JP2019215155A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2019215155A
JP2019215155A JP2019141915A JP2019141915A JP2019215155A JP 2019215155 A JP2019215155 A JP 2019215155A JP 2019141915 A JP2019141915 A JP 2019141915A JP 2019141915 A JP2019141915 A JP 2019141915A JP 2019215155 A JP2019215155 A JP 2019215155A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
sat
refrigeration cycle
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019141915A
Other languages
Japanese (ja)
Inventor
智隆 石川
Tomotaka Ishikawa
智隆 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019141915A priority Critical patent/JP2019215155A/en
Publication of JP2019215155A publication Critical patent/JP2019215155A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a refrigerant cycle device for suppressing the lowering of performance resulting from an increase in pressure loss, and preventing the lowering of the operation performance of the refrigeration cycle device as a whole.SOLUTION: A refrigeration cycle device has a compressor, a condenser, a decompressor, and an evaporator, and has a refrigeration cycle in which a refrigerant circulates. The refrigerant is a mixed refrigerant of R32, R1234yf and R125, and satisfies all of a condition that a ratio X(wt%) of the R32 is 64<X<70, a condition that a ratio X(wt%) of the R1234yf is 23<X<29, a condition that a ratio X(wt%) of the R125 is 4<X<10, and a condition that a total sum of the ratio Xof the R32, the ratio Xof the R1234yf, and the ratio Xof the R125 is 100. A refrigerant saturation temperature difference ΔT(°C) between an inlet and an outlet of the evaporator satisfies a condition of 0.7<ΔT<2.1.SELECTED DRAWING: Figure 1

Description

本発明は、空調、給湯等の用途に利用される冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle device used for applications such as air conditioning and hot water supply.

従来、特許文献1のように、蒸発器と、コンプレッサ(本発明の圧縮機に相当する)と、凝縮器と、キャピラリチューブ(本発明の減圧装置に相当する)とが冷媒が循環する管路によってそれぞれ接続され、冷媒を循環させる冷凍サイクル装置が知られていた。   2. Description of the Related Art Conventionally, as in Patent Document 1, an evaporator, a compressor (corresponding to a compressor of the present invention), a condenser, and a capillary tube (corresponding to a decompression device of the present invention) are arranged such that a refrigerant circulates therethrough. And a refrigeration cycle device for circulating the refrigerant.

また、冷凍サイクル装置に使用される冷媒には複数種類の冷媒を混合した非共沸混合冷媒が用いられることがある。非共沸混合冷媒は同圧力下において相変化で温度が変化し、蒸発過程において下流側が上流側より温度が高くなり、冷凍サイクル装置の冷媒に非共沸混合冷媒を用いると蒸発器の出口側の方が蒸発器の入口側よりも温度が高くなる。また、蒸発器に送り込まれる冷媒は温度が低いほど蒸発器の冷却性能は向上するが、蒸発器に送り込まれる冷媒の温度が0℃を下回ってしまうと蒸発器に着霜する問題が生じてしまうため、冷凍サイクル装置に非共沸混合冷媒を使用すると蒸発器に流れる冷媒の温度が高めであり冷却性能が不十分な場合があった。   Further, a non-azeotropic mixed refrigerant in which a plurality of types of refrigerants are mixed may be used as the refrigerant used in the refrigeration cycle apparatus. The temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure, and the temperature of the downstream side becomes higher than that of the upstream side in the evaporation process. Has a higher temperature than the inlet side of the evaporator. Also, the cooling performance of the evaporator is improved as the temperature of the refrigerant sent to the evaporator is lower, but if the temperature of the refrigerant sent to the evaporator falls below 0 ° C., a problem of frost formation on the evaporator occurs. Therefore, when a non-azeotropic mixed refrigerant is used in the refrigeration cycle apparatus, the temperature of the refrigerant flowing through the evaporator is high, and the cooling performance may be insufficient.

これに対して、特許文献1では、蒸発過程の管路内の圧力損失を大きくして、蒸発器内の冷媒の温度が一定になるよう蒸発過程の管路内の圧力を徐々に低下させる蒸発器冷凍サイクル装置が記載されている。このような冷凍サイクル装置では、蒸発過程における温度の上昇が抑制され、冷却性能の向上と着霜の防止を両立できる。   On the other hand, in Patent Document 1, evaporation in which the pressure in the pipe during the evaporation process is gradually reduced so that the pressure loss in the pipe during the evaporation process is increased and the temperature of the refrigerant in the evaporator becomes constant. A refrigerating cycle device is described. In such a refrigeration cycle device, an increase in temperature during the evaporation process is suppressed, and both improvement in cooling performance and prevention of frost formation can be achieved.

