WO2023012960A1 - Refrigeration circuit device and refrigeration circuit control method - Google Patents

Refrigeration circuit device and refrigeration circuit control method Download PDF

Info

Publication number
WO2023012960A1
WO2023012960A1 PCT/JP2021/029052 JP2021029052W WO2023012960A1 WO 2023012960 A1 WO2023012960 A1 WO 2023012960A1 JP 2021029052 W JP2021029052 W JP 2021029052W WO 2023012960 A1 WO2023012960 A1 WO 2023012960A1
Authority
WO
WIPO (PCT)
Prior art keywords
side refrigerant
low
pressure
refrigerant
low temperature
Prior art date
Application number
PCT/JP2021/029052
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023539474A priority Critical patent/JPWO2023012960A1/ja
Priority to PCT/JP2021/029052 priority patent/WO2023012960A1/en
Priority to CN202180101065.3A priority patent/CN117716185A/en
Publication of WO2023012960A1 publication Critical patent/WO2023012960A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present disclosure relates to a refrigeration cycle device having a dual refrigeration cycle and a control method for the refrigeration cycle device.
  • a low temperature circuit in which a low temperature side refrigerant circulates a high temperature circuit in which a high temperature side refrigerant circulates, and a low temperature side refrigerant and a high temperature side refrigerant are heated.
  • a refrigeration system with a replaceable cascade condenser is known (for example, Patent Document 1).
  • a receiver for storing surplus refrigerant is provided in the lower circuit, and a non-azeotropic refrigerant mixture is used as the refrigerant in the lower circuit.
  • a non-azeotropic refrigerant mixture is used as the refrigerant in the lower circuit.
  • the gas of the refrigerant with a low boiling point stays in the receiver, which may cause the composition of the refrigerant circulating in the low-level circuit to fluctuate.
  • the refrigerants contained in the non-azeotropic refrigerant mixture if the refrigerant with a high boiling point is flammable, the compositional fluctuation of the refrigerant increases the flammability of the refrigerant circulating in the low-level circuit, and the risk of flammability when the refrigerant leaks. increases.
  • the present disclosure is intended to solve the above-described problems, and aims to provide a refrigeration cycle device and a control method for the refrigeration cycle device that can suppress fluctuations in the composition of refrigerant.
  • a refrigeration cycle device includes a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, and includes a high-level circuit in which a high-level side refrigerant circulates, a second compressor, and a cascade heat exchange.
  • a low temperature circuit in which low temperature side refrigerant circulates, and the cascade heat exchanger heat-exchanges the high temperature side refrigerant and the low temperature side refrigerant.
  • the low temperature side refrigerant is a non-azeotropic mixed refrigerant, and the high pressure of the low temperature side refrigerant circulating in the low temperature circuit is maintained at or below the pressure at which the low temperature side refrigerant can maintain nonflammability.
  • a control method for a refrigeration cycle device includes a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, a higher circuit in which a higher side refrigerant circulates, a second compressor,
  • a control method for a refrigeration cycle device comprising a cascade heat exchanger, a receiver, a second pressure reducing device, and an evaporator, and a low-level circuit in which low-level side refrigerant circulates, wherein the cascade heat exchanger comprises a high-level circuit
  • the low temperature side refrigerant is a non-azeotropic mixed refrigerant, and the low temperature side refrigerant is nonflammable when the high pressure of the low temperature side refrigerant circulating in the low temperature circuit is applied. Keep the pressure below the pressure that can maintain sexuality.
  • the high-pressure pressure of the low-side refrigerant circulating in the low-side circuit is maintained at or below the pressure at which the low-side refrigerant can maintain nonflammability, thereby suppressing fluctuations in the composition of the refrigerant.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 4 is a graph showing the relationship between the combustibility of the low-side refrigerant and the high pressure PH .
  • Embodiment 1 A refrigeration cycle apparatus 100 according to Embodiment 1 will be described.
  • the refrigerating cycle device 100 includes dual refrigerating cycles that independently circulate refrigerant, and is used for refrigeration, refrigeration, hot water supply, air conditioning, and the like.
  • a case where the refrigerating cycle device 100 is used as a refrigerating device that cools a freezer compartment or the like will be described as an example.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1.
  • the refrigeration cycle apparatus 100 of this embodiment includes a high-level circuit 1 , a low-level circuit 2 , and a control device 3 .
  • the high temperature circuit 1 is a high temperature circuit in which the high temperature side refrigerant circulates
  • the low temperature circuit 2 is a low temperature circuit in which the low temperature side refrigerant whose boiling point is lower than that of the high temperature side refrigerant circulates.
  • the high-level circuit 1 and the low-level circuit 2 have a cascade heat exchanger 14 in common, and the high-level side refrigerant circulating in the high-level circuit 1 and the low-level side circulating in the low-level circuit 2 are provided by the cascade heat exchanger 14. Heat exchange with the refrigerant takes place.
  • the high-level circuit 1 includes a first compressor 11, a condenser 12, a first pressure reducing device 13, and a cascade heat exchanger 14.
  • the first compressor 11, the condenser 12, the first pressure reducing device 13, and the cascade heat exchanger 14 are connected in this order by piping.
  • the high-voltage side refrigerant circulating in the high-voltage circuit 1 is, for example, an HFC-based refrigerant such as R134a, R32 or R410A, or an HFO-based refrigerant such as HFO-1234yf, or a mixed refrigerant.
  • the first compressor 11 is, for example, a capacity-controllable inverter type compressor.
  • the first compressor 11 circulates the high temperature side refrigerant in the high temperature circuit 1 by drawing in the high temperature side refrigerant, compressing it, and discharging it in a high temperature and high pressure state.
  • the condenser 12 is, for example, a fin-tube heat exchanger.
  • the condenser 12 exchanges heat between the air and the high temperature side refrigerant, and condenses and liquefies the high temperature side refrigerant.
  • the refrigeration cycle device 100 includes a first fan 15 for supplying air to the condenser 12 .
  • the first fan 15 is, for example, a propeller fan or a cross-flow fan that can adjust the air volume.
  • the condenser 12 may be, for example, a plate-type heat exchanger that exchanges heat between water or brine and the high-temperature side refrigerant. In this case, the first fan 15 may be omitted.
  • the first decompression device 13 is, for example, an electronic expansion valve whose opening can be controlled.
  • the first decompression device 13 is connected to the condenser 12 and decompresses and expands the high-side refrigerant flowing out of the condenser 12 .
  • the first decompression device 13 may be a capillary tube or a temperature-sensitive expansion valve.
  • the cascade heat exchanger 14 is, for example, a plate heat exchanger.
  • the cascade heat exchanger 14 includes a high-level side flow path 141 connected to the high-level circuit 1 and a low-level side flow path 142 connected to the low-level circuit 2 . Heat exchange is performed between the source side refrigerant and the low temperature side refrigerant flowing through the low temperature side flow path 142 .
  • the high temperature side flow path 141 of the cascade heat exchanger 14 functions as an evaporator to evaporate and gasify the high temperature side refrigerant.
  • the low temperature side flow path 142 of the cascade heat exchanger 14 functions as a condenser to condense and liquefy the low temperature side refrigerant.
  • the low-level circuit 2 includes a second compressor 21 , a cascade heat exchanger 14 , a receiver 22 , a second pressure reducing device 23 and an evaporator 24 .
  • the second compressor 21, the cascade heat exchanger 14, the receiver 22, the second pressure reducing device 23, and the evaporator 24 are connected by piping in this order.
  • the low temperature side refrigerant circulating in the low temperature side circuit 2 is a non-azeotropic mixed refrigerant having a lower boiling point than the high temperature side refrigerant. By using a non-azeotropic refrigerant mixture, it is possible to obtain a low evaporation temperature that cannot be obtained with a single refrigerant.
  • a non-azeotropic mixed refrigerant containing CO 2 and R290 (propane) is used as the low gas side refrigerant.
  • CO2 is a low boiling point refrigerant and R290 is a high boiling point refrigerant with a higher boiling point than CO2 .
  • Using natural refrigerants such as CO2 and R290 can reduce the environmental impact.
  • mixing CO2 into the low temperature side refrigerant improves the cooling capacity, and mixing R290 improves the COP and lowers the triple point of CO2 , enabling low-temperature use.
  • the second compressor 21 is, for example, a capacity-controllable inverter type compressor.
  • the second compressor 21 draws in the low temperature side refrigerant, compresses it, and discharges it in a high temperature and high pressure state, thereby circulating the low temperature side refrigerant in the low temperature circuit 2 .
  • the receiver 22 is arranged between the cascade heat exchanger 14 and the second pressure reducing device 23 and temporarily stores the low temperature side refrigerant flowing out of the low temperature side flow path 142 of the cascade heat exchanger 14 .
  • the receiver 22 stores surplus refrigerant caused by fluctuations in the cooling load.
  • the second decompression device 23 is, for example, an electronic expansion valve whose opening can be controlled.
  • the second decompression device 23 is connected to the refrigerant outlet of the receiver 22 and decompresses the low-side refrigerant flowing out of the receiver 22 to expand it.
  • the second decompression device 23 may be a capillary tube or a temperature-sensitive expansion valve.
  • the evaporator 24 is, for example, a fin-tube heat exchanger.
  • the evaporator 24 exchanges heat between the air and the low-side refrigerant to evaporate and gasify the low-side refrigerant.
  • the refrigerating cycle device 100 includes a second fan 25 for supplying air to the evaporator 24 .
  • the second fan 25 is, for example, a propeller fan or a cross-flow fan capable of adjusting the air volume.
  • the evaporator 24 may be a plate heat exchanger or the like that exchanges heat between water or brine and the low temperature side refrigerant, for example. In this case, the second fan 25 may be omitted.
  • the refrigeration cycle device 100 also includes a pressure sensor 26 that detects the high pressure PH of the low temperature side refrigerant circulating in the low temperature circuit 2 .
  • the pressure sensor 26 is provided in a pipe connecting the low-side flow path 142 of the cascade heat exchanger 14 and the receiver 22 .
  • the pressure sensor 26 can be provided at any position on the high-pressure side of the low-voltage circuit 2 , that is, between the discharge port of the second compressor 21 and the refrigerant inlet of the second pressure reducing device 23 .
  • the high pressure PH of the low-side refrigerant detected by the pressure sensor 26 is transmitted to the control device 3 .
  • a sensor for detecting another physical quantity (for example, the condensation temperature) that can be converted to the high pressure PH of the low-side refrigerant may be provided and converted to the high pressure PH by the control device 3. good.
  • the refrigerating cycle device 100 detects the temperature or pressure of the refrigerant at any location in the outdoor temperature sensor that detects the outdoor temperature, the indoor temperature sensor that detects the temperature in the freezer compartment, and the high-level circuit 1 and the low-level circuit 2.
  • Various sensors such as sensors may be further provided.
  • the control device 3 controls the overall operation of the refrigeration cycle device 100 .
  • the control device 3 is composed of a processing device having a memory for storing data and programs necessary for control and a CPU for executing the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the control device 3 of the present embodiment controls the high temperature circuit 1 based on the high pressure PH of the low temperature side refrigerant detected by the pressure sensor 26 .
  • the control device 3 controls each device of the high-level circuit 1 and the low-level circuit 2, and the first fan 15 and the second fan 25 based on the information received from various sensors and the operation contents instructed by the user. do.
  • the operation of the refrigeration cycle device 100 of the present embodiment will be described based on the flow of refrigerant circulating through each refrigerant circuit.
  • the operation of the high-level circuit 1 will be described.
  • the first compressor 11 of the high-voltage circuit 1 sucks the high-voltage side refrigerant, compresses it, and discharges it in a high-temperature, high-pressure state.
  • the high pressure side refrigerant discharged from the first compressor 11 flows into the condenser 12 .
  • the condenser 12 exchanges heat between the air supplied from the first fan 15 and the high temperature side refrigerant to condense and liquefy the high temperature side refrigerant.
  • the high-side refrigerant condensed and liquefied in the condenser 12 passes through the first decompression device 13 .
  • the first decompression device 13 decompresses the condensed and liquefied high-side refrigerant.
  • the high temperature side refrigerant decompressed by the first pressure reducing device 13 flows into the high temperature side flow path 141 of the cascade heat exchanger 14 .
  • the high temperature refrigerant that has flowed into the high temperature flow passage 141 is heat-exchanged with the low temperature refrigerant flowing through the low temperature flow passage 142 of the cascade heat exchanger 14, and is evaporatively gasified.
  • the high-pressure side refrigerant evaporated and gasified in the cascade heat exchanger 14 is sucked into the first compressor 11 again.
