JP2000088371A - Heat pump device using non-azeotrope refrigerant - Google Patents

Heat pump device using non-azeotrope refrigerant

Info

Publication number
JP2000088371A
JP2000088371A JP10264144A JP26414498A JP2000088371A JP 2000088371 A JP2000088371 A JP 2000088371A JP 10264144 A JP10264144 A JP 10264144A JP 26414498 A JP26414498 A JP 26414498A JP 2000088371 A JP2000088371 A JP 2000088371A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10264144A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
佐藤  賢一
Taiji Yamamoto
泰司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10264144A priority Critical patent/JP2000088371A/en
Publication of JP2000088371A publication Critical patent/JP2000088371A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve heat exchanging capacity of a non-azeotrope refrigerant in a low temperature side evaporating step by changing a concentration ratio of the refrigerant in the low temperature side evaporating step and a high temperature side evaporating step to become a value near an optimum in each step, thereby suppressing generation of an excess operating pressure in the high temperature step. SOLUTION: A gas-liquid separator 5 for separating a gas-liquid two phase flow supplied from an evaporator 1 to a gas phase and a liquid phase and a sub-expansion valve 8 for evaporating the liquid phase flow from the separator 5 to supply it to a compressor 4 and heat exchangers 10, 9 are connected to a refrigerant circulating passage 21 between the evaporator 1 and the compressor 4. A gas-liquid mixer 6 for mixing a gas phase flow supplied from the separator 5 via a refrigerant bypass passage 13 with a liquid phase flow from the compressor 4 to supply the mixture to the evaporator 1 is connected to a refrigerant circulating passage 22 between the compressor 4 and the evaporator 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置やヒート
ポンプ等の如く、低温側の熱源と高温側の熱源の間で熱
を移動させるための熱サイクルを構成するヒートポンプ
装置に関し、特に冷媒として非共沸混合冷媒を用いたヒ
ートポンプ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device such as a refrigerating device or a heat pump which constitutes a heat cycle for transferring heat between a low-temperature side heat source and a high-temperature side heat source. The present invention relates to a heat pump device using an azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】蒸気圧縮式の冷凍装置は、図5に示す如
く、蒸発器(1)、圧縮機(4)、凝縮器(3)及び膨張弁
(2)を配管により互いに接続して構成され、図6に示す
如き冷凍サイクルを実現するものである。即ち、蒸発器
(1)からの冷媒ガスが圧縮機(4)によって圧縮(→)
されて、高温、高圧のガスとなり、圧縮機(4)から吐出
された冷媒ガスは凝縮器(3)へ送られ、高温熱源(外気)
へ熱を放出することによって凝縮(→)する。凝縮に
よって液化した高温、高圧の冷媒液は膨張弁(2)へ供給
され、膨張(→)によって低温、低圧の冷媒液とな
る。膨張弁(2)からの冷媒液は蒸発器(1)へ送り込ま
れ、低温熱源(冷凍室)から熱を奪って蒸発(→)し、
冷媒ガスとなって圧縮機(4)へ供給される。上述の冷凍
サイクル(→→→→)を繰り返すことによっ
て、低温熱源から高温熱源へ熱が輸送され、低温熱源が
冷却されるのである。
2. Description of the Related Art As shown in FIG. 5, a vapor compression type refrigeration system comprises an evaporator (1), a compressor (4), a condenser (3) and an expansion valve.
(2) are connected to each other by piping to realize a refrigeration cycle as shown in FIG. That is, the evaporator
Refrigerant gas from (1) is compressed by compressor (4) (→)
Then, the refrigerant gas becomes a high-temperature, high-pressure gas, and the refrigerant gas discharged from the compressor (4) is sent to the condenser (3), where a high-temperature heat source (outside air)
Condenses (→) by releasing heat to The high-temperature, high-pressure refrigerant liquid liquefied by condensation is supplied to the expansion valve (2), and becomes a low-temperature, low-pressure refrigerant liquid by expansion (→). The refrigerant liquid from the expansion valve (2) is sent to the evaporator (1), deprives the heat from the low-temperature heat source (freezing room) and evaporates (→),
The refrigerant gas is supplied to the compressor (4). By repeating the above refrigeration cycle (→→→→), heat is transferred from the low-temperature heat source to the high-temperature heat source, and the low-temperature heat source is cooled.

【0003】冷媒としては、一般にCFC、HCFC、
HFC等のフロン(デュポン社の商品名)が採用されてお
り、更に二酸化炭素、アンモニア等の自然冷媒の採用が
検討されている。又、設定熱源温度に対して適度な飽和
圧力を得ること、冷媒の密度、粘性、熱導電率、比熱、
潜熱等の熱的又は動的特性を改善すること、冷媒の可燃
性や毒性を緩和し、安全性を向上させること等を目的と
して、2種類の冷媒を混合してなる混合冷媒を採用した
冷凍装置が開発されている。この様な冷凍装置におい
て、混合すべき2種類の冷媒は、熱サイクル全体として
最良の性能を得るべく、その組合せや濃度比(組成比)を
選定する必要がある。
[0003] As a refrigerant, generally, CFC, HCFC,
Freon (trade name of DuPont) such as HFC has been adopted, and further adoption of a natural refrigerant such as carbon dioxide and ammonia has been studied. Also, to obtain an appropriate saturation pressure for the set heat source temperature, the density, viscosity, thermal conductivity, specific heat,
Refrigeration that uses a mixed refrigerant made by mixing two types of refrigerants for the purpose of improving thermal or dynamic characteristics such as latent heat, reducing the flammability and toxicity of the refrigerant, and improving safety. Equipment is being developed. In such a refrigerating apparatus, it is necessary to select the combination and concentration ratio (composition ratio) of the two types of refrigerants to be mixed in order to obtain the best performance as a whole heat cycle.