特開2015−34659号公報JP 2015-34659A

しかしながら、蒸発過程の管路内の圧力損失、つまり蒸発器の圧力損失を大きくすると、蒸発器内の冷媒の圧力が小さくなり、蒸発器の熱交換性能が低くなってしまう。このため、蒸発器の圧力損失によっては、蒸発過程における温度の上昇の抑制に起因する性能の向上よりも、圧力損失の増大に起因する性能の低下の方が大きくなってしまい、冷凍サイクル装置全体の運転性能が低下してしまう問題がある。特に、蒸発温度の低い低温機器、寒冷地での給湯・暖房運転、動作圧力の低い冷媒を用いた場合では、蒸発器の冷媒の圧力低下による冷凍サイクル装置の性能低下への影響度は大きく、この問題が顕著に表れてしまう。   However, if the pressure loss in the pipe during the evaporation process, that is, the pressure loss of the evaporator, is increased, the pressure of the refrigerant in the evaporator decreases, and the heat exchange performance of the evaporator decreases. For this reason, depending on the pressure loss of the evaporator, the performance decrease due to the increase in the pressure loss is larger than the performance improvement due to the suppression of the temperature rise in the evaporation process, and the entire refrigeration cycle apparatus However, there is a problem that the driving performance of the vehicle decreases. In particular, when using low-temperature equipment with low evaporation temperature, hot water supply / heating operation in cold regions, and refrigerant with low operating pressure, the drop in refrigerant pressure of the evaporator greatly affects the performance of the refrigeration cycle device, This problem appears remarkably.

本発明は上記の課題を鑑みてなされたものであり、冷凍サイクル装置全体の運転性能の低下を防止した冷凍サイクル装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle device that prevents a decrease in the operation performance of the entire refrigeration cycle device.

本発明の冷凍サイクル装置は、圧縮機と、凝縮器と、減圧装置と、蒸発器を有し、内部で冷媒が循環する冷凍サイクルを備え、前記冷媒は、R32と、R1234yfと、R125の混合冷媒であり、前記R32の割合XR32(wt%)が64<XR32<70である条件と、前記R1234yfの割合XR1234yf(wt%)が23<XR1234yf<29である条件と、前記R125の割合XR125(wt%)が4<XR125<10である条件と、前記R32の割合XR32と前記R1234yfの割合XR1234yfと前記R125の割合XR125の総和が100である条件と、を全て満たす冷媒であり、前記蒸発器の入口と出口の冷媒飽和温度差ΔTsat(℃)は、0.7<ΔTsat<2.1の条件を満たすことを特徴としている。 The refrigeration cycle device of the present invention includes a compressor, a condenser, a decompression device, and an evaporator, and includes a refrigeration cycle in which a refrigerant circulates, and the refrigerant is a mixture of R32, R1234yf, and R125. a refrigerant, and conditions the ratio X R32 of the R32 (wt%) is 64 <X R32 <70, a condition which is the ratio of R1234yf X R1234yf (wt%) is 23 <X R1234yf <29, wherein R125 and conditions the ratio of X R125 (wt%) is 4 <X R125 <10, and conditions the sum of the percentage X R125 proportion X R1234yf and the R125 in the the ratio X R32 of the R32 R1234yf is 100, the a refrigerant satisfying all, the evaporator inlet and outlet of the refrigerant saturation temperature difference [Delta] T sat (° C.) is 0.7 <Article of [Delta] T sat <2.1 It is characterized by satisfying.

本発明の冷凍サイクルでは、冷媒は関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となる平均流速u(m/s)で蒸発器を流れるため、圧力損失の増大に起因する性能の低下を抑制でき、冷凍サイクル装置全体の運転性能の低下を防止することができる。 In the refrigeration cycle of the present invention, since the refrigerant flows through the evaporator at an average flow rate u (m / s) at which the function T sat — u (u) is less than T sat — u — min +0.3 (° C.), performance due to an increase in pressure loss is obtained. Can be suppressed, and a decrease in the operation performance of the entire refrigeration cycle apparatus can be prevented.

実施の形態1に係る冷凍サイクル装置全体の構成を表す概略図である。FIG. 2 is a schematic diagram illustrating a configuration of an entire refrigeration cycle device according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置の蒸発器の構成を表す概略図である。FIG. 2 is a schematic diagram illustrating a configuration of an evaporator of the refrigeration cycle device according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置の蒸発器の図2に示すA−A断面の断面図である。FIG. 3 is a cross-sectional view of the evaporator of the refrigeration cycle device according to Embodiment 1 taken along the line AA shown in FIG. 2. 実施の形態2に係る冷凍サイクル装置の蒸発器の入口と出口の冷媒飽和温度差ΔTsatと、蒸発器を流れる冷媒の平均流速uのグラフである。9 is a graph of a refrigerant saturation temperature difference ΔT sat between an inlet and an outlet of an evaporator of a refrigeration cycle device according to Embodiment 2, and an average flow rate u of refrigerant flowing through the evaporator. 実施の形態2に係る冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差と、蒸発器を流れる冷媒の平均流速uのグラフである。9 is a graph of a temperature difference generated between a cooling target and a refrigerant due to heat transfer performance of a refrigeration cycle device according to Embodiment 2, and an average flow velocity u of the refrigerant flowing through an evaporator. 実施の形態2に係る冷凍サイクル装置の蒸発器4の出口の冷媒飽和温度Tsat_outと、蒸発器を流れる冷媒の平均流速uのグラフである。 9 is a graph showing a refrigerant saturation temperature T sat_out at an outlet of an evaporator 4 of the refrigeration cycle apparatus according to Embodiment 2, and an average flow velocity u of the refrigerant flowing through the evaporator.