  • the second compressor 21 of the low temperature circuit 2 sucks the low temperature side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the low temperature side refrigerant discharged from the second compressor 21 flows into the low temperature side flow path 142 of the cascade heat exchanger 14 .
  • the low temperature refrigerant that has flowed into the low temperature flow path 142 is heat-exchanged with the high temperature side refrigerant that flows through the high temperature flow path 141 of the cascade heat exchanger 14, and is condensed and liquefied.
  • the low-side refrigerant condensed and liquefied in the cascade heat exchanger 14 flows into the receiver 22 .
  • the low-side refrigerant that has flowed out of the receiver 22 passes through the second pressure reducing device 23 .
  • the second decompression device 23 decompresses the low-side refrigerant.
  • the low-side refrigerant decompressed by the second decompression device 23 flows into the evaporator 24 .
  • the evaporator 24 exchanges heat between the air supplied from the second fan 25 and the low temperature side refrigerant to evaporate the low temperature side refrigerant.
  • the freezer compartment is cooled by the low-side refrigerant absorbing heat from the air.
  • the low-side refrigerant evaporated and gasified by the evaporator 24 is sucked into the second compressor 21 again.
  • the receiver 22 of the low-level circuit 2 stores excess liquid refrigerant generated according to the operating conditions or load conditions of the refrigeration cycle device 100 .
  • the refrigerant with a low boiling point becomes gas and stays in the receiver 22, flows out from the receiver 22, and circulates in the low temperature circuit 2.
  • Composition fluctuates.
  • a non-azeotropic mixed refrigerant of CO 2 and R290 is used as the low-side refrigerant as in the present embodiment, CO 2 having a boiling point lower than that of R290 stays in the receiver 22 as gas.
  • the ratio of R290 which is a combustible refrigerant, increases in the circulation composition of the low pressure side refrigerant.
  • the flammability of the low-voltage side refrigerant circulating in the low-voltage circuit 2 increases, increasing the risk of flammability when the refrigerant leaks.
  • FIG. 2 is a graph showing the relationship between the combustibility of the low-side refrigerant and the high pressure PH .
  • the graph of FIG. 2 is a graph when the low-side refrigerant is a non-azeotropic refrigerant mixture and the refrigerant with the higher boiling point is combustible, as in the present embodiment. As shown in FIG. 2, the higher the high pressure PH of the low-side refrigerant, the higher the combustibility.
  • the threshold PT is uniquely determined by the physical properties of the refrigerant that constitutes the low-concentration side refrigerant.
  • the threshold PT is set in advance according to the low-concentration side refrigerant and stored in the controller 3 .
  • the control device 3 controls the capacity of the high-voltage circuit 1 so that the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26 is equal to or lower than the threshold value PT .
  • FIG. 3 is a flow chart showing the operation of the refrigeration cycle apparatus 100 according to Embodiment 1.
  • the control device 3 drives the first compressor 11 and the second compressor 21 (S1). As a result, the high temperature side refrigerant circulates in the high temperature circuit 1, the low temperature side refrigerant circulates in the low temperature circuit 2, and the freezer compartment is cooled.
  • the control device 3 determines whether or not the high-pressure pressure PH of the low-side refrigerant detected by the pressure sensor 26 is equal to or less than the threshold value PT (S3).
  • the threshold value PT S3: YES
  • the control device 3 increases the capacity of the high-voltage circuit 1 (S4).
  • control device 3 increases the operating frequency of the first compressor 11 of the high-level circuit 1 .
  • the control device 3 may increase the operating frequency of the first compressor 11 by a predetermined constant value, or may increase the operating frequency of the first compressor 11 according to the difference between the high pressure PH of the low-side refrigerant and the threshold value PT . may be increased by
  • the temperature of the high temperature side refrigerant flowing through the high temperature side flow path 141 of the cascade heat exchanger 14 is lowered.
  • the temperature of the low temperature side refrigerant heat-exchanged with the high temperature side refrigerant in the cascade heat exchanger 14 decreases, and the high pressure PH of the low temperature side refrigerant decreases.
  • the high-pressure pressure PH of the low-side refrigerant decreases, the gas density in the receiver 22 decreases and the mass of the gas refrigerant in the receiver 22 decreases.
  • the high-pressure pressure PH of the low-side refrigerant decreases, the amount of low-boiling-point refrigerant gas remaining in the receiver 22 decreases, and the amount of low-side refrigerant flowing out of the receiver 22 and circulating in the low-side circuit 2 increases. Compositional fluctuations can be minimized.
  • the control device 3 determines whether or not to stop the operation of the refrigeration cycle device 100 according to an instruction from the user or the like (S5). If the operation is not to be stopped (S5: NO), the process returns to step S2 and repeats the subsequent processes. On the other hand, when stopping the operation (S5: YES), the first compressor 11 and the second compressor 21 are stopped (S6). As a result, the high-pressure pressure PH of the low-concentration-side refrigerant is maintained at or below the threshold PT during operation of the refrigeration cycle device 100 .
  • the high-voltage circuit 1 controls the high-voltage circuit 1 so that the high-pressure pressure PH of the low-voltage side refrigerant is equal to or lower than the threshold value PT at which the low-voltage side refrigerant can maintain nonflammability. be done. As a result, it is possible to suppress the composition fluctuation of the low-voltage side refrigerant that flows out from the receiver 22 and circulates in the low-voltage circuit 2 .
  • FIG. 4 is a flow chart showing the operation of the refrigeration cycle apparatus 100 according to the second embodiment. This embodiment differs from the first embodiment in the operation of refrigeration cycle apparatus 100 after the stop instruction.
  • the configuration of the refrigeration cycle device 100 is the same as that of the first embodiment.
  • step S1 to S4 the operations during operation of the refrigeration cycle device 100 (steps S1 to S4) are the same as in the first embodiment.
  • the control device 3 determines whether or not to stop the operation of the refrigeration cycle device 100 according to an instruction from the user or the like (S5). If the operation is not to be stopped (S5: NO), the process returns to step S2 and repeats the subsequent processes.
  • the control device 3 performs pump-down operation in the low-level circuit 2 (S11).
  • the control device 3 fully closes the second pressure reducing device 23 and continues the operation of the second compressor 21 . Since the second decompression device 23 located downstream of the receiver 22 is closed, the low temperature side refrigerant in the low temperature circuit 2 is collected in the low temperature side flow path 142 of the cascade heat exchanger 14 and the receiver 22. be done. After that, the control device 3 stops the second compressor 21 (S12). As a result, circulation of the low-voltage side refrigerant in the low-voltage circuit 2 is stopped.
  • a solenoid valve may be provided between the refrigerant outlet of the receiver 22 and the second pressure reducing device 23, and the pump-down operation may be performed by closing the solenoid valve.
  • a pressure sensor for detecting the low-pressure pressure of the low-voltage side refrigerant is provided between the low-pressure side of the low-voltage circuit 2, that is, the refrigerant outlet of the second pressure reducing device 23 and the suction port of the second compressor 21.
  • the second compressor 21 may be stopped when the low pressure of the refrigerant becomes lower than the atmospheric pressure.
  • the control device 3 determines whether or not the high-pressure pressure PH of the low-side refrigerant detected by the pressure sensor 26 is equal to or less than the threshold value PT (S14). If the high-pressure pressure PH of the low-voltage side refrigerant is equal to or less than the threshold value PT (S14: YES), the process proceeds to step S16 while maintaining the performance of the high-voltage circuit 1 . On the other hand, when the high pressure PH of the low-side refrigerant is greater than the threshold PT (S14: NO), the control device 3 increases the capacity of the high-voltage circuit 1 (S15). Specifically, as in the first embodiment, the control device 3 increases the operating frequency of the first compressor 11 of the high-level circuit 1 .
  • the low boiling point refrigerant gasifies and the composition of the liquid refrigerant in the receiver 22 may fluctuate.
  • CO2 which is a low-boiling-point refrigerant
  • R290 which is a combustible refrigerant
  • the high-voltage circuit is controlled so that the high-pressure pressure PH of the low-voltage side refrigerant is equal to or lower than the threshold PT at which the low-voltage side refrigerant can maintain nonflammability. 1 is controlled.
  • the temperature of the low temperature side refrigerant staying in the low temperature side flow path 142 of the cascade heat exchanger 14 is lowered, and the high pressure PH of the low temperature side refrigerant is lowered.
  • the low-side refrigerant whose temperature has decreased in the cascade heat exchanger 14 flows into the receiver 22 through natural convection so as to maintain the temperature and pressure balance, thereby decreasing the gas density of the receiver 22.
  • the mass of the gas refrigerant in the receiver 22 is reduced.
  • the amount of low-boiling-point refrigerant (CO 2 ) gas refrigerant in the receiver 22 is reduced, and fluctuations in the composition of the liquid refrigerant in the receiver 22 can be minimized.
  • the control device 3 determines whether or not to start the operation of the refrigeration cycle device 100 according to an instruction from the user (S16). If the operation is not to be started (S16: NO), the process returns to step S13 and the subsequent processes are repeated. If the operation is to be started (S16: YES), the process proceeds to step S1, and the second compressor 21 is driven to circulate the low temperature side refrigerant in the low temperature circuit 2.
  • the refrigerating cycle device 100 of the present embodiment in addition to the same effects as in the first embodiment, even when the refrigerating cycle device 100 is stopped, fluctuations in the composition of the liquid refrigerant remaining in the receiver 22 can be suppressed. can be done. As a result, even when a non-azeotropic mixed refrigerant containing a flammable refrigerant is used as the low-side refrigerant, an increase in the risk of flammability when refrigerant leaks from the receiver 22 can be suppressed.
  • the low-side refrigerant is not limited to a non-azeotropic refrigerant mixture of CO 2 and R290, and may be other non-azeotropic refrigerant mixtures.
  • the low-side refrigerant is a non-azeotropic mixed refrigerant containing CO 2 and a combustible refrigerant, the effects of the above embodiment can be particularly obtained.
  • the controller 3 is configured to control the entire refrigeration cycle apparatus 100.
  • the operation of the original circuit 2 may be individually controlled.
  • the present invention is not limited to this.
  • the control device 3 increases the opening degree of the first decompression device 13 and the rotation speed of the first fan 15 to Increases 1 ability.
  • the high-voltage circuit 1 is controlled according to the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26, but the present invention is not limited to this.
  • the control device 3 may control the high temperature circuit 1 according to the condensation temperature of the low temperature side refrigerant corresponding to the high pressure PH of the low temperature side refrigerant.
  • the control device 3 controls the high-voltage circuit 1 in accordance with the cooling load of the low-voltage circuit 2 to set the high-pressure pressure PH of the low-voltage side refrigerant to a pressure value at which the low-voltage side refrigerant maintains nonflammability. The following may be used.
  • the cooling load of the low-order circuit 2 is determined based on the room temperature of the freezer compartment or the like, which is to be cooled, for example.
  • the control device 3 increases the capacity of the high-level circuit 1 when the cooling load of the low-level circuit 2 increases, and increases the capacity of the high-level circuit 1 when the cooling load of the low-level circuit 2 decreases. reduce the ability of As a result, even if the high pressure PH of the low temperature side refrigerant rises due to an increase in the cooling load of the low temperature circuit 2, the high pressure PH of the low temperature side refrigerant is increased by increasing the capacity of the high temperature circuit 1. can be lowered.
  • the high pressure PH of the low temperature side refrigerant can be maintained below the pressure value at which the low temperature side refrigerant maintains non-flammability.
  • the pressure sensor 26 may be omitted, or control based on the high pressure PH of the low-side refrigerant detected by the pressure sensor 26 may be combined.
  • FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus 100A according to a modification.
  • the refrigeration cycle device 100A includes a pressure relief device 27.
  • a pressure relief device 27 is provided in the refrigerant pipe or receiver 22 on the high pressure side of the low-voltage circuit 2 .
  • the pressure relief device 27 is a pressure relief valve or a fusible plug, and when the high-pressure pressure PH or the condensation temperature of the low-side refrigerant becomes equal to or higher than the threshold PT , the valve or the plug is opened to release the gas refrigerant. is discharged to the outside, and the high-pressure pressure PH of the low-concentration side refrigerant is lowered.
  • the threshold value PT is a pressure value or temperature at which the low-side refrigerant can maintain nonflammability, as in the above embodiment.
  • the high-pressure pressure PH of the low-side refrigerant can be maintained at or below a pressure value at which the low-side refrigerant can maintain nonflammability.
  • the control of the high-voltage circuit 1 by the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26 or the cooling load may be omitted, or these controls may be combined. good too.

