JP6715918B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6715918B2
JP6715918B2 JP2018502900A JP2018502900A JP6715918B2 JP 6715918 B2 JP6715918 B2 JP 6715918B2 JP 2018502900 A JP2018502900 A JP 2018502900A JP 2018502900 A JP2018502900 A JP 2018502900A JP 6715918 B2 JP6715918 B2 JP 6715918B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
sat
refrigeration cycle
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018502900A
Other languages
Japanese (ja)
Other versions
JPWO2017149642A1 (en
Inventor
智隆 石川
智隆 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017149642A1 publication Critical patent/JPWO2017149642A1/en
Application granted granted Critical
Publication of JP6715918B2 publication Critical patent/JP6715918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Description

本発明は、空調、給湯等の用途に利用される冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device used for applications such as air conditioning and hot water supply.

従来、特許文献1のように、蒸発器と、コンプレッサ(本発明の圧縮機に相当する)と、凝縮器と、キャピラリチューブ(本発明の減圧装置に相当する)とが冷媒が循環する管路によってそれぞれ接続され、冷媒を循環させる冷凍サイクル装置が知られていた。 Conventionally, as in Patent Document 1, an evaporator, a compressor (corresponding to the compressor of the present invention), a condenser, and a capillary tube (corresponding to the pressure reducing device of the present invention) in which refrigerant circulates There has been known a refrigeration cycle device that is connected to each other and circulates a refrigerant.

また、冷凍サイクル装置に使用される冷媒には複数種類の冷媒を混合した非共沸混合冷媒が用いられることがある。非共沸混合冷媒は同圧力下において相変化で温度が変化し、蒸発過程において下流側が上流側より温度が高くなり、冷凍サイクル装置の冷媒に非共沸混合冷媒を用いると蒸発器の出口側の方が蒸発器の入口側よりも温度が高くなる。また、蒸発器に送り込まれる冷媒は温度が低いほど蒸発器の冷却性能は向上するが、蒸発器に送り込まれる冷媒の温度が0℃を下回ってしまうと蒸発器に着霜する問題が生じてしまうため、冷凍サイクル装置に非共沸混合冷媒を使用すると蒸発器に流れる冷媒の温度が高めであり冷却性能が不十分な場合があった。 Further, a non-azeotropic mixed refrigerant in which a plurality of kinds of refrigerants are mixed may be used as the refrigerant used in the refrigeration cycle device. The temperature of the non-azeotropic mixed refrigerant changes due to the phase change under the same pressure, and the temperature becomes lower on the downstream side than on the upstream side in the evaporation process.If the non-azeotropic mixed refrigerant is used as the refrigerant of the refrigeration cycle device, the outlet side of the evaporator Has a higher temperature than the inlet side of the evaporator. Further, the lower the temperature of the refrigerant sent to the evaporator is, the more the cooling performance of the evaporator is improved, but if the temperature of the refrigerant sent to the evaporator is lower than 0° C., the problem of frost formation on the evaporator occurs. Therefore, when a non-azeotropic mixed refrigerant is used in the refrigeration cycle device, the temperature of the refrigerant flowing to the evaporator is high and the cooling performance may be insufficient.

これに対して、特許文献1では、蒸発過程の管路内の圧力損失を大きくして、蒸発器内の冷媒の温度が一定になるよう蒸発過程の管路内の圧力を徐々に低下させる蒸発器冷凍サイクル装置が記載されている。このような冷凍サイクル装置では、蒸発過程における温度の上昇が抑制され、冷却性能の向上と着霜の防止を両立できる。 On the other hand, in Patent Document 1, the evaporation in which the pressure loss in the pipeline in the evaporation process is increased and the pressure in the pipeline in the evaporation process is gradually decreased so that the temperature of the refrigerant in the evaporator becomes constant. A refrigeration cycle apparatus is described. In such a refrigeration cycle apparatus, a rise in temperature during the evaporation process is suppressed, and both improvement of cooling performance and prevention of frost formation can be achieved.

特開平9−133433号公報JP, 9-133433, A

しかしながら、蒸発過程の管路内の圧力損失、つまり蒸発器の圧力損失を大きくすると、蒸発器内の冷媒の圧力が小さくなり、蒸発器の熱交換性能が低くなってしまう。このため、蒸発器の圧力損失によっては、蒸発過程における温度の上昇の抑制に起因する性能の向上よりも、圧力損失の増大に起因する性能の低下の方が大きくなってしまい、冷凍サイクル装置全体の運転性能が低下してしまう問題がある。特に、蒸発温度の低い低温機器、寒冷地での給湯・暖房運転、動作圧力の低い冷媒を用いた場合では、蒸発器の冷媒の圧力低下による冷凍サイクル装置の性能低下への影響度は大きく、この問題が顕著に表れてしまう。 However, if the pressure loss in the pipeline in the evaporation process, that is, the pressure loss of the evaporator is increased, the pressure of the refrigerant in the evaporator is decreased, and the heat exchange performance of the evaporator is deteriorated. Therefore, depending on the pressure loss of the evaporator, the performance deterioration due to the increase of the pressure loss becomes larger than the performance improvement due to the suppression of the temperature rise in the evaporation process, and the entire refrigeration cycle apparatus. There is a problem in that the driving performance of In particular, when a low-temperature device with a low evaporation temperature, hot water supply/heating operation in a cold region, or a refrigerant with a low operating pressure is used, the decrease in the refrigerant pressure in the evaporator greatly affects the performance of the refrigeration cycle device, This problem becomes apparent.

本発明は上記の課題を鑑みてなされたものであり、冷凍サイクル装置全体の運転性能の低下を防止した冷凍サイクル装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus that prevents a decrease in the operating performance of the entire refrigeration cycle apparatus.

本発明の冷凍サイクル装置は、圧縮機と、凝縮器と、減圧装置と、蒸発器を有し、内部で単一冷媒が循環する冷凍サイクルと、制御装置と、を備え、前記蒸発器には、流速センサが取り付けられており、前記蒸発器の熱交換量をQ(W)、前記蒸発器の冷媒流路径をd(m)、前記蒸発器の管内側伝熱面積をA(m)、前記冷媒の平均熱伝導率をk(W/mK)、前記冷媒の平均密度をρ(kg/m)、前記冷媒の平均粘度をμ(Pa・s)、前記冷媒のプラントル数をPr、前記蒸発器を流れる前記冷媒の平均流速をu(m/s)、前記冷媒の種類によって定められ前記蒸発の入口と出口の冷媒飽和温度差を示す前記平均流速uの関数をTsat(u)とし、

Figure 0006715918
の式で表される関数Tsat_u(u)の最小値をTsat_u_minとして、前記制御装置は、前記流速センサの測定値が、前記関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような前記平均流速uに近づくように前記冷媒が前記蒸発器を流れるように、前記圧縮機の回転数を制御することを特徴としている。 The refrigeration cycle apparatus of the present invention includes a compressor, a condenser, a decompression device, an evaporator, and a refrigeration cycle in which a single refrigerant is circulated, and a control device, and the evaporator includes , A flow rate sensor is attached , the heat exchange amount of the evaporator is Q(W), the refrigerant flow path diameter of the evaporator is d(m), and the heat transfer area inside the tube of the evaporator is A i (m 2 ). ), the average thermal conductivity of the refrigerant is k (W/mK), the average density of the refrigerant is ρ (kg/m 3 ), the average viscosity of the refrigerant is μ (Pa·s), and the Prandtl number of the refrigerant is Pr, the average flow velocity of the refrigerant flowing through the evaporator is u (m/s), and a function of the average flow velocity u that is defined by the type of the refrigerant and represents the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator is T sat. (U),
Figure 0006715918
The minimum of the function T Sat_u represented by the formula (u) as T Sat_u_min, wherein the control device, measurement of the flow velocity sensor, before Symbol function T Sat_u (u) is T sat_u_min +0.3 (℃) closer to the average flow velocity u that is less than said refrigerant to flow through said evaporator, is characterized by controlling the rotation speed of the compressor.

本発明の冷凍サイクルでは、冷媒は関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となる平均流速u(m/s)で蒸発器を流れるため、圧力損失の増大に起因する性能の低下を抑制でき、冷凍サイクル装置全体の運転性能の低下を防止することができる。In the refrigeration cycle of the present invention, the refrigerant flows through the evaporator at an average flow rate u (m/s) at which the function T sat_u (u) is less than T sat_u_min +0.3 (°C), so the performance resulting from the increase in pressure loss is Of the refrigeration cycle apparatus can be prevented, and the deterioration of the operating performance of the entire refrigeration cycle apparatus can be prevented.

実施の形態1に係る冷凍サイクル装置全体の構成を表す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of the refrigeration cycle device according to the first embodiment. 実施の形態1に係る冷凍サイクル装置の蒸発器の構成を表す概略図である。FIG. 3 is a schematic diagram showing a configuration of an evaporator of the refrigeration cycle device according to the first embodiment. 実施の形態1に係る冷凍サイクル装置の蒸発器の図2に示すA−A断面の断面図である。It is sectional drawing of the AA cross section shown in FIG. 2 of the evaporator of the refrigerating-cycle apparatus which concerns on Embodiment 1. 実施の形態2に係る冷凍サイクル装置の蒸発器の入口と出口の冷媒飽和温度差ΔTsatと、蒸発器を流れる冷媒の平均流速uのグラフである。7 is a graph of a refrigerant saturation temperature difference ΔT sat between an inlet and an outlet of an evaporator of a refrigeration cycle device according to a second embodiment and an average flow rate u of a refrigerant flowing through the evaporator. 実施の形態2に係る冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差と、蒸発器を流れる冷媒の平均流速uのグラフである。7 is a graph of a temperature difference generated between a cooling target and a refrigerant due to the heat transfer performance of the refrigeration cycle device according to the second embodiment, and an average flow rate u of the refrigerant flowing through the evaporator. 実施の形態2に係る冷凍サイクル装置の蒸発器4の出口の冷媒飽和温度Tsat_outと、蒸発器を流れる冷媒の平均流速uのグラフである。 7 is a graph of a refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 of the refrigeration cycle device according to the second embodiment and an average flow rate u of the refrigerant flowing through the evaporator.

