WO2018216187A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018216187A1
WO2018216187A1 PCT/JP2017/019664 JP2017019664W WO2018216187A1 WO 2018216187 A1 WO2018216187 A1 WO 2018216187A1 JP 2017019664 W JP2017019664 W JP 2017019664W WO 2018216187 A1 WO2018216187 A1 WO 2018216187A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
condenser
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2017/019664
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
悠介 有井
久登 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780089438.3A priority Critical patent/CN110678707A/en
Priority to JP2019519918A priority patent/JPWO2018216187A1/en
Priority to PCT/JP2017/019664 priority patent/WO2018216187A1/en
Publication of WO2018216187A1 publication Critical patent/WO2018216187A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus using a non-azeotropic refrigerant mixture.
  • Patent Document 1 discloses that heat exchange efficiency is improved by making the heat exchange fluids of the cooling fluid and the refrigerant to be subjected to heat exchange counter-flow in the refrigerant condensation process. Yes.
  • the cooling fluid is ambient air.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus that can suppress a decrease in operating performance in a refrigeration cycle using a non-azeotropic refrigerant mixture.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a condenser, a decompression device, and an evaporator are connected, in which a non-azeotropic refrigerant is circulated, and a saturated fluid temperature of the refrigerant is a cooling fluid in the condenser Temperature control means for making the temperature equal to or higher than this temperature.
  • the temperature control means for making the saturated liquid temperature of the refrigerant equal to or higher than the temperature of the cooling fluid in the condenser is provided, even if the refrigerant is a non-azeotropic refrigerant, the temperature is higher than the temperature of the cooling fluid. Saturated liquid temperature is maintained and condensation is promoted. For this reason, the fall of driving performance can be controlled.
  • FIG. 6 is a Ph diagram illustrating a condensation process for a single refrigerant or an azeotropic refrigerant mixture as Comparative Example 1.
  • FIG. 6 is a Ph diagram illustrating a condensation process for a non-azeotropic refrigerant mixture as Comparative Example 2.
  • FIG. 5 is a Ph diagram illustrating a condensation process in the condenser according to the first embodiment of the present invention. It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 2 of this invention.
  • FIG. 1 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 includes a compressor 2, a condenser 3, a fan 6, a decompression device 4, and an evaporator 5.
  • the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 are connected in order by refrigerant piping, and the refrigerant circuit 10 in which a refrigerant circulates is comprised.
  • the compressor 2 compresses the refrigerant to be sucked and discharges the refrigerant in a high temperature and high pressure state.
  • the compressor 2 is a variable capacity compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant.
  • the condenser 3 is an air heat exchanger that exchanges heat between the refrigerant and air.
  • the condenser 3 cools the gas refrigerant discharged from the compressor 2 by heat exchange with outdoor air (outside air), water, brine, or the like as a heat source.
  • the condenser 3 consists of a heat source side heat exchanger, and the heat source (cooling fluid) which the condenser 3 cools a refrigerant
  • the fan 6 serves to supply outside air to the condenser 3 and to promote heat exchange to the condenser 3.
  • the fan 6 can adjust the air volume.
  • the decompression device 4 decompresses and expands the refrigerant flowing through the refrigerant circuit 10.
  • the decompression device 4 is an expansion valve, a throttle device, or the like.
  • the decompression device 4 includes, for example, a flow rate control unit such as an electronic expansion valve, a capillary tube (capillary tube), and a refrigerant flow rate control unit such as a temperature-sensitive expansion valve.
  • the evaporator 5 evaporates the refrigerant flowing through the refrigerant circuit 10 to be a gaseous refrigerant in order to maintain the set temperature by heat exchange between the object to be cooled and the refrigerant.
  • the evaporator 5 evaporates and gasifies the refrigerant.
  • the object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant.
  • the evaporator 5 is composed of a use side heat exchanger, and the cooling target is, for example, air in the air conditioning target space.
  • the refrigerant circulating in the refrigerant circuit 10 is a non-azeotropic refrigerant mixture.
  • Non-azeotropic refrigerant mixtures are, for example, R407C and R448A.
  • the non-azeotropic refrigerant mixture is a refrigerant mixture of R32, R125, R134a, R1234yf, and CO 2 , wherein the ratio of R32 XR32 (wt%) is 33 ⁇ XR32 ⁇ 39, and the ratio of R125 XR125 (Wt%) is 27 ⁇ XR125 ⁇ 33, R134a ratio XR134a (wt%) is 11 ⁇ XR134a ⁇ 17, and R1234yf ratio XR1234yf (wt%) is 11 ⁇ XR1234yf ⁇ 17.
  • the ratio of CO 2 XCO 2 (wt%) is 3 ⁇ XR125 ⁇ and conditions is 9
  • a refrigerant satisfying all the conditions sum of XR32 and XR125 and XR134a and XR1234yf and XCO 2 is 100, the Also good.
  • the refrigerant is R448A.
  • the operation performance improves when the compressor power is reduced.
  • One way to reduce compressor power is to reduce the compression ratio.
  • the suction pressure of the compressor 2 may be increased or the discharge pressure may be decreased.
  • attention is focused on lowering the discharge pressure in order to improve the operation performance, that is, lowering the outlet pressure of the compressor 2.
  • the refrigeration effect corresponding to the refrigerant latent heat of the refrigeration cycle apparatus 1 has a sufficient effect by completely converting the refrigerant into a condensate in the condenser 3 or completely evaporating the refrigerant in the evaporator 5. Obtainable. Here, attention is paid to the fact that the refrigerant is completely condensed by the condenser 3 in order to improve the operation performance.
  • the heat transfer performance of the condenser 3 can be improved to reduce the discharge pressure and promote the condensation of the refrigerant. Conceivable.
  • a temperature gradient occurs even if the condensation pressure is constant. Therefore, if the heat transfer performance of the condenser 3 is improved as in the conventional case, the operation performance is remarkably increased. It may be damaged. Below, this performance fall is demonstrated using a comparative example.
  • FIG. 2 is a Ph diagram showing a condensation process for a single refrigerant or an azeotropic refrigerant mixture as Comparative Example 1.
  • the refrigerant is a single refrigerant or an azeotropic refrigerant mixture
  • the refrigerant condensing temperature and the outside air temperature approach each other as much as possible, and the refrigerant accelerates condensation.
  • the liquid is liquefied and the discharge pressure is also reduced. Therefore, the driving performance can be improved.
  • FIG. 3 is a Ph diagram showing a condensation process for a non-azeotropic refrigerant mixture as Comparative Example 2.
  • the refrigerant is a non-azeotropic refrigerant mixture
  • the mixed refrigerants have different boiling points, so that the refrigerant with a low boiling point evaporates first, and the refrigerant with a high boiling point evaporates later.
  • the isotherm is a line having a temperature gradient that descends to the right.
  • the refrigerant pressure decreases when the heat transfer performance of the condenser is improved and the refrigerant condensing temperature and the outside air temperature are brought as close as possible. May be lower. Since it is impossible to cool the refrigerant below the outside air temperature, the refrigerant cannot exchange heat with the outside air during the condensation process. As a result, the refrigerant cannot be sufficiently liquefied and the refrigeration effect is significantly impaired. Specifically, when the refrigerant is a conventional non-azeotropic refrigerant mixture such as R407C, when the saturated liquid temperature is lowered by 1 ° C. from the outside air temperature, the refrigeration effect is reduced by about 20%, whereas the compressor power is 3 % Does not decrease.
  • the saturated liquid temperature needs to be higher than the outside air temperature.
  • the refrigeration cycle apparatus 1 when the refrigerant is R448A, the refrigeration cycle apparatus 1 is provided with temperature control means for making the saturated liquid temperature of the refrigerant equal to or higher than the temperature of the cooling fluid in the condenser. An example of the temperature control means will be described.
  • the temperature control means 20 of the first embodiment is such that the refrigerant flow and the cooling fluid flow are counterflows, and the saturated liquid temperature of the refrigerant flows into the condenser 3. It is the structure which makes it more than the temperature of the entrance side.
  • FIG. 4 is a diagram for explaining the configuration of the temperature control means in Embodiment 1 of the present invention.
  • FIG. 5 is a Ph diagram showing a condensation process in the condenser according to Embodiment 1 of the present invention.
  • the flow of the refrigerant flowing through the refrigerant flow path 13 of the condenser 3 and the flow of outside air supplied to the condenser 3 by the fan 6 are counterflows.
  • the condensation temperature of the refrigerant and the outside air temperature approach each other as much as possible, the refrigerant is condensed and liquefied, and the discharge pressure drop is also promoted. .
  • the temperature control means 20 it is possible to avoid significantly impairing the refrigeration effect and improve driving performance.
  • the flow of the refrigerant and the flow of the air are opposite flows, and the refrigerant flows toward the upstream of the air flow while changing its direction a plurality of times. For this reason, the condensation temperature of the refrigerant and the outside air temperature approach each other as much as possible, and the effect that the refrigerant is accelerated to condense and liquefy, and the discharge pressure drop is further promoted becomes more remarkable.
  • the saturated liquid temperature only needs to be higher than the temperature on the suction side of the external air, and the temperature of the external air is high. There is no need to consider the higher outlet side. Therefore, it is not necessary to raise the saturated liquid temperature more than necessary, and it is not necessary to raise the discharge pressure of the compressor 2. Even if the refrigerant is a non-azeotropic refrigerant, condensation is promoted in the condenser 3 by maintaining the saturated liquid temperature above the temperature of the cooling fluid. As a result, it is possible to suppress a decrease in operation performance and improve the operation performance of the entire apparatus by improving the refrigeration effect.
  • the compressor 2 of the first embodiment is driven by an inverter circuit. Since the compressor 2 can control rotation speed by an inverter circuit, it can perform low load operation. During low-load operation, the temperature difference between the outside air temperature and the condensation temperature is the smallest. Further, since the condenser 3 is an air-cooled condenser, an air temperature difference D air that is a difference between the temperature on the suction side and the temperature on the blow-out side of the outside air becomes large. This is because the air-cooled condenser has a smaller heat capacity than, for example, a water-cooled condenser.