実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置全体の構成を表す概略図である。図2は、実施の形態1に係る冷凍サイクル装置の蒸発器の構成を表す概略図である。図3は、実施の形態1に係る冷凍サイクル装置の蒸発器の図2に示すA−A断面の断面図である。なお、各図において同じ部分又は相当する部分には同じ符号を付している。実施の形態1の冷凍サイクル装置100は、図1に示すように圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とが冷媒配管5でそれぞれ接続され、圧縮機1、凝縮器2、膨張弁3、蒸発器4、圧縮機1の順に内部で冷媒が循環する冷凍サイクルが構成されている。冷媒配管5のうち、圧縮機1と凝縮器2を接続しているものを冷媒配管5a、凝縮器2と膨張弁3を接続しているものを冷媒配管5b、膨張弁3と蒸発器4を接続しているものを冷媒配管5c、蒸発器4と圧縮機1を接続しているものを冷媒配管5dとそれぞれ称する。なお、実施の形態1に係る冷凍サイクル装置100を循環する冷媒は、特に限定されないが、冷凍サイクル装置100の用途等に応じて任意の一つの冷媒に決定される。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating a configuration of the entire refrigeration cycle apparatus according to Embodiment 1. FIG. 2 is a schematic diagram illustrating a configuration of an evaporator of the refrigeration cycle device according to Embodiment 1. FIG. 3 is a cross-sectional view of the evaporator of the refrigeration cycle apparatus according to Embodiment 1 taken along the line AA shown in FIG. 2. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the refrigeration cycle apparatus 100 according to the first embodiment, as shown in FIG. 1, a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 are connected by a refrigerant pipe 5, respectively. A refrigeration cycle in which the refrigerant circulates inside the compressor 2, the expansion valve 3, the evaporator 4, and the compressor 1 in this order. Of the refrigerant pipes 5, the one connecting the compressor 1 and the condenser 2 is the refrigerant pipe 5a, the one connecting the condenser 2 and the expansion valve 3 is the refrigerant pipe 5b, the expansion valve 3 and the evaporator 4 are What is connected is called refrigerant pipe 5c, and what connects evaporator 4 and compressor 1 is called refrigerant pipe 5d. The refrigerant circulating in the refrigeration cycle apparatus 100 according to Embodiment 1 is not particularly limited, but is determined to be any one refrigerant depending on the use of the refrigeration cycle apparatus 100 and the like.

圧縮機1は、冷媒を吸入し、圧縮して高温高圧のガス状態にして吐出する。圧縮機1は、例えばインバータ回路等によって回転数を制御され、回転数の制御によって冷媒の吐出量が調整できるもので構成するとよい。   The compressor 1 sucks in the refrigerant, compresses it, and discharges it in a high-temperature, high-pressure gas state. The compressor 1 may be configured such that the number of revolutions is controlled by, for example, an inverter circuit, and the discharge amount of the refrigerant can be adjusted by controlling the number of revolutions.

凝縮器2は、圧縮機1で圧縮されて高温高圧のガス状態になった冷媒が流入し、冷媒と熱源との間で熱交換を行って、冷媒を低温高圧の液状態に冷却させる。熱源としては、空気、水、ブライン等が挙げられ、実施の形態1では凝縮器2の熱源は屋外の空気である外気であり、凝縮器2は外気と冷媒との間で熱交換を行う。さらに、実施の形態1では凝縮器2の熱交換を促すために、冷媒が冷凍サイクル装置100内を循環している際に凝縮器2へ外気を送風する凝縮器送風機6を有している。凝縮器送風機6は風量を調節できるもので構成するとよい。   The refrigerant compressed into the high-pressure and high-pressure gas state by the compressor 1 flows into the condenser 2, and performs heat exchange between the refrigerant and the heat source to cool the refrigerant to a low-temperature and high-pressure liquid state. Examples of the heat source include air, water, and brine. In the first embodiment, the heat source of the condenser 2 is outside air, which is outdoor air, and the condenser 2 exchanges heat between the outside air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange in the condenser 2, the condenser blower 6 that blows outside air to the condenser 2 when the refrigerant is circulating in the refrigeration cycle apparatus 100 is provided. It is preferable that the condenser blower 6 is configured to be capable of adjusting the air volume.

