JPS6246780B2 - - Google Patents

Info

Publication number
JPS6246780B2
JPS6246780B2 JP18404681A JP18404681A JPS6246780B2 JP S6246780 B2 JPS6246780 B2 JP S6246780B2 JP 18404681 A JP18404681 A JP 18404681A JP 18404681 A JP18404681 A JP 18404681A JP S6246780 B2 JPS6246780 B2 JP S6246780B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
evaporator
boiling point
component containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18404681A
Other languages
Japanese (ja)
Other versions
JPS5885065A (en
Inventor
Juji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18404681A priority Critical patent/JPS5885065A/en
Publication of JPS5885065A publication Critical patent/JPS5885065A/en
Publication of JPS6246780B2 publication Critical patent/JPS6246780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は、非共沸混合冷媒を用いることによつ
て、高効率で省エネルギな熱ポンプ装置を提供す
ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a highly efficient and energy-saving heat pump device by using a non-azeotropic mixed refrigerant.

従来、家庭内温排熱、太陽熱、燃焼熱等の排熱
エネルギを熱ポンプ装置の蒸発器で回収する技術
は公知のものである。またかかる排熱エネルギ
は、その特性上高温度であつても、熱量的に不足
がちで、かつまた間欠的であり、外気からの熱回
収と併用するため、2つの蒸発器で直列又は並列
に回収する技術も公知のものである。
BACKGROUND ART Conventionally, there is a well-known technique for recovering waste heat energy such as domestic heat waste heat, solar heat, combustion heat, etc. using an evaporator of a heat pump device. In addition, due to its characteristics, such waste heat energy tends to be insufficient in calorific value even at high temperatures, and is also intermittent, so in order to use it in conjunction with heat recovery from outside air, two evaporators are used in series or parallel. Recovering techniques are also known.

しかるに、かかる公知の技術においては、一つ
の圧縮機を用いた冷凍サイクルにおいて、単一冷
媒を用いたものであり、蒸発器における蒸発温度
は一定となり、かつその一定となる蒸発温度は排
熱エネルギの温度レベルと外気の温度レベルの低
い方よりも必ず低温となる。従つて蒸発器におい
て過熱が大きくなるだけだつたり、温度レベルの
高い方にサイクルを切換えたりして利用している
のが現状で、サイクル効率上は必ずしも改善され
たものではなかつた。
However, in such known technology, a single refrigerant is used in a refrigeration cycle using one compressor, and the evaporation temperature in the evaporator is constant, and the constant evaporation temperature is equal to the exhaust heat energy. The temperature level will always be lower than the lower of the temperature level of the outside air and the temperature level of the outside air. Therefore, the current situation is that the evaporator simply becomes overheated or the cycle is switched to a higher temperature level, and the cycle efficiency is not necessarily improved.

本発明は、一つの圧縮機、複数の蒸発器を用い
た冷凍サイクルにおいて、非共沸混合冷媒を用い
ることによつて、上記した従来技術の欠点を解消
することを目的としたものである。すなわち、同
一の蒸発圧力でありながら温度レベルの異なる複
数の蒸発器を作製し、異なる温度レベルをもつ複
数の熱源に対応して、高い温度レベルの熱源に対
しては高い蒸発温度をもつ蒸発器で熱交換させ、
低い温度レベルの熱源に対しては低い蒸発温度を
もつ蒸発器で熱交換させることによつて、複数の
熱源から熱回収しながら、従来技術に比して圧縮
機入力を低減させ、高効率で省エネルギが可能と
なるもので、非共沸混合冷媒を用いた一つの圧縮
機を有し、凝縮器出口の高沸点冷媒をより多く含
んだ液相成分と低沸点冷媒をより多く含んだ気相
成分に分離する気液分離器を設け、低沸点冷媒を
より多く含んだ成分を液化膨張後外気と熱交換す
る第1の蒸発器を設け、かつ膨張後の高沸点冷媒
をより多く含んだ成分と混合し、この混合された
元の成分比をもつ非共沸混合冷媒を外気よりも高
温度レベルの熱源と熱交換する第2の蒸発器を設
けたことを特徴とするものである。
The present invention aims to solve the above-described drawbacks of the prior art by using a non-azeotropic refrigerant mixture in a refrigeration cycle using one compressor and a plurality of evaporators. In other words, multiple evaporators with the same evaporation pressure but different temperature levels are manufactured, and in response to multiple heat sources with different temperature levels, an evaporator with a high evaporation temperature is created for a heat source with a high temperature level. exchange heat with
By exchanging heat with a low-temperature heat source using an evaporator with a low evaporation temperature, the system recovers heat from multiple heat sources, reduces compressor input compared to conventional technology, and achieves high efficiency. It enables energy saving, and has one compressor that uses a non-azeotropic mixed refrigerant, with a liquid phase component containing more high boiling point refrigerant and an air containing more low boiling point refrigerant at the condenser outlet. A gas-liquid separator that separates the phase components into phase components is provided, a first evaporator is provided that exchanges heat with the outside air after liquefaction and expansion of the component containing more low-boiling point refrigerant, and the component containing more high-boiling point refrigerant after expansion is provided. The present invention is characterized in that a second evaporator is provided which exchanges heat with a heat source having a higher temperature level than the outside air with the mixed non-azeotropic mixed refrigerant having the original component ratio.