実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置全体の構成を表す概略図である。図2は、実施の形態1に係る冷凍サイクル装置の蒸発器の構成を表す概略図である。図3は、実施の形態1に係る冷凍サイクル装置の蒸発器の図2に示すA−A断面の断面図である。なお、各図において同じ部分又は相当する部分には同じ符号を付している。実施の形態1の冷凍サイクル装置100は、図1に示すように圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とが冷媒配管5でそれぞれ接続され、圧縮機1、凝縮器2、膨張弁3、蒸発器4、圧縮機1の順に内部で冷媒が循環する冷凍サイクルが構成されている。冷媒配管5のうち、圧縮機1と凝縮器2を接続しているものを冷媒配管5a、凝縮器2と膨張弁3を接続しているものを冷媒配管5b、膨張弁3と蒸発器4を接続しているものを冷媒配管5c、蒸発器4と圧縮機1を接続しているものを冷媒配管5dとそれぞれ称する。なお、実施の形態1に係る冷凍サイクル装置100を循環する冷媒は、特に限定されないが、冷凍サイクル装置100の用途等に応じて任意の一つの冷媒に決定される。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of the entire refrigeration cycle apparatus according to the first embodiment. FIG. 2 is a schematic diagram showing the configuration of the evaporator of the refrigeration cycle device according to the first embodiment. FIG. 3 is a cross-sectional view of the evaporator of the refrigeration cycle apparatus according to Embodiment 1 taken along the line AA shown in FIG. 2. In each figure, the same parts or corresponding parts are designated by the same reference numerals. In the refrigeration cycle apparatus 100 according to the first embodiment, as shown in FIG. 1, a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 are connected by a refrigerant pipe 5, respectively, and the compressor 1, the condenser A refrigeration cycle in which a refrigerant circulates inside the vessel 2, the expansion valve 3, the evaporator 4, and the compressor 1 in this order. Of the refrigerant pipes 5, one connecting the compressor 1 and the condenser 2 is connected to the refrigerant pipe 5a, one connecting the condenser 2 and the expansion valve 3 is connected to the refrigerant pipe 5b, and the expansion valve 3 and the evaporator 4 are connected to each other. The connected one is called a refrigerant pipe 5c, and the one connected between the evaporator 4 and the compressor 1 is called a refrigerant pipe 5d. The refrigerant that circulates in the refrigeration cycle device 100 according to Embodiment 1 is not particularly limited, but is determined as any one refrigerant according to the application of the refrigeration cycle device 100 and the like.

圧縮機1は、冷媒を吸入し、圧縮して高温高圧のガス状態にして吐出する。圧縮機1は、例えばインバータ回路等によって回転数を制御され、回転数の制御によって冷媒の吐出量が調整できるもので構成するとよい。 The compressor 1 draws in the refrigerant, compresses it, and discharges it into a high-temperature, high-pressure gas state. The compressor 1 may be configured to have a rotation speed controlled by, for example, an inverter circuit, and the discharge amount of the refrigerant can be adjusted by controlling the rotation speed.

凝縮器2は、圧縮機1で圧縮されて高温高圧のガス状態になった冷媒が流入し、冷媒と熱源との間で熱交換を行って、冷媒を低温高圧の液状態に冷却させる。熱源としては、空気、水、ブライン等が挙げられ、実施の形態1では凝縮器2の熱源は屋外の空気である外気であり、凝縮器2は外気と冷媒との間で熱交換を行う。さらに、実施の形態1では凝縮器2の熱交換を促すために、冷媒が冷凍サイクル装置100内を循環している際に凝縮器2へ外気を送風する凝縮器送風機6を有している。凝縮器送風機6は風量を調節できるもので構成するとよい。 The refrigerant compressed by the compressor 1 into a high temperature and high pressure gas state flows into the condenser 2, and heat is exchanged between the refrigerant and the heat source to cool the refrigerant to a low temperature and high pressure liquid state. Examples of the heat source include air, water, brine, and the like. In the first embodiment, the heat source of the condenser 2 is the outside air which is the outdoor air, and the condenser 2 performs heat exchange between the outside air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the condenser 2, the condenser blower 6 that blows the outside air to the condenser 2 while the refrigerant is circulating in the refrigeration cycle device 100 is provided. The condenser blower 6 is preferably configured by one capable of adjusting the air volume.

膨張弁3は、凝縮器2で冷却された低温高圧の液状態の冷媒が流入し、冷媒を低温低圧の液状態に減圧膨張させる。膨張弁3としては、例えば電子式膨張弁や感温式膨張弁等の冷媒流量制御手段や、毛細管(キャピラリチューブ)などで構成される。また、膨張弁3は本発明の減圧装置に相当する。 The low-temperature high-pressure liquid-state refrigerant cooled by the condenser 2 flows into the expansion valve 3 and decompresses and expands the refrigerant to a low-temperature low-pressure liquid state. As the expansion valve 3, for example, a refrigerant flow rate control means such as an electronic expansion valve or a temperature-sensitive expansion valve, a capillary tube (capillary tube), or the like is configured. The expansion valve 3 corresponds to the pressure reducing device of the present invention.

蒸発器4は、膨張弁3で減圧膨張された低温低圧の液状態の冷媒が流入し、冷媒と冷却対象との間で熱交換を行い、冷却対象の熱を冷媒に吸熱させて、冷却対象を冷却する。冷却対象を冷却する際に、冷媒は蒸発し高温低圧のガス状態になる。実施の形態1では、冷却対象としては屋内の空気であり、蒸発器4は屋内の空気と冷媒との間で熱交換を行う。さらに、実施の形態1では蒸発器4の熱交換を促すため、冷媒が冷凍サイクル装置100内を循環している際に蒸発器4へ屋内の空気を送風する蒸発器送風機7を有している。蒸発器送風機7は風量を調節できるもので構成するとよい。 In the evaporator 4, the low-temperature low-pressure liquid-state refrigerant that has been decompressed and expanded by the expansion valve 3 flows in, heat is exchanged between the refrigerant and the cooling target, and the heat of the cooling target is absorbed by the refrigerant to cool the cooling target. To cool. When cooling an object to be cooled, the refrigerant is vaporized into a high-temperature low-pressure gas state. In the first embodiment, indoor air is used as the cooling target, and the evaporator 4 performs heat exchange between the indoor air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the evaporator 4, the evaporator blower 7 that blows indoor air to the evaporator 4 while the refrigerant circulates in the refrigeration cycle device 100 is provided. .. The evaporator blower 7 is preferably configured by one that can adjust the air volume.

蒸発器4の具体的な構成について、図2及び図3に基づき説明する。蒸発器4は、複数本の伝熱管41と、複数枚のフィン42と、冷媒分配器43と、ヘッダ44により構成されたプレートフィンチューブ熱交換器である。なお、図2では伝熱管41の本数を5本、フィン42の枚数を28枚としているが、これらの本数及び枚数は一例であり、本発明はこの本数及び枚数に限らない。 A specific configuration of the evaporator 4 will be described based on FIGS. 2 and 3. The evaporator 4 is a plate fin tube heat exchanger configured by a plurality of heat transfer tubes 41, a plurality of fins 42, a refrigerant distributor 43, and a header 44. In FIG. 2, the number of the heat transfer tubes 41 is 5 and the number of the fins 42 is 28, but the number and the number of these are examples, and the present invention is not limited to this number and the number.

伝熱管41は、冷媒が流れる流路を構成する管であり、アルミニウムや銅などの熱伝導率の高い金属が用いられている。複数の伝熱管41は、それぞれ並列に並んでおり、冷媒分配器43及びヘッダ44に接続している。実施の形態1の伝熱管41の流路41aは、図3に示すように断面が円形である。 The heat transfer tube 41 is a tube that constitutes a flow path through which the refrigerant flows, and is made of a metal having a high thermal conductivity such as aluminum or copper. The plurality of heat transfer tubes 41 are arranged in parallel, and are connected to the refrigerant distributor 43 and the header 44. The flow path 41a of the heat transfer tube 41 of the first embodiment has a circular cross section as shown in FIG.

フィン42は、アルミニウムや銅などの熱伝導率の高い金属の薄板である。複数のフィン42は、伝熱管41の軸方向(図2の矢印X方向)に対して垂直に、所定の間隔を空けて配置されている。また、伝熱管41とフィン42はろう付けなどの方法によって接合されており、伝熱管41からフィン42へ熱が伝達するようになっている。 The fins 42 are thin plates made of metal having high thermal conductivity such as aluminum and copper. The plurality of fins 42 are arranged perpendicularly to the axial direction of the heat transfer tube 41 (direction of arrow X in FIG. 2) with a predetermined interval. Further, the heat transfer tube 41 and the fin 42 are joined by a method such as brazing so that heat is transferred from the heat transfer tube 41 to the fin 42.

冷媒分配器43は、一つの流入口と、複数の流出口を備えており、流入口より流入した冷媒を複数の流出口に分配して流出させる器具である。冷媒分配器43の流入口には冷媒配管5cを介して膨張弁3と繋がっており、冷媒分配器43の複数の流出口はそれぞれ伝熱管41に繋がっている。 The refrigerant distributor 43 has one inflow port and a plurality of outflow ports, and is a device that distributes the refrigerant flowing from the inflow port to the plurality of outflow ports and causes the refrigerant to flow out. The inlet of the refrigerant distributor 43 is connected to the expansion valve 3 via the refrigerant pipe 5c, and the plurality of outlets of the refrigerant distributor 43 are connected to the heat transfer tubes 41, respectively.

ヘッダ44は、複数の流入口と、一つの流出口を備えており、流入口より流入した冷媒を合流させて一つの流出口より流出させる器具である。ヘッダ44の流入口はそれぞれ伝熱管41に繋がっており、ヘッダ44の流出口は冷媒配管5dを介して圧縮機1と繋がっている。 The header 44 includes a plurality of inflow ports and one outflow port, and is a device that combines the refrigerants that have flowed in from the inflow ports and causes them to flow out from the one outflow port. The inlet of the header 44 is connected to the heat transfer pipe 41, and the outlet of the header 44 is connected to the compressor 1 via the refrigerant pipe 5d.

次に、蒸発器4内の冷媒の流れについて説明を行う。まず、膨張弁3で減圧膨張された低温低圧の液状態の冷媒は、冷媒分配器43の流入口より流入する。冷媒分配器43の流入口より流入した冷媒は、分配され、冷媒分配器43のそれぞれの流出口より伝熱管41へと流れる。伝熱管41に流入した冷媒は、伝熱管41の軸方向(図2の矢印X方向)に沿って流れる。伝熱管41とフィン42の表面は冷却対象である屋内の空気が蒸発器送風機7によって送風されており、伝熱管41を流れる冷媒は伝熱管41及びフィン42と接する屋内の空気と熱交換を行って、屋内の空気の熱を吸熱する。伝熱管41にて屋内の空気と熱交換を行った冷媒は、ヘッダ44の流入口より流入し、ヘッダ44で合流してヘッダ44の流出口より圧縮機1へと流れる。 Next, the flow of the refrigerant in the evaporator 4 will be described. First, the low-temperature low-pressure liquid-state refrigerant decompressed and expanded by the expansion valve 3 flows in from the inlet of the refrigerant distributor 43. The refrigerant that has flowed in from the inlet of the refrigerant distributor 43 is distributed and flows to the heat transfer tubes 41 from the respective outlets of the refrigerant distributor 43. The refrigerant flowing into the heat transfer tube 41 flows along the axial direction of the heat transfer tube 41 (direction of arrow X in FIG. 2 ). On the surfaces of the heat transfer tubes 41 and the fins 42, indoor air to be cooled is blown by the evaporator blower 7, and the refrigerant flowing through the heat transfer tubes 41 exchanges heat with the indoor air in contact with the heat transfer tubes 41 and the fins 42. And absorbs the heat of the indoor air. The refrigerant that has exchanged heat with indoor air in the heat transfer tube 41 flows in from the inlet of the header 44, merges with the header 44, and flows from the outlet of the header 44 to the compressor 1.