膨張弁3は、凝縮器2で冷却された低温高圧の液状態の冷媒が流入し、冷媒を低温低圧の液状態に減圧膨張させる。膨張弁3としては、例えば電子式膨張弁や感温式膨張弁等の冷媒流量制御手段や、毛細管(キャピラリチューブ)などで構成される。また、膨張弁3は本発明の減圧装置に相当する。   The expansion valve 3 is supplied with a low-temperature and high-pressure liquid refrigerant cooled by the condenser 2 and decompresses and expands the refrigerant into a low-temperature and low-pressure liquid state. The expansion valve 3 includes, for example, refrigerant flow control means such as an electronic expansion valve or a temperature-sensitive expansion valve, or a capillary tube (capillary tube). The expansion valve 3 corresponds to the pressure reducing device of the present invention.

蒸発器4は、膨張弁3で減圧膨張された低温低圧の液状態の冷媒が流入し、冷媒と冷却対象との間で熱交換を行い、冷却対象の熱を冷媒に吸熱させて、冷却対象を冷却する。冷却対象を冷却する際に、冷媒は蒸発し高温低圧のガス状態になる。実施の形態1では、冷却対象としては屋内の空気であり、蒸発器4は屋内の空気と冷媒との間で熱交換を行う。さらに、実施の形態1では蒸発器4の熱交換を促すため、冷媒が冷凍サイクル装置100内を循環している際に蒸発器4へ屋内の空気を送風する蒸発器送風機7を有している。蒸発器送風機7は風量を調節できるもので構成するとよい。   The evaporator 4 receives the low-temperature and low-pressure liquid state refrigerant decompressed and expanded by the expansion valve 3 and performs heat exchange between the refrigerant and the object to be cooled. To cool. When the object to be cooled is cooled, the refrigerant evaporates to a high-temperature, low-pressure gas state. In the first embodiment, the object to be cooled is indoor air, and the evaporator 4 performs heat exchange between the indoor air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the evaporator 4, the evaporator blower 7 for blowing indoor air to the evaporator 4 when the refrigerant is circulating in the refrigeration cycle apparatus 100 is provided. . The evaporator blower 7 may be configured to be capable of adjusting the air volume.

蒸発器4の具体的な構成について、図2及び図3に基づき説明する。蒸発器4は、複数本の伝熱管41と、複数枚のフィン42と、冷媒分配器43と、ヘッダ44により構成されたプレートフィンチューブ熱交換器である。なお、図2では伝熱管41の本数を5本、フィン42の枚数を28枚としているが、これらの本数及び枚数は一例であり、本発明はこの本数及び枚数に限らない。   A specific configuration of the evaporator 4 will be described with reference to FIGS. The evaporator 4 is a plate fin tube heat exchanger including a plurality of heat transfer tubes 41, a plurality of fins 42, a refrigerant distributor 43, and a header 44. In FIG. 2, the number of the heat transfer tubes 41 is five and the number of the fins is 28. However, the number and the number are only examples, and the present invention is not limited to this number and the number.

伝熱管41は、冷媒が流れる流路を構成する管であり、アルミニウムや銅などの熱伝導率の高い金属が用いられている。複数の伝熱管41は、それぞれ並列に並んでおり、冷媒分配器43及びヘッダ44に接続している。実施の形態1の伝熱管41の流路41aは、図3に示すように断面が円形である。   The heat transfer tube 41 is a tube that constitutes a flow path through which a refrigerant flows, and is made of a metal having high heat conductivity such as aluminum or copper. The plurality of heat transfer tubes 41 are respectively arranged in parallel, and are connected to the refrigerant distributor 43 and the header 44. The flow passage 41a of the heat transfer tube 41 according to the first embodiment has a circular cross section as shown in FIG.

フィン42は、アルミニウムや銅などの熱伝導率の高い金属の薄板である。複数のフィン42は、伝熱管41の軸方向(図2の矢印X方向)に対して垂直に、所定の間隔を空けて配置されている。また、伝熱管41とフィン42はろう付けなどの方法によって接合されており、伝熱管41からフィン42へ熱が伝達するようになっている。   The fin 42 is a thin metal plate having a high thermal conductivity such as aluminum or copper. The plurality of fins 42 are arranged at predetermined intervals perpendicular to the axial direction of the heat transfer tube 41 (the direction of arrow X in FIG. 2). Further, the heat transfer tubes 41 and the fins 42 are joined by a method such as brazing, so that heat is transmitted from the heat transfer tubes 41 to the fins 42.

冷媒分配器43は、一つの流入口と、複数の流出口を備えており、流入口より流入した冷媒を複数の流出口に分配して流出させる器具である。冷媒分配器43の流入口には冷媒配管5cを介して膨張弁3と繋がっており、冷媒分配器43の複数の流出口はそれぞれ伝熱管41に繋がっている。   The refrigerant distributor 43 has one inlet and a plurality of outlets, and is a device that distributes the refrigerant flowing from the inlet to the plurality of outlets and causes the refrigerant to flow out. The inlet of the refrigerant distributor 43 is connected to the expansion valve 3 via the refrigerant pipe 5c, and the plurality of outlets of the refrigerant distributor 43 are connected to the heat transfer tubes 41, respectively.