以下本発明の熱ポンプ装置の構成を図面に基づ
いて説明する。第1は本発明の熱ポンプ装置を外
気とその他の熱源を利用したヒートポンプ暖房装
置に適用した一実施例を示す。1は圧縮機、2は
凝縮器、3は気液分離器であり、非共沸混合冷媒
を用いるとき、液相側には高沸点冷媒をより多く
含み、気側は低沸点冷媒をより多く含むことにな
る。4は気液分離器3で分離された液相成分のた
めの絞り装置、5は気液分離器3で分離された気
相を液化するための熱交換器、6は低沸点冷媒を
より多く含んだ成分のための絞り装置である。7
は低沸点冷媒をより多く含んだ成分に対する蒸発
器であり、蒸発器7を通過した低沸点冷媒をより
含く含んだ成分は、絞り装置4からの高沸点冷媒
をより多く含んだ成分と混合され、熱交換器5に
送られる。8は混合された元の成分比をもつ非共
沸混合冷媒に対する蒸発器、9はアキユームレー
タであり、マキユームレータ9の出口は圧縮機1
の吸入口に接続されている。10は室内の空気と
凝縮器2を流れる冷媒を熱交換させるためのフア
ン、11は外気と蒸発器7を流れる冷媒を熱交換
させるためのフアン、12は家庭内温排熱、太陽
熱、燃焼熱等の排熱エネルギを回収した水等の搬
送流体と蒸発器8を流れる冷媒を熱交換させるた
めの搬送管である。
The configuration of the heat pump device of the present invention will be explained below based on the drawings. The first example shows an embodiment in which the heat pump device of the present invention is applied to a heat pump heating device that uses outside air and other heat sources. 1 is a compressor, 2 is a condenser, and 3 is a gas-liquid separator. When using a non-azeotropic mixed refrigerant, the liquid phase side contains more high boiling point refrigerant, and the gas side contains more low boiling point refrigerant. It will be included. 4 is a throttling device for the liquid phase component separated by the gas-liquid separator 3, 5 is a heat exchanger for liquefying the gas phase separated by the gas-liquid separator 3, and 6 is a device for increasing the amount of low-boiling refrigerant. It is a squeezing device for the contained ingredients. 7
is an evaporator for the component containing more low boiling point refrigerant, and the component containing more low boiling point refrigerant passing through the evaporator 7 is mixed with the component containing more high boiling point refrigerant from the expansion device 4. and sent to the heat exchanger 5. 8 is an evaporator for the non-azeotropic mixed refrigerant having the original component ratio, 9 is an acumulator, and the outlet of the azeotropic refrigerant 9 is connected to the compressor 1.
connected to the air intake. 10 is a fan for exchanging heat between the indoor air and the refrigerant flowing through the condenser 2, 11 is a fan for exchanging heat between the outside air and the refrigerant flowing through the evaporator 7, and 12 is a domestic exhaust heat, solar heat, combustion heat. This is a transport pipe for exchanging heat between a transport fluid such as water that has recovered waste heat energy, and a refrigerant flowing through the evaporator 8.