次に本発明を説明する際に用いる蒸発器4の冷媒流路長さL(m)、冷媒流路径d(m)、管外側伝熱面積A(m)及び管内側伝熱面積A(m)を定義する。なお、実施の形態1の説明において、各記号の後ろに記載されている括弧書きの内容はその記号の単位を示している。冷媒流路長さLは、図2で示すように、伝熱管41と最も上流側に位置するフィン42aとの接合箇所41bから、伝熱管41と最も下流側に位置するフィン42bの接合箇所41cまでの長さである。冷媒流路径dは、図3で示すように、伝熱管41の内径である。管外側伝熱面積Aは、接合箇所41bから接合箇所41cまでの複数の伝熱管41の外側の表面積と複数のフィン42の表面積の総和である。管内側伝熱面積Aは、接合箇所41bから接合箇所41cまでの複数の伝熱管41の内面積の総和である。また、冷媒流路長さL、冷媒流路径d、管外側伝熱面積A及び管内側伝熱面積Aは、冷凍サイクル装置100を構成した際に定まる数値であるため、定数とする。Next, the refrigerant flow path length L(m), the refrigerant flow path diameter d(m), the pipe outside heat transfer area A o (m 2 ) and the pipe inside heat transfer area A of the evaporator 4 used in describing the present invention will be described. Define i (m 2 ). In the description of the first embodiment, the contents in parentheses after each symbol indicate the unit of the symbol. As shown in FIG. 2, the refrigerant flow path length L varies from the joint portion 41b between the heat transfer tube 41 and the fin 42a located on the most upstream side to the joint portion 41c between the heat transfer tube 41 and the fin 42b located on the most downstream side. Up to. The refrigerant flow path diameter d is the inner diameter of the heat transfer tube 41, as shown in FIG. The tube outside heat transfer area A o is the sum of the surface areas of the plurality of heat transfer tubes 41 on the outer side and the surface areas of the plurality of fins 42 from the joint portion 41 b to the joint portion 41 c. The tube inner heat transfer area A i is the sum of the inner areas of the plurality of heat transfer tubes 41 from the joint portion 41b to the joint portion 41c. Further, the refrigerant flow path length L, the refrigerant flow path diameter d, the pipe outside heat transfer area A o, and the pipe inside heat transfer area A i are numerical values determined when the refrigeration cycle apparatus 100 is configured, and thus are constants.

次に冷凍サイクル装置100の運転性能について説明を行う。冷凍サイクル装置100の消費エネルギの大部分は、圧縮機1の圧縮動力が占めるため、運転性能を向上するためには圧縮機1の圧縮動力を低減すると効果的である。圧縮機1の圧縮動力を低減する方法として、圧縮比の低減があり、圧縮機1の吸入圧力を上げるか、又は吐出圧力を下げれば圧縮比が低減される。本発明では、圧縮機1の吸入圧力を上げることに着目した。 Next, the operation performance of the refrigeration cycle apparatus 100 will be described. Since most of the energy consumed by the refrigeration cycle apparatus 100 is occupied by the compression power of the compressor 1, it is effective to reduce the compression power of the compressor 1 in order to improve the operating performance. As a method of reducing the compression power of the compressor 1, there is a reduction of the compression ratio. If the suction pressure of the compressor 1 is raised or the discharge pressure is lowered, the compression ratio is reduced. The present invention focuses on increasing the suction pressure of the compressor 1.

圧縮機1の吸入圧力を上げることは、換言すると蒸発器4の出口圧力を上げることである。また、冷媒の圧力は冷媒飽和温度で示すことができ、以降の説明では冷媒圧力を冷媒飽和温度で示す。冷凍サイクル装置100を循環する冷媒に非共沸混合冷媒のように同圧力下において相変化で温度が変化する冷媒を用いると、蒸発過程においてエンタルピに対して冷媒飽和温度が変化するため、冷媒飽和温度差は等エンタルピでの圧力差における冷媒飽和温度差とする。 Increasing the suction pressure of the compressor 1 is, in other words, increasing the outlet pressure of the evaporator 4. Further, the pressure of the refrigerant can be indicated by the refrigerant saturation temperature, and in the following description, the refrigerant pressure will be indicated by the refrigerant saturation temperature. When a refrigerant that circulates in the refrigeration cycle apparatus 100, such as a non-azeotropic mixed refrigerant, whose temperature changes due to a phase change under the same pressure, the refrigerant saturation temperature changes with respect to the enthalpy in the evaporation process, so that the refrigerant saturation occurs. The temperature difference is the refrigerant saturation temperature difference in the pressure difference at isenthalpy.

以上の説明より、蒸発器4の出口の冷媒飽和温度を上げることによって、蒸発器4の出口圧力が上がり、圧縮機1の吸入圧力が上がり、圧縮機1の圧縮比が低減し、圧縮機1の圧縮動力が低減され、最終的に冷凍サイクル装置100の運転性能が向上することが分かる。つまり、蒸発器4の出口の冷媒飽和温度を最大化することによって、冷凍サイクル装置100の運転性能が最大となることが分かる。 From the above description, by raising the refrigerant saturation temperature at the outlet of the evaporator 4, the outlet pressure of the evaporator 4 rises, the suction pressure of the compressor 1 rises, the compression ratio of the compressor 1 decreases, and the compressor 1 It can be seen that the compression power is reduced, and finally the operation performance of the refrigeration cycle apparatus 100 is improved. That is, it is understood that the operation performance of the refrigeration cycle apparatus 100 is maximized by maximizing the refrigerant saturation temperature at the outlet of the evaporator 4.

次に、蒸発器4の出口の冷媒飽和温度について説明する。蒸発器4の出口の冷媒飽和温度Tsat_outは、数式2のように蒸発器4の入口の冷媒飽和温度Tsat_inより蒸発器4の入口との出口の冷媒飽和温度差ΔTsatの減算より求められる。Next, the refrigerant saturation temperature at the outlet of the evaporator 4 will be described. The refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is obtained by subtracting the refrigerant saturation temperature difference ΔT sat at the outlet of the evaporator 4 from the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 as shown in Formula 2. ..

Figure 0006715918
Figure 0006715918

ここで蒸発器4の入口の冷媒飽和温度Tsat_inについて説明する。まず、蒸発器4の熱交換量Q(W)は蒸発器4の入口の冷媒飽和温度Tsat_inを使って数式3のように表すことができる。ここで数式3を蒸発器4の入口の冷媒飽和温度Tsat_inを導出する式に変形すると数式4のようになり、蒸発器4の入口の冷媒飽和温度Tsat_inは、以下の数式4に基づいて導出できる。ここで数式3及び数式4で使用している記号を定義する。Tairは、蒸発器4が冷却する冷却対象の温度(℃)であり、実施の形態1の場合は屋内の空気の温度が該当する。αは、蒸発器4が冷却する冷却対象の熱伝達率(W/mK)であり、実施の形態1の場合は屋内の空気の熱伝達率が該当する。αは、冷媒の熱伝達率(W/mK)である。ここで、冷却対象の温度Tairと、蒸発器4の熱交換量Qと、冷却対象の熱伝達率αは、冷却対象の状態及び蒸発器4の構成が決まれば定まる値であるため、本発明では定数として扱う。なお、数式3と数式4のA及びAに関しては、それぞれ上述で定義した管外側伝熱面積A(m)及び管内側伝熱面積A(m)であるため、ここでの定義を割愛する。Here, the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 will be described. First, the heat exchange amount Q(W) of the evaporator 4 can be expressed as in Equation 3 using the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4. When Equation 3 is transformed into an equation for deriving the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4, Equation 4 is obtained, and the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 is calculated based on Equation 4 below. Can be derived. Here, the symbols used in Equations 3 and 4 are defined. T air is the temperature (° C.) of the object to be cooled by the evaporator 4, and in the case of the first embodiment, the temperature of indoor air corresponds. α o is the heat transfer coefficient (W/m 2 K) of the object to be cooled by the evaporator 4, and in the case of the first embodiment, the heat transfer coefficient of indoor air corresponds. α i is the heat transfer coefficient (W/m 2 K) of the refrigerant. Here, the temperature T air of the cooling target, the heat exchange amount Q of the evaporator 4, and the heat transfer coefficient α o of the cooling target are values that are determined if the state of the cooling target and the configuration of the evaporator 4 are determined. In the present invention, it is treated as a constant. In addition, regarding A o and A i in Formula 3 and Formula 4, since they are the pipe outside heat transfer area A o (m 2 ) and the pipe inside heat transfer area A i (m 2 ) defined above, respectively, Omit the definition of.

Figure 0006715918
Figure 0006715918

Figure 0006715918
Figure 0006715918

冷媒の熱伝達率αは、以下の数式5に基づいて導出できる。ここで数式5で使用している記号を定義する。kは、冷媒の平均熱伝導率(W/mK)であり、飽和ガス状態の冷媒の熱伝導率と飽和液状態の冷媒の熱伝導率との平均値を取ることで求められる。Reは、冷媒のレイノルズ数であり、無次元数である。Prは、冷媒のプラントル数であり、無次元数である。冷媒の熱伝導率kと、冷媒のプラントル数Prは冷媒の種類が決まれば定まる値であるため、本発明では定数として扱う。なお、数式5のdに関しては、上述で定義した冷媒流路径d(m)であるため、ここでの定義を割愛する。The heat transfer coefficient α i of the refrigerant can be derived based on Equation 5 below. Here, the symbols used in Equation 5 are defined. k is the average thermal conductivity (W/mK) of the refrigerant, and is obtained by taking the average value of the thermal conductivity of the saturated gas state refrigerant and the saturated liquid state refrigerant. Re is the Reynolds number of the refrigerant and is a dimensionless number. Pr is the Prandtl number of the refrigerant and is a dimensionless number. Since the thermal conductivity k of the refrigerant and the Prandtl number Pr of the refrigerant are values that are determined when the type of the refrigerant is determined, they are treated as constants in the present invention. It should be noted that d in Expression 5 is the refrigerant flow path diameter d(m) defined above, and therefore the definition here is omitted.

