、蒸気圧モデルが適用できる。 From the solubility test data of DME / CO 2 obtained above (Table 1), the K-volume values of CO 2 and DME were 0.66 <KDME <0.80 and 2.59 <KCO, respectively, under the measurement conditions. 2 <3.42, and it can be seen that there is no significant difference in volatility between DME and CO 2 . Thus, a vapor pressure model can be applied to f i (0) .

また、エンタルピー及びエントロピーに対しては、DME+CO系の想定される最高使用圧力は10MPa程度であることからSPK(Soave−Redlich−Kwong)の状態方程式を採用することが適切である。 For enthalpy and entropy, it is appropriate to adopt the SPK (Soave-Redrich-Kwon) state equation because the assumed maximum working pressure of the DME + CO 2 system is about 10 MPa.

Figure 2006241221
Figure 2006241221

尚、系の圧力がある程度高圧(数MPa)になるとPoynting Factorも無視できなくなるので、この点も考慮することとした。   In addition, since the pouring factor cannot be ignored when the pressure of the system becomes high to some extent (several MPa), this point is also taken into consideration.

プログラム
次のA、B2種類のプログラムを使用した。
(1)DME CO
与えられた組成、T(温度)、P(圧力)のもとでのフラッシュ計算。
Programs The following two types of programs A and B were used.
(1) DME CO 2 A
Flash calculation under a given composition, T (temperature), P (pressure).

与えられた組成及びP1(圧縮器圧力)のもとでバブルポイント(Bubble Point)を計算した。   Bubble points were calculated under the given composition and P1 (compressor pressure).

これらにより、気液平衡物性値推算モデルの精度の確認及び凝縮器における全凝縮が可能か否かの目処をつけることができる。
(2)DME CO
以上説明したシミュレーターを用いて、ジメチルエーテルと二酸化炭素を含む混合冷媒組成物ついてCOPを以下のように得た。尚、
Accordingly, it is possible to confirm the accuracy of the vapor-liquid equilibrium physical property value estimation model and to determine whether or not total condensation in the condenser is possible.
(2) DME CO 2 B
Using the simulator described above, COP was obtained for the mixed refrigerant composition containing dimethyl ether and carbon dioxide as follows. still,

ジメチルエーテル/二酸化炭素混合冷媒の冷房能力を評価するために、圧縮圧力(P1)、凝縮器出口温度(T2)、蒸発器温度(P3)及びDME/COの混合比を変動パラメーターとしてシミュレーションを行った。この際、凝縮器出口温度T2を35℃及び蒸発器温度を平均4〜5℃に設定した。表2にシミュレーションを行ったDME/CO重量混合比を、表3にその混合比の冷媒組成物の冷房特性についてのシミュレーション結果を示す。 In order to evaluate the cooling capacity of a dimethyl ether / carbon dioxide mixed refrigerant, a simulation was performed using the compression pressure (P1), condenser outlet temperature (T2), evaporator temperature (P3), and the mixing ratio of DME / CO 2 as fluctuating parameters. It was. At this time, the condenser outlet temperature T2 was set to 35 ° C., and the evaporator temperature was set to an average of 4 to 5 ° C. Table 2 shows the simulated DME / CO 2 weight mixing ratio, and Table 3 shows the simulation results for the cooling characteristics of the refrigerant composition at the mixing ratio.

Figure 2006241221
Figure 2006241221

Figure 2006241221
Figure 2006241221

表3から明らかな通り、DME/CO混合冷媒ではCOの臨界圧力以下で冷房サイクルが構築できる。更に、DME/CO混合比が不燃性領域(DMEの重量比が8〜12%)においては、蒸発温度が35℃でも圧縮器圧力が6.8MPa程度で作動でき、COPは2.0である。また、DME/CO混合比でDMEの濃度が大きくなるに従い圧縮器作動圧は急激に減少するため、難燃性の条件を緩和すれば優れた溶媒となる可能性がある。 As is clear from Table 3, with the DME / CO 2 mixed refrigerant, a cooling cycle can be constructed at a critical pressure of CO 2 or less. Furthermore, when the DME / CO 2 mixing ratio is incombustible (the weight ratio of DME is 8 to 12%), the compressor pressure can be operated at about 6.8 MPa even when the evaporation temperature is 35 ° C., and the COP is 2.0. is there. Moreover, since the compressor operating pressure rapidly decreases as the concentration of DME increases with the DME / CO 2 mixing ratio, it may become an excellent solvent if the flame retardant conditions are relaxed.