このように、蒸発器7,8は圧縮器1にアキユ
ームレータ9を通して連通しているので、同じ蒸
発圧力をもつているものの、蒸発器8を流れる冷
媒は元の成分比をもつ非共沸混合冷媒であり、蒸
発器7を流れる冷媒は低沸点冷媒をより多く含ん
だ成分であるため、蒸発器8の蒸発温度は蒸発器
7の蒸発温度より高温に保つことが可能となる。
従つて、凝縮器2における凝縮温度および蒸発器
7における蒸発温度を、従来の単一冷媒を用いた
冷凍サイクルの凝縮温度および蒸発温度と略同一
とすると、より高温度レベルの排熱エネルギを熱
回収する蒸発器8の蒸発温度は蒸発器7の蒸発温
度より高温となるため、圧縮機1の入力を低減す
ることが可能となるものである。
In this way, since the evaporators 7 and 8 communicate with the compressor 1 through the accumulator 9, although they have the same evaporation pressure, the refrigerant flowing through the evaporator 8 is a non-azeotropic one with the original component ratio. Since it is a mixed refrigerant and the refrigerant flowing through the evaporator 7 contains a larger amount of low boiling point refrigerant, the evaporation temperature of the evaporator 8 can be kept higher than the evaporation temperature of the evaporator 7.
Therefore, if the condensation temperature in the condenser 2 and the evaporation temperature in the evaporator 7 are made approximately the same as the condensation temperature and evaporation temperature in a conventional refrigeration cycle using a single refrigerant, the exhaust heat energy at a higher temperature level is converted into heat. Since the evaporation temperature of the evaporator 8 for recovery is higher than the evaporation temperature of the evaporator 7, it is possible to reduce the input to the compressor 1.

上記作用を第2図に示した一定圧力における低
沸点冷媒濃度対温度のグラフで説明する。なお、
この第2図においては、説明の都合上一定の凝縮
圧力と蒸発圧力のグラフを上下に並べて配置して
いる。第2図上に示したa〜k点は、第1図にお
けるa〜k点における圧力・温度・濃度に対応し
ている。すなわちa点−b点間は、凝縮器2にお
ける凝縮過程であり、非共沸混合冷媒を用いてい
るため温度低下が見られる。c点およびd点は、
気液分離器3で分離された気相および液相の状態
点である。d点−e点間は、絞り装置4における
絞り過程であり、凝縮圧力から蒸発圧力への圧力
低下とともに、温度低下をもたらす。c点−f点
間は、低沸点冷媒をより多く含んだ成分の熱交換
器5における熱交換過程であり、f点において冷
媒が完全に液化される如く熱交換器5は構成され
るものである。f点−g点間は、絞り装置6にお
ける絞り過程であり、同じく凝縮圧力から蒸発圧
力への圧力低下をもたらす。g点−h点間は、蒸
発器7における外気との熱交換による蒸発過程で
あり、非共沸混合冷媒の場合、温度上昇が見られ
る。i点は、絞り装置4後の高沸点冷媒をより多
く含んだe点成分と、蒸発器7後の低沸点冷媒を
より多く含んだh点成分が混合された状態点を表
わし、その成分比は圧縮機1後の非共沸混合冷媒
の元の成分比と同じものとなる。i点−j点間
は、熱交換器5において高沸点冷媒をより多く含
む成分を液化する際の蒸発過程であり、温度上昇
が見られる。j点−k点間は、蒸発器8における
外気よりも温度レベルの高い排熱エネルギとの熱
交換による蒸発過程であり、蒸発器7における蒸
発過程よりも高沸点冷媒をより多く含むため高い
蒸発温度過程を保持することが可能となる。k点
−a点間は、圧縮機1における圧縮過程であり、
蒸発圧力から凝縮圧力まで非共沸混合冷媒は圧縮
される。かかる混合冷媒の状態変化を通じて、上
記した高効率で省エネルギなヒートポンプ暖房装
置を提供できるものであり、外気よりも高温度レ
ベルとなる排熱エネルギが熱量的に多量にある場
合に特に好適となるものである。
The above action will be explained using the graph of low boiling point refrigerant concentration versus temperature at constant pressure shown in FIG. In addition,
In FIG. 2, graphs of constant condensation pressure and evaporation pressure are arranged vertically for convenience of explanation. Points a to k shown in FIG. 2 correspond to the pressure, temperature, and concentration at points a to k in FIG. 1. That is, the period between point a and point b is the condensation process in the condenser 2, and since a non-azeotropic mixed refrigerant is used, a temperature drop is observed. Point c and point d are
These are the state points of the gas phase and liquid phase separated by the gas-liquid separator 3. The period between point d and point e is a throttling process in the throttling device 4, which brings about a pressure drop from condensation pressure to evaporation pressure and a temperature drop. The period between point c and point f is a heat exchange process in the heat exchanger 5 for components containing a larger amount of low boiling point refrigerant, and the heat exchanger 5 is constructed so that the refrigerant is completely liquefied at point f. be. The period between point f and point g is a throttling process in the throttling device 6, which also brings about a pressure drop from condensation pressure to evaporation pressure. The period between point g and point h is an evaporation process due to heat exchange with outside air in the evaporator 7, and in the case of a non-azeotropic mixed refrigerant, a temperature rise is observed. The i point represents a state point where the e-point component containing more high-boiling point refrigerant after the expansion device 4 and the h-point component containing more low-boiling point refrigerant after the evaporator 7 are mixed, and the component ratio is is the same as the original component ratio of the non-azeotropic mixed refrigerant after the compressor 1. Between point i and point j is an evaporation process when a component containing a larger amount of high boiling point refrigerant is liquefied in the heat exchanger 5, and a temperature rise is observed. The evaporation process between point J and point K is an evaporation process due to heat exchange with waste heat energy whose temperature level is higher than that of the outside air in the evaporator 8, and the evaporation process is higher because it contains more high boiling point refrigerant than the evaporation process in the evaporator 7. It becomes possible to maintain the temperature process. The period between point k and point a is the compression process in the compressor 1,
The non-azeotropic refrigerant mixture is compressed from the evaporation pressure to the condensation pressure. Through such a change in the state of the mixed refrigerant, it is possible to provide the above-mentioned highly efficient and energy-saving heat pump heating device, and it is particularly suitable when there is a large amount of exhaust heat energy that has a higher temperature level than the outside air. It is something.