Abstract

This refrigeration circuit device comprises: a higher circuit provided with a first compressor, a condenser, a first pressure-reducing device, and a gasket heat exchanger, and in which a high-side refrigerant circulates; and a lower circuit provided with a second compressor, a gasket heat exchanger, a receiver, a second pressure-reducing device, and an evaporator, and in which a low-side refrigerant circulates. The gasket heat exchanger exchanges heat between the high-side refrigerant and the low-side refrigerant; the low-side refrigerant is a non-azeotropic refrigerant mixture; and the high pressure of the low-side refrigerant that circulates through the lower circuit is maintained at or below a pressure that enables the low-side refrigerant to maintain incombustibility.

Description

冷凍サイクル装置、及び冷凍サイクル装置の制御方法Refrigerating cycle device and control method for refrigerating cycle device
 本開示は、二元冷凍サイクルを備えた冷凍サイクル装置、及び冷凍サイクル装置の制御方法に関する。 The present disclosure relates to a refrigeration cycle device having a dual refrigeration cycle and a control method for the refrigeration cycle device.
 従来、二元冷凍サイクルを備えた冷凍サイクル装置として、低元側冷媒が循環する低元回路と、高元側冷媒が循環する高元回路と、低元側冷媒と高元側冷媒とを熱交換させるカスケードコンデンサとを備えた冷凍装置が知られている(例えば特許文献1)。 Conventionally, as a refrigeration cycle device having a dual refrigeration cycle, a low temperature circuit in which a low temperature side refrigerant circulates, a high temperature circuit in which a high temperature side refrigerant circulates, and a low temperature side refrigerant and a high temperature side refrigerant are heated. A refrigeration system with a replaceable cascade condenser is known (for example, Patent Document 1).
国際公開第2014/030236号WO2014/030236
 特許文献1の冷凍サイクル装置では、低元回路に余剰冷媒を貯留するためのレシーバが設けられ、低元回路の冷媒として非共沸混合冷媒が用いられている。この場合、非共沸混合冷媒に含まれる冷媒のうち、沸点が低い冷媒のガスがレシーバに滞留することで、低元回路を循環する冷媒の組成が変動することがある。非共沸混合冷媒に含まれる冷媒のうち、沸点が高い冷媒が可燃性を有する場合、冷媒の組成変動により低元回路を循環する冷媒の燃焼性が増加し、冷媒漏洩時の可燃性のリスクが増加する。 In the refrigeration cycle device of Patent Document 1, a receiver for storing surplus refrigerant is provided in the lower circuit, and a non-azeotropic refrigerant mixture is used as the refrigerant in the lower circuit. In this case, among the refrigerants contained in the non-azeotropic refrigerant mixture, the gas of the refrigerant with a low boiling point stays in the receiver, which may cause the composition of the refrigerant circulating in the low-level circuit to fluctuate. Among the refrigerants contained in the non-azeotropic refrigerant mixture, if the refrigerant with a high boiling point is flammable, the compositional fluctuation of the refrigerant increases the flammability of the refrigerant circulating in the low-level circuit, and the risk of flammability when the refrigerant leaks. increases.
 本開示は、上記のような課題を解決するためのものであり、冷媒の組成変動を抑制することができる冷凍サイクル装置、及び冷凍サイクル装置の制御方法を提供することを目的とする。 The present disclosure is intended to solve the above-described problems, and aims to provide a refrigeration cycle device and a control method for the refrigeration cycle device that can suppress fluctuations in the composition of refrigerant.
 本開示に係る冷凍サイクル装置は、第1圧縮機、凝縮器、第1減圧装置、及びカスケード熱交換器を備え、高元側冷媒が循環する高元回路と、第2圧縮機、カスケード熱交換器、レシーバ、第2減圧装置、及び蒸発器を備え、低元側冷媒が循環する低元回路と、を備え、カスケード熱交換器は、高元側冷媒と低元側冷媒とを熱交換するものであり、低元側冷媒は、非共沸混合冷媒であり、低元回路を循環する低元側冷媒の高圧圧力は、低元側冷媒が不燃性を維持できる圧力以下に維持される。 A refrigeration cycle device according to the present disclosure includes a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, and includes a high-level circuit in which a high-level side refrigerant circulates, a second compressor, and a cascade heat exchange. a low temperature circuit in which low temperature side refrigerant circulates, and the cascade heat exchanger heat-exchanges the high temperature side refrigerant and the low temperature side refrigerant. The low temperature side refrigerant is a non-azeotropic mixed refrigerant, and the high pressure of the low temperature side refrigerant circulating in the low temperature circuit is maintained at or below the pressure at which the low temperature side refrigerant can maintain nonflammability.
 本開示に係る冷凍サイクル装置の制御方法は、第1圧縮機、凝縮器、第1減圧装置、及びカスケード熱交換器を備え、高元側冷媒が循環する高元回路と、第2圧縮機、カスケード熱交換器、レシーバ、第2減圧装置、及び蒸発器を備え、低元側冷媒が循環する低元回路と、を備える冷凍サイクル装置の制御方法であって、カスケード熱交換器は、高元側冷媒と低元側冷媒とを熱交換するものであり、低元側冷媒は、非共沸混合冷媒であり、低元回路を循環する低元側冷媒の高圧圧力を低元側冷媒が不燃性を維持できる圧力以下に維持する。 A control method for a refrigeration cycle device according to the present disclosure includes a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, a higher circuit in which a higher side refrigerant circulates, a second compressor, A control method for a refrigeration cycle device comprising a cascade heat exchanger, a receiver, a second pressure reducing device, and an evaporator, and a low-level circuit in which low-level side refrigerant circulates, wherein the cascade heat exchanger comprises a high-level circuit The low temperature side refrigerant is a non-azeotropic mixed refrigerant, and the low temperature side refrigerant is nonflammable when the high pressure of the low temperature side refrigerant circulating in the low temperature circuit is applied. Keep the pressure below the pressure that can maintain sexuality.
 本開示によれば、低元回路を循環する低元側冷媒の高圧圧力が、低元側冷媒が不燃性を維持できる圧力以下に維持されることで、冷媒の組成変動を抑制することができる。 According to the present disclosure, the high-pressure pressure of the low-side refrigerant circulating in the low-side circuit is maintained at or below the pressure at which the low-side refrigerant can maintain nonflammability, thereby suppressing fluctuations in the composition of the refrigerant. .
実施の形態1に係る冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1; FIG. 低元側冷媒の燃焼性と高圧圧力Pとの関係を示すグラフである。4 is a graph showing the relationship between the combustibility of the low-side refrigerant and the high pressure PH . 実施の形態1に係る冷凍サイクル装置の動作を示すフローチャートである。4 is a flow chart showing the operation of the refrigeration cycle apparatus according to Embodiment 1; 実施の形態2に係る冷凍サイクル装置の動作を示すフローチャートである。8 is a flow chart showing the operation of the refrigeration cycle apparatus according to Embodiment 2; 変形例に係る冷凍サイクル装置の概略構成図である。It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on a modification.
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものである。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。さらに、以下の説明における温度及び圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム又は装置等における状態又は動作等において相対的に定まるものとする。 Embodiments will be described below based on the drawings. In addition, in each figure, the thing which attached|subjected the same code|symbol is the same or corresponds to this. Also, in the following drawings, the size relationship of each component may differ from the actual size. Furthermore, regarding the high and low of temperature, pressure, etc., in the following explanation, the high and low, etc., are not determined in relation to absolute values, and are relatively determined according to the state or operation of the system or device, etc. do.
 実施の形態1.
 実施の形態1に係る冷凍サイクル装置100について説明する。冷凍サイクル装置100は、それぞれ独立して冷媒を循環させる二元冷凍サイクルを備え、冷凍、冷蔵、給湯、又は空調等の用途に利用されるものである。本実施の形態では、冷凍サイクル装置100が、冷凍室等の冷却を行う冷凍装置として用いられる場合を例に説明する。
Embodiment 1.
A refrigeration cycle apparatus 100 according to Embodiment 1 will be described. The refrigerating cycle device 100 includes dual refrigerating cycles that independently circulate refrigerant, and is used for refrigeration, refrigeration, hot water supply, air conditioning, and the like. In this embodiment, a case where the refrigerating cycle device 100 is used as a refrigerating device that cools a freezer compartment or the like will be described as an example.
 図1は、実施の形態1に係る冷凍サイクル装置100の概略構成図である。図1に示すように、本実施の形態の冷凍サイクル装置100は、高元回路1と、低元回路2と、制御装置3とを備えている。高元回路1は、高元側冷媒が循環する高温回路であり、低元回路2は、高元側冷媒よりも沸点の低い低元側冷媒が循環する低温回路である。高元回路1及び低元回路2は、カスケード熱交換器14を共通して備え、カスケード熱交換器14によって高元回路1を循環する高元側冷媒と低元回路2を循環する低元側冷媒との熱交換が行われる。 FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1. FIG. As shown in FIG. 1 , the refrigeration cycle apparatus 100 of this embodiment includes a high-level circuit 1 , a low-level circuit 2 , and a control device 3 . The high temperature circuit 1 is a high temperature circuit in which the high temperature side refrigerant circulates, and the low temperature circuit 2 is a low temperature circuit in which the low temperature side refrigerant whose boiling point is lower than that of the high temperature side refrigerant circulates. The high-level circuit 1 and the low-level circuit 2 have a cascade heat exchanger 14 in common, and the high-level side refrigerant circulating in the high-level circuit 1 and the low-level side circulating in the low-level circuit 2 are provided by the cascade heat exchanger 14. Heat exchange with the refrigerant takes place.
 高元回路1は、第1圧縮機11と、凝縮器12と、第1減圧装置13と、カスケード熱交換器14とを備えている。第1圧縮機11、凝縮器12、第1減圧装置13、及びカスケード熱交換器14は、この順序で配管により接続されている。高元回路1を循環する高元側冷媒は、例えばR134a、R32又はR410AなどのHFC系、もしくはHFO-1234yfなどのHFO系の単独冷媒又は混合冷媒である。 The high-level circuit 1 includes a first compressor 11, a condenser 12, a first pressure reducing device 13, and a cascade heat exchanger 14. The first compressor 11, the condenser 12, the first pressure reducing device 13, and the cascade heat exchanger 14 are connected in this order by piping. The high-voltage side refrigerant circulating in the high-voltage circuit 1 is, for example, an HFC-based refrigerant such as R134a, R32 or R410A, or an HFO-based refrigerant such as HFO-1234yf, or a mixed refrigerant.
 第1圧縮機11は、例えば容量制御可能なインバータタイプの圧縮機である。第1圧縮機11は、高元側冷媒を吸入し、圧縮して高温高圧の状態にして吐出することで、高元側冷媒を高元回路1内に循環させる。 The first compressor 11 is, for example, a capacity-controllable inverter type compressor. The first compressor 11 circulates the high temperature side refrigerant in the high temperature circuit 1 by drawing in the high temperature side refrigerant, compressing it, and discharging it in a high temperature and high pressure state.
 凝縮器12は、例えばフィンチューブ式の熱交換器である。凝縮器12は、空気と高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮して液化させる。冷凍サイクル装置100は、凝縮器12に空気を供給するための第1ファン15を備えている。第1ファン15は、例えば風量を調整可能なプロペラファン又はクロスフローファンなどである。なお、凝縮器12は、例えば水又はブラインと高元側冷媒との間で熱交換を行うプレート式熱交換器などであってもよい。この場合は、第1ファン15は省略してもよい。 The condenser 12 is, for example, a fin-tube heat exchanger. The condenser 12 exchanges heat between the air and the high temperature side refrigerant, and condenses and liquefies the high temperature side refrigerant. The refrigeration cycle device 100 includes a first fan 15 for supplying air to the condenser 12 . The first fan 15 is, for example, a propeller fan or a cross-flow fan that can adjust the air volume. Note that the condenser 12 may be, for example, a plate-type heat exchanger that exchanges heat between water or brine and the high-temperature side refrigerant. In this case, the first fan 15 may be omitted.
 第1減圧装置13は、例えば開度を制御可能な電子式膨張弁である。第1減圧装置13は、凝縮器12に接続され、凝縮器12から流出した高元側冷媒を減圧して膨張させる。なお、第1減圧装置13は、毛細管又は感温式膨張弁であってもよい。 The first decompression device 13 is, for example, an electronic expansion valve whose opening can be controlled. The first decompression device 13 is connected to the condenser 12 and decompresses and expands the high-side refrigerant flowing out of the condenser 12 . Note that the first decompression device 13 may be a capillary tube or a temperature-sensitive expansion valve.