ヘッダ44は、複数の流入口と、一つの流出口を備えており、流入口より流入した冷媒を合流させて一つの流出口より流出させる器具である。ヘッダ44の流入口はそれぞれ伝熱管41に繋がっており、ヘッダ44の流出口は冷媒配管5dを介して圧縮機1と繋がっている。   The header 44 is provided with a plurality of inflow ports and one outflow port, and is a device that combines the refrigerant flowing in from the inflow ports and flows out from one outflow port. The inlet of the header 44 is connected to the heat transfer tube 41, and the outlet of the header 44 is connected to the compressor 1 via the refrigerant pipe 5d.

次に、蒸発器4内の冷媒の流れについて説明を行う。まず、膨張弁3で減圧膨張された低温低圧の液状態の冷媒は、冷媒分配器43の流入口より流入する。冷媒分配器43の流入口より流入した冷媒は、分配され、冷媒分配器43のそれぞれの流出口より伝熱管41へと流れる。伝熱管41に流入した冷媒は、伝熱管41の軸方向(図2の矢印X方向)に沿って流れる。伝熱管41とフィン42の表面は冷却対象である屋内の空気が蒸発器送風機7によって送風されており、伝熱管41を流れる冷媒は伝熱管41及びフィン42と接する屋内の空気と熱交換を行って、屋内の空気の熱を吸熱する。伝熱管41にて屋内の空気と熱交換を行った冷媒は、ヘッダ44の流入口より流入し、ヘッダ44で合流してヘッダ44の流出口より圧縮機1へと流れる。   Next, the flow of the refrigerant in the evaporator 4 will be described. First, the low-temperature and low-pressure liquid state refrigerant decompressed and expanded by the expansion valve 3 flows in from the inlet of the refrigerant distributor 43. The refrigerant flowing in from the inlet of the refrigerant distributor 43 is distributed, and flows from the respective outlets of the refrigerant distributor 43 to the heat transfer tubes 41. The refrigerant flowing into the heat transfer tubes 41 flows along the axial direction of the heat transfer tubes 41 (the direction of the arrow X in FIG. 2). The indoor air to be cooled is blown by the evaporator blower 7 on the surfaces of the heat transfer tubes 41 and the fins 42, and the refrigerant flowing through the heat transfer tubes 41 exchanges heat with the indoor air in contact with the heat transfer tubes 41 and the fins 42. To absorb the heat of indoor air. The refrigerant that has exchanged heat with indoor air in the heat transfer tube 41 flows in from the inlet of the header 44, merges in the header 44, and flows to the compressor 1 from the outlet of the header 44.

次に本発明を説明する際に用いる蒸発器4の冷媒流路長さL(m)、冷媒流路径d(m)、管外側伝熱面積A(m)及び管内側伝熱面積A(m)を定義する。なお、実施の形態1の説明において、各記号の後ろに記載されている括弧書きの内容はその記号の単位を示している。冷媒流路長さLは、図2で示すように、伝熱管41と最も上流側に位置するフィン42aとの接合箇所41bから、伝熱管41と最も下流側に位置するフィン42bの接合箇所41cまでの長さである。冷媒流路径dは、図3で示すように、伝熱管41の内径である。管外側伝熱面積Aは、接合箇所41bから接合箇所41cまでの複数の伝熱管41の外側の表面積と複数のフィン42の表面積の総和である。管内側伝熱面積Aは、接合箇所41bから接合箇所41cまでの複数の伝熱管41の内面積の総和である。また、冷媒流路長さL、冷媒流路径d、管外側伝熱面積A及び管内側伝熱面積Aは、冷凍サイクル装置100を構成した際に定まる数値であるため、定数とする。 Next, the refrigerant flow path length L (m), the refrigerant flow path diameter d (m), the pipe outer heat transfer area A o (m 2 ), and the pipe inner heat transfer area A of the evaporator 4 used in describing the present invention. Define i (m 2 ). In the description of the first embodiment, the content in parentheses after each symbol indicates the unit of the symbol. As shown in FIG. 2, the coolant flow path length L is changed from a joint 41 b between the heat transfer tube 41 and the fin 42 a located at the most upstream side to a joint 41 c between the heat transfer tube 41 and the fin 42 b located at the most downstream side. Length. The coolant flow path diameter d is the inner diameter of the heat transfer tube 41 as shown in FIG. Abluminal heat transfer area A o is the sum of a plurality of outer surface area and the surface area of the plurality of fins 42 of the heat transfer tube 41 from the joint 41b to joint 41c. Tube-side heat transfer area A i is the sum of the inner areas of the plurality of heat transfer tubes 41 from the joint 41b to joint 41c. The refrigerant passage length L, a refrigerant passage diameter d, abluminal heat transfer area A o and the tube-side heat transfer area A i are the numerical value determined at the time of constructing a refrigeration cycle apparatus 100, a constant.