【0004】[0004]

【発明が解決しようとする課題】冷凍装置の熱サイクル
には一般に、複数の温度域と条件の異なる複数の過程が
存在し、それぞれの過程に対して望ましい濃度比が存在
することになる。然るに、従来の混合冷媒を用いた冷凍
装置においては、特定の濃度比で混合された混合冷媒
が、濃度比一定で熱サイクル全体を循環しているので、
全ての過程に対して最適な濃度比を達成することは出来
ない。例えば、高温側凝縮過程において作動圧力を下げ
ようとした結果、低温側蒸発過程における熱交換能力が
損なわれる虞れがある。又、熱源間の温度差が大きい場
合、圧力比の増大によって圧縮過程の損失が増大する問
題がある。更に、低温側蒸発過程と高温側凝縮過程の双
方の作動温度において良好な冷媒特性を得ることは困難
である。
Generally, a heat cycle of a refrigeration system includes a plurality of processes having different temperature ranges and conditions, and a desired concentration ratio exists for each process. However, in a conventional refrigeration system using a mixed refrigerant, the mixed refrigerant mixed at a specific concentration ratio circulates through the entire heat cycle at a constant concentration ratio.
Optimal concentration ratios cannot be achieved for all processes. For example, as a result of reducing the operating pressure in the high-temperature side condensation process, the heat exchange capacity in the low-temperature side evaporation process may be impaired. Further, when the temperature difference between the heat sources is large, there is a problem that the loss in the compression process increases due to an increase in the pressure ratio. Further, it is difficult to obtain good refrigerant characteristics at both operating temperatures in the low-temperature side evaporation process and the high-temperature side condensation process.

【0005】図5中の数値は、二酸化炭素(50%)とイ
ソブタン(50%)の混合冷媒(非共沸混合冷媒)を用いた
蒸気圧縮式冷凍装置における状態変化を例示したもので
ある。二酸化炭素は、低温域、特に冷凍温度域において
他の自然冷媒よりも高い替熱と低い粘性を有し、非常に
優れた熱交換能力を発揮するが、臨界温度が低いため、
単体で熱サイクルを組んだ場合、作動圧力が高くなる欠
点がある。これに対し、イソブタンは二酸化炭素よりも
飽和圧力が低く、二酸化炭素にイソブタンを混合するこ
とによって、作動圧力を下げることが可能である。しか
しながら、二酸化炭素とイソブタンの混合冷媒を濃度比
一定で熱サイクル全体を循環させる熱サイクルにおいて
は、例えば図5に示す様に、低温側蒸発過程で良好な冷
媒特性を得るべくイソブタンに対する二酸化炭素の濃度
比を50%に設定した場合、高温側凝縮過程では、二酸
化炭素の濃度比が50%と高いために、作動圧力が50
barにも達する問題がある。
The numerical values in FIG. 5 exemplify a state change in a vapor compression refrigeration system using a mixed refrigerant (non-azeotropic mixed refrigerant) of carbon dioxide (50%) and isobutane (50%). Carbon dioxide has a higher heat exchange rate and lower viscosity than other natural refrigerants in the low temperature range, especially in the freezing temperature range, and exhibits extremely excellent heat exchange capacity, but because of its low critical temperature,
When a thermal cycle is formed by itself, there is a disadvantage that the operating pressure is increased. In contrast, isobutane has a lower saturation pressure than carbon dioxide, and the working pressure can be reduced by mixing isobutane with carbon dioxide. However, in a heat cycle in which a mixed refrigerant of carbon dioxide and isobutane is circulated throughout the entire heat cycle at a constant concentration ratio, as shown in FIG. 5, for example, as shown in FIG. When the concentration ratio is set to 50%, the operating pressure is 50% in the high temperature side condensation process because the concentration ratio of carbon dioxide is as high as 50%.
There is a problem that reaches bar.

【0006】そこで本発明の目的は、非共沸混合冷媒を
用いたヒートポンプ装置において、低温側蒸発過程と高
温側凝縮過程で混合冷媒の濃度比をそれぞれの過程で最
適若しくは最適に近い値となる様に変化させ、これによ
って高温側凝縮過程における過大な作動圧力の発生を抑
制すると共に、低温側蒸発過程における混合冷媒の熱交
換能力を向上させることである。
Accordingly, an object of the present invention is to provide a heat pump apparatus using a non-azeotropic mixed refrigerant, wherein the concentration ratio of the mixed refrigerant in the low-temperature side evaporation process and the high-temperature side condensation process becomes an optimum or nearly optimum value in each process. Thus, the generation of excessive operating pressure in the high-temperature side condensation process is suppressed, and the heat exchange capacity of the mixed refrigerant in the low-temperature side evaporation process is improved.

【0007】[0007]

【課題を解決する為の手段】非共沸混合冷媒において
は、飽和線と蒸気線が温度によって変化するが、同時に
これらの境界線は濃度比によっても変化する。例えば高
温側凝縮過程における作動圧力を下げたい場合は、低い
飽和圧力を有する冷媒(例えばイソブタン)の濃度比(組
成比)を上げればよい。又、低温側蒸発過程における冷
媒の熱交換能力を上げるためには、高い飽和圧力をもつ
冷媒(例えば二酸化炭素)の濃度比(組成比)を上げればよ
い。
In the non-azeotropic refrigerant mixture, the saturation line and the vapor line change depending on the temperature, but at the same time, these boundary lines also change depending on the concentration ratio. For example, when it is desired to reduce the operating pressure in the high-temperature side condensation process, the concentration ratio (composition ratio) of the refrigerant having a low saturation pressure (for example, isobutane) may be increased. Further, in order to increase the heat exchange capacity of the refrigerant in the low temperature side evaporation process, the concentration ratio (composition ratio) of the refrigerant having a high saturation pressure (for example, carbon dioxide) may be increased.

【0008】そこで、本発明に係るヒートポンプ装置に
おいては、混合冷媒の濃度比を凝縮と蒸発の双方の過程
で変化させるべく、蒸発器(1)から圧縮機(4)へ冷媒を
流す冷媒循環路に、蒸発器(1)から供給される気液2相
流を気相と液相に分離する気液分離器(5)と、気液分離
器(5)からの液相流を気化して圧縮機(4)へ供給する気
化手段とが接続されている。又、圧縮機(4)から蒸発器
(1)へ冷媒を流す冷媒循環路には、気液分離器(5)から
冷媒バイパス路を経て供給される気相流と圧縮機(4)か
らの液相流とを混合して蒸発器(1)へ供給する気液混合
器(6)が接続されている。
Therefore, in the heat pump device according to the present invention, the refrigerant circulation path for flowing the refrigerant from the evaporator (1) to the compressor (4) so as to change the concentration ratio of the mixed refrigerant in both the condensation and evaporation processes. Then, a gas-liquid separator (5) for separating the gas-liquid two-phase flow supplied from the evaporator (1) into a gas phase and a liquid phase, and the liquid phase flow from the gas-liquid separator (5) is vaporized. Evaporation means for supplying to the compressor (4) is connected. Also, evaporator from compressor (4)
In the refrigerant circulation path for flowing the refrigerant to (1), a vapor phase flow supplied from the gas-liquid separator (5) via the refrigerant bypass path and a liquid phase flow from the compressor (4) are mixed to form an evaporator. A gas-liquid mixer (6) for supplying to (1) is connected.