 カスケード熱交換器14は、例えばプレート式熱交換器である。カスケード熱交換器14は、高元回路1に接続される高元側流路141と、低元回路2に接続される低元側流路142とを備え、高元側流路141を流れる高元側冷媒と低元側流路142を流れる低元側冷媒との間で熱交換を行う。カスケード熱交換器14の高元側流路141は、蒸発器として機能し、高元側冷媒を蒸発してガス化させる。また、カスケード熱交換器14の低元側流路142は、凝縮器として機能し、低元側冷媒を凝縮して液化させる。 The cascade heat exchanger 14 is, for example, a plate heat exchanger. The cascade heat exchanger 14 includes a high-level side flow path 141 connected to the high-level circuit 1 and a low-level side flow path 142 connected to the low-level circuit 2 . Heat exchange is performed between the source side refrigerant and the low temperature side refrigerant flowing through the low temperature side flow path 142 . The high temperature side flow path 141 of the cascade heat exchanger 14 functions as an evaporator to evaporate and gasify the high temperature side refrigerant. Also, the low temperature side flow path 142 of the cascade heat exchanger 14 functions as a condenser to condense and liquefy the low temperature side refrigerant.
 低元回路2は、第2圧縮機21と、カスケード熱交換器14と、レシーバ22と、第2減圧装置23と、蒸発器24とを備えている。第2圧縮機21、カスケード熱交換器14、レシーバ22、第2減圧装置23、及び蒸発器24は、この順序で配管により接続されている。低元回路2を循環する低元側冷媒は、高元側冷媒よりも沸点の低い非共沸混合冷媒である。非共沸混合冷媒を用いることで、単一冷媒では得られない低い蒸発温度を得ることができる。本実施の形態では、低元側冷媒として、COとR290(プロパン)を含む非共沸混合冷媒が用いられる。COは低沸点冷媒であり、R290はCOよりも沸点の高い高沸点冷媒である。CO及びR290などの自然冷媒を用いることで、環境負荷を低くすることができる。また、低元側冷媒にCOを混合することで冷却能力が向上し、R290を混合することでCOPが向上するとともにCOの三重点が低下し、低温利用が可能となる。 The low-level circuit 2 includes a second compressor 21 , a cascade heat exchanger 14 , a receiver 22 , a second pressure reducing device 23 and an evaporator 24 . The second compressor 21, the cascade heat exchanger 14, the receiver 22, the second pressure reducing device 23, and the evaporator 24 are connected by piping in this order. The low temperature side refrigerant circulating in the low temperature side circuit 2 is a non-azeotropic mixed refrigerant having a lower boiling point than the high temperature side refrigerant. By using a non-azeotropic refrigerant mixture, it is possible to obtain a low evaporation temperature that cannot be obtained with a single refrigerant. In the present embodiment, a non-azeotropic mixed refrigerant containing CO 2 and R290 (propane) is used as the low gas side refrigerant. CO2 is a low boiling point refrigerant and R290 is a high boiling point refrigerant with a higher boiling point than CO2 . Using natural refrigerants such as CO2 and R290 can reduce the environmental impact. In addition, mixing CO2 into the low temperature side refrigerant improves the cooling capacity, and mixing R290 improves the COP and lowers the triple point of CO2 , enabling low-temperature use.
 第2圧縮機21は、例えば容量制御可能なインバータタイプの圧縮機である。第2圧縮機21は、低元側冷媒を吸入し、圧縮して高温高圧の状態にして吐出することで、低元側冷媒を低元回路2内に循環させる。 The second compressor 21 is, for example, a capacity-controllable inverter type compressor. The second compressor 21 draws in the low temperature side refrigerant, compresses it, and discharges it in a high temperature and high pressure state, thereby circulating the low temperature side refrigerant in the low temperature circuit 2 .
 レシーバ22は、カスケード熱交換器14と第2減圧装置23との間に配置され、カスケード熱交換器14の低元側流路142から流出した低元側冷媒を一時的に貯留する。レシーバ22によって、冷却負荷の変動により生じる余剰冷媒が貯留される。 The receiver 22 is arranged between the cascade heat exchanger 14 and the second pressure reducing device 23 and temporarily stores the low temperature side refrigerant flowing out of the low temperature side flow path 142 of the cascade heat exchanger 14 . The receiver 22 stores surplus refrigerant caused by fluctuations in the cooling load.
 第2減圧装置23は、例えば開度を制御可能な電子式膨張弁である。第2減圧装置23は、レシーバ22の冷媒出口に接続され、レシーバ22から流出した低元側冷媒を減圧して膨張させる。なお、第2減圧装置23は、毛細管又は感温式膨張弁であってもよい。 The second decompression device 23 is, for example, an electronic expansion valve whose opening can be controlled. The second decompression device 23 is connected to the refrigerant outlet of the receiver 22 and decompresses the low-side refrigerant flowing out of the receiver 22 to expand it. The second decompression device 23 may be a capillary tube or a temperature-sensitive expansion valve.
 蒸発器24は、例えばフィンチューブ式の熱交換器である。蒸発器24は、空気と低元側冷媒との間で熱交換を行い、低元側冷媒を蒸発してガス化させる。冷凍サイクル装置100は、蒸発器24に空気を供給するための第2ファン25を備えている。第2ファン25は、例えば風量を調整可能なプロペラファン又はクロスフローファンなどである。なお、蒸発器24は、例えば水又はブラインと低元側冷媒との間で熱交換を行うプレート式熱交換器などであってもよい。この場合は、第2ファン25は省略してもよい。 The evaporator 24 is, for example, a fin-tube heat exchanger. The evaporator 24 exchanges heat between the air and the low-side refrigerant to evaporate and gasify the low-side refrigerant. The refrigerating cycle device 100 includes a second fan 25 for supplying air to the evaporator 24 . The second fan 25 is, for example, a propeller fan or a cross-flow fan capable of adjusting the air volume. Note that the evaporator 24 may be a plate heat exchanger or the like that exchanges heat between water or brine and the low temperature side refrigerant, for example. In this case, the second fan 25 may be omitted.
 また、冷凍サイクル装置100は、低元回路2を循環する低元側冷媒の高圧圧力Pを検出する圧力センサ26を備えている。圧力センサ26は、カスケード熱交換器14の低元側流路142とレシーバ22とを接続する配管に設けられる。なお、圧力センサ26は、低元回路2の高圧側、すなわち第2圧縮機21の吐出口から第2減圧装置23の冷媒入口までの間の任意の箇所に設けることができる。圧力センサ26によって検出された低元側冷媒の高圧圧力Pは、制御装置3に送信される。 The refrigeration cycle device 100 also includes a pressure sensor 26 that detects the high pressure PH of the low temperature side refrigerant circulating in the low temperature circuit 2 . The pressure sensor 26 is provided in a pipe connecting the low-side flow path 142 of the cascade heat exchanger 14 and the receiver 22 . The pressure sensor 26 can be provided at any position on the high-pressure side of the low-voltage circuit 2 , that is, between the discharge port of the second compressor 21 and the refrigerant inlet of the second pressure reducing device 23 . The high pressure PH of the low-side refrigerant detected by the pressure sensor 26 is transmitted to the control device 3 .
 なお、圧力センサ26に替えて、低元側冷媒の高圧圧力Pに換算できる他の物理量(例えば凝縮温度)を検出するセンサを備え、制御装置3にて高圧圧力Pに換算してもよい。また、冷凍サイクル装置100は、外気温度を検出する外気温度センサ、冷凍室内の温度を検出する室内温度センサ、高元回路1及び低元回路2における任意の場所の冷媒の温度又は圧力を検出するセンサ等の図示しない各種センサをさらに備えていてもよい。 In place of the pressure sensor 26, a sensor for detecting another physical quantity (for example, the condensation temperature) that can be converted to the high pressure PH of the low-side refrigerant may be provided and converted to the high pressure PH by the control device 3. good. In addition, the refrigerating cycle device 100 detects the temperature or pressure of the refrigerant at any location in the outdoor temperature sensor that detects the outdoor temperature, the indoor temperature sensor that detects the temperature in the freezer compartment, and the high-level circuit 1 and the low-level circuit 2. Various sensors (not shown) such as sensors may be further provided.
 制御装置3は、冷凍サイクル装置100の全体の動作を制御する。制御装置3は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGAなどの専用のハードウェアもしくはその両方で構成される。本実施の形態の制御装置3は、圧力センサ26により検出された低元側冷媒の高圧圧力Pに基づき、高元回路1を制御する。また、制御装置3は、各種センサから受信した情報及び利用者から指示される運転内容に基づき、高元回路1及び低元回路2の各機器、並びに第1ファン15及び第2ファン25を制御する。 The control device 3 controls the overall operation of the refrigeration cycle device 100 . The control device 3 is composed of a processing device having a memory for storing data and programs necessary for control and a CPU for executing the programs, dedicated hardware such as ASIC or FPGA, or both. The control device 3 of the present embodiment controls the high temperature circuit 1 based on the high pressure PH of the low temperature side refrigerant detected by the pressure sensor 26 . In addition, the control device 3 controls each device of the high-level circuit 1 and the low-level circuit 2, and the first fan 15 and the second fan 25 based on the information received from various sensors and the operation contents instructed by the user. do.
 本実施の形態の冷凍サイクル装置100の動作を、各冷媒回路を循環する冷媒の流れに基づいて説明する。まず、高元回路1の動作について説明する。冷凍サイクル装置100の運転開始が指示されると、第1圧縮機11及び第2圧縮機21が駆動される。そして、高元回路1の第1圧縮機11は、高元側冷媒を吸入し、圧縮して高温高圧の状態にして吐出する。第1圧縮機11が吐出した高元側冷媒は凝縮器12へ流入する。凝縮器12は、第1ファン15から供給される空気と高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮液化する。 The operation of the refrigeration cycle device 100 of the present embodiment will be described based on the flow of refrigerant circulating through each refrigerant circuit. First, the operation of the high-level circuit 1 will be described. When the operation start of the refrigeration cycle device 100 is instructed, the first compressor 11 and the second compressor 21 are driven. The first compressor 11 of the high-voltage circuit 1 sucks the high-voltage side refrigerant, compresses it, and discharges it in a high-temperature, high-pressure state. The high pressure side refrigerant discharged from the first compressor 11 flows into the condenser 12 . The condenser 12 exchanges heat between the air supplied from the first fan 15 and the high temperature side refrigerant to condense and liquefy the high temperature side refrigerant.
 凝縮器12で凝縮液化された高元側冷媒は、第1減圧装置13を通過する。第1減圧装置13は凝縮液化された高元側冷媒を減圧する。第1減圧装置13が減圧した高元側冷媒は、カスケード熱交換器14の高元側流路141に流入する。高元側流路141に流入した高元側冷媒は、カスケード熱交換器14の低元側流路142を流れる低元側冷媒との間で熱交換され、蒸発ガス化される。カスケード熱交換器14で蒸発ガス化された高元側冷媒は、第1圧縮機11に再び吸入される。 The high-side refrigerant condensed and liquefied in the condenser 12 passes through the first decompression device 13 . The first decompression device 13 decompresses the condensed and liquefied high-side refrigerant. The high temperature side refrigerant decompressed by the first pressure reducing device 13 flows into the high temperature side flow path 141 of the cascade heat exchanger 14 . The high temperature refrigerant that has flowed into the high temperature flow passage 141 is heat-exchanged with the low temperature refrigerant flowing through the low temperature flow passage 142 of the cascade heat exchanger 14, and is evaporatively gasified. The high-pressure side refrigerant evaporated and gasified in the cascade heat exchanger 14 is sucked into the first compressor 11 again.
 次に、低元回路2の動作について説明する。低元回路2の第2圧縮機21は、低元側冷媒を吸入し、圧縮して高温高圧の状態にして吐出する。第2圧縮機21が吐出した低元側冷媒はカスケード熱交換器14の低元側流路142へ流入する。低元側流路142に流入した低元側冷媒は、カスケード熱交換器14の高元側流路141を流れる高元側冷媒との間で熱交換され、凝縮液化される。 Next, the operation of the low-level circuit 2 will be described. The second compressor 21 of the low temperature circuit 2 sucks the low temperature side refrigerant, compresses it, and discharges it in a high temperature and high pressure state. The low temperature side refrigerant discharged from the second compressor 21 flows into the low temperature side flow path 142 of the cascade heat exchanger 14 . The low temperature refrigerant that has flowed into the low temperature flow path 142 is heat-exchanged with the high temperature side refrigerant that flows through the high temperature flow path 141 of the cascade heat exchanger 14, and is condensed and liquefied.
 カスケード熱交換器14で凝縮液化された低元側冷媒は、レシーバ22に流入する。レシーバ22から流出した低元側冷媒は、第2減圧装置23を通過する。第2減圧装置23は、低元側冷媒を減圧する。第2減圧装置23が減圧した低元側冷媒は、蒸発器24に流入する。蒸発器24は、第2ファン25から供給される空気と低元側冷媒との間で熱交換を行い、低元側冷媒を蒸発ガス化する。このとき、低元側冷媒が空気から吸熱することによって、冷凍室が冷却される。蒸発器24で蒸発ガス化した低元側冷媒は、第2圧縮機21に再び吸入される。 The low-side refrigerant condensed and liquefied in the cascade heat exchanger 14 flows into the receiver 22 . The low-side refrigerant that has flowed out of the receiver 22 passes through the second pressure reducing device 23 . The second decompression device 23 decompresses the low-side refrigerant. The low-side refrigerant decompressed by the second decompression device 23 flows into the evaporator 24 . The evaporator 24 exchanges heat between the air supplied from the second fan 25 and the low temperature side refrigerant to evaporate the low temperature side refrigerant. At this time, the freezer compartment is cooled by the low-side refrigerant absorbing heat from the air. The low-side refrigerant evaporated and gasified by the evaporator 24 is sucked into the second compressor 21 again.