  • the refrigeration cycle apparatus 1 includes the compressor 2 provided with the inverter circuit and the air-cooled condenser 3, so that a refrigerant having a large temperature difference between the saturated liquid temperature and the saturated gas temperature is used. And the effect which can suppress the fall of driving performance becomes remarkable.
  • the temperature difference between the outside air temperature and the condensation temperature is about 2 ° C. during operation at a low load. If the temperature gradient of the non-azeotropic refrigerant mixture is 2 ° C. or higher, the saturated liquid temperature may be lower than the outside air temperature. Therefore, the temperature control means described above is highly effective for refrigerants having a temperature gradient of 2 ° C. or higher, and is an effective means for a refrigeration cycle apparatus for non-azeotropic refrigerant mixture.
  • Embodiment 2 the pressure measuring means is provided in the refrigerant pipe on the downstream side of the condenser 3.
  • the refrigerant is R448A
  • the second embodiment detailed description of the same configuration as that of the first embodiment is omitted.
  • FIG. 6 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 1a further includes a pressure measurement unit 11, and includes a control unit 7 as a temperature control unit 20a.
  • the control unit 7 is connected to the pressure measuring means 11 and the compressor 2 via a signal line.
  • the control unit 7 is, for example, a microcomputer.
  • the compressor 2 may have an inverter circuit as described in the first embodiment.
  • the pressure measuring means 11 is provided in the refrigerant pipe between the condenser 3 and the decompression device 4.
  • the pressure measuring unit 11 measures the pressure of the refrigerant between the condenser 3 and the decompression device 4 and outputs the measurement result to the control unit 7.
  • the control unit 7 calculates the saturated liquid temperature of the refrigerant using the measurement result of the pressure measuring unit 11. Then, the control unit 7 adjusts the discharge pressure by controlling the capacity of the compressor 2 so that the calculated saturated liquid temperature becomes equal to or higher than the outside air temperature.
  • control unit 7 since the control unit 7 can accurately and accurately measure the saturated liquid temperature from the measurement result of the pressure measuring means 11, it is not necessary to unnecessarily increase the discharge pressure of the compressor 2. Therefore, driving performance is improved.
  • Embodiment 3 FIG.
  • the opening degree of the decompression device 4 is controlled, and the saturation temperature of the refrigerant is maintained at a temperature equal to or higher than the outside air temperature.
  • the decompression device 4 is the expansion valve 4a.
  • the refrigerant is R448A. In the third embodiment, detailed description of the same configuration as in the first and second embodiments is omitted.
  • FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 1b has a temperature control means 20b.
  • the temperature control means 20b has the control part 7 which controls the saturated liquid temperature of a refrigerant
  • the control part 7 adjusts the opening degree of the expansion valve 4a so that the saturated liquid temperature of the refrigerant
  • the expansion valve 4a It is desirable for the expansion valve 4a to be a variable throttle so that it can cope with various operating conditions. If the expansion valve 4a is throttled, the low-pressure side refrigerant moves to the high-pressure side, so that the pressure can be increased, but at the same time, the pressure of the low-pressure side refrigerant decreases, so the amount of refrigerant filled needs to be appropriate. If the control unit 7 controls the opening degree of the expansion valve 4a to make the saturated liquid temperature higher than the outside air temperature, the supercooling can be automatically taken. On the other hand, even if the supercooling is not achieved, the saturated liquid temperature may be higher than the outside air temperature. In this case, if the controller 7 sets the saturated liquid temperature as a control target, the supercooling can be controlled with higher accuracy.
  • the refrigeration cycle apparatus 1b using R448A which is a kind of non-azeotropic refrigerant mixture has a refrigerating effect remarkably. Improve driving performance by avoiding damage.
  • Embodiment 4 FIG.
  • a liquid receiver is provided between the condenser 3 and the decompression device 4 as temperature control means.
  • the refrigerant is R448A.
  • detailed description of the same configuration as in the first to third embodiments is omitted.
  • FIG. 8 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the refrigeration cycle apparatus 1c has a temperature control means 20c.
  • the temperature control means 20 c has a liquid receiver 12.
  • the liquid receiver 12 is provided between the condenser 3 and the decompression device 4.
  • the liquid receiver 12 serves to temporarily store the liquid refrigerant condensed by the condenser 3.
  • FIG. 9 is a diagram illustrating another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the refrigeration cycle apparatus 1d shown in FIG. 9 further includes a temperature measurement unit 16, and includes a liquid receiver 12 and a control unit 7 as the temperature control unit 20d.
  • the temperature measuring unit 16 can measure the saturated liquid temperature with sufficient accuracy.
  • the control unit 7 performs the same control as in the second embodiment.
  • the refrigeration cycle apparatus 1d shown in FIG. 9 uses a temperature measurement means instead of the pressure measurement means, so that the cost can be reduced.
  • Embodiment 5 As the temperature control means, the saturated liquid temperature is controlled by adjusting the heat transfer performance of the condenser 3, and the saturated liquid temperature is maintained at a temperature equal to or higher than the outside air temperature.
  • the refrigerant is R448A.
  • detailed description of the same configuration as in the first to fourth embodiments is omitted.
  • FIG. 10 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • the refrigeration cycle apparatus 1e further includes a fan 6, and includes a control unit 7 as temperature control means 20d.
  • the fan 6 supplies outside air to the condenser 3.
  • the control unit 7 is connected to the fan 6 via a signal line.
  • the controller 7 adjusts the heat exchange performance of the condenser 3 by controlling the rotational speed of the fan 6.
  • the fan 6 is a fan whose rotation speed is variable. Therefore, the control part 7 can control the heat transfer performance of the condenser 3 by controlling the rotation speed of the fan 6 and adjusting the air volume. For example, if the target value of the saturated liquid temperature is “outside air temperature + predetermined temperature difference”, the control unit 7 can maintain an appropriate fan speed that is not excessive or insufficient. Further, even in the refrigeration cycle apparatus 1e using R448A, which is a kind of non-azeotropic refrigerant mixture, it is possible to avoid significantly impairing the refrigeration effect and improve operational performance.
  • R448A which is a kind of non-azeotropic refrigerant mixture
  • Embodiment 6 As the temperature control means, the saturated liquid temperature is controlled by adjusting the capacity of the compressor 2, and the saturated liquid temperature is maintained higher than the outside air temperature.
  • the refrigerant is R448A.
  • detailed description of the same configuration as in the first to fifth embodiments is omitted.
  • FIG. 11 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • the refrigeration cycle apparatus 1f has a temperature control means 20f.
  • the temperature control unit 20 f includes a control unit 7 that controls the capacity of the compressor 2.
  • the control unit 7 is connected to the compressor 2 via a signal line.
  • Compressor 2 is a compressor with a variable rotation speed.
  • the compressor 2 includes an inverter circuit.
  • the control unit 7 may execute the low load operation of the compressor 2 by controlling the rotation speed of the inverter circuit. Therefore, the control unit 7 can freely control the capacity by controlling the rotational speed of the compressor 2. Increasing the number of revolutions of the compressor 2 can increase the discharge pressure, but the pressure loss of the condenser 3 also increases, so the increase in the saturated liquid temperature is reduced. It is necessary to make the pressure loss of the condenser 3 appropriate.
  • R448A which is a kind of non-azeotropic refrigerant mixture, it is possible to avoid significantly impairing the refrigeration effect and to improve the operation performance.
  • temperature control means Although specific examples of the temperature control means have been described in the first to sixth embodiments, the temperature control means is not limited to the means described in each embodiment, and two or more embodiments may be combined.
  • the pressure loss of the condenser 3 When the pressure loss of the condenser 3 is large, the saturated liquid temperature is also lowered and may be lower than the outside air temperature. Therefore, the pressure loss of the condenser 3 needs to be appropriate.
  • the narrower each refrigerant flow path of the heat exchanger the larger the pressure loss.
  • a diameter of 9.52 mm is used in a general small refrigerator used in a conventional non-azeotropic refrigerant R407C or the like.
  • the diameter of 9.52 mm is expressed as ⁇ 9.52. If it is less than ⁇ 9.52, the problem of refrigerant distribution also increases, and it is assumed that the pressure loss will increase more than before. Therefore, the probability that the saturated liquid temperature falls below the outside air temperature increases.
  • FIG. 12 is a cross-sectional view showing a case where the condenser shown in FIG. 1 is a flat tube heat exchanger.
  • FIG. 12 shows one section when the condenser 3 is cut perpendicularly to the direction in which the refrigerant flows.
  • the condenser 3 has a flat tube 14 that is a flat heat transfer tube.
  • the flat tube 14 may employ a flat multi-hole tube formed so that a plurality of refrigerant flow paths are partitioned, but may be one in which one refrigerant flow path is formed.
  • the flat tube 14 of the flat multi-hole tube of FIG. 12 has ten flow paths.
  • the flat tube 14 passes through the plurality of fins 15.
  • FIG. 12 shows the flat tubes 14 at the uppermost stage and the lowermost stage. In FIG. 12, the direction in which the outside air supplied from the fan 6 flows is indicated by broken-line arrows.
  • the effectiveness of the temperature control means described above is very high for the condenser 3 which has a flow path with a pipe having a flat tube shape and an equivalent diameter of less than ⁇ 9.52, and is a non-azeotropic refrigerant refrigerating cycle apparatus.
  • the refrigerant is a non-azeotropic refrigerant mixture
  • the heat exchange efficiency can be improved by using a flat tube heat exchanger for the condenser 3.
  • the saturated liquid temperature is also lowered and may be lower than the outside air temperature.
  • the pressure loss increases or decreases depending on the refrigerant flow rate, and the refrigerant flow rate is required more for the refrigerant having a smaller latent heat when the same capacity is exhibited. If the latent heat is smaller than R407C of the conventional non-azeotropic refrigerant mixture, it is assumed that the refrigerant flow rate is larger than that of the conventional refrigerant and the pressure loss is increased, and the probability that the saturated liquid temperature is also lower than the outside air temperature is increased.