なお、第2図からもわかる如く非共沸混合冷媒
を用いた場合、凝縮過においては温度低下、蒸発
過程においては温度上昇が見られるので、凝縮器
2、蒸発器7,8では熱源と対向流とし、熱交換
器5においても対向流とするのがよい。
As can be seen from Figure 2, when a non-azeotropic refrigerant mixture is used, the temperature decreases during the condensation process and the temperature increases during the evaporation process. It is preferable that the heat exchanger 5 has a counterflow.

上説明した如く、本発明の熱ポンプ装置は、非
共沸混合冷媒を用い、高沸点冷媒をより多く含ん
だ成分と低沸点冷媒をより多く含んだ成分に分離
し、低沸点冷媒をより多く含んだ成分を第1の蒸
発器において外気等の低熱源と熱交換した後、前
記高沸点冷媒をより多く含んだ成分と混合し、こ
の混合後の、元の成分比をもつ非共沸混合冷媒を
第2の蒸発器においてより高温度レベルの熱源と
熱交換させる如く構成したので、高効率で省エネ
ルギな熱ポンプ装置を提供できるに至つたもので
ある。
As explained above, the heat pump device of the present invention uses a non-azeotropic mixed refrigerant, and separates it into a component containing more high boiling point refrigerant and a component containing more low boiling point refrigerant. After exchanging heat with a low heat source such as outside air in the first evaporator, the components containing the high boiling point refrigerant are mixed with a component containing a larger amount of the high boiling point refrigerant, and after this mixing, a non-azeotropic mixture having the original component ratio is obtained. Since the refrigerant is configured to exchange heat with a heat source at a higher temperature level in the second evaporator, it has become possible to provide a highly efficient and energy-saving heat pump device.

なお、実施例においては省略したが、絞り装置
入口の過冷却をとるための熱交換器を設けたもの
や、給湯装置等に利用した熱ポンプ装置も本発明
に含まれるものであり、高温度レベルの熱源とし
ては、家庭内温度排熱、太陽熱、燃焼熱等の外気
より温度レベルの高い排熱エネルギが好適となる
ものである。
Although omitted in the examples, devices equipped with a heat exchanger for supercooling the inlet of the throttling device and heat pump devices used in water heaters, etc. are also included in the present invention. As a heat source of this level, exhaust heat energy having a higher temperature level than outside air, such as household temperature exhaust heat, solar heat, and combustion heat, is suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱ポンプ装置の一実施例を示
す構成図、第2図は第1図の各状態点を説明する
ための低沸点冷媒濃度対温度のグラフである。 1……圧縮機、2……凝縮器、3……気液分離
器、4……絞り装置、5……熱交換器、6……絞
り装置、7,8……蒸発器。
FIG. 1 is a block diagram showing an embodiment of the heat pump device of the present invention, and FIG. 2 is a graph of low boiling point refrigerant concentration versus temperature for explaining each state point in FIG. 1. 1... Compressor, 2... Condenser, 3... Gas-liquid separator, 4... Throttle device, 5... Heat exchanger, 6... Throttle device, 7, 8... Evaporator.