 低元回路2のレシーバ22には、冷凍サイクル装置100の運転条件又は負荷条件に応じて発生した余剰な液冷媒が貯留される。このとき、レシーバ22内の低元側冷媒のうち、沸点の低い冷媒がガスとなってレシーバ22内に滞留し、レシーバ22から流出して低元回路2内を循環する低元側冷媒の循環組成が変動する。例えば、本実施の形態のように、低元側冷媒として、COとR290の非共沸混合冷媒が用いられる場合、R290よりも沸点が低いCOがレシーバ22にガスとして滞留する。その結果、低元側冷媒の循環組成においては、可燃性冷媒であるR290の割合が増加する。これにより、低元回路2内を循環する低元側冷媒の可燃性が増加し、冷媒漏洩時の可燃性のリスクが増加してしまう。 The receiver 22 of the low-level circuit 2 stores excess liquid refrigerant generated according to the operating conditions or load conditions of the refrigeration cycle device 100 . At this time, among the low temperature side refrigerant in the receiver 22, the refrigerant with a low boiling point becomes gas and stays in the receiver 22, flows out from the receiver 22, and circulates in the low temperature circuit 2. Composition fluctuates. For example, when a non-azeotropic mixed refrigerant of CO 2 and R290 is used as the low-side refrigerant as in the present embodiment, CO 2 having a boiling point lower than that of R290 stays in the receiver 22 as gas. As a result, the ratio of R290, which is a combustible refrigerant, increases in the circulation composition of the low pressure side refrigerant. As a result, the flammability of the low-voltage side refrigerant circulating in the low-voltage circuit 2 increases, increasing the risk of flammability when the refrigerant leaks.
 そこで、本実施の形態の制御装置3は、高元回路1の能力を制御して、低元側冷媒の高圧圧力Pを、低元側冷媒が不燃性を維持する圧力値以下とする。図2は、低元側冷媒の燃焼性と高圧圧力Pとの関係を示すグラフである。図2のグラフは、本実施の形態のように低元側冷媒が非共沸混合冷媒であり、沸点が高い方の冷媒が可燃性を有する場合のグラフである。図2に示すように、低元側冷媒の高圧圧力Pが高いほど、燃焼性が高くなる。そのため、低元側冷媒を不燃に維持するためには、低元側冷媒の高圧圧力Pを閾値P以下とする必要がある。閾値Pは、低元側冷媒を構成する冷媒の物性によって一意的に決められるものである。本実施の形態では、低元側冷媒に応じて閾値Pが予め設定され、制御装置3に記憶される。制御装置3は、圧力センサ26で検出された低元側冷媒の高圧圧力Pが閾値P以下となるように、高元回路1の能力を制御する。 Therefore, the control device 3 of the present embodiment controls the capacity of the high-voltage circuit 1 to set the high-pressure pressure PH of the low-voltage side refrigerant to a pressure value at which the low-voltage side refrigerant maintains nonflammability. FIG. 2 is a graph showing the relationship between the combustibility of the low-side refrigerant and the high pressure PH . The graph of FIG. 2 is a graph when the low-side refrigerant is a non-azeotropic refrigerant mixture and the refrigerant with the higher boiling point is combustible, as in the present embodiment. As shown in FIG. 2, the higher the high pressure PH of the low-side refrigerant, the higher the combustibility. Therefore, in order to keep the low-concentration side refrigerant nonflammable, it is necessary to set the high-pressure pressure PH of the low-concentration side refrigerant to the threshold value PT or less. The threshold PT is uniquely determined by the physical properties of the refrigerant that constitutes the low-concentration side refrigerant. In the present embodiment, the threshold PT is set in advance according to the low-concentration side refrigerant and stored in the controller 3 . The control device 3 controls the capacity of the high-voltage circuit 1 so that the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26 is equal to or lower than the threshold value PT .
 図3は、実施の形態1に係る冷凍サイクル装置100の動作を示すフローチャートである。利用者からの指示等により冷凍サイクル装置100の運転が指示されると、制御装置3は、第1圧縮機11と第2圧縮機21とを駆動する(S1)。これにより、高元回路1に高元側冷媒が循環し、低元回路2に低元側冷媒が循環し、冷凍室が冷却される。 FIG. 3 is a flow chart showing the operation of the refrigeration cycle apparatus 100 according to Embodiment 1. FIG. When the operation of the refrigeration cycle device 100 is instructed by a user or the like, the control device 3 drives the first compressor 11 and the second compressor 21 (S1). As a result, the high temperature side refrigerant circulates in the high temperature circuit 1, the low temperature side refrigerant circulates in the low temperature circuit 2, and the freezer compartment is cooled.
 そして、圧力センサ26により低元側冷媒の高圧圧力Pが検出される(S2)。制御装置3は、圧力センサ26により検出された低元側冷媒の高圧圧力Pが、閾値P以下であるか否かを判断する(S3)。低元側冷媒の高圧圧力Pが、閾値P以下である場合は(S3:YES)、高元回路1の能力を維持したまま、ステップS5へ移行する。一方、低元側冷媒の高圧圧力Pが、閾値Pより大きい場合(S3:NO)、制御装置3は、高元回路1の能力を増加させる(S4)。具体的には、制御装置3は、高元回路1の第1圧縮機11の運転周波数を増加させる。ここでは、制御装置3は、第1圧縮機11の運転周波数を予め定められた一定の値だけ増加させてもよいし、低元側冷媒の高圧圧力Pと閾値Pとの差に応じた値だけ増加させてもよい。 Then, the high pressure PH of the low-side refrigerant is detected by the pressure sensor 26 (S2). The control device 3 determines whether or not the high-pressure pressure PH of the low-side refrigerant detected by the pressure sensor 26 is equal to or less than the threshold value PT (S3). When the high-pressure pressure PH of the low-side refrigerant is equal to or lower than the threshold value PT (S3: YES ), the performance of the high-voltage circuit 1 is maintained and the process proceeds to step S5. On the other hand, when the high-pressure pressure PH of the low-side refrigerant is greater than the threshold value PT (S3: NO), the control device 3 increases the capacity of the high-voltage circuit 1 (S4). Specifically, the control device 3 increases the operating frequency of the first compressor 11 of the high-level circuit 1 . Here, the control device 3 may increase the operating frequency of the first compressor 11 by a predetermined constant value, or may increase the operating frequency of the first compressor 11 according to the difference between the high pressure PH of the low-side refrigerant and the threshold value PT . may be increased by
 高元回路1の能力を増加させることにより、カスケード熱交換器14の高元側流路141を流れる高元側冷媒の温度が低下する。これにより、カスケード熱交換器14で高元側冷媒と熱交換される低元側冷媒の温度が低下し、低元側冷媒の高圧圧力Pが低下する。低元側冷媒の高圧圧力Pが低下することで、レシーバ22内のガス密度が低下し、レシーバ22におけるガス冷媒の質量が減少する。すなわち、低元側冷媒の高圧圧力Pが低下することで、レシーバ22に滞留する低沸点冷媒のガス量が減少し、レシーバ22から流出し、低元回路2を循環する低元側冷媒の組成変動を最小限に抑制することができる。 By increasing the capacity of the high temperature circuit 1, the temperature of the high temperature side refrigerant flowing through the high temperature side flow path 141 of the cascade heat exchanger 14 is lowered. As a result, the temperature of the low temperature side refrigerant heat-exchanged with the high temperature side refrigerant in the cascade heat exchanger 14 decreases, and the high pressure PH of the low temperature side refrigerant decreases. As the high-pressure pressure PH of the low-side refrigerant decreases, the gas density in the receiver 22 decreases and the mass of the gas refrigerant in the receiver 22 decreases. That is, as the high-pressure pressure PH of the low-side refrigerant decreases, the amount of low-boiling-point refrigerant gas remaining in the receiver 22 decreases, and the amount of low-side refrigerant flowing out of the receiver 22 and circulating in the low-side circuit 2 increases. Compositional fluctuations can be minimized.
 制御装置3は、利用者からの指示等により冷凍サイクル装置100の運転を停止するか否かを判断する(S5)。運転を停止しない場合は(S5:NO)、ステップS2に戻って以降の処理を繰り返す。一方、運転を停止する場合は(S5:YES)、第1圧縮機11及び第2圧縮機21を停止する(S6)。これにより、冷凍サイクル装置100の運転中は、低元側冷媒の高圧圧力Pが閾値P以下に維持される。 The control device 3 determines whether or not to stop the operation of the refrigeration cycle device 100 according to an instruction from the user or the like (S5). If the operation is not to be stopped (S5: NO), the process returns to step S2 and repeats the subsequent processes. On the other hand, when stopping the operation (S5: YES), the first compressor 11 and the second compressor 21 are stopped (S6). As a result, the high-pressure pressure PH of the low-concentration-side refrigerant is maintained at or below the threshold PT during operation of the refrigeration cycle device 100 .
 以上のように、本実施の形態の冷凍サイクル装置100では、低元側冷媒の高圧圧力Pが、低元側冷媒が不燃性を維持できる閾値P以下となるよう高元回路1が制御される。これにより、レシーバ22から流出し、低元回路2を循環する低元側冷媒の組成変動を抑制することができる。その結果、低元側冷媒として可燃性冷媒を含む非共沸混合冷媒を用いた場合も、冷媒漏洩時の可燃性のリスクの増加を抑制できる。また、本実施の形態のように、低元側冷媒として、COを含む混合冷媒を使用した場合、COの凝固点を低下させることができるため、凝固点(-56℃)以下での冷却も可能となる。 As described above, in the refrigeration cycle apparatus 100 of the present embodiment, the high-voltage circuit 1 controls the high-voltage circuit 1 so that the high-pressure pressure PH of the low-voltage side refrigerant is equal to or lower than the threshold value PT at which the low-voltage side refrigerant can maintain nonflammability. be done. As a result, it is possible to suppress the composition fluctuation of the low-voltage side refrigerant that flows out from the receiver 22 and circulates in the low-voltage circuit 2 . As a result, even when a non-azeotropic mixed refrigerant containing a flammable refrigerant is used as the low-side refrigerant, it is possible to suppress an increase in the risk of flammability when the refrigerant leaks. In addition, as in the present embodiment, when a mixed refrigerant containing CO 2 is used as the low temperature side refrigerant, the freezing point of CO 2 can be lowered, so cooling below the freezing point (-56 ° C) is also possible. It becomes possible.
 実施の形態2.
 実施の形態2に係る冷凍サイクル装置100について説明する。図4は、実施の形態2に係る冷凍サイクル装置100の動作を示すフローチャートである。本実施の形態では、停止指示後の冷凍サイクル装置100の動作において、実施の形態1と相違する。冷凍サイクル装置100の構成は、実施の形態1と同じである。
Embodiment 2.
A refrigeration cycle apparatus 100 according to Embodiment 2 will be described. FIG. 4 is a flow chart showing the operation of the refrigeration cycle apparatus 100 according to the second embodiment. This embodiment differs from the first embodiment in the operation of refrigeration cycle apparatus 100 after the stop instruction. The configuration of the refrigeration cycle device 100 is the same as that of the first embodiment.
 図4に示すように、冷凍サイクル装置100の運転中の動作(ステップS1~S4)は、実施の形態1と同じである。制御装置3は、利用者からの指示等により冷凍サイクル装置100の運転を停止するか否かを判断する(S5)。運転を停止しない場合は(S5:NO)、ステップS2に戻って以降の処理を繰り返す。 As shown in FIG. 4, the operations during operation of the refrigeration cycle device 100 (steps S1 to S4) are the same as in the first embodiment. The control device 3 determines whether or not to stop the operation of the refrigeration cycle device 100 according to an instruction from the user or the like (S5). If the operation is not to be stopped (S5: NO), the process returns to step S2 and repeats the subsequent processes.
 一方、運転を停止する場合(S5:YES)、制御装置3は、低元回路2において、ポンプダウン運転を行う(S11)。ここでは、制御装置3は、第2減圧装置23を全閉とし、第2圧縮機21の運転を継続する。レシーバ22の下流側に位置する第2減圧装置23が閉じられているため、低元回路2内の低元側冷媒は、カスケード熱交換器14の低元側流路142とレシーバ22とに回収される。その後、制御装置3は、第2圧縮機21を停止する(S12)。これにより、低元回路2における低元側冷媒の循環が停止する。 On the other hand, if the operation is to be stopped (S5: YES), the control device 3 performs pump-down operation in the low-level circuit 2 (S11). Here, the control device 3 fully closes the second pressure reducing device 23 and continues the operation of the second compressor 21 . Since the second decompression device 23 located downstream of the receiver 22 is closed, the low temperature side refrigerant in the low temperature circuit 2 is collected in the low temperature side flow path 142 of the cascade heat exchanger 14 and the receiver 22. be done. After that, the control device 3 stops the second compressor 21 (S12). As a result, circulation of the low-voltage side refrigerant in the low-voltage circuit 2 is stopped.
 なお、レシーバ22の冷媒出口と第2減圧装置23との間に電磁弁を設け、該電磁弁を閉じてポンプダウン運転を行ってもよい。また、低元回路2の低圧側、すなわち第2減圧装置23の冷媒出口から第2圧縮機21の吸入口までの間に低元側冷媒の低圧圧力を検出する圧力センサを設け、低元側冷媒の低圧圧力が大気圧以下となった場合に第2圧縮機21を停止してもよい。これにより、低元回路2の低圧側に冷媒がなくなった後も第2圧縮機21の駆動が継続されることによる故障などを防ぐことができる。 A solenoid valve may be provided between the refrigerant outlet of the receiver 22 and the second pressure reducing device 23, and the pump-down operation may be performed by closing the solenoid valve. Further, a pressure sensor for detecting the low-pressure pressure of the low-voltage side refrigerant is provided between the low-pressure side of the low-voltage circuit 2, that is, the refrigerant outlet of the second pressure reducing device 23 and the suction port of the second compressor 21. The second compressor 21 may be stopped when the low pressure of the refrigerant becomes lower than the atmospheric pressure. As a result, it is possible to prevent a failure or the like caused by continuing to drive the second compressor 21 even after there is no more refrigerant on the low-pressure side of the low-voltage circuit 2 .