Figure 0006715918
Figure 0006715918

レイノルズ数Reは、以下の数式6に基づいて導出できる。ここで数式6で使用している記号を定義する。ρは、冷媒の平均密度(kg/m)であり、飽和ガス状態の冷媒の密度と飽和液状態の冷媒の密度との平均値を取ることで求められる。uは、蒸発器4を流れる冷媒の平均流速(m/s)である。また、以降、単に平均流速uと称する場合は、蒸発器4を流れる冷媒の平均流速u(m/s)のことを指すとする。μは、冷媒の平均粘度(Pa・s)であり、飽和ガス状態の冷媒の粘度と飽和液状態の冷媒の粘度との平均値を取ることで求められる。冷媒の平均密度ρと、冷媒の平均粘度μは冷媒の種類が決まれば定まる値であるため、本発明では定数として扱う。また、平均流速uは、圧縮機1の回転数又は膨張弁3の開度などを調整することで容易に変更できる値であるため、本発明では変数として扱う。なお、数式6のdに関しては、上述で定義した冷媒流路径d(m)であるため、ここでの定義を割愛する。The Reynolds number Re can be derived based on Equation 6 below. Here, the symbols used in Equation 6 are defined. ρ is an average density (kg/m 3 ) of the refrigerant, and is obtained by taking an average value of the density of the refrigerant in the saturated gas state and the density of the refrigerant in the saturated liquid state. u is the average flow velocity (m/s) of the refrigerant flowing through the evaporator 4. Further, hereinafter, when simply referred to as the average flow velocity u, it means the average flow velocity u (m/s) of the refrigerant flowing through the evaporator 4. μ is the average viscosity (Pa·s) of the refrigerant, and is obtained by taking the average value of the viscosity of the refrigerant in the saturated gas state and the viscosity of the refrigerant in the saturated liquid state. Since the average density ρ of the refrigerant and the average viscosity μ of the refrigerant are values that are determined when the type of the refrigerant is determined, they are treated as constants in the present invention. Further, since the average flow velocity u is a value that can be easily changed by adjusting the rotation speed of the compressor 1 or the opening degree of the expansion valve 3, it is treated as a variable in the present invention. It should be noted that d in Formula 6 is the refrigerant flow path diameter d(m) defined above, and therefore the definition here is omitted.

Figure 0006715918
Figure 0006715918

数式4に数式5を代入して整理すると、以下の数式7が求められ、更に数式7に数式6を代入し整理すると、数式8が求められる。ここで数式7の平均流速u以外の記号は全て定数として扱っており、数式8の第1項と第2項も定数として扱われ、数式8の第3項は平均流速uの0.8乗に反比例する。このため、平均流速uの値が小さいほど数式8の第3項の値は大きくなり、蒸発器4の入口の冷媒飽和温度Tsat_inは小さくなることがわかる。By substituting Equation 5 into Equation 4 and rearranging, Equation 7 below is obtained, and further substituting Equation 6 into Equation 7 and rearranging yields Equation 8. Here, all symbols other than the average flow velocity u in the formula 7 are treated as constants, the first term and the second term in the formula 8 are also treated as constants, and the third term in the formula 8 is 0.8 power of the average flow velocity u. Inversely proportional to. Therefore, it can be seen that the smaller the value of the average flow velocity u, the larger the value of the third term of Expression 8 and the smaller the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4.

Figure 0006715918
Figure 0006715918

Figure 0006715918
Figure 0006715918

次に、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatについて説明する。蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、冷媒の種類と蒸発器4の圧力損失ΔP(Pa)で決まる。特に、蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係として、蒸発器4の圧力損失が大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる。なお、詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式については冷媒の種類によって変化するが、冷媒の種類が定まれば詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式も一意に定まり、数式9のように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは蒸発器4の圧力損失ΔPの関数Tsat(ΔP)として表すことができる。また、どのような冷媒を用いても、蒸発器4の圧力損失ΔPが大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる関係は変わらない。Next, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 will be described. The refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is determined by the type of refrigerant and the pressure loss ΔP (Pa) of the evaporator 4. Particularly, as the relationship between the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, the refrigerant saturation temperature difference ΔT between the inlet and the outlet of the evaporator 4 increases as the pressure loss of the evaporator 4 increases. sat becomes large. Note that the detailed relational expression between the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 varies depending on the type of refrigerant, but if the type of refrigerant is determined, the detailed evaporator 4, the relational expression between the pressure loss ΔP and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is uniquely determined, and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is determined by Equation 9 as follows. The pressure loss ΔP of 4 can be expressed as a function T sat (ΔP). Further, no matter what kind of refrigerant is used, the relationship in which the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 increases as the pressure loss ΔP of the evaporator 4 increases, does not change.

Figure 0006715918
Figure 0006715918

蒸発器4の圧力損失ΔPは、以下の数式10に基づいて導出できる。ここで数式10で使用している記号を定義する。Φは、二相流れ圧力損失の平均補正係数であり、無次元数である。また、二相流れ圧力損失の平均補正係数Φは、一般的にLockhart−Martinelliの計算法により導出することができる。λは、冷媒の摩擦損失係数であり、無次元数である。また、二相流れ圧力損失の平均補正係数Φは、使用する冷媒の種類が決まれば定まる値であるため、定数として扱う。なお、数式10のL、d、ρ、uに関しては、上述で定義した冷媒流路長さL(m)と、冷媒流路径d(m)と、冷媒の平均密度ρ(kg/m)と、平均流速u(m/s)であるため、ここでの定義を割愛する。The pressure loss ΔP of the evaporator 4 can be derived based on the following formula 10. Here, the symbols used in Expression 10 are defined. Φ is an average correction factor for the two-phase flow pressure loss, which is a dimensionless number. Further, the average correction coefficient Φ of the two-phase flow pressure loss can be generally derived by the Lockhart-Martinelli calculation method. λ is a friction loss coefficient of the refrigerant and is a dimensionless number. Further, the average correction coefficient Φ of the two-phase flow pressure loss is a value that is determined if the type of refrigerant used is determined, and is therefore treated as a constant. Regarding L, d, ρ, and u in the mathematical expression 10, the refrigerant channel length L(m) defined above, the refrigerant channel diameter d(m), and the average density ρ of the refrigerant (kg/m 3 ) And the average flow velocity u (m/s), the definition here is omitted.

Figure 0006715918
Figure 0006715918

冷媒の摩擦損失係数λは、以下の数式11に基づいて導出できる。数式11のReは、レイノルズ数であり、数式11のレイノルズ数Reに数式6を代入すると数式12が求められる。 The friction loss coefficient λ of the refrigerant can be derived based on the following formula 11. Re in Equation 11 is a Reynolds number, and Equation 12 is obtained by substituting Equation 6 in Reynolds number Re in Equation 11.

Figure 0006715918
Figure 0006715918

Figure 0006715918
Figure 0006715918

数式10の冷媒の摩擦損失係数λに数式12を代入すると、以下の数式13が求められる。ここで数式13の平均流速u以外の記号は全て定数として扱っており、数式13より冷媒の摩擦損失係数λは平均流速uの1.75乗に比例し、平均流速uが速いほど、冷媒の摩擦損失係数λは大きくなることがわかる。 By substituting the equation 12 into the friction loss coefficient λ of the refrigerant in the equation 10, the following equation 13 is obtained. Here, all symbols other than the average flow velocity u in the formula 13 are treated as constants. From the formula 13, the friction loss coefficient λ of the refrigerant is proportional to the 1.75th power of the average flow velocity u. It can be seen that the friction loss coefficient λ increases.

Figure 0006715918
Figure 0006715918

上述したように冷媒の種類が定まれば詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式も一意に定まり、数式13は平均流速u以外の記号は全て定数であるため、冷媒の種類が定まれば数式14のように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは平均流速uの関数Tsat(u)として表すことができる。また、蒸発器4の圧力損失が大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる関係があり、数式13に示したように平均流速uが速いほど冷媒の摩擦損失係数λは大きくなる関係がある。この2つの関係より、平均流速uの値が大きくなるほど、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値、つまり関数Tsat(u)の値は大きくなる。As described above, if the type of the refrigerant is determined, the detailed relational expression of the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is also uniquely determined, and the equation 13 is other than the average flow velocity u. Since all symbols are constants, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 can be expressed as a function T sat (u) of the average flow velocity u as shown in Formula 14 when the type of refrigerant is determined. it can. Further, there is a relationship that the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 increases as the pressure loss of the evaporator 4 increases. As shown in Formula 13, the faster the average flow velocity u is, the friction loss coefficient of the refrigerant is increased. λ has a relationship of increasing. From these two relationships, the value of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, that is, the value of the function T sat (u) increases as the value of the average flow velocity u increases.

Figure 0006715918
Figure 0006715918

そして、数式2の蒸発器4の入口の冷媒飽和温度Tsat_inに数式8を代入し、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatに数式14を代入すると、数式15が求められる。数式15において、平均流速u以外の記号は全て定数として扱われているため、数式15の第1項と第2項は定数である。また、数式15の第3項と第4項はそれぞれ平均流速uの値によって取る値が異なり、数式16に示すように平均流速uに起因する蒸発器4での温度低下量を導出する平均流速uの関数Tsat_u(u)として表すことができ、数式15に数式16を代入すると数式17が求められる。この数式17より、蒸発器4の出口の冷媒飽和温度Tsat_outを最大化するためには、数式16に示す関数Tsat_u(u)を最小化すれば良いことがわかる。また、数式16より蒸発器4の出口の冷媒飽和温度が最大値Tsat_out_maxとなる平均流速uは、関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uであることが分かる。このため、実施の形態1の冷凍サイクル装置100では、冷媒は、関数Tsat_u(u)が最小値Tsat_u_minとなるような平均流速uで、蒸発器4を流れている。Then, by substituting the equation 8 into the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 of the equation 2 and by substituting the equation 14 into the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, the equation 15 is obtained. In Expression 15, all the symbols other than the average flow velocity u are treated as constants, so the first term and the second term of Expression 15 are constants. Further, the values of the third term and the fourth term of the formula 15 differ depending on the value of the average flow velocity u, and the average flow velocity for deriving the temperature decrease amount in the evaporator 4 due to the average flow velocity u as shown in the formula 16. It can be expressed as a function T sat — u (u) of u, and by substituting Equation 16 into Equation 15, Equation 17 is obtained. From Expression 17, it is understood that the function T sat_u (u) shown in Expression 16 may be minimized in order to maximize the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4. Further, it can be seen from Equation 16 that the average flow velocity u at which the refrigerant saturation temperature at the outlet of the evaporator 4 has the maximum value T sat_out_max is the average flow velocity u at which the function T sat_u (u) has the minimum value T sat_u_min . Therefore, in the refrigeration cycle device 100 of the first embodiment, the refrigerant flows through the evaporator 4 at the average flow rate u such that the function T sat_u (u) has the minimum value T sat_u_min .