Claims (1)

【特許請求の範囲】 1 非共沸混合冷媒を用いた一つの圧縮機を有
し、凝縮器出口に高沸点冷媒をより多く含んだ液
相成分と低沸点冷媒をより多く含んだ気相成分に
分離する気液分離器を設け、低沸点冷媒をより多
く含んだ成分を液化膨張後外気と熱交換する第1
の蒸発器を設け、かつ膨張後の高沸点冷媒をより
多く含んだ成分と混合し、この混合後の元の成分
比をもつ非共沸混合冷媒を外気よりも高温度レベ
ルの熱源と熱交換する第2の蒸発器を設けた熱ポ
ンプ装置。 2 低沸点冷媒をより多く含んだ気相成分の液化
は、混合後の元の成分比をもつ非共沸混合冷媒と
の熱交換によつて行なわれる特許請求の範囲第1
項記載の熱ポンプ装置。
[Claims] 1. One compressor using a non-azeotropic mixed refrigerant, with a liquid phase component containing more high boiling point refrigerant and a gas phase component containing more low boiling point refrigerant at the condenser outlet. The first stage is equipped with a gas-liquid separator that separates the component containing a larger amount of low-boiling refrigerant into a gas-liquid separator that exchanges heat with outside air after liquefaction and expansion.
evaporator is installed, and the high boiling point refrigerant after expansion is mixed with a component containing a larger amount, and the non-azeotropic mixed refrigerant having the original component ratio after mixing is heat exchanged with a heat source at a higher temperature level than the outside air. A heat pump device equipped with a second evaporator. 2. Liquefaction of a gas phase component containing a larger amount of low boiling point refrigerant is performed by heat exchange with a non-azeotropic mixed refrigerant having the original component ratio after mixing.
Heat pump device as described in Section 1.
JP18404681A 1981-11-16 1981-11-16 Heat pump device Granted JPS5885065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18404681A JPS5885065A (en) 1981-11-16 1981-11-16 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18404681A JPS5885065A (en) 1981-11-16 1981-11-16 Heat pump device

Publications (2)

Publication Number Publication Date
JPS5885065A JPS5885065A (en) 1983-05-21
JPS6246780B2 true JPS6246780B2 (en) 1987-10-05

Family

ID=16146412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18404681A Granted JPS5885065A (en) 1981-11-16 1981-11-16 Heat pump device

Country Status (1)

Country Link
JP (1) JPS5885065A (en)

Also Published As

Publication number Publication date
JPS5885065A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
Chen et al. Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures
Engler et al. Comparative simulation and investigation of ammonia-water: absorption cycles for heat pump applications
CN2884061Y (en) Parallel compressor low-temperature air source heat pump device capable of realizing two-stage compression
CN100494814C (en) Condenser
Garimella et al. Performance evaluation of a generator-absorber heat-exchange heat pump
JPS61119954A (en) Absorption heat pump/refrigeration system
Gao et al. System principles and applications of hybrid sorption–compression heat pump–A review
Mohammadi et al. Energy and exergy analysis of a tri-generation water-cooled air conditioning system
CN105333641A (en) Air-source water heating system of air conditioner
Åhlby et al. NH3/H2O LiBr as working fluid for the compression/absorption cycle
Kang et al. An environmentally friendly GAX cycle for panel heating: PGAX cycle
CN109163470A (en) A kind of ultralow temperature carbon dioxide water chiller-heater unit
CN110701664B (en) Wide-ring-temperature multistage water outlet variable-frequency air energy cascade heat engine system and working method thereof
CN1281131A (en) Thermodynamic equipment capable of regenerating energy sources
CN208547240U (en) Two-stage Compression high temperature drying unit
JPS6246781B2 (en)
CN113587469B (en) Control device and method of temperature control system and temperature control system
CN101799223A (en) Entire-year three-use air source heat pump unit and method for operating same
JPS6246780B2 (en)
US6651457B2 (en) Absorption refrigerator
JPS6353456B2 (en)
Tozer et al. Absorption chillers applied to CHP systems
Garimella Absorption heat pump performance improvement through ground coupling
JPH01155149A (en) Refrigeration cycle device
KR101829771B1 (en) Heat pump system