 そして、圧力センサ26により低元側冷媒の高圧圧力Pが検出される(S13)。制御装置3は、圧力センサ26により検出された低元側冷媒の高圧圧力Pが、閾値P以下であるか否かを判断する(S14)。低元側冷媒の高圧圧力Pが、閾値P以下である場合は(S14:YES)、高元回路1の能力を維持したまま、ステップS16へ移行する。一方、低元側冷媒の高圧圧力Pが、閾値Pより大きい場合(S14:NO)、制御装置3は、高元回路1の能力を増加させる(S15)。具体的には、実施の形態1と同様に、制御装置3は高元回路1の第1圧縮機11の運転周波数を増加させる。 Then, the high pressure PH of the low-side refrigerant is detected by the pressure sensor 26 (S13). The control device 3 determines whether or not the high-pressure pressure PH of the low-side refrigerant detected by the pressure sensor 26 is equal to or less than the threshold value PT (S14). If the high-pressure pressure PH of the low-voltage side refrigerant is equal to or less than the threshold value PT (S14: YES), the process proceeds to step S16 while maintaining the performance of the high-voltage circuit 1 . On the other hand, when the high pressure PH of the low-side refrigerant is greater than the threshold PT (S14: NO), the control device 3 increases the capacity of the high-voltage circuit 1 (S15). Specifically, as in the first embodiment, the control device 3 increases the operating frequency of the first compressor 11 of the high-level circuit 1 .
 ここで、低元回路2における低元側冷媒の循環が停止した場合も、低元回路2のレシーバ22においては、低沸点冷媒がガス化し、レシーバ22内の液冷媒の組成が変動することがある。例えば、本実施の形態の場合は、低沸点冷媒であるCOがレシーバ22内においてガス化し、レシーバ22内における液冷媒の組成においては、可燃性冷媒であるR290の割合が増加する。また、ポンプダウン運転によりレシーバ22には大量の液冷媒が存在するため、レシーバ22から冷媒漏洩が生じた場合のリスクが増加してしまう。 Here, even when the circulation of the low temperature side refrigerant in the low temperature circuit 2 stops, in the receiver 22 of the low temperature circuit 2, the low boiling point refrigerant gasifies and the composition of the liquid refrigerant in the receiver 22 may fluctuate. be. For example, in the case of the present embodiment, CO2 , which is a low-boiling-point refrigerant, is gasified within the receiver 22, and in the composition of the liquid refrigerant within the receiver 22, the ratio of R290, which is a combustible refrigerant, increases. Moreover, since a large amount of liquid refrigerant exists in the receiver 22 due to the pump-down operation, the risk of refrigerant leakage from the receiver 22 increases.
 これに対し、本実施の形態では、低元回路2の停止後も、低元側冷媒の高圧圧力Pが、低元側冷媒が不燃性を維持できる閾値P以下となるよう高元回路1が制御される。これにより、カスケード熱交換器14の低元側流路142に滞留する低元側冷媒の温度が低下し、低元側冷媒の高圧圧力Pが低下する。そして、カスケード熱交換器14にて温度が低下した低元側冷媒が、温度及び圧力の均衡を維持するように自然に対流してレシーバ22に流入することで、レシーバ22のガス密度が低下し、レシーバ22におけるガス冷媒の質量が減少する。これにより、レシーバ22における低沸点冷媒(CO)のガス冷媒量が減少し、レシーバ22内の液冷媒の組成変動を最小限に抑制することができる。 In contrast, in the present embodiment, even after the low-voltage circuit 2 is stopped, the high-voltage circuit is controlled so that the high-pressure pressure PH of the low-voltage side refrigerant is equal to or lower than the threshold PT at which the low-voltage side refrigerant can maintain nonflammability. 1 is controlled. As a result, the temperature of the low temperature side refrigerant staying in the low temperature side flow path 142 of the cascade heat exchanger 14 is lowered, and the high pressure PH of the low temperature side refrigerant is lowered. Then, the low-side refrigerant whose temperature has decreased in the cascade heat exchanger 14 flows into the receiver 22 through natural convection so as to maintain the temperature and pressure balance, thereby decreasing the gas density of the receiver 22. , the mass of the gas refrigerant in the receiver 22 is reduced. As a result, the amount of low-boiling-point refrigerant (CO 2 ) gas refrigerant in the receiver 22 is reduced, and fluctuations in the composition of the liquid refrigerant in the receiver 22 can be minimized.
 制御装置3は、利用者からの指示等により冷凍サイクル装置100の運転を開始するか否かを判断する(S16)。運転を開始しない場合は(S16:NO)、ステップS13に戻って以降の処理を繰り返す。運転を開始する場合は(S16:YES)、ステップS1に移行し、第2圧縮機21を駆動して低元回路2に低元側冷媒を循環させる。 The control device 3 determines whether or not to start the operation of the refrigeration cycle device 100 according to an instruction from the user (S16). If the operation is not to be started (S16: NO), the process returns to step S13 and the subsequent processes are repeated. If the operation is to be started (S16: YES), the process proceeds to step S1, and the second compressor 21 is driven to circulate the low temperature side refrigerant in the low temperature circuit 2.
 以上のように、本実施の形態の冷凍サイクル装置100では、実施の形態1と同じ効果に加え、冷凍サイクル装置100の停止時においても、レシーバ22に滞留する液冷媒の組成変動を抑制することができる。その結果、低元側冷媒として可燃性冷媒を含む非共沸混合冷媒を用いていた場合も、レシーバ22からの冷媒漏洩時の可燃性のリスクの増加を抑えることができる。 As described above, in the refrigerating cycle device 100 of the present embodiment, in addition to the same effects as in the first embodiment, even when the refrigerating cycle device 100 is stopped, fluctuations in the composition of the liquid refrigerant remaining in the receiver 22 can be suppressed. can be done. As a result, even when a non-azeotropic mixed refrigerant containing a flammable refrigerant is used as the low-side refrigerant, an increase in the risk of flammability when refrigerant leaks from the receiver 22 can be suppressed.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形又は組み合わせることが可能である。例えば、低元側冷媒は、COとR290の非共沸混合冷媒に限定されるものではなく、その他の非共沸混合冷媒であってもよい。ただし、低元側冷媒がCOと可燃性冷媒とを含む非共沸混合冷媒の場合に、特に上記実施の形態の効果を得ることができる。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure. For example, the low-side refrigerant is not limited to a non-azeotropic refrigerant mixture of CO 2 and R290, and may be other non-azeotropic refrigerant mixtures. However, when the low-side refrigerant is a non-azeotropic mixed refrigerant containing CO 2 and a combustible refrigerant, the effects of the above embodiment can be particularly obtained.
 また、上記実施の形態では、制御装置3が冷凍サイクル装置100の全体の制御を行う構成としたが、高元回路1及び低元回路2にそれぞれ制御装置3を設け、高元回路1及び低元回路2の動作を個別に制御してもよい。 Further, in the above-described embodiment, the controller 3 is configured to control the entire refrigeration cycle apparatus 100. The operation of the original circuit 2 may be individually controlled.
 また、上記実施の形態では、第1圧縮機11の運転周波数を制御することで、高元回路1の能力を制御する構成としたが、これに限定されるものではない。例えば、第1圧縮機11の運転周波数に替えて又は加えて、高元回路1の第1減圧装置13の開度又は第1ファン15の回転数を制御することで、高元回路1の能力を制御してもよい。この場合、制御装置3は、低元側冷媒の高圧圧力Pが閾値Pより大きい場合は、第1減圧装置13の開度及び第1ファン15の回転数を増加させて、高元回路1の能力を増加させる。 Further, in the above-described embodiment, by controlling the operating frequency of the first compressor 11, the performance of the high-level circuit 1 is controlled, but the present invention is not limited to this. For example, instead of or in addition to the operating frequency of the first compressor 11, by controlling the opening degree of the first decompression device 13 of the high-level circuit 1 or the rotation speed of the first fan 15, the capacity of the high-level circuit 1 may be controlled. In this case, when the high-pressure pressure PH of the low-side refrigerant is greater than the threshold PT , the control device 3 increases the opening degree of the first decompression device 13 and the rotation speed of the first fan 15 to Increases 1 ability.
 また、上記実施の形態では、圧力センサ26によって検出された低元側冷媒の高圧圧力Pに応じて高元回路1を制御する構成としたが、これに限定されるものではない。例えば、制御装置3は、低元側冷媒の高圧圧力Pに対応する低元側冷媒の凝縮温度に応じて高元回路1を制御してもよい。もしくは、制御装置3は、低元回路2の冷却負荷に応じて高元回路1を制御することで、低元側冷媒の高圧圧力Pを、低元側冷媒が不燃性を維持する圧力値以下としてもよい。低元回路2の冷却負荷は、例えば冷却対象である冷凍室等の室内温度等に基づき求められる。この場合、制御装置3は、低元回路2の冷却負荷が増加する場合には、高元回路1の能力を増加させ、低元回路2の冷却負荷が減少する場合には、高元回路1の能力を低下させる。これにより、低元回路2の冷却負荷の増加により低元側冷媒の高圧圧力Pが上昇した場合も、高元回路1の能力が増加することで、低元側冷媒の高圧圧力Pを低下させることができる。その結果、低元側冷媒の高圧圧力Pを低元側冷媒が不燃性を維持する圧力値以下に維持することができる。なお、本変形例では、圧力センサ26を省略してもよいし、圧力センサ26により検出された低元側冷媒の高圧圧力Pに基づく制御を組み合わせて行ってもよい。 In the above embodiment, the high-voltage circuit 1 is controlled according to the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26, but the present invention is not limited to this. For example, the control device 3 may control the high temperature circuit 1 according to the condensation temperature of the low temperature side refrigerant corresponding to the high pressure PH of the low temperature side refrigerant. Alternatively, the control device 3 controls the high-voltage circuit 1 in accordance with the cooling load of the low-voltage circuit 2 to set the high-pressure pressure PH of the low-voltage side refrigerant to a pressure value at which the low-voltage side refrigerant maintains nonflammability. The following may be used. The cooling load of the low-order circuit 2 is determined based on the room temperature of the freezer compartment or the like, which is to be cooled, for example. In this case, the control device 3 increases the capacity of the high-level circuit 1 when the cooling load of the low-level circuit 2 increases, and increases the capacity of the high-level circuit 1 when the cooling load of the low-level circuit 2 decreases. reduce the ability of As a result, even if the high pressure PH of the low temperature side refrigerant rises due to an increase in the cooling load of the low temperature circuit 2, the high pressure PH of the low temperature side refrigerant is increased by increasing the capacity of the high temperature circuit 1. can be lowered. As a result, the high pressure PH of the low temperature side refrigerant can be maintained below the pressure value at which the low temperature side refrigerant maintains non-flammability. In this modified example, the pressure sensor 26 may be omitted, or control based on the high pressure PH of the low-side refrigerant detected by the pressure sensor 26 may be combined.
 また、低元回路2に、圧力又は温度が基準値まで上昇すると開放される圧力逃し装置を設け、圧力逃し装置によって、低元側冷媒の高圧圧力Pを低元側冷媒が不燃性を維持する圧力値以下としてもよい。図5は、変形例に係る冷凍サイクル装置100Aの概略構成図である。図5に示すように、冷凍サイクル装置100Aは圧力逃し装置27を備える。圧力逃し装置27は、低元回路2の高圧側の冷媒配管又はレシーバ22に設けられている。圧力逃し装置27は、圧力逃し弁又は可溶栓であり、低元側冷媒の高圧圧力P又は凝縮温度が閾値P以上となった場合に弁又は栓が開放されることで、ガス冷媒が外部に排出され、低元側冷媒の高圧圧力Pが低下する。閾値Pは、上記実施の形態と同様に、低元側冷媒が不燃性を維持できる圧力値又は温度である。これにより、低元側冷媒の高圧圧力Pを低元側冷媒が不燃性を維持できる圧力値以下に維持することができる。なお、本変形例においては、圧力センサ26によって検出された低元側冷媒の高圧圧力P又は冷却負荷による高元回路1の制御を省略してもよいし、これらの制御を組み合わせて行ってもよい。 In addition, the low temperature circuit 2 is provided with a pressure relief device that is opened when the pressure or temperature rises to a reference value. It may be less than or equal to the pressure value. FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus 100A according to a modification. As shown in FIG. 5, the refrigeration cycle device 100A includes a pressure relief device 27. As shown in FIG. A pressure relief device 27 is provided in the refrigerant pipe or receiver 22 on the high pressure side of the low-voltage circuit 2 . The pressure relief device 27 is a pressure relief valve or a fusible plug, and when the high-pressure pressure PH or the condensation temperature of the low-side refrigerant becomes equal to or higher than the threshold PT , the valve or the plug is opened to release the gas refrigerant. is discharged to the outside, and the high-pressure pressure PH of the low-concentration side refrigerant is lowered. The threshold value PT is a pressure value or temperature at which the low-side refrigerant can maintain nonflammability, as in the above embodiment. As a result, the high-pressure pressure PH of the low-side refrigerant can be maintained at or below a pressure value at which the low-side refrigerant can maintain nonflammability. In this modification, the control of the high-voltage circuit 1 by the high pressure PH of the low-voltage side refrigerant detected by the pressure sensor 26 or the cooling load may be omitted, or these controls may be combined. good too.
 1 高元回路、2 低元回路、3 制御装置、11 第1圧縮機、12 凝縮器、13 第1減圧装置、14 カスケード熱交換器、15 第1ファン、21 第2圧縮機、22 レシーバ、23 第2減圧装置、24 蒸発器、25 第2ファン、26 圧力センサ、27 圧力逃し装置、100、100A 冷凍サイクル装置、141 高元側流路、142 低元側流路。 1 higher circuit, 2 lower circuit, 3 controller, 11 first compressor, 12 condenser, 13 first pressure reducing device, 14 cascade heat exchanger, 15 first fan, 21 second compressor, 22 receiver, 23 second decompression device, 24 evaporator, 25 second fan, 26 pressure sensor, 27 pressure relief device, 100, 100A refrigeration cycle device, 141 high side flow path, 142 low side flow path.