Figure 0006715918
Figure 0006715918

Figure 0006715918
Figure 0006715918

Figure 0006715918
Figure 0006715918

ここで、数式16に示す関数Tsat_u(u)の最小化が可能か否かを説明する。数式16の第1項は、平均流速uの0.8乗に反比例し、平均流速uが小さいほど大きくなることがわかる。また、数式16の第2項は、上述の通り蒸発器4の入口と出口の冷媒飽和温度差ΔTsatと平均流速uの関係を示す関数Tsat(u)の値は平均流速uが大きくなり、平均流速uが大きいほど大きくなることがわかる。このため、数式16の関数Tsat_u(u)は、平均流速uが小さいほど大きくなる項と、平均流速uが大きいほど大きくなる項との加算であるため、関数Tsat_u(u)には最小値Tsat_u_minが存在し、関数Tsat_u(u)の最小化が可能であることが分かる。また、平均流速uが0の場合は数式16の第1項が無限大に発散するため、関数Tsat_u(u)の最小値Tsat_u_minは平均流速uが0よりも大きな値である場合に存在することが分かる。Here, whether or not the function T sat — u (u) shown in Expression 16 can be minimized will be described. It can be seen that the first term of Expression 16 is inversely proportional to the 0.8th power of the average flow velocity u, and increases as the average flow velocity u decreases. In addition, the second term of the mathematical expression 16 is that the average flow velocity u becomes large as the value of the function T sat (u) indicating the relationship between the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 and the average flow velocity u as described above. It can be seen that the larger the average flow velocity u, the larger. Therefore, the function T sat_u (u) in Expression 16 is a sum of a term that increases as the average flow velocity u decreases and a term that increases as the average flow velocity u increases, and therefore the function T sat_u (u) has a minimum value. It can be seen that there is a value T sat_u_min and that the function T sat_u (u) can be minimized. Further, when the average flow velocity u is 0, the first term of Expression 16 diverges to infinity, so the minimum value T sat_u_min of the function T sat_u (u) exists when the average flow velocity u is a value larger than 0. I know what to do.

以上より、実施の形態1の冷凍サイクル装置100では、冷媒は、関数Tsat_u(u)が最小値Tsat_u_minとなるような平均流速uで、蒸発器4を流れるため、蒸発器の出口の冷媒飽和温度を最大化でき、結果的に冷凍サイクル装置の運転性能が最大となり、冷凍サイクル装置全体の運転性能の低下を防止することができる。さらに、蒸発温度の低い低温機器、寒冷地での給湯・暖房運転、動作圧力の低い冷媒などにおいては、圧縮機の吸入圧力の運転性能に対する影響が大きいため、特に有効となる。As described above, in the refrigeration cycle device 100 of the first embodiment, the refrigerant flows through the evaporator 4 at the average flow velocity u such that the function T sat_u (u) becomes the minimum value T sat_u_min , so that the refrigerant at the outlet of the evaporator. The saturation temperature can be maximized, and as a result, the operating performance of the refrigeration cycle apparatus can be maximized, and the deterioration of the operating performance of the entire refrigeration cycle apparatus can be prevented. Further, in a low-temperature device having a low evaporation temperature, a hot water supply/heating operation in a cold region, a refrigerant having a low operating pressure, and the like, the suction pressure of the compressor has a great influence on the operation performance, and is particularly effective.

なお、冷凍サイクル装置100全体の運転性能の低下を防止するためには、必ず平均流速uが、関数Tsat_u(u)が最小値Tsat_u_minとなるようにする必要は無く、冷凍サイクル装置100の運転性能が極端に低下しない程度に平均流速uに範囲を持たせても構わない。例えば、一般的に用いられる冷媒において、蒸発器4の出口の冷媒飽和温度Tsat_outが0.3℃以上低下すると、運転性能が1%低下し、無視できない影響となることが知られている。このため、冷凍サイクル装置は、冷媒が、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような平均流速uで蒸発器を流れていれば、冷凍サイクル装置100全体の運転性能の低下を防止する効果を発揮する。In order to prevent the deterioration of the operation performance of the entire refrigeration cycle apparatus 100, it is not always necessary that the average flow velocity u be the minimum value T sat_u_min of the function T sat_u (u), and the refrigeration cycle apparatus 100 The average flow velocity u may have a range to such an extent that the driving performance is not extremely deteriorated. For example, in a commonly used refrigerant, it is known that if the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 decreases by 0.3° C. or more, the operating performance decreases by 1%, which has a nonnegligible effect. Therefore, if the refrigerant flows through the evaporator at an average flow rate u such that the function T sat_u (u) shown in Formula 16 is less than T sat_u_min +0.3 (° C.), the refrigeration cycle device may have a refrigeration cycle apparatus. The effect of preventing the deterioration of the driving performance of the entire 100 is exhibited.

また、平均流速uが制御可能であれば、平均流速uを取得し、取得した平均流速uに基づき平均流速uを制御する制御装置を備えていても良い。 Further, if the average flow velocity u can be controlled, a control device that acquires the average flow velocity u and controls the average flow velocity u based on the acquired average flow velocity u may be provided.

蒸発器4を流れる冷媒の平均流速u(m/s)は、以下の数式18で表される。ここで数式18で使用しているGrは冷媒の質量流量(kg/s)である。冷媒の質量流量は圧縮機1の回転数及び膨張弁3の開度等で制御を行うことができる。なお、数式18のρ,Aiは、上述で定義した冷媒の平均密度ρ(kg/m)と、蒸発器の管内側伝熱面積をA(m)であるため、ここでの定義を割愛する。The average flow velocity u (m/s) of the refrigerant flowing through the evaporator 4 is represented by the following formula 18. Here, Gr used in Expression 18 is the mass flow rate (kg/s) of the refrigerant. The mass flow rate of the refrigerant can be controlled by the rotation speed of the compressor 1, the opening degree of the expansion valve 3, and the like. Note that ρ and Ai in Formula 18 are defined here because the average density ρ (kg/m 3 ) of the refrigerant defined above and the heat transfer area inside the tube of the evaporator are A i (m 2 ). Omit.

Figure 0006715918
Figure 0006715918

数式18より蒸発器4を流れる冷媒の平均流速uを制御するには冷媒の質量流量Grを制御すればよいことが分かる。つまり、平均流速uを制御する手段として、圧縮機1の回転数を制御する、膨張弁3の開度を制御する、などの手段が挙げられる。圧縮機1では、回転数を上げることで平均流速uを大きくすることができ、回転数を下げることで平均流速uを小さくすることができる。また、膨張弁3では、開度を下げることで平均流速uを大きくすることができ、開度を上げることで平均流速uを小さくすることができる。 From Equation 18, it can be seen that the mass flow rate Gr of the refrigerant may be controlled to control the average flow velocity u of the refrigerant flowing through the evaporator 4. That is, examples of means for controlling the average flow velocity u include means for controlling the number of revolutions of the compressor 1 and controlling the opening degree of the expansion valve 3. In the compressor 1, the average flow velocity u can be increased by increasing the rotation speed, and the average flow velocity u can be decreased by decreasing the rotation speed. Further, in the expansion valve 3, the average flow velocity u can be increased by decreasing the opening amount, and the average flow velocity u can be decreased by increasing the opening amount.

また、蒸発器4を流れる冷媒の平均流速uを取得する方法としては、流速センサを用いて蒸発器4を流れる冷媒の平均流速uを直接測定する方法が挙げられる。さらに、数式18より冷媒の質量流量Grと冷媒の平均流速uは比例の関係にあるため、流量計を用いて測定した蒸発器4に流れる質量流量Gr、又は圧縮機の回転数の設定値と膨張弁の開度の設定値との2つの設定値に基づいて冷媒の平均流速uを取得することができる。 As a method of acquiring the average flow velocity u of the refrigerant flowing through the evaporator 4, there is a method of directly measuring the average flow velocity u of the refrigerant flowing through the evaporator 4 using a flow velocity sensor. Furthermore, since the mass flow rate Gr of the refrigerant and the average flow rate u of the refrigerant are in a proportional relationship from the formula 18, the mass flow rate Gr flowing through the evaporator 4 measured using a flow meter or the set value of the rotation speed of the compressor The average flow velocity u of the refrigerant can be acquired based on the two set values including the set value of the opening degree of the expansion valve.

制御装置は、例えば蒸発器4の伝熱管41に取り付けられた流速センサの測定値と、予め設定した数式16に示す関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uの設定値を比較し、測定値を設定値に近づける様に平均流速uを制御すればよい。また、冷媒の状態として、蒸発器4の出口の冷媒飽和温度Tsat_outを使用する場合において、制御装置は、冷凍サイクル装置100の運転開始時に圧縮機の回転数又は蒸発器の開度を予め定められた範囲で変化させて、二分法などの方法で蒸発器4の出口の冷媒飽和温度Tsat_outが最小値Tsat_u_minとなる圧縮機の回転数又は蒸発器の開度で運転するよう制御すればよい。The control device sets, for example, the measured value of the flow velocity sensor attached to the heat transfer tube 41 of the evaporator 4 and the set value of the average flow velocity u at which the preset function T sat_u (u) shown in Formula 16 becomes the minimum value T sat_u_min. The average flow velocity u may be controlled so as to make a comparison and bring the measured value close to the set value. Further, when the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is used as the state of the refrigerant, the control device predetermines the rotation speed of the compressor or the opening degree of the evaporator when the operation of the refrigeration cycle device 100 is started. If it is controlled to operate at the rotational speed of the compressor or the opening degree of the evaporator at which the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 becomes the minimum value T sat_u_min by a method such as a dichotomy method by changing it within a predetermined range. Good.

また、実施の形態1の冷凍サイクル装置100の構造は一例であり、本発明の冷凍サイクル装置の構造は実施の形態1の構造に限らない。例えば、実施の形態1の伝熱管41の流路の断面は円形であるが、これに限らず、伝熱管の断面は楕円形、扁平形又は矩形でも構わない。伝熱管の流路の断面が楕円形、扁平形又は矩形の場合の冷媒流路径d(m)は、等価直径を用いればよい。 Moreover, the structure of the refrigeration cycle apparatus 100 of Embodiment 1 is an example, and the structure of the refrigeration cycle apparatus of the present invention is not limited to the structure of Embodiment 1. For example, although the cross section of the flow path of the heat transfer tube 41 of the first embodiment is circular, the cross section of the heat transfer tube is not limited to this and may be elliptical, flat, or rectangular. When the cross section of the flow path of the heat transfer tube is elliptical, flat or rectangular, the equivalent diameter may be used as the refrigerant flow path diameter d(m).

実施の形態2.
実施の形態2に係る冷凍サイクル装置100は、実施の形態1に係る冷凍サイクル装置100と比べて、冷凍サイクル装置100内を循環する冷媒の組成を限定している点が異なる。なお、それ以外の冷凍サイクル装置100自体の構成は実施の形態1と同様であるため、説明を割愛する。
Embodiment 2.
Refrigeration cycle apparatus 100 according to Embodiment 2 differs from refrigeration cycle apparatus 100 according to Embodiment 1 in that the composition of the refrigerant circulating in refrigeration cycle apparatus 100 is limited. Other than that, the configuration of refrigeration cycle apparatus 100 itself is similar to that of the first embodiment, and therefore the description thereof is omitted.