【0009】上記本発明のヒートポンプ装置において
は、蒸発器(1)から気液2相流が流出して、気液分離器
(5)へ供給される。気液分離器(5)では、気液2相流が
気相と液相に分離され、液相流は気化手段へ供給される
一方、気相流は気液混合器(6)へ供給される。ここで、
液相流は、低い飽和圧力を有する冷媒(イソブタン)の濃
度比が高い状態になっており、これに対して気相流は、
高い飽和圧力を有する冷媒(二酸化炭素)の濃度比が高い
状態になっている。従って、気化手段からは、低い飽和
圧力を有する冷媒(イソブタン)の濃度比が高い気相流が
得られ、該気相流が凝縮器(3)へ供給されることとなっ
て、高温側凝縮過程の作動圧力が低下することになる。
In the heat pump device of the present invention, the gas-liquid two-phase flow flows out of the evaporator (1), and the gas-liquid separator
(5). In the gas-liquid separator (5), the gas-liquid two-phase flow is separated into a gas phase and a liquid phase, and the liquid phase flow is supplied to the vaporizing means, while the gas phase flow is supplied to the gas-liquid mixer (6). You. here,
The liquid phase flow has a high concentration ratio of the refrigerant having a low saturation pressure (isobutane), whereas the gas phase flow has
The refrigerant (carbon dioxide) having a high saturation pressure has a high concentration ratio. Therefore, a vapor phase stream having a high concentration ratio of the refrigerant (isobutane) having a low saturation pressure is obtained from the vaporizing means, and the vapor phase stream is supplied to the condenser (3), and the high-temperature side condensation is performed. The working pressure of the process will be reduced.

【0010】又、気液分離器(5)からの気相流は、高い
飽和圧力を有する冷媒(二酸化炭素)の濃度比が高い状態
になっており、該気相流が凝縮器(3)からの液相流と混
合されて、従来に比べて、高い飽和圧力を有する冷媒
(二酸化炭素)の濃度比がより高い気液2相流となって、
蒸発器(1)へ供給される。この結果、蒸発器(1)から
は、気相と液相からなる気液2相の混合冷媒が流出する
ことになる。即ち、高温側凝縮過程では、低い飽和圧力
を有する冷媒(イソブタン)の濃度比(組成比)が上がっ
て、作動圧力が低下する。又、低温側蒸発過程では、高
い飽和圧力をもつ冷媒(二酸化炭素)の濃度比(組成比)が
上がって、作動圧力が上昇すると共に、混合冷媒の熱
的、動的特性が改善される。
The gaseous phase flow from the gas-liquid separator (5) has a high concentration ratio of refrigerant (carbon dioxide) having a high saturation pressure, and the gaseous phase stream is condensed by the condenser (3). Refrigerant that has a higher saturation pressure than the
A gas-liquid two-phase flow with a higher concentration ratio of (carbon dioxide)
It is supplied to the evaporator (1). As a result, a gas-liquid two-phase mixed refrigerant consisting of a gas phase and a liquid phase flows out of the evaporator (1). That is, in the high temperature side condensation process, the concentration ratio (composition ratio) of the refrigerant (isobutane) having a low saturation pressure increases, and the operating pressure decreases. In the low-temperature side evaporation process, the concentration ratio (composition ratio) of the refrigerant (carbon dioxide) having a high saturation pressure increases, the operating pressure increases, and the thermal and dynamic characteristics of the mixed refrigerant are improved.

【0011】具体的構成において、気化手段は、気液分
離器(5)からの液相流を膨張させる副膨張弁(8)と、副
膨張弁(8)から流出する冷媒を加熱して気化する熱交換
器とから構成される。該具体的構成によれば、気液分離
器(5)からの液相流を完全に気化させて圧縮機(4)へ供
給することが出来る。
In a specific configuration, the vaporizing means includes a sub-expansion valve (8) for expanding the liquid-phase flow from the gas-liquid separator (5), and a refrigerant that flows out of the sub-expansion valve (8) for vaporization. Heat exchanger. According to this specific configuration, the liquid phase flow from the gas-liquid separator (5) can be completely vaporized and supplied to the compressor (4).

【0012】又、気化手段の出口には第2の気液分離器
が接続され、該気液分離器からの気相流が圧縮機(4)へ
供給される一方、該気液分離器からの液相流は第2の冷
媒バイパス路を経て気液混合器(6)へ供給される。該具
体的構成によれば、仮に気液分離器(5)からの冷媒が完
全に気化されない場合があったとしても、該冷媒は第2
の気液分離器によって気相と液相に分離され、気相流の
みが圧縮機(4)へ供給される。又、液相流は気液混合器
(6)へ供給される。
A second gas-liquid separator is connected to the outlet of the vaporizing means, and the gas-phase flow from the gas-liquid separator is supplied to the compressor (4), while the gas-liquid separator is connected to the second gas-liquid separator. Is supplied to the gas-liquid mixer (6) via the second refrigerant bypass. According to the specific configuration, even if the refrigerant from the gas-liquid separator (5) may not be completely vaporized, the refrigerant may
Is separated into a gas phase and a liquid phase, and only the gas phase stream is supplied to the compressor (4). The liquid phase flow is a gas-liquid mixer
Is supplied to (6).

【0013】更に具体的構成において、気液分離器(5)
と気液混合器(6)の間の冷媒バイパス路には、副圧縮器
(7)が接続されている。該具体的構成によれば、気液分
離器(5)からの気相流が、凝縮器(3)からの液相流と同
等の圧力まで昇圧されて、気液混合器(6)へ供給され、
凝縮器(3)からの液相流と混合されて、高い飽和圧力を
もつ冷媒(二酸化炭素)の濃度比(組成比)が上がることと
なる。
In a further specific configuration, the gas-liquid separator (5)
There is a sub-compressor in the refrigerant bypass between
(7) is connected. According to this specific configuration, the gas-phase flow from the gas-liquid separator (5) is boosted to a pressure equivalent to the liquid-phase flow from the condenser (3) and supplied to the gas-liquid mixer (6). And
When mixed with the liquid phase flow from the condenser (3), the concentration ratio (composition ratio) of the refrigerant (carbon dioxide) having a high saturation pressure increases.