Claims (9)

  1.  第1圧縮機、凝縮器、第1減圧装置、及びカスケード熱交換器を備え、高元側冷媒が循環する高元回路と、
     第2圧縮機、前記カスケード熱交換器、レシーバ、第2減圧装置、及び蒸発器を備え、低元側冷媒が循環する低元回路と、を備え、
     前記カスケード熱交換器は、前記高元側冷媒と前記低元側冷媒とを熱交換するものであり、
     前記低元側冷媒は、非共沸混合冷媒であり、
     前記低元回路を循環する前記低元側冷媒の高圧圧力は、前記低元側冷媒が不燃性を維持できる圧力以下に維持される冷凍サイクル装置。
    a high-level circuit including a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, in which a high-level side refrigerant circulates;
    a low-level circuit including a second compressor, the cascade heat exchanger, a receiver, a second decompression device, and an evaporator, in which a low-level side refrigerant circulates;
    The cascade heat exchanger exchanges heat between the high temperature side refrigerant and the low temperature side refrigerant,
    the low-side refrigerant is a non-azeotropic refrigerant mixture,
    A refrigeration cycle apparatus in which a high pressure of the low temperature side refrigerant circulating in the low temperature circuit is maintained at or below a pressure at which the low temperature side refrigerant can maintain nonflammability.
  2.  制御装置をさらに備え、
     前記制御装置は、前記低元回路を循環する前記低元側冷媒の前記高圧圧力が閾値以下となるよう前記高元回路を制御するものであり、
     前記閾値は、前記低元側冷媒が不燃性を維持できる圧力である請求項1に記載の冷凍サイクル装置。
    further comprising a control device,
    The control device controls the high-level circuit such that the high-pressure pressure of the low-level side refrigerant circulating in the low-level circuit is equal to or lower than a threshold,
    2. The refrigeration cycle apparatus according to claim 1, wherein the threshold is a pressure at which the low-side refrigerant can maintain nonflammability.
  3.  前記制御装置は、前記低元側冷媒の前記高圧圧力が前記閾値より大きい場合、前記高元回路の能力を増加させる請求項2に記載の冷凍サイクル装置。 3. The refrigeration cycle apparatus according to claim 2, wherein the control device increases the capacity of the high temperature circuit when the high pressure of the low temperature side refrigerant is greater than the threshold value.
  4.  前記制御装置は、前記低元側冷媒の前記高圧圧力が前記閾値より大きい場合、前記第1圧縮機の運転周波数を増加させる請求項2又は3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2 or 3, wherein the control device increases the operating frequency of the first compressor when the high pressure of the low-side refrigerant is greater than the threshold value.
  5.  前記制御装置は、前記第2圧縮機の停止後も前記第1圧縮機の駆動を継続し、前記低元側冷媒の前記高圧圧力が前記閾値以下となるよう前記高元回路を制御する請求項2~4の何れか一項に記載の冷凍サイクル装置。 The control device continues to drive the first compressor even after stopping the second compressor, and controls the high-voltage circuit so that the high pressure of the low-voltage side refrigerant is equal to or less than the threshold value. The refrigeration cycle apparatus according to any one of 2 to 4.
  6.  前記制御装置は、前記低元回路の冷却負荷が増加した場合、前記高元回路の能力を増加させる請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the control device increases the capacity of the higher circuit when the cooling load of the lower circuit increases.
  7.  前記低元回路は、前記低元側冷媒の前記高圧圧力が閾値以上となった場合に開放される圧力逃し装置を有し、
     前記閾値は前記低元側冷媒が不燃性を維持できる圧力である請求項1に記載の冷凍サイクル装置。
    the low temperature circuit has a pressure relief device that is opened when the high pressure of the low temperature side refrigerant exceeds a threshold;
    2. The refrigeration cycle apparatus according to claim 1, wherein the threshold is a pressure at which the low-side refrigerant can maintain nonflammability.
  8.  前記低元側冷媒は、COと可燃性冷媒とを含む非共沸混合冷媒である請求項1~7の何れか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the low-side refrigerant is a non-azeotropic mixed refrigerant containing CO 2 and a combustible refrigerant.
  9.  第1圧縮機、凝縮器、第1減圧装置、及びカスケード熱交換器を備え、高元側冷媒が循環する高元回路と、
     第2圧縮機、前記カスケード熱交換器、レシーバ、第2減圧装置、及び蒸発器を備え、低元側冷媒が循環する低元回路と、
     を備える冷凍サイクル装置の制御方法であって、
     前記カスケード熱交換器は、前記高元側冷媒と前記低元側冷媒とを熱交換するものであり、
     前記低元側冷媒は、非共沸混合冷媒であり、
     前記低元回路を循環する前記低元側冷媒の高圧圧力を前記低元側冷媒が不燃性を維持できる圧力以下に維持する冷凍サイクル装置の制御方法。
    a high-level circuit including a first compressor, a condenser, a first pressure reducing device, and a cascade heat exchanger, in which a high-level side refrigerant circulates;
    a low temperature circuit including a second compressor, the cascade heat exchanger, a receiver, a second pressure reducing device, and an evaporator, in which low temperature side refrigerant circulates;
    A control method for a refrigeration cycle device comprising
    The cascade heat exchanger exchanges heat between the high temperature side refrigerant and the low temperature side refrigerant,
    the low-side refrigerant is a non-azeotropic refrigerant mixture,
    A control method for a refrigeration cycle device for maintaining a high pressure of the low temperature side refrigerant circulating in the low temperature circuit at or below a pressure at which the low temperature side refrigerant can maintain nonflammability.
PCT/JP2021/029052 2021-08-05 2021-08-05 Refrigeration circuit device and refrigeration circuit control method WO2023012960A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023539474A JPWO2023012960A1 (en) 2021-08-05 2021-08-05
PCT/JP2021/029052 WO2023012960A1 (en) 2021-08-05 2021-08-05 Refrigeration circuit device and refrigeration circuit control method
CN202180101065.3A CN117716185A (en) 2021-08-05 2021-08-05 Refrigeration cycle device and control method for refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029052 WO2023012960A1 (en) 2021-08-05 2021-08-05 Refrigeration circuit device and refrigeration circuit control method