実施の形態2の冷凍サイクル装置100を循環する冷媒は、R32と、R1234yfと、R125の混合冷媒であり、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である。このような冷媒を使用することで以下に示すような効果を得ることができる。The refrigerant that circulates in the refrigeration cycle apparatus 100 of the second embodiment is a mixed refrigerant of R32, R1234yf, and R125, and the ratio XR32 of R32 is 67 (wt%) and the ratio XR1234yf of XR1234yf is 26 (wt%). ), and the ratio of R125 X R125 is 7 (wt %). The following effects can be obtained by using such a refrigerant.

まず、各単一冷媒では長所または短所となる物性が備わっているが、複数冷媒を混合することで、短所を低減して長所を増長させることができる。R32の物性としては動作圧力が高いため、圧力損失による性能低下影響を低減でき、スーパーマーケットのショーケースなど低温の利用でも冷凍能力を向上することができる。また、R1234yfの物性としては、地球温暖化係数が0のため、環境影響を低減できる。R125の物性としては不燃性のため、R32とR1234yfの燃焼性を低減し、安全性を高めることができる。よって、上述の混合冷媒により、地球環境に影響が少なく、かつ安全性と性能を同時に向上することができる。 First, each single refrigerant has physical properties that are advantages or disadvantages, but by mixing a plurality of refrigerants, the disadvantages can be reduced and the advantages can be increased. As the physical properties of R32 are high operating pressure, it is possible to reduce the influence of performance deterioration due to pressure loss, and it is possible to improve the refrigerating capacity even at low temperatures such as in supermarket showcases. As for the physical properties of R1234yf, since the global warming potential is 0, environmental impact can be reduced. Since the physical properties of R125 are nonflammable, the flammability of R32 and R1234yf can be reduced, and the safety can be improved. Therefore, the above-mentioned mixed refrigerant has less influence on the global environment and can improve safety and performance at the same time.

また、混合冷媒は非共沸混合冷媒であり、非共沸混合冷媒は同圧力下において相変化で温度が変化し、蒸発過程において下流側が上流側より温度が高くなり、冷凍サイクル装置100の冷媒に非共沸混合冷媒を用いると蒸発器4の出口側の方が蒸発器4の入口側よりも温度が高くなる。特に、R32の混合冷媒は低温の利用でも冷凍能力が向上するため、冷凍サイクル装置100がショーケースなどの飽和温度が氷点下未満の低温機器に用いられることが多く、このように飽和温度が氷点下未満の低温機器で用いられる場合には蒸発器4に着霜が発生する。着霜が発生する機器に蒸発過程において温度勾配を有する冷媒を用いると、冷媒の温度が低い蒸発器4の入口側では空気の冷却が促進されて着霜量が多く、冷媒の温度が高い蒸発器4の出口側では空気の冷却が進まず着霜量は少なくなり、蒸発器4の着霜に偏りが生じる。着霜に偏りが生じた場合は、着霜が均等な場合に比べて全体の着霜量が同じとしても、早期に蒸発器4の入口側のフィン42の間の空間が霜によって目詰まりが発生して熱交換不能に陥ってしまう。 Further, the mixed refrigerant is a non-azeotropic mixed refrigerant, and the temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure, and the temperature of the downstream side becomes higher than that of the upstream side in the evaporation process, and the refrigerant of the refrigeration cycle apparatus 100. When a non-azeotropic mixed refrigerant is used for the evaporator 4, the temperature on the outlet side of the evaporator 4 becomes higher than that on the inlet side of the evaporator 4. In particular, since the refrigerating capacity of the mixed refrigerant of R32 is improved even at low temperatures, the refrigeration cycle apparatus 100 is often used in low-temperature equipment whose saturation temperature is below freezing, such as a showcase, and thus the saturation temperature is below freezing. When used in the low temperature equipment, frost is formed on the evaporator 4. When a refrigerant having a temperature gradient in the evaporation process is used for a device in which frost is generated, cooling of the air is promoted on the inlet side of the evaporator 4 having a low refrigerant temperature, the amount of frost is large, and the refrigerant temperature is high. On the outlet side of the evaporator 4, the cooling of air does not proceed and the amount of frost is reduced, so that the frost of the evaporator 4 is uneven. When the frost is unevenly distributed, the space between the fins 42 on the inlet side of the evaporator 4 is clogged with frost early even if the amount of frost is the same as compared with the case where the frost is even. It occurs and it becomes impossible to exchange heat.

非共沸混合冷媒は、蒸発器4内部の圧力をある所定の勾配で連続的に下げることによって蒸発器4に流れる冷媒の温度を均一とすることができ、蒸発器4の着霜の偏りは蒸発器4に流れる冷媒の温度を均一にすることで抑制することができる。蒸発器4内部の圧力を徐々に下げると蒸発器4の入口と出口に圧力差が生じるため、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差が、非共沸混合冷媒の組成に応じて一意に決まる。このため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにすることで、蒸発器4の着霜の偏りを抑制することができる。The non-azeotropic mixed refrigerant can make the temperature of the refrigerant flowing through the evaporator 4 uniform by continuously lowering the pressure inside the evaporator 4 at a predetermined gradient, and the uneven frost formation in the evaporator 4 can be prevented. This can be suppressed by making the temperature of the refrigerant flowing through the evaporator 4 uniform. When the pressure inside the evaporator 4 is gradually decreased, a pressure difference occurs between the inlet and the outlet of the evaporator 4, so that the refrigerant saturation temperature at the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing to the evaporator 4 is made uniform. The difference is uniquely determined by the composition of the non-azeotropic refrigerant mixture. Therefore, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is made substantially equal to the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. As a result, it is possible to suppress uneven frost formation on the evaporator 4.

しかし、冷媒の種類によっては、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにすると、平均流速(m/s)における数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満とならない場合や、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満になったとしても蒸発器4の冷媒流路長さL(m)又は冷媒流路径d(m)などの数値が非現実的な値となり実際の冷凍サイクル装置としては成り立たない場合がありえる。However, depending on the type of refrigerant, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 and the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing in the evaporator 4 is made uniform. If substantially the same, the function T sat_u (u) shown in Formula 16 at the average flow velocity (m/s) does not become less than T sat_u_min +0.3 (° C.), or the function T sat_u (u) shown in Formula 16 is T Even if it becomes less than sat_u_min +0.3 (° C.), the numerical values such as the refrigerant flow path length L (m) or the refrigerant flow path diameter d (m) of the evaporator 4 become unrealistic values, and as an actual refrigeration cycle device May not hold.

ここで、実施の形態2の冷凍サイクル装置100において、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにした場合について説明する。なお、以下の説明では上述の混合冷媒の冷媒物性の値や関数Tsat(u)の算出結果のグラフを示すが、これらの値はNIST(National Institute of Standards and Technology)が作成するソフト「Refprop」のVer.9.1と当ソフトに標準搭載されている混合則を用いてシミュレーションを行ったものである。Here, in the refrigeration cycle apparatus 100 of Embodiment 2, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is equal to the inlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. The case where the difference in the saturated temperature of the refrigerant at the outlet is approximately the same will be described. In the following description, a graph of the values of the refrigerant physical properties of the mixed refrigerant and the calculation results of the function T sat (u) are shown. Of Ver. The simulation was performed using 9.1 and the mixing rule installed as standard in this software.

次に数式2から数式17で説明した記号のうち、冷媒に依存する記号について上述の混合冷媒を用いた場合の具体的な数値を説明する。まず、冷媒の平均密度ρ(kg/m)は、飽和ガス状態の冷媒の密度が約17.6(kg/m)、飽和液状態の冷媒の密度が約1126.8(kg/m)であるため、両者の平均値より572.2(kg/m)である。また、冷媒の平均粘度μ(Pa・s)は、飽和ガス状態の冷媒の粘度が約1.1×10−5(Pa・s)、飽和液状態の冷媒の粘度が約1.72×10−4(Pa・s)であるため、両者の平均値より約9.2×10−5(Pa・s)である。また、冷媒の平均熱伝導率k(W/mK)は、飽和ガス状態の冷媒の熱伝導率が約0.011(W/mK)、飽和液状態の冷媒の熱伝導率が約0.126(W/mK)であるため、両者の平均値より約0.069(W/mK)である。プラントル数Prは、約1.766である。二相流れ圧力損失の平均補正係数Φは、約3である。Next, among the symbols described in Formulas 2 to 17, specific numerical values in the case where the above mixed refrigerant is used will be described for symbols depending on the coolant. First, regarding the average density ρ (kg/m 3 ) of the refrigerant, the density of the refrigerant in the saturated gas state is about 17.6 (kg/m 3 ), and the density of the refrigerant in the saturated liquid state is about 116.8 (kg/m 3 ). 3 ), the average value of both is 572.2 (kg/m 3 ). As for the average viscosity μ (Pa·s) of the refrigerant, the viscosity of the refrigerant in the saturated gas state is about 1.1×10 −5 (Pa·s), and the viscosity of the refrigerant in the saturated liquid state is about 1.72×10. Since it is −4 (Pa·s), it is about 9.2×10 −5 (Pa·s) from the average value of both. Regarding the average thermal conductivity k (W/mK) of the refrigerant, the thermal conductivity of the refrigerant in the saturated gas state is about 0.011 (W/mK), and the thermal conductivity of the refrigerant in the saturated liquid state is about 0.126. Since it is (W/mK), it is about 0.069 (W/mK) from the average value of both. The Prandtl number Pr is about 1.766. The average correction factor Φ for the two-phase flow pressure loss is about 3.

次に数式2から数式17で説明した記号のうち、冷凍サイクル装置100の構造に依存する記号について、具体的な数値を説明する。蒸発器4の冷媒流路長さL(m)は9(m)、冷媒流路径d(m)は9.52×10−3(m)、管外側伝熱面積A(m)は29.4(m)、管内側伝熱面積A(m)は4.8(m)、熱交換量Q(W)は20000(W)である。なお、これらの数値は冷凍サイクル装置100を構成するに当たって、現実的な値であり、実際の冷凍サイクル装置として成り立つ。Next, among the symbols described in Formulas 2 to 17, specific numerical values will be described for the symbols that depend on the structure of the refrigeration cycle apparatus 100. The refrigerant flow path length L (m) of the evaporator 4 is 9 (m), the refrigerant flow path diameter d (m) is 9.52×10 −3 (m), and the tube outer side heat transfer area A o (m 2 ) is 29.4 (m 2 ), the tube inner heat transfer area A i (m 2 ) is 4.8 (m 2 ), and the heat exchange amount Q(W) is 20000 (W). It should be noted that these numerical values are realistic values in constructing the refrigeration cycle apparatus 100, and are established as an actual refrigeration cycle apparatus.