次に冷凍サイクル装置100の運転性能について説明を行う。冷凍サイクル装置100の消費エネルギの大部分は、圧縮機1の圧縮動力が占めるため、運転性能を向上するためには圧縮機1の圧縮動力を低減すると効果的である。圧縮機1の圧縮動力を低減する方法として、圧縮比の低減があり、圧縮機1の吸入圧力を上げるか、又は吐出圧力を下げれば圧縮比が低減される。本発明では、圧縮機1の吸入圧力を上げることに着目した。   Next, the operation performance of the refrigeration cycle apparatus 100 will be described. Since most of the energy consumed by the refrigeration cycle apparatus 100 is occupied by the compression power of the compressor 1, it is effective to reduce the compression power of the compressor 1 in order to improve operating performance. As a method of reducing the compression power of the compressor 1, there is a reduction in the compression ratio. The compression ratio is reduced by increasing the suction pressure of the compressor 1 or decreasing the discharge pressure. The present invention focuses on increasing the suction pressure of the compressor 1.

圧縮機1の吸入圧力を上げることは、換言すると蒸発器4の出口圧力を上げることである。また、冷媒の圧力は冷媒飽和温度で示すことができ、以降の説明では冷媒圧力を冷媒飽和温度で示す。冷凍サイクル装置100を循環する冷媒に非共沸混合冷媒のように同圧力下において相変化で温度が変化する冷媒を用いると、蒸発過程においてエンタルピに対して冷媒飽和温度が変化するため、冷媒飽和温度差は等エンタルピでの圧力差における冷媒飽和温度差とする。   Increasing the suction pressure of the compressor 1 means increasing the outlet pressure of the evaporator 4 in other words. The pressure of the refrigerant can be indicated by the refrigerant saturation temperature, and in the following description, the refrigerant pressure is indicated by the refrigerant saturation temperature. When a refrigerant whose temperature changes due to a phase change under the same pressure, such as a non-azeotropic mixed refrigerant, is used as the refrigerant circulating in the refrigeration cycle apparatus 100, the refrigerant saturation temperature changes with respect to enthalpy in the evaporation process, so that the refrigerant saturation The temperature difference is a refrigerant saturation temperature difference at a pressure difference at isenthalpy.

以上の説明より、蒸発器4の出口の冷媒飽和温度を上げることによって、蒸発器4の出口圧力が上がり、圧縮機1の吸入圧力が上がり、圧縮機1の圧縮比が低減し、圧縮機1の圧縮動力が低減され、最終的に冷凍サイクル装置100の運転性能が向上することが分かる。つまり、蒸発器4の出口の冷媒飽和温度を最大化することによって、冷凍サイクル装置100の運転性能が最大となることが分かる。   As described above, by raising the refrigerant saturation temperature at the outlet of the evaporator 4, the outlet pressure of the evaporator 4 increases, the suction pressure of the compressor 1 increases, the compression ratio of the compressor 1 decreases, and the compressor 1 It can be seen that the compression power of the refrigeration cycle apparatus 100 is finally improved and the operation performance of the refrigeration cycle apparatus 100 is improved. That is, it is understood that the operating performance of the refrigeration cycle apparatus 100 is maximized by maximizing the refrigerant saturation temperature at the outlet of the evaporator 4.

次に、蒸発器4の出口の冷媒飽和温度について説明する。蒸発器4の出口の冷媒飽和温度Tsat_outは、数式2のように蒸発器4の入口の冷媒飽和温度Tsat_inより蒸発器4の入口との出口の冷媒飽和温度差ΔTsatの減算より求められる。 Next, the refrigerant saturation temperature at the outlet of the evaporator 4 will be described. The refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is determined by subtracting the refrigerant saturation temperature difference ΔT sat at the outlet from the inlet of the evaporator 4 from the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 as in Expression 2. .