  • the effectiveness of the temperature control means described above is very high for a refrigerant having a smaller latent heat than R407C, and is essential in a refrigeration cycle apparatus for a non-azeotropic refrigerant mixture.
  • the latent heat of R407C with respect to the saturation temperature of 40 ° C. is 164 kJ / kg, and the temperature control means described above is particularly effective for R448A, which has a lower latent heat than R407C.
  • the temperature difference between the outside air temperature and the condensing temperature is about 2 ° C. in the operation at a low load.
  • the temperature gradient of the non-azeotropic refrigerant mixture is 2 ° C. or higher, the saturated liquid temperature may be lower than the outside air temperature. Therefore, the temperature control means described in Embodiments 1 to 6 described above is highly effective for refrigerants having a temperature gradient of 2 ° C. or higher, and is effective means for the refrigeration cycle apparatus for non-azeotropic refrigerant mixture.
  • Embodiments 1 to 6 are particularly effective in refrigeration cycle apparatuses such as refrigeration apparatuses, air conditioning apparatuses, and hot water supply apparatuses using non-azeotropic refrigerant mixtures. Furthermore, since the problems of the present invention with respect to low outside air operation in a cold region with a low temperature apparatus with a wide evaporation temperature range and low load operation performance become significant, the refrigeration cycle apparatus described in Embodiments 1 to 6 is , Especially effective.
  • 1, 1a to 1f refrigeration cycle device 2 compressor, 3 condenser, 4 decompressor, 4a expansion valve, 5 evaporator, 6 fan, 7 control unit, 10 refrigerant circuit, 11 pressure measuring means, 12 receiver, 13 refrigerant flow path, 14 flat tube, 15 fin, 16 temperature measuring means, 20, 20a-20f temperature control means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device is provided with: a refrigerant circuit to which a compressor, a condenser, a pressure reducer, and an evaporator are connected and in which a non-azeotropic refrigerant mixture circulates; and a temperature control means for controlling the saturated liquid temperature of the refrigerant so as to be equal to or higher than the temperature of a cooling fluid in the condenser.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、非共沸混合冷媒を用いた冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus using a non-azeotropic refrigerant mixture.
 従来、冷凍機および空調機などの冷凍サイクル装置に非共沸混合冷媒を用いる技術が開示されている(例えば、特許文献1参照)。特許文献1には、冷媒の凝縮過程において、冷媒が熱交換を行う対象となる冷却流体と冷媒との熱交換流体同士を対向流とすることで、熱交換効率を向上させることが開示されている。例えば、空冷の場合、冷却流体は周囲の空気である。 Conventionally, a technique using a non-azeotropic refrigerant mixture in a refrigeration cycle apparatus such as a refrigerator or an air conditioner has been disclosed (for example, see Patent Document 1). Patent Document 1 discloses that heat exchange efficiency is improved by making the heat exchange fluids of the cooling fluid and the refrigerant to be subjected to heat exchange counter-flow in the refrigerant condensation process. Yes. For example, in the case of air cooling, the cooling fluid is ambient air.
特開2000-320917号公報JP 2000-320917 A
 しかしながら、冷媒の凝縮過程において、温度勾配が生じる非共沸混合冷媒と冷却流体とが対向流であっても、低負荷運転を維持、または凝縮器での熱交換性能を向上し続ければ、冷却流体の温度より飽和液温度が低くなる。このとき、冷媒は凝縮過程の途中で冷却流体とほぼ同等の温度となるため、それ以上の熱交換はできず、飽和液になれないままに凝縮器から流出する。その結果、十分な加熱能力、または冷却能力を発揮できず、冷凍性能の低下を招く。熱交換性能を向上したにも関わらず性能が低下する場合がある。 However, even if the non-azeotropic refrigerant mixture and the cooling fluid in which the temperature gradient occurs in the refrigerant condensing process are opposed to each other, if the low load operation is maintained or the heat exchange performance in the condenser continues to be improved, The saturated liquid temperature becomes lower than the fluid temperature. At this time, since the refrigerant has a temperature substantially equal to that of the cooling fluid in the course of the condensation process, no further heat exchange is possible, and the refrigerant flows out of the condenser without becoming a saturated liquid. As a result, sufficient heating capacity or cooling capacity cannot be exhibited, resulting in a decrease in refrigeration performance. Although the heat exchange performance is improved, the performance may decrease.
 本発明は、上記のような課題を解決するためになされたもので、非共沸混合冷媒を用いた冷凍サイクルにおいて、運転性能の低下を抑制できる冷凍サイクル装置を提供するものである。 The present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus that can suppress a decrease in operating performance in a refrigeration cycle using a non-azeotropic refrigerant mixture.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、減圧装置および蒸発器が接続され、非共沸混合の冷媒が循環する冷媒回路と、前記冷媒の飽和液温度を前記凝縮器における冷却流体の温度以上にする温度制御手段と、を有するものである。 The refrigeration cycle apparatus according to the present invention includes a refrigerant circuit in which a compressor, a condenser, a decompression device, and an evaporator are connected, in which a non-azeotropic refrigerant is circulated, and a saturated fluid temperature of the refrigerant is a cooling fluid in the condenser Temperature control means for making the temperature equal to or higher than this temperature.
 本発明によれば、冷媒の飽和液温度を凝縮器における冷却流体の温度以上にする温度制御手段を有しているため、冷媒が非共沸混合冷媒であっても、冷却流体の温度以上に飽和液温度が維持され、凝縮が促進する。このため、運転性能の低下を抑制できる。 According to the present invention, since the temperature control means for making the saturated liquid temperature of the refrigerant equal to or higher than the temperature of the cooling fluid in the condenser is provided, even if the refrigerant is a non-azeotropic refrigerant, the temperature is higher than the temperature of the cooling fluid. Saturated liquid temperature is maintained and condensation is promoted. For this reason, the fall of driving performance can be controlled.
本発明の実施の形態1における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 比較例1として、単一冷媒または共沸混合冷媒に関する凝縮過程を示すP-h線図である。6 is a Ph diagram illustrating a condensation process for a single refrigerant or an azeotropic refrigerant mixture as Comparative Example 1. FIG. 比較例2として、非共沸混合冷媒に関する凝縮過程を示すP-h線図である。6 is a Ph diagram illustrating a condensation process for a non-azeotropic refrigerant mixture as Comparative Example 2. FIG. 本発明の実施の形態1における温度制御手段の構成を説明するための図である。It is a figure for demonstrating the structure of the temperature control means in Embodiment 1 of this invention. 本発明の実施の形態1の凝縮器における凝縮過程を示すP-h線図である。FIG. 5 is a Ph diagram illustrating a condensation process in the condenser according to the first embodiment of the present invention. 本発明の実施の形態2における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 3 of this invention. 本発明の実施の形態4における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における冷凍サイクル装置の他の構成例を示す図である。It is a figure which shows the other structural example of the refrigeration cycle apparatus in Embodiment 4 of this invention. 本発明の実施の形態5における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 5 of this invention. 本発明の実施の形態6における冷凍サイクル装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the refrigerating-cycle apparatus in Embodiment 6 of this invention. 図1に示した凝縮器が扁平管熱交換器である場合を示す断面図である。It is sectional drawing which shows the case where the condenser shown in FIG. 1 is a flat tube heat exchanger.
実施の形態1.
 本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、本発明の実施の形態1における冷凍サイクル装置の一構成例を示す図である。図1に示すように、冷凍サイクル装置1は、圧縮機2と、凝縮器3と、ファン6と、減圧装置4と、蒸発器5とを有する。圧縮機2、凝縮器3、減圧装置4および蒸発器5が順に冷媒配管で接続され、冷媒が循環する冷媒回路10が構成される。
Embodiment 1 FIG.
The configuration of the refrigeration cycle apparatus according to the first embodiment will be described. FIG. 1 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a compressor 2, a condenser 3, a fan 6, a decompression device 4, and an evaporator 5. The compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 are connected in order by refrigerant piping, and the refrigerant circuit 10 in which a refrigerant circulates is comprised.
 圧縮機2は、吸入する冷媒を圧縮し、冷媒を高温および高圧の状態にして吐出する。圧縮機2は、例えば、インバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの容量可変型圧縮機である。 The compressor 2 compresses the refrigerant to be sucked and discharges the refrigerant in a high temperature and high pressure state. The compressor 2 is a variable capacity compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant.
 凝縮器3は、冷媒を空気と熱交換させる空気熱交換器である。凝縮器3は、熱源とする屋外の空気(外気)、水、ブライン等との熱交換により、圧縮機2が吐出するガス冷媒を冷却する。本実施の形態1では、凝縮器3は熱源側熱交換器からなり、凝縮器3が冷媒を冷却する熱源(冷却流体)が外気であるものとする。ファン6は、凝縮器3に外気を供給し、凝縮器3に熱交換を促す役目を果たす。ファン6は風量を調整できるものである。 The condenser 3 is an air heat exchanger that exchanges heat between the refrigerant and air. The condenser 3 cools the gas refrigerant discharged from the compressor 2 by heat exchange with outdoor air (outside air), water, brine, or the like as a heat source. In this Embodiment 1, the condenser 3 consists of a heat source side heat exchanger, and the heat source (cooling fluid) which the condenser 3 cools a refrigerant | coolant shall be outside air. The fan 6 serves to supply outside air to the condenser 3 and to promote heat exchange to the condenser 3. The fan 6 can adjust the air volume.
 減圧装置4は、冷媒回路10を流れる冷媒を減圧して膨張させる。減圧装置4は、膨張弁および絞り装置等である。減圧装置4は、例えば、電子式膨張弁等の流量制御手段、毛細管(キャピラリチューブ)、および感温式膨張弁等の冷媒流量調節手段からなる。 The decompression device 4 decompresses and expands the refrigerant flowing through the refrigerant circuit 10. The decompression device 4 is an expansion valve, a throttle device, or the like. The decompression device 4 includes, for example, a flow rate control unit such as an electronic expansion valve, a capillary tube (capillary tube), and a refrigerant flow rate control unit such as a temperature-sensitive expansion valve.