また、数式2から数式17で説明した記号のうち、冷却対象に依存する記号について、具体的な数値を説明する。Tairは、蒸発器4が冷却する冷却対象の温度Tair(℃)は0.7(℃)、冷却対象の熱伝達率α(W/mK)は100(W/mK)である。Further, among the symbols described in Formulas 2 to 17, specific numerical values will be described for the symbols depending on the cooling target. As for T air , the temperature T air (° C.) to be cooled by the evaporator 4 is 0.7 (° C.), and the heat transfer coefficient α o (W/m 2 K) to be cooled is 100 (W/m 2 K). ).

また、上述の混合冷媒は、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差が約1.3℃となる。このため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを約1.3℃とすれば、蒸発過程における温度の上昇が抑制され、蒸発器4を流れる冷媒の温度を均一になる。Further, in the above-mentioned mixed refrigerant, the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform is about 1.3°C. Therefore, if the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is set to about 1.3° C., the temperature rise in the evaporation process is suppressed and the temperature of the refrigerant flowing through the evaporator 4 becomes uniform.

図4は、実施の形態2に係る冷凍サイクル装置の蒸発器の入口と出口の冷媒飽和温度差ΔTsatと、蒸発器を流れる冷媒の平均流速uのグラフである。図4のグラフは換言すると関数Tsat(u)のグラフであり、上述の通り、平均流速uの値が大きくなるほど、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値は大きくなる関係であることが分かる。また、図4のグラフより蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値が1.3℃となる平均流速uの値は約1.2(m/s)である。このため、実施の形態2における冷凍サイクル装置100では、平均流速uの値を約1.2(m/s)とすれば、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなり、蒸発器4を流れる冷媒の温度を均一にすることができる。FIG. 4 is a graph of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator of the refrigeration cycle apparatus according to the second embodiment and the average flow velocity u of the refrigerant flowing through the evaporator. In other words, the graph of FIG. 4 is a graph of the function T sat (u), and as described above, the value of the refrigerant saturation temperature difference ΔT sat at the inlet and the outlet of the evaporator 4 increases as the value of the average flow velocity u increases. It turns out to be a relationship. Moreover, from the graph of FIG. 4, the value of the average flow velocity u at which the value of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is 1.3° C. is about 1.2 (m/s). Therefore, in the refrigeration cycle apparatus 100 in the second embodiment, if the value of the average flow velocity u is about 1.2 (m/s), the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. The refrigerant saturation temperature difference between the inlet and the outlet of the evaporator and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 become equal, and the temperature of the refrigerant flowing through the evaporator 4 can be made uniform.

また、関数Tsat(u)は数式9から14に示すように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは蒸発器4の圧力損失ΔPの関係より導出している。この圧力損失ΔPは、冷媒と配管との摩擦による圧力損失であり、蒸発器4の入口から出口にかけて連続的に増加する。このため、蒸発器4内の圧力の変化は蒸発器4の入口から出口にかけて勾配を持って連続的に下げることができる。よって、蒸発器4の着霜の偏りを抑制するには、蒸発器4は、実施の形態1と同じく図3に示すようなプレートフィンチューブ熱交換器であり、圧縮機1の回転数、膨張弁3の開度、冷媒流路の分岐数に応じて平均流速uを変化させて圧力損失を変化させる方法が最適である。Further, the function T sat (u) is derived from the relationship of the pressure loss ΔP of the evaporator 4 as the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 as shown in Formulas 9 to 14. This pressure loss ΔP is a pressure loss due to friction between the refrigerant and the pipe, and increases continuously from the inlet to the outlet of the evaporator 4. Therefore, the change in the pressure in the evaporator 4 can be continuously reduced with a gradient from the inlet to the outlet of the evaporator 4. Therefore, in order to suppress the uneven frost formation of the evaporator 4, the evaporator 4 is a plate fin tube heat exchanger as shown in FIG. The method of changing the pressure loss by changing the average flow velocity u according to the opening degree of the valve 3 and the number of branches of the refrigerant flow path is optimal.

図5は、実施の形態2に係る冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差と、蒸発器を流れる冷媒の平均流速uのグラフである。図5より平均流速uの値が小さいほど伝熱性能により冷却対象と冷媒に生じる温度差の値が大きくなっていることが分かる。以下にこの理由を説明する。まず、冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差は換言すると、冷却対象の温度Tairと蒸発器4の入口の冷媒飽和温度Tsat_inの差Tair−Tsat_inで表される。また、数式8を変形することで、数式19が導出できる。数式19よりTair−Tsat_inは平均流速uの0.8乗に反比例し、平均流速uの値が小さいほどTair−Tsat_inは大きくなることがわかる。FIG. 5 is a graph of the temperature difference between the cooling target and the refrigerant due to the heat transfer performance of the refrigeration cycle apparatus according to the second embodiment, and the average flow rate u of the refrigerant flowing through the evaporator. It can be seen from FIG. 5 that the smaller the value of the average flow velocity u, the larger the value of the temperature difference between the cooling target and the refrigerant due to the heat transfer performance. The reason for this will be described below. First, in other words, the temperature difference between the cooling target and the refrigerant due to the heat transfer performance of the refrigeration cycle device is expressed by the difference T air -T sat_in between the cooling target temperature T air and the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4. It Further, by modifying the formula 8, the formula 19 can be derived. It can be seen from Equation 19 that T air −T sat_in is inversely proportional to the 0.8th power of the average flow velocity u, and T air −T sat_in increases as the value of the average flow velocity u decreases.

Figure 0006715918
Figure 0006715918

図6は、実施の形態2に係る冷凍サイクル装置の蒸発器4の出口の冷媒飽和温度Tsat_outと、蒸発器を流れる冷媒の平均流速uのグラフである。図6のグラフは換言すると、数式15のグラフであり、蒸発器4の出口の冷媒飽和温度Tsat_outに最大値Tsat_out_maxが存在することが分かる。また、数式15と数式17の関係より、蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなる平均流速uは、関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uでもある。FIG. 6 is a graph of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 of the refrigeration cycle apparatus according to Embodiment 2 and the average flow rate u of the refrigerant flowing through the evaporator. In other words, the graph of FIG. 6 is a graph of Expression 15, and it can be seen that the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 has the maximum value T sat_out_max . Further, from the relationship between Formula 15 and Formula 17, the average flow velocity u at which the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 has the maximum value T sat_out_max is the average flow velocity u at which the function T sat_u (u) has the minimum value T sat_u_min. But also.

図6のグラフより蒸発器4の出口の冷媒飽和温度Tsat_outの最大値Tsat_out_maxは約−10.0℃である。また、蒸発器4の出口の冷媒飽和温度Tsat_outの最大値Tsat_out_maxとなる平均流速uは、約1.2(m/s)であり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uとが略等しくなる。このため、実施の形態2に係る冷凍サイクル装置100は、蒸発器4を流れる冷媒の温度を均一にして着霜の偏りを防止すると同時に、確実に冷凍サイクル装置全体の運転性能の最大化することができる。From the graph of FIG. 6, the maximum value T sat_out_max of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is about −10.0° C. Further, the average flow velocity u that is the maximum value T sat_out_max of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is about 1.2 (m/s), and when the temperature of the refrigerant flowing to the evaporator 4 is made uniform. The average flow velocity u at which the difference in refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 and the difference in refrigerant saturation temperature ΔT sat between the inlet and the outlet of the evaporator 4 are equal to each other. Therefore, the refrigeration cycle apparatus 100 according to the second embodiment can make the temperature of the refrigerant flowing through the evaporator 4 uniform to prevent uneven frost formation, and at the same time reliably maximize the operation performance of the entire refrigeration cycle apparatus. You can

以上より、実施の形態2のように、冷凍サイクル装置を循環する冷媒に、組成がR32が67wt%、R1234yfが26wt%、R125が7wt%である混合冷媒を用いた場合では、実際の冷凍サイクル装置として成り立つ範囲で、蒸発器4を流れる冷媒の温度を均一にして着霜の偏りを抑制すると同時に、確実に冷凍サイクル装置全体の運転性能の最大化を行うことができる。 As described above, as in the second embodiment, when a mixed refrigerant having a composition of R32 67 wt%, R1234yf 26 wt% and R125 7 wt% is used as the refrigerant circulating in the refrigeration cycle device, the actual refrigeration cycle In the range that can be realized as a device, the temperature of the refrigerant flowing through the evaporator 4 can be made uniform to suppress the unevenness of frost formation, and at the same time, the operation performance of the entire refrigeration cycle device can be reliably maximized.

なお、冷凍サイクル装置100全体の運転性能の低下を防止し、蒸発器4の着霜の偏りを抑制するためには、必ず平均流速uを蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる必要は無い。実施の形態1と同様の理由で、冷媒が、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような平均流速uで蒸発器を流れていれば、冷凍サイクル装置100全体の運転性能の低下を防止する効果を発揮し、また蒸発器4の着霜の偏りも抑制できる。実施の形態2の条件では、関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となる平均流速u、つまり蒸発器4の出口の冷媒飽和温度Tsat_outが−10.3℃より大きくなる平均流速uは、図6より平均流速uが0.85(m/s)<u<1.6(m/s)の条件を満たせばよい。また、平均流速uが0.85(m/s)<u<1.6(m/s)の条件を満たす場合の蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、図4より0.7(℃)<ΔTsat<2.1(℃)の条件を満たしており、この条件を満たす冷媒飽和温度差ΔTsatは少なくとも平均流速uが1.6(m/s)以上に比べて、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatと蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差の差が小さくなり、蒸発器4の着霜の偏りが抑制できることがわかる。In order to prevent the deterioration of the operation performance of the entire refrigeration cycle apparatus 100 and suppress the uneven frost formation of the evaporator 4, the average flow velocity u is always set to the maximum value of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4. It becomes T sat_out_max , and it is necessary that the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. There is no. For the same reason as in the first embodiment, if the refrigerant flows through the evaporator at the average flow rate u such that the function T sat_u (u) shown in Formula 16 is less than T sat_u_min +0.3 (° C.), the refrigerant is frozen. The effect of preventing the deterioration of the operation performance of the entire cycle device 100 is exhibited, and the uneven frost formation of the evaporator 4 can be suppressed. Under the conditions of the second embodiment, the average flow velocity u at which the function T sat_u (u) is less than T sat_u_min +0.3 (°C), that is, the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is higher than -10.3°C. The average flow velocity u may satisfy the condition that the average flow velocity u is 0.85 (m/s)<u<1.6 (m/s) according to FIG. Further, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 when the average flow velocity u satisfies the condition of 0.85 (m/s)<u<1.6 (m/s) is shown in FIG. The condition of 0.7 (° C.)<ΔT sat <2.1 (° C.) is satisfied, and the refrigerant saturation temperature difference ΔT sat satisfying this condition is at least as compared with the average flow velocity u of 1.6 (m/s) or more. The difference between the refrigerant saturation temperature difference ΔT sat at the inlet and the outlet of the evaporator 4 and the difference between the refrigerant saturation temperature difference at the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. It can be seen that the uneven frost formation on the container 4 can be suppressed.