Figure 2019215155
Figure 2019215155

ここで蒸発器4の入口の冷媒飽和温度Tsat_inについて説明する。まず、蒸発器4の熱交換量Q(W)は蒸発器4の入口の冷媒飽和温度Tsat_inを使って数式3のように表すことができる。ここで数式3を蒸発器4の入口の冷媒飽和温度Tsat_inを導出する式に変形すると数式4のようになり、蒸発器4の入口の冷媒飽和温度Tsat_inは、以下の数式4に基づいて導出できる。ここで数式3及び数式4で使用している記号を定義する。Tairは、蒸発器4が冷却する冷却対象の温度(℃)であり、実施の形態1の場合は屋内の空気の温度が該当する。αは、蒸発器4が冷却する冷却対象の熱伝達率(W/mK)であり、実施の形態1の場合は屋内の空気の熱伝達率が該当する。αは、冷媒の熱伝達率(W/mK)である。ここで、冷却対象の温度Tairと、蒸発器4の熱交換量Qと、冷却対象の熱伝達率αは、冷却対象の状態及び蒸発器4の構成が決まれば定まる値であるため、本発明では定数として扱う。なお、数式3と数式4のA及びAに関しては、それぞれ上述で定義した管外側伝熱面積A(m)及び管内側伝熱面積A(m)であるため、ここでの定義を割愛する。 Here, the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 will be described. First, the heat exchange amount Q (W) of the evaporator 4 can be expressed by Expression 3 using the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4. Here, when Equation 3 is transformed into an equation for deriving the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4, Equation 4 is obtained. The refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 is calculated based on the following Equation 4. Can be derived. Here, the symbols used in Equations 3 and 4 are defined. T air is the temperature (° C.) of the object to be cooled by the evaporator 4, and in the case of the first embodiment, corresponds to the temperature of indoor air. α o is the heat transfer coefficient (W / m 2 K) of the object to be cooled by the evaporator 4, which corresponds to the heat transfer coefficient of indoor air in the first embodiment. α i is the heat transfer coefficient (W / m 2 K) of the refrigerant. Here, the temperature T air of the object to be cooled, the heat exchange amount Q of the evaporator 4, and the heat transfer coefficient α o of the object to be cooled are values determined when the state of the object to be cooled and the configuration of the evaporator 4 are determined. In the present invention, it is treated as a constant. Since respect to the A o and A i in Equation 3 and Equation 4, respectively abluminal heat transfer area defined by the above A o (m 2) and the tube-side heat transfer area A i (m 2), where I omit the definition.

Figure 2019215155
Figure 2019215155

Figure 2019215155
Figure 2019215155

冷媒の熱伝達率αiは、以下の数式5に基づいて導出できる。ここで数式5で使用している記号を定義する。kは、冷媒の平均熱伝導率(W/mK)であり、飽和ガス状態の冷媒の熱伝導率と飽和液状態の冷媒の熱伝導率との平均値を取ることで求められる。Reは、冷媒のレイノルズ数であり、無次元数である。Prは、冷媒のプラントル数であり、無次元数である。冷媒の熱伝導率kと、冷媒のプラントル数Prは冷媒の種類が決まれば定まる値であるため、本発明では定数として扱う。なお、数式5のdに関しては、上述で定義した冷媒流路径d(m)であるため、ここでの定義を割愛する。   The heat transfer coefficient αi of the refrigerant can be derived based on the following Expression 5. Here, the symbols used in Expression 5 are defined. k is the average thermal conductivity (W / mK) of the refrigerant, and is determined by taking the average value of the thermal conductivity of the refrigerant in the saturated gas state and the thermal conductivity of the refrigerant in the saturated liquid state. Re is the Reynolds number of the refrigerant and is a dimensionless number. Pr is the Prandtl number of the refrigerant and is a dimensionless number. Since the thermal conductivity k of the refrigerant and the Prandtl number Pr of the refrigerant are values determined when the type of the refrigerant is determined, they are treated as constants in the present invention. Note that d in Expression 5 is the refrigerant flow path diameter d (m) defined above, and therefore the definition here is omitted.

Figure 2019215155
Figure 2019215155

レイノルズ数Reは、以下の数式6に基づいて導出できる。ここで数式6で使用している記号を定義する。ρは、冷媒の平均密度(kg/m)であり、飽和ガス状態の冷媒の密度と飽和液状態の冷媒の密度との平均値を取ることで求められる。uは、蒸発器4を流れる冷媒の平均流速(m/s)である。また、以降、単に平均流速uと称する場合は、蒸発器4を流れる冷媒の平均流速u(m/s)のことを指すとする。μは、冷媒の平均粘度(Pa・s)であり、飽和ガス状態の冷媒の粘度と飽和液状態の冷媒の粘度との平均値を取ることで求められる。冷媒の平均密度ρと、冷媒の平均粘度μは冷媒の種類が決まれば定まる値であるため、本発明では定数として扱う。また、平均流速uは、圧縮機1の回転数又は膨張弁3の開度などを調整することで容易に変更できる値であるため、本発明では変数として扱う。なお、数式6のdに関しては、上述で定義した冷媒流路径d(m)であるため、ここでの定義を割愛する。 The Reynolds number Re can be derived based on the following Expression 6. Here, the symbols used in Expression 6 are defined. ρ is the average density of the refrigerant (kg / m 3 ), and is determined by taking the average value of the density of the refrigerant in the saturated gas state and the density of the refrigerant in the saturated liquid state. u is the average flow rate (m / s) of the refrigerant flowing through the evaporator 4. Hereinafter, when simply referred to as the average flow velocity u, the average flow velocity u (m / s) of the refrigerant flowing through the evaporator 4 is referred to. μ is the average viscosity of the refrigerant (Pa · s), which is obtained by taking the average value of the viscosity of the refrigerant in the saturated gas state and the viscosity of the refrigerant in the saturated liquid state. Since the average density ρ of the refrigerant and the average viscosity μ of the refrigerant are values determined when the type of the refrigerant is determined, they are treated as constants in the present invention. The average flow velocity u is a value that can be easily changed by adjusting the rotation speed of the compressor 1, the opening degree of the expansion valve 3, and the like, and is treated as a variable in the present invention. Note that d in Expression 6 is the refrigerant flow path diameter d (m) defined above, and therefore the definition here is omitted.