 蒸発器5は、冷却対象と冷媒との熱交換により、設定温度に維持するため、冷媒回路10を流れる冷媒を蒸発させて気体状の冷媒にする。蒸発器5は、冷媒を蒸発してガス化させる。蒸発器5において、冷却対象は、冷媒との熱交換により、直接または間接に冷却される。蒸発器5は利用側熱交換器からなり、冷却対象は、例えば、空調対象空間の空気である。 The evaporator 5 evaporates the refrigerant flowing through the refrigerant circuit 10 to be a gaseous refrigerant in order to maintain the set temperature by heat exchange between the object to be cooled and the refrigerant. The evaporator 5 evaporates and gasifies the refrigerant. In the evaporator 5, the object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant. The evaporator 5 is composed of a use side heat exchanger, and the cooling target is, for example, air in the air conditioning target space.
 本実施の形態1の冷凍サイクル装置1では、冷媒回路10を循環する冷媒が非共沸混合冷媒である。非共沸混合冷媒は、例えば、R407CおよびR448Aである。非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、COの混合冷媒であり、R32の割合XR32(wt%)が33<XR32<39である条件と、R125の割合XR125(wt%)が27<XR125<33である条件と、R134aの割合XR134a(wt%)が11<XR134a<17である条件と、R1234yfの割合XR1234yf(wt%)が11<XR1234yf<17である条件と、COの割合XCO(wt%)が3<XR125<9である条件と、XR32とXR125とXR134aとXR1234yfとXCOの総和が100である条件と、を全て満たす冷媒であってもよい。本実施の形態1では、冷媒がR448Aであるものとする。 In the refrigeration cycle apparatus 1 of Embodiment 1, the refrigerant circulating in the refrigerant circuit 10 is a non-azeotropic refrigerant mixture. Non-azeotropic refrigerant mixtures are, for example, R407C and R448A. The non-azeotropic refrigerant mixture is a refrigerant mixture of R32, R125, R134a, R1234yf, and CO 2 , wherein the ratio of R32 XR32 (wt%) is 33 <XR32 <39, and the ratio of R125 XR125 (Wt%) is 27 <XR125 <33, R134a ratio XR134a (wt%) is 11 <XR134a <17, and R1234yf ratio XR1234yf (wt%) is 11 <XR1234yf <17. and conditions, the ratio of CO 2 XCO 2 (wt%) is 3 <XR125 <and conditions is 9, a refrigerant satisfying all the conditions sum of XR32 and XR125 and XR134a and XR1234yf and XCO 2 is 100, the Also good. In the first embodiment, it is assumed that the refrigerant is R448A.
 冷凍サイクル装置1の消費エネルギの大部分は、圧縮機2の圧縮動力が占めるため、圧縮機動力を低減すると、運転性能は向上する。圧縮機動力を低減する一つの方法として、圧縮比の低減が考えられる。圧縮比の低減には、圧縮機2の吸入圧力を上げるか、または吐出圧力を下げればよい。ここでは、運転性能の向上のために吐出圧力を下げること、すなわち圧縮機2の出口圧力を下げることに着目する。 Since most of the energy consumed by the refrigeration cycle apparatus 1 is occupied by the compression power of the compressor 2, the operation performance improves when the compressor power is reduced. One way to reduce compressor power is to reduce the compression ratio. In order to reduce the compression ratio, the suction pressure of the compressor 2 may be increased or the discharge pressure may be decreased. Here, attention is focused on lowering the discharge pressure in order to improve the operation performance, that is, lowering the outlet pressure of the compressor 2.
 一方、冷凍サイクル装置1の冷媒潜熱に相当する冷凍効果は、凝縮器3において冷媒を完全に凝縮液にすること、または蒸発器5において冷媒を完全に蒸発ガスにすることで、十分な効果を得ることができる。ここでは、運転性能の向上のために凝縮器3で完全に冷媒を凝縮させることに着目する。 On the other hand, the refrigeration effect corresponding to the refrigerant latent heat of the refrigeration cycle apparatus 1 has a sufficient effect by completely converting the refrigerant into a condensate in the condenser 3 or completely evaporating the refrigerant in the evaporator 5. Obtainable. Here, attention is paid to the fact that the refrigerant is completely condensed by the condenser 3 in order to improve the operation performance.
 上記の運転性能向上を実現するには、冷媒が単一冷媒または共沸混合冷媒である場合、凝縮器3の伝熱性能を向上させて、吐出圧力の低下と冷媒の凝縮促進を図ることが考えられる。本実施の形態1のように非共沸混合冷媒を用いる場合、凝縮圧力が一定でも温度勾配が生じるため、従来のように凝縮器3の伝熱性能を向上させようとすると、運転性能を著しく損なう場合がある。以下に、この性能低下について、比較例を用いて説明する。 In order to achieve the above-described improvement in operating performance, when the refrigerant is a single refrigerant or an azeotropic refrigerant mixture, the heat transfer performance of the condenser 3 can be improved to reduce the discharge pressure and promote the condensation of the refrigerant. Conceivable. When a non-azeotropic refrigerant mixture is used as in the first embodiment, a temperature gradient occurs even if the condensation pressure is constant. Therefore, if the heat transfer performance of the condenser 3 is improved as in the conventional case, the operation performance is remarkably increased. It may be damaged. Below, this performance fall is demonstrated using a comparative example.
 比較例1として、冷媒が単一冷媒または共沸混合冷媒の場合を説明する。図2は、比較例1として、単一冷媒または共沸混合冷媒に関する凝縮過程を示すP-h線図である。図2に示すように、冷媒が単一冷媒または共沸混合冷媒である場合、凝縮器の伝熱性能を向上させると、冷媒の凝縮温度と外気温度とが限りなく近づき、冷媒は凝縮が促進されて液化し、吐出圧力の低下も促進される。そのため、運転性能の向上を図ることができる。 As Comparative Example 1, the case where the refrigerant is a single refrigerant or an azeotropic refrigerant mixture will be described. FIG. 2 is a Ph diagram showing a condensation process for a single refrigerant or an azeotropic refrigerant mixture as Comparative Example 1. As shown in FIG. 2, when the refrigerant is a single refrigerant or an azeotropic refrigerant mixture, if the heat transfer performance of the condenser is improved, the refrigerant condensing temperature and the outside air temperature approach each other as much as possible, and the refrigerant accelerates condensation. As a result, the liquid is liquefied and the discharge pressure is also reduced. Therefore, the driving performance can be improved.
 次に、比較例2として、冷媒が非共沸混合冷媒の場合を説明する。図3は、比較例2として、非共沸混合冷媒に関する凝縮過程を示すP-h線図である。冷媒が非共沸混合冷媒である場合、混合された複数種の冷媒の沸点が異なるため、沸点の低い冷媒が先に蒸発し、沸点の高い冷媒が後に蒸発する。その結果、図3に示すように、等温線は右下がりの温度勾配を持った線になる。冷媒が非共沸混合冷媒である場合、凝縮器の伝熱性能を向上させ、冷媒の凝縮温度と外気温度とを限りなく近づけると、冷媒圧力が低下しているため、飽和液温度が外気温度より低くなる場合がある。外気温度以下に冷媒を冷却することは不可能なため、凝縮過程の途中で冷媒は外気と熱交換できなくなる。その結果、冷媒を十分に液化できず、冷凍効果を著しく損なうことになる。具体的には、冷媒がR407Cなどの従来の非共沸混合冷媒である場合、飽和液温度が外気温度より1℃低下すると、冷凍効果は約20%低下するのに対し、圧縮機動力は3%も低下しない。 Next, as Comparative Example 2, the case where the refrigerant is a non-azeotropic refrigerant mixture will be described. FIG. 3 is a Ph diagram showing a condensation process for a non-azeotropic refrigerant mixture as Comparative Example 2. When the refrigerant is a non-azeotropic refrigerant mixture, the mixed refrigerants have different boiling points, so that the refrigerant with a low boiling point evaporates first, and the refrigerant with a high boiling point evaporates later. As a result, as shown in FIG. 3, the isotherm is a line having a temperature gradient that descends to the right. When the refrigerant is a non-azeotropic refrigerant, the refrigerant pressure decreases when the heat transfer performance of the condenser is improved and the refrigerant condensing temperature and the outside air temperature are brought as close as possible. May be lower. Since it is impossible to cool the refrigerant below the outside air temperature, the refrigerant cannot exchange heat with the outside air during the condensation process. As a result, the refrigerant cannot be sufficiently liquefied and the refrigeration effect is significantly impaired. Specifically, when the refrigerant is a conventional non-azeotropic refrigerant mixture such as R407C, when the saturated liquid temperature is lowered by 1 ° C. from the outside air temperature, the refrigeration effect is reduced by about 20%, whereas the compressor power is 3 % Does not decrease.
 そのため、非共沸混合冷媒を用いて冷凍サイクルを実行する場合、飽和液温度が外気温度より高くなるようにする必要がある。本実施の形態1では、冷媒がR448Aである場合において、冷媒の飽和液温度を凝縮器における冷却流体の温度以上にする温度制御手段が冷凍サイクル装置1に設けられている。温度制御手段の一例を説明する。 Therefore, when a refrigeration cycle is performed using a non-azeotropic refrigerant mixture, the saturated liquid temperature needs to be higher than the outside air temperature. In the first embodiment, when the refrigerant is R448A, the refrigeration cycle apparatus 1 is provided with temperature control means for making the saturated liquid temperature of the refrigerant equal to or higher than the temperature of the cooling fluid in the condenser. An example of the temperature control means will be described.
 本実施の形態1の温度制御手段20は、凝縮器3において、冷媒の流れと冷却流体の流れとが対向流であり、冷媒の飽和液温度を凝縮器3に流入する外気の凝縮器3の入口側の温度以上とする構成である。図4は、本発明の実施の形態1における温度制御手段の構成を説明するための図である。図5は、本発明の実施の形態1の凝縮器における凝縮過程を示すP-h線図である。 In the condenser 3, the temperature control means 20 of the first embodiment is such that the refrigerant flow and the cooling fluid flow are counterflows, and the saturated liquid temperature of the refrigerant flows into the condenser 3. It is the structure which makes it more than the temperature of the entrance side. FIG. 4 is a diagram for explaining the configuration of the temperature control means in Embodiment 1 of the present invention. FIG. 5 is a Ph diagram showing a condensation process in the condenser according to Embodiment 1 of the present invention.