【0014】更に具体的構成において、副圧縮器(7)と
気液混合器(6)の間の冷媒バイパス路には、該冷媒バイ
パス路を流れる冷媒から熱を奪うための熱交換器が接続
されている。該具体的構成によれば、熱交換によって奪
った熱を高温側熱源へ供給することにより、熱の有効利
用が図られる。
In a more specific configuration, a heat exchanger for removing heat from the refrigerant flowing through the refrigerant bypass is connected to the refrigerant bypass between the sub-compressor (7) and the gas-liquid mixer (6). Have been. According to the specific configuration, the heat taken out by the heat exchange is supplied to the high-temperature side heat source, so that the heat can be effectively used.

【0015】[0015]

【発明の効果】本発明に係る非共沸混合冷媒を用いたヒ
ートポンプ装置によれば、高温側凝縮過程及び低温側蒸
発過程における非共沸混合冷媒の濃度比をそれぞれ、最
適若しくは最適に近い値に変化させることによって、高
温側凝縮過程における過大な作動圧力の発生を抑制する
と共に、低温側蒸発過程における混合冷媒の熱交換能力
を改善することが出来る。
According to the heat pump apparatus using a non-azeotropic mixed refrigerant according to the present invention, the concentration ratio of the non-azeotropic mixed refrigerant in the high-temperature side condensation process and the low-temperature side evaporation process is set to an optimum or near optimum value, respectively. By suppressing the generation of excessive operating pressure in the high-temperature side condensation process, the heat exchange capacity of the mixed refrigerant in the low-temperature side evaporation process can be improved.

【0016】[0016]

【発明の実施の形態】以下、本発明を蒸気圧縮型の冷凍
装置に実施した形態につき、図面に沿って具体的に説明
する。図1に示す本発明の冷凍装置は、冷媒として、二
酸化炭素とイソブタンを混合してなる非共沸混合冷媒を
採用しており、高温側凝縮過程で二酸化炭素濃度比を2
0%程度に低く設定して作動圧力を低下させると同時
に、低温膨張過程では、二酸化炭素濃度比を50%程度
に高く設定して、優れた熱交換能力を実現したものであ
る。該冷凍装置によって実現される熱サイクルは、80
℃〜50℃の高温熱源に熱を供給し、同時に0℃の低温
熱源から熱を奪って冷熱を発生させるものであって、冷
凍装置とヒートポンプの両方の機能を兼ね具え、作動圧
力は30bar以下に抑えられている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment in which the present invention is applied to a vapor compression type refrigeration apparatus will be specifically described with reference to the drawings. The refrigeration apparatus of the present invention shown in FIG. 1 employs a non-azeotropic mixed refrigerant obtained by mixing carbon dioxide and isobutane as a refrigerant.
At the same time as lowering the operating pressure by setting it as low as about 0%, in the low temperature expansion process, the carbon dioxide concentration ratio is set as high as about 50% to realize excellent heat exchange capacity. The heat cycle realized by the refrigeration system is 80
It supplies heat to a high-temperature heat source of 50 ° C. to 50 ° C., and at the same time, removes heat from a low-temperature heat source of 0 ° C. to generate cold heat. It has both functions of a refrigerating device and a heat pump, and has an operating pressure of 30 bar or less. It is suppressed to.

【0017】該冷凍装置は、低温側熱源との熱交換によ
って0℃付近で冷媒の蒸発吸熱が起こる蒸発器(1)と、
その直前で混合冷媒を膨張させる膨張弁(2)と、高温側
熱源との熱交換によって80℃〜50℃付近で冷媒の凝
縮放熱が起こる凝縮器(3)と、その直前で冷媒を圧縮加
圧する圧縮機(4)とを主な構成機器としている。そし
て、蒸発・圧縮両温度間で混合冷媒の濃度比を変化させ
るために、蒸発器(1)と圧縮機(4)の間の冷媒循環路(2
1)には、蒸発器(1)から供給される気液2相流の濃度比
(組成比)を調整するための組成調整用膨張弁(11)と、組
成調整用膨張弁(11)からの気液2相流を気相と液相に分
離する気液分離器(5)とが接続されている。又、凝縮器
(3)と蒸発器(1)の間の冷媒循環路(22)には、内部熱交
換器(10)及び気液混合器(6)が接続されている。気液分
離器(5)からの液相流は、副膨張弁(8)、内部熱交換器
(10)、及び中間熱交換器(9)を経て、圧縮機(4)へ供給
される。一方、気液分離器(5)からの気相流は、冷媒バ
イパス路(13)に導かれ、副圧縮器(7)を経て気液混合器
(6)へ供給される。
The refrigerating apparatus includes an evaporator (1) in which heat exchange with a low-temperature side heat source causes the refrigerant to evaporate and absorb at about 0 ° C.
Immediately before that, an expansion valve (2) that expands the mixed refrigerant, a condenser (3) in which heat exchange with the high-temperature side heat source causes condensation and heat dissipation of the refrigerant at around 80 ° C to 50 ° C, and compression and compression of the refrigerant immediately before that. And a compressor (4) for compression. Then, in order to change the concentration ratio of the mixed refrigerant between the evaporation and compression temperatures, the refrigerant circulation path (2) between the evaporator (1) and the compressor (4) is changed.
In 1), the concentration ratio of the gas-liquid two-phase flow supplied from the evaporator (1)
A composition adjusting expansion valve (11) for adjusting (composition ratio), and a gas-liquid separator (5) for separating a gas-liquid two-phase flow from the composition adjusting expansion valve (11) into a gas phase and a liquid phase And are connected. Also, condenser
An internal heat exchanger (10) and a gas-liquid mixer (6) are connected to a refrigerant circuit (22) between (3) and the evaporator (1). The liquid phase flow from the gas-liquid separator (5) is supplied to the sub-expansion valve (8), internal heat exchanger.
It is supplied to the compressor (4) via (10) and the intermediate heat exchanger (9). On the other hand, the gas-phase flow from the gas-liquid separator (5) is guided to the refrigerant bypass passage (13) and passes through the sub-compressor (7) to the gas-liquid mixer.
Is supplied to (6).