Publications (1)

Publication Number Publication Date
WO2023012960A1 true WO2023012960A1 (en) 2023-02-09

Family

ID=85154427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029052 WO2023012960A1 (en) 2021-08-05 2021-08-05 Refrigeration circuit device and refrigeration circuit control method

Country Status (3)

Country Link
JP (1) JPWO2023012960A1 (en)
CN (1) CN117716185A (en)
WO (1) WO2023012960A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019944A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Low-temperature working fluid and refrigerating cycle apparatus using the same
JP2008215672A (en) * 2007-03-01 2008-09-18 Mac:Kk Residual gas recovering method of refrigerating cycle using combustible refrigerant gas and its device
JP2012087978A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Refrigerating device
JP2012112615A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
WO2014030236A1 (en) 2012-08-23 2014-02-27 三菱電機株式会社 Refrigeration device
WO2014045400A1 (en) * 2012-09-21 2014-03-27 三菱電機株式会社 Refrigeration device and method for controlling same
WO2015045354A1 (en) * 2013-09-27 2015-04-02 パナソニックヘルスケア株式会社 Refrigerating device
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
WO2018198203A1 (en) * 2017-04-25 2018-11-01 三菱電機株式会社 Binary refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019944A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Low-temperature working fluid and refrigerating cycle apparatus using the same
JP2008215672A (en) * 2007-03-01 2008-09-18 Mac:Kk Residual gas recovering method of refrigerating cycle using combustible refrigerant gas and its device
JP2012087978A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Refrigerating device
JP2012112615A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
WO2014030236A1 (en) 2012-08-23 2014-02-27 三菱電機株式会社 Refrigeration device
WO2014045400A1 (en) * 2012-09-21 2014-03-27 三菱電機株式会社 Refrigeration device and method for controlling same
WO2015045354A1 (en) * 2013-09-27 2015-04-02 パナソニックヘルスケア株式会社 Refrigerating device
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
WO2018198203A1 (en) * 2017-04-25 2018-11-01 三菱電機株式会社 Binary refrigeration device

Also Published As

Publication number Publication date
JPWO2023012960A1 (en) 2023-02-09
CN117716185A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
EP2642220A1 (en) Freezer
WO2019073870A1 (en) Refrigeration device
US10422558B2 (en) Refrigeration cycle device
US20200333056A1 (en) Refrigeration cycle apparatus
WO2015071967A1 (en) Refrigeration system
EP3128257A1 (en) Refrigeration cycle device
JP4974658B2 (en) Air conditioner
WO2013093979A1 (en) Air conditioner
WO2016079834A1 (en) Air conditioning device
WO2014129361A1 (en) Air conditioner
JP2000292037A (en) Air conditioner
WO2010100707A1 (en) Air conditioner
JPWO2019021464A1 (en) Air conditioner
WO2023012960A1 (en) Refrigeration circuit device and refrigeration circuit control method
WO2017170538A1 (en) Refrigeration device
JP2012207841A (en) Indoor unit and air conditioning device
WO2023012961A1 (en) Refrigeration circuit device and control method for refrigeration circuit device
JP4999531B2 (en) Air conditioner
WO2018155028A1 (en) Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
JP2015111047A (en) Refrigerating machine
JP6393181B2 (en) Refrigeration cycle equipment
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
JP2014105962A (en) Refrigeration unit
WO2022249289A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539474

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952785

Country of ref document: EP

Effective date: 20240305