 図4に示すように、凝縮器3の冷媒流路13を流通する冷媒の流れとファン6が凝縮器3に供給する外気の流れとが対向流になっている。図5に示すように、本実施の形態1の凝縮器3における凝縮過程では、冷媒の凝縮温度と外気温度とが限りなく近づき、冷媒は凝縮促進されて液化し、吐出圧力低下も促進される。温度制御手段20によって、冷凍効果を著しく損なうことを回避し、運転性能向上を実現できる。 As shown in FIG. 4, the flow of the refrigerant flowing through the refrigerant flow path 13 of the condenser 3 and the flow of outside air supplied to the condenser 3 by the fan 6 are counterflows. As shown in FIG. 5, in the condensation process in the condenser 3 of the first embodiment, the condensation temperature of the refrigerant and the outside air temperature approach each other as much as possible, the refrigerant is condensed and liquefied, and the discharge pressure drop is also promoted. . By the temperature control means 20, it is possible to avoid significantly impairing the refrigeration effect and improve driving performance.
 さらに、図4の例では、冷媒の流れと空気の流れとが対向流となっており、かつ、冷媒が複数回向きを変えながら、空気の流れの上流に向かって流れるようになっている。そのため、冷媒の凝縮温度と外気温度とが限りなく近づき、冷媒が凝縮促進されて液化し、吐出圧力低下も促進される効果が更に顕著化される。 Furthermore, in the example of FIG. 4, the flow of the refrigerant and the flow of the air are opposite flows, and the refrigerant flows toward the upstream of the air flow while changing its direction a plurality of times. For this reason, the condensation temperature of the refrigerant and the outside air temperature approach each other as much as possible, and the effect that the refrigerant is accelerated to condense and liquefy, and the discharge pressure drop is further promoted becomes more remarkable.
 本実施の形態1では、凝縮器3において、冷媒の流れと外気の流れとが対向流となるため、飽和液温度は外気の吸込側の温度に対して上回っていればよく、外気の温度が高くなる吹出側は考慮しなくてよい。よって、必要以上に飽和液温度を上げる必要がなく、圧縮機2の吐出圧力を上昇させずに済む。冷媒が非共沸混合冷媒であっても、凝縮器3において、冷却流体の温度以上に飽和液温度を維持して凝縮が促進する。その結果、運転性能の低下を抑制し、冷凍効果向上による装置全体の運転性能を向上させることができる。 In the first embodiment, in the condenser 3, since the refrigerant flow and the external air flow are counterflows, the saturated liquid temperature only needs to be higher than the temperature on the suction side of the external air, and the temperature of the external air is high. There is no need to consider the higher outlet side. Therefore, it is not necessary to raise the saturated liquid temperature more than necessary, and it is not necessary to raise the discharge pressure of the compressor 2. Even if the refrigerant is a non-azeotropic refrigerant, condensation is promoted in the condenser 3 by maintaining the saturated liquid temperature above the temperature of the cooling fluid. As a result, it is possible to suppress a decrease in operation performance and improve the operation performance of the entire apparatus by improving the refrigeration effect.
 本実施の形態1の圧縮機2は、インバータ回路により駆動される。圧縮機2は、インバータ回路により回転数を制御できるため、低負荷運転を実行できる。低負荷運転時は、外気温度と凝縮温度との温度差が最も小さくなる。また、凝縮器3は、空冷の凝縮器であるため、外気の吸込側の温度と吹出側の温度との差である空気温度差Dairが大きくなる。空冷の凝縮器は、例えば、水冷の凝縮器などと比較して、熱容量が小さいためである。なぜなら、気体の空気は、密度が小さく、比熱も小さいので、大口径のファンなどの手段を用いないと質量流量を稼ぐのは困難であり、熱容量が小さくなる。したがって、必然的に空気温度差Dairが大きくなる。外気温度と凝縮温度の温度差は、必ず空気温度差Dair以上ないと凝縮することができない。 The compressor 2 of the first embodiment is driven by an inverter circuit. Since the compressor 2 can control rotation speed by an inverter circuit, it can perform low load operation. During low-load operation, the temperature difference between the outside air temperature and the condensation temperature is the smallest. Further, since the condenser 3 is an air-cooled condenser, an air temperature difference D air that is a difference between the temperature on the suction side and the temperature on the blow-out side of the outside air becomes large. This is because the air-cooled condenser has a smaller heat capacity than, for example, a water-cooled condenser. This is because gaseous air has a small density and a small specific heat, so that it is difficult to obtain a mass flow rate unless means such as a large-diameter fan is used, and the heat capacity becomes small. Therefore, the air temperature difference D air inevitably increases. The temperature difference between the outside air temperature and the condensation temperature cannot be condensed unless the air temperature difference D air is not less than the air temperature difference.
 本実施の形態1の冷凍サイクル装置1は、インバータ回路を備えた圧縮機2および空冷の凝縮器3を有することで、飽和液温度と飽和ガス温度との温度差が大きい冷媒を使用しても、運転性能の低下を抑制できる効果が顕著となる。 The refrigeration cycle apparatus 1 according to the first embodiment includes the compressor 2 provided with the inverter circuit and the air-cooled condenser 3, so that a refrigerant having a large temperature difference between the saturated liquid temperature and the saturated gas temperature is used. And the effect which can suppress the fall of driving performance becomes remarkable.
 例えば、小型の冷凍機等では、外気温度と凝縮温度との温度差が、低負荷時の運転のときに、2℃程度となる。非共沸混合冷媒の温度勾配が2℃以上となれば、飽和液温度が外気温度を下回る場合がある。そのため、温度勾配が2℃以上の冷媒に対して、上述した温度制御手段は有効性が高く、非共沸混合冷媒の冷凍サイクル装置には有効な手段となる。 For example, in a small refrigerator or the like, the temperature difference between the outside air temperature and the condensation temperature is about 2 ° C. during operation at a low load. If the temperature gradient of the non-azeotropic refrigerant mixture is 2 ° C. or higher, the saturated liquid temperature may be lower than the outside air temperature. Therefore, the temperature control means described above is highly effective for refrigerants having a temperature gradient of 2 ° C. or higher, and is an effective means for a refrigeration cycle apparatus for non-azeotropic refrigerant mixture.
実施の形態2.
 本実施の形態2では、凝縮器3の下流側の冷媒配管に圧力測定手段が設けられたものである。本実施の形態2では、実施の形態1と同様に、冷媒がR448Aの場合で説明する。また、本実施の形態2では、実施の形態1と同様な構成についての詳細な説明を省略する。
Embodiment 2. FIG.
In the second embodiment, the pressure measuring means is provided in the refrigerant pipe on the downstream side of the condenser 3. In the second embodiment, as in the first embodiment, the case where the refrigerant is R448A will be described. In the second embodiment, detailed description of the same configuration as that of the first embodiment is omitted.
 図6は、本発明の実施の形態2における冷凍サイクル装置の一構成例を示す図である。図6に示すように、冷凍サイクル装置1aは、圧力測定手段11をさらに有し、温度制御手段20aとして制御部7を有する。制御部7は、圧力測定手段11および圧縮機2と信号線を介して接続される。制御部7は、例えば、マイクロコンピュータである。圧縮機2は、実施の形態1で説明したようにインバータ回路を有していてもよい。 FIG. 6 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. As shown in FIG. 6, the refrigeration cycle apparatus 1a further includes a pressure measurement unit 11, and includes a control unit 7 as a temperature control unit 20a. The control unit 7 is connected to the pressure measuring means 11 and the compressor 2 via a signal line. The control unit 7 is, for example, a microcomputer. The compressor 2 may have an inverter circuit as described in the first embodiment.
 圧力測定手段11は、凝縮器3と減圧装置4との間の冷媒配管に設けられている。圧力測定手段11は、凝縮器3と減圧装置4との間の冷媒の圧力を測定し、測定結果を制御部7に出力する。制御部7は、圧力測定手段11の測定結果を用いて、冷媒の飽和液温度を算出する。そして、制御部7は、算出した飽和液温度が外気温度以上になるように圧縮機2の容量を制御して吐出圧力を調節する。 The pressure measuring means 11 is provided in the refrigerant pipe between the condenser 3 and the decompression device 4. The pressure measuring unit 11 measures the pressure of the refrigerant between the condenser 3 and the decompression device 4 and outputs the measurement result to the control unit 7. The control unit 7 calculates the saturated liquid temperature of the refrigerant using the measurement result of the pressure measuring unit 11. Then, the control unit 7 adjusts the discharge pressure by controlling the capacity of the compressor 2 so that the calculated saturated liquid temperature becomes equal to or higher than the outside air temperature.
 本実施の形態2によれば、制御部7は圧力測定手段11の測定結果から飽和液温度を正確に精度良く測定できるため、圧縮機2の吐出圧力を不必要に上昇させずに済む。そのため、運転性能が向上する。 According to the second embodiment, since the control unit 7 can accurately and accurately measure the saturated liquid temperature from the measurement result of the pressure measuring means 11, it is not necessary to unnecessarily increase the discharge pressure of the compressor 2. Therefore, driving performance is improved.
 ここで、凝縮器3の上流側に圧力測定手段を設置する場合を考える。この場合、凝縮器3の圧力損失に起因する数値ズレを補正する必要がある。また、圧力測定手段の代わりに温度測定手段を設置する場合を考える。この場合、温度測定手段では過冷却の有無が分からず、制御部7は誤判断をしてしまう場合がある。よって、本実施の形態2のように、凝縮器3の下流側に圧力測定手段を設置することが最も望ましい。 Here, consider the case where pressure measuring means is installed upstream of the condenser 3. In this case, it is necessary to correct the numerical deviation caused by the pressure loss of the condenser 3. Consider a case where a temperature measuring means is installed instead of the pressure measuring means. In this case, the temperature measuring means does not know whether there is supercooling, and the control unit 7 may make an erroneous determination. Therefore, it is most desirable to install the pressure measuring means on the downstream side of the condenser 3 as in the second embodiment.