【0018】上記冷凍装置における各ポイントを流れる
混合冷媒の状態S1〜S11(温度、圧力、二酸化炭素
濃度比、相状態)を図1中に例示する。又、図4(a)
(b)(c)は、各ポイント(状態S1〜S11)における二
酸化炭素の質量比(濃度比)と圧力を、気液平衡線図中に
記入したものである。図4において、(L)は液相状態、
(L+G)は気液2相状態、(G)は気相状態を表わしてい
る。
FIG. 1 exemplifies the states S1 to S11 (temperature, pressure, carbon dioxide concentration ratio, phase state) of the mixed refrigerant flowing at each point in the refrigeration apparatus. FIG. 4 (a)
(b) and (c) show the mass ratio (concentration ratio) and pressure of carbon dioxide at each point (states S1 to S11) in the vapor-liquid equilibrium diagram. In FIG. 4, (L) is a liquid state,
(L + G) indicates a gas-liquid two-phase state, and (G) indicates a gas-phase state.

【0019】図4(a)は、蒸発器(1)と気液分離器(5)
における冷媒の状態の変化を表わしている。蒸発器内
(状態S1)では、混合冷媒の二酸化炭素濃度比(以下、
単に濃度比という)は50%、温度は0℃、圧力は17
barであって、この状態で冷媒は液相状態になってい
る。50%濃度比の冷媒は蒸発器(1)内で蒸発し、低温
熱源から熱を奪うが、完全に蒸気とはならずに液気2相
流として、組成調整用膨張弁(11)を経て気液分離器(5)
に流入する。ここで冷媒は、蒸発器(1)及び組成調整用
膨張弁(11)内の圧力損失により、17barから15b
arに低下し(状態S2)、更に非共沸混合液であるので
温度も0℃から10℃に変化するとする。この結果、混
合冷媒は、気液分離器(5)内で濃度比20%の液相(状
態S3)と濃度比70%の気相(状態S9)とに分離され
る。
FIG. 4A shows an evaporator (1) and a gas-liquid separator (5).
Represents the change in the state of the refrigerant at the time of. Inside the evaporator
In (state S1), the carbon dioxide concentration ratio of the mixed refrigerant (hereinafter, referred to as
50%, temperature 0 ° C, pressure 17
bar, and in this state, the refrigerant is in a liquid phase state. The refrigerant having a 50% concentration ratio evaporates in the evaporator (1) and removes heat from the low-temperature heat source. However, the refrigerant does not completely become a vapor but as a liquid-gas two-phase flow via the expansion valve (11) for adjusting the composition. Gas-liquid separator (5)
Flows into. Here, the refrigerant flows from 17 bar to 15 b due to the pressure loss in the evaporator (1) and the composition adjusting expansion valve (11).
ar (state S2), and since the liquid is a non-azeotropic mixture, the temperature also changes from 0 ° C. to 10 ° C. As a result, the mixed refrigerant is separated into a liquid phase (state S3) having a concentration ratio of 20% and a gas phase (state S9) having a concentration ratio of 70% in the gas-liquid separator (5).

【0020】濃度比20%の液相流(状態S3)は更に副
膨張弁(8)及び内部熱交換器(10)を通過し、膨張加熱さ
れて状態S4に達し、一部が蒸発して気液2相となる。
この濃度比20%の気液2相流は更に中間熱交換器(9)
を通過して、40℃の中温熱源より熱を受け、最終的に
は、濃度比20%、温度40℃、圧力5barの完全な
気相状態(状態S5)となって、圧縮機(4)に吸入され
る。
The liquid phase flow having a concentration ratio of 20% (state S3) further passes through the sub-expansion valve (8) and the internal heat exchanger (10), is expanded and heated to reach the state S4, and a part thereof is evaporated. It becomes a gas-liquid two phase.
The gas-liquid two-phase flow having a concentration ratio of 20% is further supplied to an intermediate heat exchanger (9).
And finally receives a heat from a medium temperature heat source at 40 ° C., and finally enters a complete gas phase state (state S5) with a concentration ratio of 20%, a temperature of 40 ° C. and a pressure of 5 bar, and the compressor (4) ).

【0021】図4(b)は、冷媒の圧縮及び凝縮過程を表
わしている。濃度比20%の混合冷媒は圧縮機(4)によ
って5barから25barに圧縮され、その温度は4
0℃から80℃の高温に変化する(状態S6)。圧縮機
(4)から流出する気相状態の混合冷媒は、凝縮器(3)に
て高温熱源に放熱し、同時にその温度は40℃程度に低
下する。このように、冷媒として非共沸混合冷媒を採用
しているので、凝縮過程においても冷媒の温度変化が発
生し、高温熱源からの熱媒を混合冷媒の流れに対して対
抗する向きに流すことによって、良好な熱交換が実現さ
れる。この例では凝縮器内で20%濃度比の冷媒は完全
に凝縮して液相(状態S7)となる。凝縮器(3)からの高
圧の液相流(状態S7)は、内部熱交換器(10)内を低圧状
態での流れとは逆向きに流れて、20℃に冷却され、更
に内部熱交換器(10)内での圧力損失のために、20.5
barに減圧されることになる(状態S8)。
FIG. 4B shows the compression and condensation processes of the refrigerant. The mixed refrigerant having a concentration ratio of 20% is compressed from 5 bar to 25 bar by the compressor (4), and its temperature is 4 bar.
The temperature changes from 0 ° C. to a high temperature of 80 ° C. (state S6). Compressor
The gas-phase mixed refrigerant flowing out of (4) radiates heat to a high-temperature heat source in the condenser (3), and at the same time its temperature drops to about 40 ° C. As described above, since the non-azeotropic refrigerant mixture is used as the refrigerant, a temperature change of the refrigerant occurs even in the condensation process, and the heat medium from the high-temperature heat source flows in a direction opposite to the flow of the mixed refrigerant. Thereby, good heat exchange is realized. In this example, the refrigerant having a concentration ratio of 20% is completely condensed into a liquid phase (state S7) in the condenser. The high-pressure liquid phase flow (state S7) from the condenser (3) flows in the internal heat exchanger (10) in the opposite direction to the flow in the low-pressure state, is cooled to 20 ° C., and further exchanges the internal heat. Due to the pressure drop in the vessel (10), 20.5
The pressure is reduced to bar (state S8).