カーエアコン用冷媒サイクルシステム。Refrigerant cycle system for car air conditioners. DME CO B ブログラムフローDME CO 2 B program flow

Claims (3)

ジメチルエーテルと二酸化炭素の総重量を基準として、ジメチルエーテルを5〜40重量%、二酸化炭素を95〜60重量%とを含有するカーエアコン用冷媒組成物。   A refrigerant composition for a car air conditioner containing 5 to 40% by weight of dimethyl ether and 95 to 60% by weight of carbon dioxide based on the total weight of dimethyl ether and carbon dioxide. ジメチルエーテルを8〜12重量%、二酸化炭素を92〜88重量%とを含有する請求項1に記載の冷媒組成物。   The refrigerant composition according to claim 1, comprising 8 to 12% by weight of dimethyl ether and 92 to 88% by weight of carbon dioxide. 請求項1又は2に記載の冷媒組成物をカーエアコンに使用する方法。   A method of using the refrigerant composition according to claim 1 or 2 for a car air conditioner.
JP2005055755A 2005-03-01 2005-03-01 Coolant composition for car air conditioner Withdrawn JP2006241221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055755A JP2006241221A (en) 2005-03-01 2005-03-01 Coolant composition for car air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055755A JP2006241221A (en) 2005-03-01 2005-03-01 Coolant composition for car air conditioner

Publications (1)

Publication Number Publication Date
JP2006241221A true JP2006241221A (en) 2006-09-14

Family

ID=37047952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055755A Withdrawn JP2006241221A (en) 2005-03-01 2005-03-01 Coolant composition for car air conditioner

Country Status (1)

Country Link
JP (1) JP2006241221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020937A1 (en) * 2005-08-17 2007-02-22 Japan Petroleum Exploration Co., Ltd. Refrigerant composition
WO2007060771A1 (en) * 2005-11-25 2007-05-31 Japan Petroleum Exploration Co., Ltd. Refrigerant composition
JP2008247991A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2008247992A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2008248002A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2015536438A (en) * 2012-10-26 2015-12-21 フィーブ フィラン エ ソーラン Method and apparatus for filling a frozen refrigeration circuit at high speed tempo

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020937A1 (en) * 2005-08-17 2007-02-22 Japan Petroleum Exploration Co., Ltd. Refrigerant composition
WO2007060771A1 (en) * 2005-11-25 2007-05-31 Japan Petroleum Exploration Co., Ltd. Refrigerant composition
JP2008247991A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2008247992A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2008248002A (en) * 2007-03-29 2008-10-16 Nippon Oil Corp Working fluid composition for freezer
JP2015536438A (en) * 2012-10-26 2015-12-21 フィーブ フィラン エ ソーラン Method and apparatus for filling a frozen refrigeration circuit at high speed tempo

Similar Documents

Publication Publication Date Title
JP5407052B2 (en) Refrigerant composition
Benhadid-Dib et al. Refrigerants and their environmental impact Substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant
JP2006241221A (en) Coolant composition for car air conditioner
JP7081600B2 (en) Azeotrope or azeotropic composition, working medium for thermal cycle and thermal cycle system
JP2007145922A (en) Refrigerant composition
BR112017016774B1 (en) COMPOSITION, METHOD FOR THE PRODUCTION OF COOLING, METHOD FOR THE PRODUCTION OF HEAT, PROCESS FOR THE CONVERSION OF HEAT INTO MECHANICAL ENERGY
RU2405018C2 (en) Coolant composition
JPH07502775A (en) Compositions useful as refrigerants
JP2006022305A (en) Dimethyl ether and carbon dioxide mixture refrigerant
WO2005118738A1 (en) Refrigerant mixture of dimethyl ether and carbon dioxide
JPH0867870A (en) Refrigerant composition
JPH07502774A (en) Compositions useful as refrigerants
Bolaji et al. Thermodynamic analysis of performance of vapour compression refrigeration system working with R290 and R600a mixtures
JPH05279659A (en) Working fluid for rankine cycle
JPH08127767A (en) Working fluid
JP2006124462A (en) Refrigerant composition
JP2006143898A (en) Coolant composition
JPH08176537A (en) Hydraulic fluid
TWI535684B (en) Coolant composition
SK et al. AN EXPERIMENTAL STUDY TO DETERMINE THE COP OF THE DOMESTIC REFRIGERATOR WHEN THE PROPANE BUTANE COMBINATION ADDED TO LPG
JPH05332635A (en) Compression/absorption heat pump with alternative fluorocarbon and oil freezer machine oil
JPH08170073A (en) Working fluid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513