実施の形態3.
 本実施の形態3では、温度制御手段として、減圧装置4の開度を制御し、冷媒の飽和温度を外気温度以上の温度に維持するものである。本実施の形態3では、減圧装置4が膨張弁4aである。本実施の形態3は、実施の形態1と同様に、冷媒がR448Aの場合である。また、本実施の形態3では、実施の形態1および2と同様な構成についての詳細な説明を省略する。
Embodiment 3 FIG.
In Embodiment 3, as the temperature control means, the opening degree of the decompression device 4 is controlled, and the saturation temperature of the refrigerant is maintained at a temperature equal to or higher than the outside air temperature. In the third embodiment, the decompression device 4 is the expansion valve 4a. In the third embodiment, as in the first embodiment, the refrigerant is R448A. In the third embodiment, detailed description of the same configuration as in the first and second embodiments is omitted.
 図7は、本発明の実施の形態3における冷凍サイクル装置の一構成例を示す図である。図7に示すように、冷凍サイクル装置1bは、温度制御手段20bを有する。温度制御手段20bは、膨張弁4aの開度を調節することで冷媒の飽和液温度を制御する制御部7を有する。制御部7は、凝縮器3における冷媒の飽和液温度が外気温度以上の状態を維持するように、膨張弁4aの開度を調節する。 FIG. 7 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. As shown in FIG. 7, the refrigeration cycle apparatus 1b has a temperature control means 20b. The temperature control means 20b has the control part 7 which controls the saturated liquid temperature of a refrigerant | coolant by adjusting the opening degree of the expansion valve 4a. The control part 7 adjusts the opening degree of the expansion valve 4a so that the saturated liquid temperature of the refrigerant | coolant in the condenser 3 may maintain the state more than external temperature.
 様々な運転状態に対応できるようにするために、膨張弁4aは可変絞りであることが望ましい。膨張弁4aを絞れば、低圧側の冷媒が高圧側に移動するため、高圧上昇させることができるが、同時に低圧側の冷媒の圧力が低下するため、冷媒封入量を適切にする必要がある。制御部7が膨張弁4aの開度を制御して飽和液温度を外気温度より高くすれば、自動的に過冷却が取れる状態となる。一方、過冷却が取れていなくても、飽和液温度が外気温度を上回っている場合がある。この場合、制御部7は飽和液温度を制御目標とすれば、過冷却をより高精度に制御できる。 It is desirable for the expansion valve 4a to be a variable throttle so that it can cope with various operating conditions. If the expansion valve 4a is throttled, the low-pressure side refrigerant moves to the high-pressure side, so that the pressure can be increased, but at the same time, the pressure of the low-pressure side refrigerant decreases, so the amount of refrigerant filled needs to be appropriate. If the control unit 7 controls the opening degree of the expansion valve 4a to make the saturated liquid temperature higher than the outside air temperature, the supercooling can be automatically taken. On the other hand, even if the supercooling is not achieved, the saturated liquid temperature may be higher than the outside air temperature. In this case, if the controller 7 sets the saturated liquid temperature as a control target, the supercooling can be controlled with higher accuracy.
 本実施の形態3では、膨張弁4aによる高圧制御において、飽和液温度を制御することで、非共沸混合冷媒の一種であるR448Aを用いた冷凍サイクル装置1bであっても、冷凍効果を著しく損なうことを回避し、運転性能向上を実現できる。 In the third embodiment, by controlling the saturated liquid temperature in the high pressure control by the expansion valve 4a, the refrigeration cycle apparatus 1b using R448A which is a kind of non-azeotropic refrigerant mixture has a refrigerating effect remarkably. Improve driving performance by avoiding damage.
実施の形態4.
 本実施の形態4では、温度制御手段として、凝縮器3と減圧装置4との間に受液器が設けられたものである。本実施の形態4は、実施の形態1と同様に、冷媒がR448Aの場合である。また、本実施の形態4では、実施の形態1~3と同様な構成についての詳細な説明を省略する。
Embodiment 4 FIG.
In the fourth embodiment, a liquid receiver is provided between the condenser 3 and the decompression device 4 as temperature control means. In the fourth embodiment, similarly to the first embodiment, the refrigerant is R448A. In the fourth embodiment, detailed description of the same configuration as in the first to third embodiments is omitted.
 図8は、本発明の実施の形態4における冷凍サイクル装置の一構成例を示す図である。図8に示すように、冷凍サイクル装置1cは、温度制御手段20cを有する。温度制御手段20cは受液器12を有する。図8に示すように、受液器12は、凝縮器3と減圧装置4との間に設けられている。受液器12は、凝縮器3で凝縮された液冷媒を一時的に貯留する役目を果たす。 FIG. 8 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. As shown in FIG. 8, the refrigeration cycle apparatus 1c has a temperature control means 20c. The temperature control means 20 c has a liquid receiver 12. As shown in FIG. 8, the liquid receiver 12 is provided between the condenser 3 and the decompression device 4. The liquid receiver 12 serves to temporarily store the liquid refrigerant condensed by the condenser 3.
 冷媒がR448Aであっても、受液器12に液冷媒が貯留される程度の冷媒封入量とすれば、自ずと飽和液温度が外気温度を上回り、凝縮器3の出口は飽和液状態に維持される。このとき、凝縮器3の出口が確実に飽和液状態となる。そのため、凝縮器3の出口に温度測定手段を設置してもよい。図9は、本発明の実施の形態4における冷凍サイクル装置の他の構成例を示す図である。 Even if the refrigerant is R448A, the saturated liquid temperature naturally exceeds the outside air temperature and the outlet of the condenser 3 is maintained in the saturated liquid state as long as the refrigerant filling amount is such that the liquid refrigerant is stored in the liquid receiver 12. The At this time, the outlet of the condenser 3 is surely in a saturated liquid state. Therefore, temperature measuring means may be installed at the outlet of the condenser 3. FIG. 9 is a diagram illustrating another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
 図9に示す冷凍サイクル装置1dは、温度測定手段16をさらに有し、温度制御手段20dとして、受液器12および制御部7を有する。上述したように、本実施の形態4では、凝縮器3の出口が確実に飽和液状態となるため、温度測定手段16は十分な精度で飽和液温度を測定できる。制御部7は、温度測定手段16の測定結果を基に圧縮機2の吐出圧力を変更すべきか否かを判定の結果、吐出圧力を変更する場合、実施の形態2と同様に制御する。図9に示す冷凍サイクル装置1dでは、図6に示した冷凍サイクル装置1aと比較すると、圧力測定手段の代わりに温度測定手段が用いられるため、低コスト化を図ることができる。 The refrigeration cycle apparatus 1d shown in FIG. 9 further includes a temperature measurement unit 16, and includes a liquid receiver 12 and a control unit 7 as the temperature control unit 20d. As described above, in the fourth embodiment, since the outlet of the condenser 3 is surely in the saturated liquid state, the temperature measuring unit 16 can measure the saturated liquid temperature with sufficient accuracy. When the discharge pressure is changed as a result of the determination as to whether or not the discharge pressure of the compressor 2 should be changed based on the measurement result of the temperature measurement unit 16, the control unit 7 performs the same control as in the second embodiment. Compared with the refrigeration cycle apparatus 1a shown in FIG. 6, the refrigeration cycle apparatus 1d shown in FIG. 9 uses a temperature measurement means instead of the pressure measurement means, so that the cost can be reduced.
実施の形態5.
 本実施の形態5では、温度制御手段として、凝縮器3の伝熱性能を調節することで飽和液温度を制御し、飽和液温度を外気温度以上の温度に維持するものである。本実施の形態5は、実施の形態1と同様に、冷媒がR448Aの場合である。また、本実施の形態5では、実施の形態1~4と同様な構成についての詳細な説明を省略する。
Embodiment 5 FIG.
In the fifth embodiment, as the temperature control means, the saturated liquid temperature is controlled by adjusting the heat transfer performance of the condenser 3, and the saturated liquid temperature is maintained at a temperature equal to or higher than the outside air temperature. In the fifth embodiment, similarly to the first embodiment, the refrigerant is R448A. In the fifth embodiment, detailed description of the same configuration as in the first to fourth embodiments is omitted.
 図10は、本発明の実施の形態5における冷凍サイクル装置の一構成例を示す図である。図10に示すように、冷凍サイクル装置1eは、ファン6をさらに有し、温度制御手段20dとして制御部7を有する。ファン6は、凝縮器3に外気を供給する。制御部7は、ファン6と信号線を介して接続されている。制御部7は、ファン6の回転数を制御することで凝縮器3の熱交換性能を調節する。 FIG. 10 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 5 of the present invention. As shown in FIG. 10, the refrigeration cycle apparatus 1e further includes a fan 6, and includes a control unit 7 as temperature control means 20d. The fan 6 supplies outside air to the condenser 3. The control unit 7 is connected to the fan 6 via a signal line. The controller 7 adjusts the heat exchange performance of the condenser 3 by controlling the rotational speed of the fan 6.
 ファン6は回転数が可変のファンである。そのため、制御部7がファン6の回転数を制御して風量を調節することで、凝縮器3の伝熱性能を制御できる。例えば、飽和液温度の目標値を「外気温度+所定温度差」とすれば、制御部7は、過不足ない適切なファン回転数を維持することができる。また、非共沸混合冷媒の一種であるR448Aを用いた冷凍サイクル装置1eであっても、冷凍効果を著しく損なうことを回避し、運転性能向上を実現できる。 The fan 6 is a fan whose rotation speed is variable. Therefore, the control part 7 can control the heat transfer performance of the condenser 3 by controlling the rotation speed of the fan 6 and adjusting the air volume. For example, if the target value of the saturated liquid temperature is “outside air temperature + predetermined temperature difference”, the control unit 7 can maintain an appropriate fan speed that is not excessive or insufficient. Further, even in the refrigeration cycle apparatus 1e using R448A, which is a kind of non-azeotropic refrigerant mixture, it is possible to avoid significantly impairing the refrigeration effect and improve operational performance.