【0022】尚、蒸発器(1)を通過して吸熱した冷媒の
熱量は、その大部分が、気液分離器(5)にて分離された
気相(状態S9)によって輸送される。冷凍サイクルを成
り立たせるためには、この気相流を冷却する必要があ
り、後述の如くこの冷却は、凝縮器(3)にて高温熱源に
放熱した後に更に内部熱交換器(10)にて冷却された濃度
比20%の冷媒(状態S8)によって為される。
Most of the heat of the refrigerant that has absorbed heat through the evaporator (1) is transported by the gas phase (state S9) separated by the gas-liquid separator (5). In order to establish a refrigeration cycle, it is necessary to cool this gas phase flow. As will be described later, this cooling is performed by dissipating heat to a high-temperature heat source in the condenser (3) and further in the internal heat exchanger (10). This is performed by a cooled refrigerant having a concentration ratio of 20% (state S8).

【0023】気液分離器(5)から得られる濃度比70%
(状態S9)の気相の冷媒は、副圧縮器(7)により圧縮さ
れて、温度40℃、圧力20.5barの気相(状態S1
0)となる。一方、状態S8の濃度比20%の混合冷媒
は、内部熱交換器(10)により冷却されて温度が20℃と
なっており、状態S10の70%濃度比の気相流よりも
低温であるので、この状態S10の気相流を冷却するこ
とが可能である。この冷却は、気液混合器(6)内で状態
S8の20%濃度比の液相流と状態S10の70%濃度
比の気相流を互いに混合することによって行なわれる。
即ち、図4(c)に示す様に、状態S8の20%濃度比の
液相流と状態S10の70%濃度比の気相流とが混合さ
れることによって、70%濃度比の気相流が気液混合器
(6)内で冷却吸収され、最終的に濃度比50%の気液2
相(状態S11)の冷媒となって、気液混合器(6)から流
出するのである。この50%濃度比の冷媒は、膨張弁
(2)を経て状態S1の気液2相冷媒となり、蒸発器(1)
へ導かれ、同様のサイクルが繰り返される。
The concentration ratio obtained from the gas-liquid separator (5) is 70%.
The gaseous phase refrigerant in (state S9) is compressed by the sub-compressor (7), and has a temperature of 40 ° C. and a pressure of 20.5 bar (phase S1).
0). On the other hand, the mixed refrigerant having the concentration ratio of 20% in the state S8 is cooled by the internal heat exchanger (10) to have a temperature of 20 ° C., which is lower than the gas phase flow having the 70% concentration ratio in the state S10. Therefore, it is possible to cool the gas phase flow in this state S10. The cooling is performed by mixing the 20% concentration liquid phase flow of the state S8 and the 70% concentration gas phase flow of the state S10 with each other in the gas-liquid mixer (6).
That is, as shown in FIG. 4C, a liquid phase flow having a concentration ratio of 20% in the state S8 and a gaseous phase flow having a concentration ratio of 70% in the state S10 are mixed to form a gas phase having a concentration ratio of 70%. Flow is a gas-liquid mixer
(6) The gas-liquid 2 having a concentration ratio of 50%, which is cooled and absorbed in
It becomes a refrigerant in a phase (state S11) and flows out of the gas-liquid mixer (6). This 50% concentration refrigerant is supplied to the expansion valve
After passing through (2), it becomes a gas-liquid two-phase refrigerant in the state S1, and the evaporator (1)
And the same cycle is repeated.

【0024】尚、冷凍温度や冷凍負荷は、蒸発器(1)の
前後に配置された膨張弁(2)及び組成調整膨張弁(11)の
開度や、圧縮機(4)及び副圧縮機(7)の回転数を調整す
ることによって制御される。又、気液混合器(6)は、流
入してくる2つの冷媒を十分に混合するために必要な十
分な長さに設計されている。
The refrigeration temperature and the refrigeration load are controlled by the opening degree of the expansion valve (2) and the composition adjusting expansion valve (11) arranged before and after the evaporator (1), the compressor (4) and the sub-compressor. It is controlled by adjusting the rotation speed in (7). Further, the gas-liquid mixer (6) is designed to have a sufficient length necessary for sufficiently mixing the two incoming refrigerants.

【0025】上述の冷凍装置の熱サイクルにおいては、
高温側凝縮過程における二酸化炭素濃度比は20%と低
くなって、作動圧力は25barと二酸化炭素単体のサ
イクルに比較して、十分に低くなっている。又、低温側
蒸発過程における二酸化炭素濃度比は50%と高くなる
ので、濃度比20%の冷媒を単体で循環させた場合より
良好な低温熱交換能力が得られることになる。
In the above-described heat cycle of the refrigerating apparatus,
The carbon dioxide concentration ratio in the high-temperature side condensation process is as low as 20%, and the operating pressure is 25 bar, which is sufficiently lower than the cycle of carbon dioxide alone. Further, since the carbon dioxide concentration ratio in the low-temperature side evaporation process becomes as high as 50%, better low-temperature heat exchange capacity can be obtained than when a refrigerant having a concentration ratio of 20% is circulated by itself.

【0026】図2に示す冷凍装置は、上述の熱サイクル
よりも更に熱の有効利用を図ったものであり、低温側熱
源として、蒸発器(1)を吸熱側伝熱管とする低温側熱交
換器(12)を設置すると共に、高温側熱源として、凝縮器
(3)を放熱側伝熱管とする高温側熱交換器(15)を設置し
ている。副膨張弁(8)の出口には第1中間熱交換器(16)
が接続され、該熱交換器(16)の放熱側伝熱管は高温側熱
交換器(15)の放熱側伝熱管と接続され、両伝熱管の両端
が冷却水配管(17)に繋がっている。又、副圧縮器(7)と
気液混合器(6)の間の冷媒バイパス路(13)には、第2中
間熱交換器(14)が接続され、該第2中間熱交換器(14)の
吸熱側伝熱管は、高温側熱交換器(15)の吸熱側伝熱管と
接続され、両伝熱管の両端が給湯配管(18)に繋がってい
る。
The refrigeration apparatus shown in FIG. 2 is intended to make more effective use of heat than the above-described heat cycle, and has a low-temperature side heat exchange tube having an evaporator (1) as a heat absorption side heat transfer tube as a low-temperature side heat source. A condenser (12) is installed, and a condenser
A high-temperature heat exchanger (15) with (3) as a heat-radiating heat transfer tube is installed. A first intermediate heat exchanger (16) is provided at the outlet of the auxiliary expansion valve (8).
Are connected, the heat-radiation-side heat transfer tubes of the heat exchanger (16) are connected to the heat-radiation-side heat transfer tubes of the high-temperature-side heat exchanger (15), and both ends of both heat transfer tubes are connected to the cooling water pipe (17). . In addition, a second intermediate heat exchanger (14) is connected to the refrigerant bypass passage (13) between the sub-compressor (7) and the gas-liquid mixer (6). The heat-absorbing-side heat transfer tube of (1) is connected to the heat-absorbing-side heat transfer tube of the high-temperature-side heat exchanger (15), and both ends of both heat transfer tubes are connected to the hot water supply pipe (18).