また、実施の形態2の冷凍サイクル装置100では、蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなる平均流速uと、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uと、が略等しくなるようになっているが、これに限らない。蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uにおける数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となっていれば、冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制できる。Further, in the refrigeration cycle apparatus 100 of the second embodiment, the average flow velocity u at which the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 becomes the maximum value T sat_out_max and the temperature of the refrigerant flowing through the evaporator 4 are made uniform. The difference in the refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 and the average flow rate u at which the difference in the refrigerant saturation temperature ΔT sat between the inlet and the outlet of the evaporator 4 are equal to each other, but are not limited to this. .. When the temperature of the refrigerant flowing through the evaporator 4 is made uniform, the equation 16 at the average flow rate u at which the difference between the refrigerant saturation temperature at the inlet and the outlet of the evaporator 4 and the difference between the refrigerant saturation temperature ΔT sat at the inlet and the outlet of the evaporator are equal to If the indicated function T sat_u (u) is less than T sat_u_min +0.3 (°C), the effect of preventing the deterioration of the operating performance of the entire refrigeration cycle device is exerted, and the uneven frosting of the evaporator is suppressed. it can.

また、実施の形態2では、R32と、R1234yfと、R125の混合冷媒であり、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である冷媒を使用しているがこれには限らず、非共沸混合冷媒であり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uにおける数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となっていれば、冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制する効果を発揮する。Further, in the second embodiment, it is a mixed refrigerant of R32, R1234yf, and R125, and the ratio XR32 of R32 is 67 (wt%), the ratio X of R1234yf X R1234yf is 26 (wt%), and the ratio XR125 of R125. However, the refrigerant is a non-azeotropic mixed refrigerant, and the inlet and outlet of the evaporator 4 when the temperature of the refrigerant flowing to the evaporator 4 is made uniform The function T sat_u (u) shown in Formula 16 at the average flow velocity u at which the refrigerant saturation temperature difference ΔT sat and the refrigerant saturation temperature difference ΔT sat at the inlet and the outlet of the evaporator are less than T sat_u_min +0.3 (° C.) For example, it exerts the effect of preventing the deterioration of the operation performance of the entire refrigeration cycle apparatus, and also exerts the effect of suppressing the uneven frosting of the evaporator.

特に、実施の形態2の混合冷媒のそれぞれの組成が±3wt%未満の範囲で異なる冷媒、つまりR32の割合XR32(wt%)が64<XR32<70である条件と、R1234yfの割合XR1234yf(wt%)が23<XR1234yf<29である条件と、R125の割合XR125(wt%)が4<XR125<10である条件と、XR32とXR1234yfとXR125の総和が100である条件と、を全て満たす冷媒は、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である混合冷媒と比較して、各種物性、蒸発器4の入口と出口の冷媒飽和温度差ΔTsat及び関数Tsat(u)は大きく変わらないため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、図4より0.7(℃)<ΔTsat<2.1(℃)の条件を満たしていれば冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制する効果を発揮する。In particular, the respective compositions different refrigerant in a range of less than ± 3 wt%, i.e. the ratio of R32 X R32 (wt%) is 64 <X R32 <70 conditions of the mixed refrigerant of the second embodiment, the proportion of R1234yf X R1234yf (wt%) is 23<X R1234yf <29, R125 ratio X R125 (wt%) is 4<X R125 <10, and the sum of X R32 , X R1234yf, and X R125 is 100. Is a mixed refrigerant in which the ratio X of R32 X R32 is 67 (wt %), the ratio X of R1234yf X R1234yf is 26 (wt %), and the ratio X of R125 X R125 is 7 (wt %). Compared with, the various physical properties, the difference ΔT sat of the refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 and the function T sat (u) do not change much, so the difference ΔT sat of the refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 is As shown in FIG. 4, if the condition of 0.7 (° C.)<ΔT sat <2.1 (° C.) is satisfied, the effect of preventing the deterioration of the operation performance of the entire refrigeration cycle device is exerted, and the frost formation of the evaporator The effect of suppressing the bias of is also exerted.

1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 冷媒配管、5a〜5d 冷媒配管、6 凝縮器送風機、7 蒸発器送風機、41 伝熱管、41a 流路、41b 接合箇所、41c 接合箇所、42 フィン、42a フィン、42b フィン、43 冷媒分配器、44 ヘッダ、100 冷凍サイクル装置 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Refrigerant piping, 5a-5d Refrigerant piping, 6 Condenser blower, 7 Evaporator blower, 41 Heat transfer pipe, 41a Flow path, 41b Joint part, 41c Joining Location, 42 fins, 42a fins, 42b fins, 43 refrigerant distributor, 44 header, 100 refrigeration cycle device

Claims (2)

圧縮機と、凝縮器と、減圧装置と、蒸発器を有し、内部で単一冷媒が循環する冷凍サイクルと、制御装置と、を備え、
前記蒸発器には、流速センサが取り付けられており、
前記蒸発器の熱交換量をQ(W)、前記蒸発器の冷媒流路径をd(m)、前記蒸発器の管内側伝熱面積をAi(m)、前記冷媒の平均熱伝導率をk(W/mK)、前記冷媒の平均密度をρ(kg/m)、前記冷媒の平均粘度をμ(Pa・s)、前記冷媒のプラントル数をPr、前記蒸発器を流れる前記冷媒の平均流速をu(m/s)、前記冷媒の種類によって定められ前記蒸発器の入口と出口の冷媒飽和温度差を示す前記平均流速uの関数をTsat(u)とし、
Figure 0006715918
の式で表される関数Tsat_u(u)の最小値をTsat_u_minとして、
前記制御装置は、
前記流速センサの測定値が、
前記関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような前記平均流速uに近づくように、前記冷媒が前記蒸発器を流れるように、前記圧縮機の回転数を制御する冷凍サイクル装置。
A compressor, a condenser, a decompression device, an evaporator, a refrigeration cycle in which a single refrigerant circulates, and a controller,
A flow rate sensor is attached to the evaporator,
The heat exchange amount of the evaporator is Q(W), the refrigerant flow path diameter of the evaporator is d(m), the heat transfer area inside the tube of the evaporator is Ai(m 2 ), and the average thermal conductivity of the refrigerant is k (W/mK), the average density of the refrigerant is ρ (kg/m 3 ), the average viscosity of the refrigerant is μ (Pa·s), the Prandtl number of the refrigerant is Pr, and the refrigerant flowing through the evaporator is An average flow velocity u (m/s), a function of the average flow velocity u defined by the type of the refrigerant and showing a refrigerant saturation temperature difference between the inlet and the outlet of the evaporator is T sat (u),
Figure 0006715918
The minimum of the function T Sat_u represented by the formula (u) as T sat_u_min,
The control device is
The measured value of the flow velocity sensor,
The rotation speed of the compressor is controlled so that the refrigerant flows through the evaporator so as to approach the average flow velocity u such that the function T sat_u (u) becomes less than T sat_u_min +0.3 (°C). Refrigeration cycle device.
前記冷媒は、前記蒸発器を流れる前記冷媒の平均流速uが、前記関数Tsat_u(u)がTsat_u_min(℃)となるように前記冷凍サイクルを循環している請求項1に記載の冷凍サイクル装置。 The refrigeration cycle according to claim 1, wherein the refrigerant circulates in the refrigeration cycle such that the average flow velocity u of the refrigerant flowing through the evaporator is such that the function T sat_u (u) is T sat_u_min (°C). apparatus.
JP2018502900A 2016-03-01 2016-03-01 Refrigeration cycle equipment Active JP6715918B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056199 WO2017149642A1 (en) 2016-03-01 2016-03-01 Refrigeration cycle device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019141915A Division JP2019215155A (en) 2019-08-01 2019-08-01 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2017149642A1 JPWO2017149642A1 (en) 2018-09-20
JP6715918B2 true JP6715918B2 (en) 2020-07-01

Family

ID=59742598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018502900A Active JP6715918B2 (en) 2016-03-01 2016-03-01 Refrigeration cycle equipment

Country Status (3)

Country Link
JP (1) JP6715918B2 (en)
CN (1) CN108700340B (en)
WO (1) WO2017149642A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914608A (en) * 2017-07-25 2020-03-24 三菱电机株式会社 Refrigeration device and method for operating refrigeration device
EP4177538A1 (en) * 2020-07-03 2023-05-10 Daikin Industries, Ltd. Use as refrigerant in compressor, compressor, and refrigeration cycle apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272998A (en) * 1993-03-18 1994-09-27 Toshiba Corp Refrigerator
JPH08145490A (en) * 1994-11-17 1996-06-07 Matsushita Refrig Co Ltd Heat exchanger for heat pump air conditioner
JP3484866B2 (en) * 1995-08-04 2004-01-06 三菱電機株式会社 Refrigeration equipment
JPH09133433A (en) * 1995-11-07 1997-05-20 Sanyo Electric Co Ltd Heat exchanger
JP2002323272A (en) * 2001-04-24 2002-11-08 Denso Corp Evaporator
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP4715971B2 (en) * 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
JP5927415B2 (en) * 2011-04-25 2016-06-01 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
CN108700340A (en) 2018-10-23
CN108700340B (en) 2020-06-30
JPWO2017149642A1 (en) 2018-09-20
WO2017149642A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US11175080B2 (en) Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
JP5847366B1 (en) Air conditioner
EP3315876B1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
In et al. Performance test of residential heat pump after partial optimization using low GWP refrigerants
KR100248683B1 (en) Cooling apparatus
JP5976576B2 (en) Air conditioner
JP2008275201A (en) Refrigerating air-conditioning device
JP6042026B2 (en) Refrigeration cycle equipment
JP6479181B2 (en) Air conditioner
JPWO2017221400A1 (en) Refrigeration cycle equipment
JPWO2019082372A1 (en) Refrigeration cycle equipment
JP6715918B2 (en) Refrigeration cycle equipment
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
Hwang et al. Performance Measurement of CO 2 Heat Exchangers.
Oruç et al. Experimental assessment of the retrofit of an internal heat exchanger in refrigeration systems: The effect on energy performance and system operation
JP6758506B2 (en) Air conditioner
JPWO2017199393A1 (en) Outdoor unit and refrigeration cycle apparatus including the same
WO2020188756A1 (en) Air conditioner
JP6765538B2 (en) Refrigeration equipment and operation method of refrigeration equipment
JP2012237518A (en) Air conditioner
JP2013134024A (en) Refrigeration cycle device
JP2019215155A (en) Refrigeration cycle device
JPWO2020148826A1 (en) Air conditioner
WO2018216187A1 (en) Refrigeration cycle device
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200609

R150 Certificate of patent or registration of utility model

Ref document number: 6715918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250