実施の形態6.
 本実施の形態6では、温度制御手段として、圧縮機2の容量の調節により飽和液温度を制御し、飽和液温度を外気温度より高く維持するものである。本実施の形態6は、実施の形態1と同様に、冷媒がR448Aの場合である。また、本実施の形態6では、実施の形態1~5と同様な構成についての詳細な説明を省略する。
Embodiment 6 FIG.
In the sixth embodiment, as the temperature control means, the saturated liquid temperature is controlled by adjusting the capacity of the compressor 2, and the saturated liquid temperature is maintained higher than the outside air temperature. In the sixth embodiment, as in the first embodiment, the refrigerant is R448A. In the sixth embodiment, detailed description of the same configuration as in the first to fifth embodiments is omitted.
 図11は、本発明の実施の形態6における冷凍サイクル装置の一構成例を示す図である。図11に示すように、冷凍サイクル装置1fは、温度制御手段20fを有する。温度制御手段20fは、圧縮機2の容量を制御する制御部7を有する。制御部7は圧縮機2と信号線を介して接続される。 FIG. 11 is a diagram illustrating a configuration example of a refrigeration cycle apparatus according to Embodiment 6 of the present invention. As shown in FIG. 11, the refrigeration cycle apparatus 1f has a temperature control means 20f. The temperature control unit 20 f includes a control unit 7 that controls the capacity of the compressor 2. The control unit 7 is connected to the compressor 2 via a signal line.
 圧縮機2は回転数が可変な圧縮機である。圧縮機2は、例えば、実施の形態1で説明したように、インバータ回路を有している。この場合、制御部7は、インバータ回路の回転数を制御することで、圧縮機2の低負荷運転を実行してもよい。そのため、制御部7が圧縮機2の回転数を制御することで、容量を自在に制御できる。圧縮機2の回転数を増大すれば吐出圧力を上げられるが、凝縮器3の圧力損失も増加するため、飽和液温度の増加分は目減りする。凝縮器3の圧力損失を適切にする必要がある。本実施の形態6では、非共沸混合冷媒の一種であるR448Aを用いた冷凍サイクル装置1fであっても、冷凍効果を著しく損なうことを回避し、運転性能向上を実現できる。 Compressor 2 is a compressor with a variable rotation speed. For example, as described in the first embodiment, the compressor 2 includes an inverter circuit. In this case, the control unit 7 may execute the low load operation of the compressor 2 by controlling the rotation speed of the inverter circuit. Therefore, the control unit 7 can freely control the capacity by controlling the rotational speed of the compressor 2. Increasing the number of revolutions of the compressor 2 can increase the discharge pressure, but the pressure loss of the condenser 3 also increases, so the increase in the saturated liquid temperature is reduced. It is necessary to make the pressure loss of the condenser 3 appropriate. In the sixth embodiment, even in the refrigeration cycle apparatus 1f using R448A which is a kind of non-azeotropic refrigerant mixture, it is possible to avoid significantly impairing the refrigeration effect and to improve the operation performance.
 実施の形態1~6で温度制御手段の具体例を説明したが、温度制御手段は、各実施の形態で説明した手段に限らず、2以上の実施の形態を組み合わせてもよい。 Although specific examples of the temperature control means have been described in the first to sixth embodiments, the temperature control means is not limited to the means described in each embodiment, and two or more embodiments may be combined.
 凝縮器3の圧力損失が大きいと飽和液温度も低下し、外気温度を下回る場合がある。よって、凝縮器3の圧力損失も適切にしておく必要がある。熱交換器の各冷媒流路が細ければ細いほど圧力損失が大きく、従来の非共沸混合冷媒のR407Cなどで用いられる一般的な小形冷凍機において直径9.52mmが用いられている。以下では、直径9.52mmをφ9.52と表記する。φ9.52未満となれば冷媒分配の課題も増え、従来以上に圧力損失が増加することが想定されるため、飽和液温度が外気温度を下回る確率が高まる。 When the pressure loss of the condenser 3 is large, the saturated liquid temperature is also lowered and may be lower than the outside air temperature. Therefore, the pressure loss of the condenser 3 needs to be appropriate. The narrower each refrigerant flow path of the heat exchanger, the larger the pressure loss. A diameter of 9.52 mm is used in a general small refrigerator used in a conventional non-azeotropic refrigerant R407C or the like. Hereinafter, the diameter of 9.52 mm is expressed as φ9.52. If it is less than φ9.52, the problem of refrigerant distribution also increases, and it is assumed that the pressure loss will increase more than before. Therefore, the probability that the saturated liquid temperature falls below the outside air temperature increases.
 図12は、図1に示した凝縮器が扁平管熱交換器である場合を示す断面図である。図12は冷媒の流れる方向に対して垂直に凝縮器3を切ったときの一断面を示している。図12に示すように、凝縮器3は、扁平状の伝熱管である扁平管14を有している。扁平管14は、複数の冷媒流路が区画されるように形成された扁平多穴管を採用することができるが、一つの冷媒流路が形成されたものであってもよい。図12の扁平多穴管の扁平管14は、10個の流路を有している。扁平管14は複数のフィン15を貫通している。扁平管14が一定の間隔を空けて多段に設けられているが、図12では、最上段と最下段の扁平管14を示している。図12では、ファン6から供給される外気の流れる方向を破線矢印で示している。 FIG. 12 is a cross-sectional view showing a case where the condenser shown in FIG. 1 is a flat tube heat exchanger. FIG. 12 shows one section when the condenser 3 is cut perpendicularly to the direction in which the refrigerant flows. As shown in FIG. 12, the condenser 3 has a flat tube 14 that is a flat heat transfer tube. The flat tube 14 may employ a flat multi-hole tube formed so that a plurality of refrigerant flow paths are partitioned, but may be one in which one refrigerant flow path is formed. The flat tube 14 of the flat multi-hole tube of FIG. 12 has ten flow paths. The flat tube 14 passes through the plurality of fins 15. Although the flat tubes 14 are provided in multiple stages with a certain interval, FIG. 12 shows the flat tubes 14 at the uppermost stage and the lowermost stage. In FIG. 12, the direction in which the outside air supplied from the fan 6 flows is indicated by broken-line arrows.
 扁平管形状を含む形状の配管の等価直径がφ9.52未満の流路となる凝縮器3に対して、上述した温度制御手段の有効性がとても高く、非共沸混合冷媒の冷凍サイクル装置で必須となる。冷媒が非共沸混合冷媒である場合において、凝縮器3に扁平管熱交換器を用いることで、熱交換効率を向上させることができる。 The effectiveness of the temperature control means described above is very high for the condenser 3 which has a flow path with a pipe having a flat tube shape and an equivalent diameter of less than φ9.52, and is a non-azeotropic refrigerant refrigerating cycle apparatus. Required. When the refrigerant is a non-azeotropic refrigerant mixture, the heat exchange efficiency can be improved by using a flat tube heat exchanger for the condenser 3.
 上述したように、凝縮器3の圧力損失が大きいと飽和液温度も低下し、外気温度を下回る場合がある。圧力損失は冷媒流量によって増減し、冷媒流量は同能力を発揮させる場合に、潜熱の小さい冷媒ほど多く必要となる。従来の非共沸混合冷媒のR407Cより潜熱が小さければ、従来以上に冷媒流量が多く圧力損失が増加することが想定され、飽和液温度も外気温度を下回る確率が高まる。そのため、R407Cより潜熱の小さい冷媒に対して、上述した温度制御手段の有効性がとても高く、非共沸混合冷媒の冷凍サイクル装置で必須となる。R407Cの飽和温度40℃に対する潜熱は164kJ/kgであり、上述した温度制御手段は、R407Cよりも潜熱が小さいR448Aに特に有効である。 As described above, when the pressure loss of the condenser 3 is large, the saturated liquid temperature is also lowered and may be lower than the outside air temperature. The pressure loss increases or decreases depending on the refrigerant flow rate, and the refrigerant flow rate is required more for the refrigerant having a smaller latent heat when the same capacity is exhibited. If the latent heat is smaller than R407C of the conventional non-azeotropic refrigerant mixture, it is assumed that the refrigerant flow rate is larger than that of the conventional refrigerant and the pressure loss is increased, and the probability that the saturated liquid temperature is also lower than the outside air temperature is increased. Therefore, the effectiveness of the temperature control means described above is very high for a refrigerant having a smaller latent heat than R407C, and is essential in a refrigeration cycle apparatus for a non-azeotropic refrigerant mixture. The latent heat of R407C with respect to the saturation temperature of 40 ° C. is 164 kJ / kg, and the temperature control means described above is particularly effective for R448A, which has a lower latent heat than R407C.
 実施の形態1でも説明したが、一般的な小形冷凍機において、外気温度と凝縮温度との温度差が最も小さい低負荷時の運転では2℃程度となる。このとき、非共沸混合冷媒の温度勾配が2℃以上となれば、飽和液温度が外気温度を下回る場合がある。そのため、温度勾配が2℃以上の冷媒に対して、上述の実施の形態1~6で説明した温度制御手段は有効性が高く、非共沸混合冷媒の冷凍サイクル装置にとって有効な手段となる。 As described in Embodiment 1, in a general small refrigerator, the temperature difference between the outside air temperature and the condensing temperature is about 2 ° C. in the operation at a low load. At this time, if the temperature gradient of the non-azeotropic refrigerant mixture is 2 ° C. or higher, the saturated liquid temperature may be lower than the outside air temperature. Therefore, the temperature control means described in Embodiments 1 to 6 described above is highly effective for refrigerants having a temperature gradient of 2 ° C. or higher, and is effective means for the refrigeration cycle apparatus for non-azeotropic refrigerant mixture.