【0027】従って、冷却水配管(17)を流れる冷却水
は、先ず第1中間熱交換器(16)を経て約30℃から約2
0℃まで冷却された後、更に低温側熱交換器(12)を経
て、約20℃から10℃まで冷却される。一方、給湯配
管(18)を流れる温水は、先ず第2中間熱交換器(14)を経
て約30℃から40℃まで加熱された後、更に高温側熱
交換器(15)を経て、約40℃から約70℃まで加熱され
ることになる。
Therefore, the cooling water flowing through the cooling water pipe (17) is first passed through the first intermediate heat exchanger (16) to a temperature of about 30.degree.
After being cooled to 0 ° C, it is further cooled from about 20 ° C to 10 ° C via the low-temperature side heat exchanger (12). On the other hand, the hot water flowing through the hot water supply pipe (18) is first heated from about 30 ° C. to 40 ° C. through the second intermediate heat exchanger (14), and then further passed through the high temperature side heat exchanger (15) to about 40 ° C. C. to about 70.degree.

【0028】又、図3に示す冷凍装置においては、副膨
張弁(8)及び副圧縮器(7)の出口に中間熱交換器(19)を
接続して、副膨張弁(8)から流出する気液2相の冷媒
を、副圧縮器(7)から流出する気相の冷媒によって加熱
し、加熱された冷媒は更に補助気液分離器(20)へ供給し
て、気相と液相に分離し、気相流のみを圧縮機(4)へ供
給し、液相流は第2冷媒バイパス路(23)を経て気液混合
器(6)へ供給している。尚、副膨張弁(8)から流出する
気液2相の冷媒を中間熱交換器(19)によって完全に気化
することが可能な場合には、補助気液分離器(20)を省略
することが出来る。
In the refrigerating apparatus shown in FIG. 3, an intermediate heat exchanger (19) is connected to outlets of the sub-expansion valve (8) and the sub-compressor (7), and the refrigerant flows out of the sub-expansion valve (8). The gas-liquid two-phase refrigerant is heated by the gas-phase refrigerant flowing out of the sub-compressor (7). The heated refrigerant is further supplied to the auxiliary gas-liquid separator (20), And only the gas phase flow is supplied to the compressor (4), and the liquid phase flow is supplied to the gas-liquid mixer (6) via the second refrigerant bypass passage (23). If the gas-liquid two-phase refrigerant flowing out of the auxiliary expansion valve (8) can be completely vaporized by the intermediate heat exchanger (19), the auxiliary gas-liquid separator (20) is omitted. Can be done.

【0029】上述した何れの冷凍装置においても、高温
側凝縮過程及び低温側蒸発過程の混合冷媒の濃度比を意
図的に変えることが出来、これによって高温側凝縮過程
の圧力を下げると共に低温側蒸発過程の圧力を上げて、
圧縮比を低下させることが可能であり、これによって圧
縮機の損失を低減させ、熱サイクルの高効率化を図るこ
とが出来る。又、高温側凝縮過程及び低温側蒸発過程に
おける冷媒の熱的、動的特性を各過程に適したものに変
化させ、これによって熱サイクルの高効率化を図ること
が可能である。
In any of the refrigeration systems described above, the concentration ratio of the mixed refrigerant in the high-temperature side condensation process and the low-temperature side evaporation process can be intentionally changed, thereby lowering the pressure in the high-temperature side condensation process and lowering the low-temperature side evaporation. Increasing the pressure of the process,
It is possible to lower the compression ratio, thereby reducing the loss of the compressor and increasing the efficiency of the heat cycle. In addition, the thermal and dynamic characteristics of the refrigerant in the high-temperature side condensation process and the low-temperature side evaporation process can be changed to ones suitable for each process, thereby increasing the efficiency of the heat cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非共沸混合冷媒を用いた冷凍装置
の構成及び状態変化を表わす系統図である。
FIG. 1 is a system diagram showing a configuration and a state change of a refrigeration apparatus using a non-azeotropic mixed refrigerant according to the present invention.

【図2】本発明の他の熱サイクルの例を表わす系統図で
ある。
FIG. 2 is a system diagram showing another example of a heat cycle of the present invention.

【図3】本発明の更に他の熱サイクルの例を表わす系統
図である。
FIG. 3 is a system diagram showing still another example of a heat cycle of the present invention.

【図4】二酸化炭素とイソブタンの非共沸混合液の気液
平衡線図において、図1の熱サイクルの状態変化を説明
する図である。
FIG. 4 is a diagram illustrating a state change of the thermal cycle of FIG. 1 in a vapor-liquid equilibrium diagram of a non-azeotropic mixture of carbon dioxide and isobutane.

【図5】従来の冷凍装置の構成を表わす系統図である。FIG. 5 is a system diagram showing a configuration of a conventional refrigeration apparatus.

【図6】該冷凍装置の熱サイクルを表わす圧力−エンタ
ルピ線図である。
FIG. 6 is a pressure-enthalpy diagram showing a heat cycle of the refrigeration apparatus.

【符号の説明】[Explanation of symbols]

(1) 蒸発器 (2) 膨張弁 (3) 凝縮器 (4) 圧縮機 (5) 気液分離器 (6) 気液混合器 (7) 副圧縮器 (8) 副膨張弁 (9) 中間熱交換器 (10) 内部熱交換器 (11) 組成調整用膨張弁 (1) Evaporator (2) Expansion valve (3) Condenser (4) Compressor (5) Gas-liquid separator (6) Gas-liquid mixer (7) Sub-compressor (8) Sub-expansion valve (9) Intermediate Heat exchanger (10) Internal heat exchanger (11) Composition adjustment expansion valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器(1)、圧縮機(4)、凝縮器(3)及
び膨張弁(2)を配管により互いに接続して、非共沸混合
冷媒が循環する冷媒循環路を形成したヒートポンプ装置
において、蒸発器(1)から圧縮機(4)へ冷媒を流す冷媒
循環路には、蒸発器(1)から供給される気液2相流を気
相と液相に分離する気液分離器(5)と、気液分離器(5)
からの液相流を気化して圧縮機(4)へ供給する気化手段
とが接続され、圧縮機(4)から蒸発器(1)へ冷媒を流す
冷媒循環路には、気液分離器(5)から冷媒バイパス路を
経て供給される気相流と圧縮機(4)からの液相流とを混
合して蒸発器(1)へ供給する気液混合器(6)が接続され
ていることを特徴とする非共沸混合冷媒を用いたヒート
ポンプ装置。
An evaporator (1), a compressor (4), a condenser (3), and an expansion valve (2) are connected to each other by a pipe to form a refrigerant circulation path through which a non-azeotropic mixed refrigerant circulates. In the heat pump device, a gas-liquid two-phase flow supplied from the evaporator (1) is separated into a gas phase and a liquid phase in a refrigerant circuit for flowing the refrigerant from the evaporator (1) to the compressor (4). Separator (5) and gas-liquid separator (5)
A vaporizer is connected to a vaporizer that vaporizes the liquid-phase flow from the compressor and supplies the vapor to the compressor (4), and the refrigerant circulation path for flowing the refrigerant from the compressor (4) to the evaporator (1) has a gas-liquid separator ( A gas-liquid mixer (6) for mixing the gas-phase flow supplied from 5) through the refrigerant bypass and the liquid-phase flow from the compressor (4) and supplying the mixture to the evaporator (1) is connected. A heat pump device using a non-azeotropic mixed refrigerant characterized by the above-mentioned.
【請求項2】 気化手段は、気液分離器(5)からの液相
流を膨張させる副膨張弁(8)と、副膨張弁(8)から流出
する冷媒を加熱して気化する熱交換器とから構成される
請求項1に記載のヒートポンプ装置。
The vaporizing means includes a sub-expansion valve (8) for expanding the liquid phase flow from the gas-liquid separator (5), and a heat exchange for heating and vaporizing the refrigerant flowing out of the sub-expansion valve (8). The heat pump device according to claim 1, comprising a heat exchanger.
【請求項3】 気化手段の出口には第2の気液分離器が
接続され、該気液分離器からの気相流が圧縮機(4)へ供
給される一方、該気液分離器からの液相流は第2の冷媒
バイパス路を経て気液混合器(6)へ供給される請求項1
又は請求項2に記載のヒートポンプ装置。
3. A second gas-liquid separator is connected to an outlet of the vaporizing means, and a gas-phase flow from the gas-liquid separator is supplied to a compressor (4), and a second gas-liquid separator is supplied from the gas-liquid separator. 2. The liquid phase flow of claim 1 is supplied to a gas-liquid mixer (6) via a second refrigerant bypass.
Or the heat pump device according to claim 2.
【請求項4】 気液分離器(5)と気液混合器(6)の間の
冷媒バイパス路には、副圧縮器(7)が接続されている請
求項1乃至請求項3の何れかに記載のヒートポンプ装
置。
4. The sub-compressor (7) is connected to a refrigerant bypass between the gas-liquid separator (5) and the gas-liquid mixer (6). A heat pump device according to item 1.
【請求項5】 副圧縮器(7)と気液混合器(6)の間の冷
媒バイパス路には、該冷媒バイパス路を流れる冷媒から
熱を奪うための熱交換器が接続されている請求項4に記
載のヒートポンプ装置。
5. A refrigerant bypass between the sub-compressor (7) and the gas-liquid mixer (6) is connected to a heat exchanger for removing heat from the refrigerant flowing through the refrigerant bypass. Item 5. The heat pump device according to item 4.
JP10264144A 1998-09-18 1998-09-18 Heat pump device using non-azeotrope refrigerant Pending JP2000088371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264144A JP2000088371A (en) 1998-09-18 1998-09-18 Heat pump device using non-azeotrope refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264144A JP2000088371A (en) 1998-09-18 1998-09-18 Heat pump device using non-azeotrope refrigerant

Publications (1)

Publication Number Publication Date
JP2000088371A true JP2000088371A (en) 2000-03-31

Family

ID=17399082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264144A Pending JP2000088371A (en) 1998-09-18 1998-09-18 Heat pump device using non-azeotrope refrigerant

Country Status (1)

Country Link
JP (1) JP2000088371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561203B (en) * 2009-05-27 2012-08-22 上海交通大学 Refrigerant air-liquid mixer for heat pump
JP6856294B1 (en) * 2020-06-30 2021-04-07 株式会社せばた集団 Thermal medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561203B (en) * 2009-05-27 2012-08-22 上海交通大学 Refrigerant air-liquid mixer for heat pump
JP6856294B1 (en) * 2020-06-30 2021-04-07 株式会社せばた集団 Thermal medium
WO2022003827A1 (en) * 2020-06-30 2022-01-06 株式会社せばた集団 Heat medium

Similar Documents

Publication Publication Date Title
JP4973872B2 (en) CO2 refrigerator
US6722145B2 (en) High efficiency very-low temperature mixed refrigerant system with rapid cool down
US7669428B2 (en) Vortex tube refrigeration systems and methods
US7032411B2 (en) Integrated dual circuit evaporator
US10174975B2 (en) Two-phase refrigeration system
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
JP2000508753A (en) Pre-cooled steam-liquid refrigeration cycle
US6571575B1 (en) Air conditioner using inflammable refrigerant
WO2020095381A1 (en) Fluid temperature regulation system and refrigeration apparatus
JP2006220351A (en) Freezer
JP3599770B2 (en) Heat transfer device
KR100300779B1 (en) Condensation Unit and Refrigeration System
JP2000304380A (en) Heat exchanger
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JP2012237518A (en) Air conditioner
JP2000088371A (en) Heat pump device using non-azeotrope refrigerant
JP2006003023A (en) Refrigerating unit
Onaka et al. Analysis of heat pump cycle using CO2/DME mixture refrigerant
JP3256856B2 (en) Refrigeration system
JPH10306952A (en) Secondary refrigerant system refrigerating apparatus
JP6682081B1 (en) Freezing method
JPH08233386A (en) Heat exchanger
JP6804076B1 (en) Multi-stage heat exchanger and its usage and refrigeration system incorporating the multi-stage heat exchanger
WO2022162723A1 (en) Fluid temperature control system
JPH03269083A (en) Refrigerant composition