 本実施の形態1~6で説明した冷凍サイクル装置は、非共沸混合冷媒を用いた冷凍装置、空調装置、給湯装置などの冷凍サイクル装置において、特に効果が大きい。さらに、蒸発温度範囲の広い低温機器での寒冷地での低外気運転、低負荷時の運転性能に対する本発明の課題が顕著になるため、本実施の形態1~6で説明した冷凍サイクル装置は、特に有効となる。 The refrigeration cycle apparatuses described in Embodiments 1 to 6 are particularly effective in refrigeration cycle apparatuses such as refrigeration apparatuses, air conditioning apparatuses, and hot water supply apparatuses using non-azeotropic refrigerant mixtures. Furthermore, since the problems of the present invention with respect to low outside air operation in a cold region with a low temperature apparatus with a wide evaporation temperature range and low load operation performance become significant, the refrigeration cycle apparatus described in Embodiments 1 to 6 is , Especially effective.
 1、1a~1f 冷凍サイクル装置、2 圧縮機、3 凝縮器、4 減圧装置、4a 膨張弁、5 蒸発器、6 ファン、7 制御部、10 冷媒回路、11 圧力測定手段、12 受液器、13 冷媒流路、14 扁平管、15 フィン、16 温度測定手段、20、20a~20f 温度制御手段。 1, 1a to 1f refrigeration cycle device, 2 compressor, 3 condenser, 4 decompressor, 4a expansion valve, 5 evaporator, 6 fan, 7 control unit, 10 refrigerant circuit, 11 pressure measuring means, 12 receiver, 13 refrigerant flow path, 14 flat tube, 15 fin, 16 temperature measuring means, 20, 20a-20f temperature control means.

Claims (13)

  1.  圧縮機、凝縮器、減圧装置および蒸発器が接続され、非共沸混合の冷媒が循環する冷媒回路と、
     前記冷媒の飽和液温度を前記凝縮器における冷却流体の温度以上にする温度制御手段と、
     を有する冷凍サイクル装置。
    A refrigerant circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected, and a non-azeotropic refrigerant is circulated;
    Temperature control means for setting the saturated liquid temperature of the refrigerant to be equal to or higher than the temperature of the cooling fluid in the condenser;
    A refrigeration cycle apparatus having
  2.  前記凝縮器は、前記冷媒の流れと前記冷却流体の流れとが対向流であり、前記飽和液温度を前記凝縮器に流入する前記冷却流体の該凝縮器の入口側の温度以上とする、請求項1に記載の冷凍サイクル装置。 In the condenser, the flow of the refrigerant and the flow of the cooling fluid are counterflows, and the saturated liquid temperature is equal to or higher than the temperature of the cooling fluid flowing into the condenser on the inlet side of the condenser. Item 2. The refrigeration cycle apparatus according to Item 1.
  3.  前記凝縮器と前記減圧装置との間に設けられ、前記冷媒の圧力を測定する圧力測定手段をさらに有し、
     前記温度制御手段は、
     前記圧力測定手段の測定結果を用いて前記圧縮機の吐出圧力を制御する制御部を有する、請求項1または2に記載の冷凍サイクル装置。
    A pressure measuring means provided between the condenser and the pressure reducing device for measuring the pressure of the refrigerant;
    The temperature control means includes
    The refrigeration cycle apparatus according to claim 1 or 2, further comprising a control unit that controls a discharge pressure of the compressor using a measurement result of the pressure measuring unit.
  4.  前記温度制御手段は、
     前記減圧装置の開度を調節することで前記飽和液温度を制御する制御部を有する、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    The temperature control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 3, further comprising a control unit that controls the temperature of the saturated liquid by adjusting an opening degree of the decompression device.
  5.  前記温度制御手段は、
     前記凝縮器と前記減圧装置との間に設けられた受液器を有する、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
    The temperature control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising a liquid receiver provided between the condenser and the decompression device.
  6.  前記凝縮器と前記受液器との間に設けられ、前記冷媒の温度を測定する温度測定手段をさらに有し、
     前記温度制御手段は、
     前記温度測定手段の測定結果を用いて前記圧縮機の冷媒の吐出圧力を制御する制御部を有する、請求項5に記載の冷凍サイクル装置。
    A temperature measuring means provided between the condenser and the liquid receiver for measuring the temperature of the refrigerant;
    The temperature control means includes
    The refrigeration cycle apparatus according to claim 5, further comprising a control unit that controls a discharge pressure of the refrigerant of the compressor using a measurement result of the temperature measuring unit.
  7.  前記凝縮器に外気を供給するファンをさらに有し、
     前記温度制御手段は、
     前記ファンの回転数を制御することで前記凝縮器の熱交換性能を調節する制御部を有する、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
    A fan for supplying outside air to the condenser;
    The temperature control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising a control unit that adjusts a heat exchange performance of the condenser by controlling a rotation speed of the fan.
  8.  前記温度制御手段は、
     前記圧縮機の容量を制御する制御部を有する、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
    The temperature control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising a control unit that controls a capacity of the compressor.
  9.  前記凝縮器における冷媒流路の等価直径が9.52mm未満である、請求項1~8のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein an equivalent diameter of a refrigerant flow path in the condenser is less than 9.52 mm.
  10.  前記凝縮器は、前記冷媒流路が形成されており扁平状に形成された扁平管を有する、請求項9に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 9, wherein the condenser has a flat tube in which the refrigerant flow path is formed and is formed in a flat shape.
  11.  前記冷媒は、該冷媒の潜熱が冷媒R407Cの潜熱よりも小さい冷媒である、請求項1~10のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein the refrigerant is a refrigerant in which the latent heat of the refrigerant is smaller than the latent heat of the refrigerant R407C.
  12.  前記圧縮機は、前記冷媒の吐出量を調整できる容量可変型圧縮機であり、
     前記凝縮器は、前記冷媒を空気と熱交換させる空気熱交換器である、
     請求項1~請求項11のいずれか1項に記載の冷凍サイクル装置。
    The compressor is a variable capacity compressor capable of adjusting the discharge amount of the refrigerant,
    The condenser is an air heat exchanger that exchanges heat between the refrigerant and air.
    The refrigeration cycle apparatus according to any one of claims 1 to 11.
  13.  一定圧力下における前記飽和液温度と飽和ガス温度の温度差が2℃以上である、請求項1~12のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein a temperature difference between the saturated liquid temperature and the saturated gas temperature under a constant pressure is 2 ° C or more.
PCT/JP2017/019664 2017-05-26 2017-05-26 Refrigeration cycle device WO2018216187A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780089438.3A CN110678707A (en) 2017-05-26 2017-05-26 Refrigeration cycle device
JP2019519918A JPWO2018216187A1 (en) 2017-05-26 2017-05-26 Refrigeration cycle equipment
PCT/JP2017/019664 WO2018216187A1 (en) 2017-05-26 2017-05-26 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019664 WO2018216187A1 (en) 2017-05-26 2017-05-26 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018216187A1 true WO2018216187A1 (en) 2018-11-29

Family

ID=64396570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019664 WO2018216187A1 (en) 2017-05-26 2017-05-26 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2018216187A1 (en)
CN (1) CN110678707A (en)
WO (1) WO2018216187A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233251A (en) * 1987-03-20 1988-09-28 アイシン精機株式会社 Chilling unit
JPH08136078A (en) * 1994-11-04 1996-05-31 Matsushita Refrig Co Ltd Multi-room cooling and heating device
JPH08145484A (en) * 1994-11-24 1996-06-07 Matsushita Electric Ind Co Ltd Air conditioner
JP2000121200A (en) * 1998-10-14 2000-04-28 Yamaha Motor Co Ltd Unit for utilizing excess heat of air conditioner
JP2006017433A (en) * 2004-07-05 2006-01-19 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012202678A (en) * 2011-03-28 2012-10-22 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
JP2013139890A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration apparatus
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320917A (en) * 1999-05-06 2000-11-24 Hitachi Ltd Heat pump cold/hot water machine
US9341393B2 (en) * 2010-04-27 2016-05-17 Mitsubishi Electric Corporation Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
CN202501649U (en) * 2012-02-06 2012-10-24 广东美芝制冷设备有限公司 Refrigeration equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233251A (en) * 1987-03-20 1988-09-28 アイシン精機株式会社 Chilling unit
JPH08136078A (en) * 1994-11-04 1996-05-31 Matsushita Refrig Co Ltd Multi-room cooling and heating device
JPH08145484A (en) * 1994-11-24 1996-06-07 Matsushita Electric Ind Co Ltd Air conditioner
JP2000121200A (en) * 1998-10-14 2000-04-28 Yamaha Motor Co Ltd Unit for utilizing excess heat of air conditioner
JP2006017433A (en) * 2004-07-05 2006-01-19 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012202678A (en) * 2011-03-28 2012-10-22 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
JP2013139890A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration apparatus
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator

Also Published As

Publication number Publication date
JPWO2018216187A1 (en) 2019-12-19
CN110678707A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
US7690211B2 (en) Refrigerating apparatus
JP6125000B2 (en) Dual refrigeration equipment
KR100248683B1 (en) Cooling apparatus
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
WO2009142101A1 (en) Refrigeration cycle
JP4096984B2 (en) Refrigeration equipment
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2018021730A (en) Refrigeration cycle device
JP6765538B2 (en) Refrigeration equipment and operation method of refrigeration equipment
WO2019021464A1 (en) Air conditioning device
JP4268931B2 (en) Refrigeration / freezing equipment and control method thereof
WO2020188756A1 (en) Air conditioner
JP2012237518A (en) Air conditioner
JP6715918B2 (en) Refrigeration cycle equipment
WO2018216187A1 (en) Refrigeration cycle device
WO2021065914A1 (en) Freezing apparatus
WO2016207992A1 (en) Air conditioner
JP6978242B2 (en) Refrigerant circuit equipment
KR100775067B1 (en) Refrigerating/freezing equipment and controlling method thereof
Taira et al. Evaluation of performance of Heat pump system using R32 and HFO mixed refrigerant.
JP2016125746A (en) Refrigerator or air conditioner and control method for the same
JP3298225B2 (en) Air conditioner
WO2023012960A1 (en) Refrigeration circuit device and refrigeration circuit control method
WO2024095446A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911237

Country of ref document: EP

Kind code of ref document: A1