Figure 2019215155
Figure 2019215155

数式4に数式5を代入して整理すると、以下の数式7が求められ、更に数式7に数式6を代入し整理すると、数式8が求められる。ここで数式7の平均流速u以外の記号は全て定数として扱っており、数式8の第1項と第2項も定数として扱われ、数式8の第3項は平均流速uの0.8乗に反比例する。このため、平均流速uの値が小さいほど数式8の第3項の値は大きくなり、蒸発器4の入口の冷媒飽和温度Tsat_inは小さくなることがわかる。 By substituting Equation 5 into Equation 4, the following Equation 7 is obtained. By substituting Equation 6 into Equation 7, and rearranging, Equation 8 is obtained. Here, all symbols other than the average flow velocity u in Equation 7 are treated as constants, and the first and second terms in Equation 8 are also treated as constants. The third term in Equation 8 is the power of 0.8 of the average flow velocity u. Is inversely proportional to Therefore, it can be seen that the smaller the value of the average flow velocity u is, the larger the value of the third term of Expression 8 is, and the smaller the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 is.

Figure 2019215155
Figure 2019215155

Figure 2019215155
Figure 2019215155

次に、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatについて説明する。蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、冷媒の種類と蒸発器4の圧力損失ΔP(Pa)で決まる。特に、蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係として、蒸発器4の圧力損失が大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる。なお、詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式については冷媒の種類によって変化するが、冷媒の種類が定まれば詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式も一意に定まり、数式9のように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは蒸発器4の圧力損失ΔPの関数Tsat(ΔP)として表すことができる。また、どのような冷媒を用いても、蒸発器4の圧力損失ΔPが大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる関係は変わらない。 Next, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 will be described. The refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is determined by the type of the refrigerant and the pressure loss ΔP (Pa) of the evaporator 4. In particular, as the relationship between the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, the greater the pressure loss of the evaporator 4, the larger the difference between the refrigerant saturation temperature ΔT and the inlet and the outlet of the evaporator 4. sat increases. Although the detailed relation between the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 varies depending on the type of refrigerant, the detailed evaporator is determined once the type of refrigerant is determined. equation 4 of the pressure loss ΔP between the refrigerant saturation temperature difference [Delta] T sat an inlet and an outlet of the evaporator 4 also uniquely determined, the evaporator refrigerant saturation temperature difference [Delta] T sat an inlet and an outlet of the evaporator 4 as in equation 9 4 can be expressed as a function T sat (ΔP) of the pressure loss ΔP. Further, no matter what kind of refrigerant is used, the relation that the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 increases as the pressure loss ΔP of the evaporator 4 increases does not change.

Figure 2019215155
Figure 2019215155

蒸発器4の圧力損失ΔPは、以下の数式10に基づいて導出できる。ここで数式10で使用している記号を定義する。Φは、二相流れ圧力損失の平均補正係数であり、無次元数である。また、二相流れ圧力損失の平均補正係数Φは、一般的にLockhart−Martinelliの計算法により導出することができる。λは、冷媒の摩擦損失係数であり、無次元数である。また、二相流れ圧力損失の平均補正係数Φは、使用する冷媒の種類が決まれば定まる値であるため、定数として扱う。なお、数式10のL、d、ρ、uに関しては、上述で定義した冷媒流路長さL(m)と、冷媒流路径d(m)と、冷媒の平均密度ρ(kg/m)と、平均流速u(m/s)であるため、ここでの定義を割愛する。 The pressure loss ΔP of the evaporator 4 can be derived based on the following Expression 10. Here, the symbols used in Expression 10 are defined. Φ is an average correction coefficient of the two-phase flow pressure loss and is a dimensionless number. The average correction coefficient Φ of the two-phase flow pressure loss can be generally derived by the Lockhart-Martinelli calculation method. λ is the coefficient of friction loss of the refrigerant, which is a dimensionless number. Further, the average correction coefficient Φ of the two-phase flow pressure loss is a value determined once the type of the refrigerant to be used is determined, and is therefore treated as a constant. In addition, regarding L, d, ρ, and u in Equation 10, the refrigerant flow path length L (m), the refrigerant flow path diameter d (m), and the average density ρ of the refrigerant (kg / m 3 ) are defined above. And the average flow velocity u (m / s), so the definition here is omitted.

Figure 2019215155
Figure 2019215155

冷媒の摩擦損失係数λは、以下の数式11に基づいて導出できる。数式11のReは、レイノルズ数であり、数式11のレイノルズ数Reに数式6を代入すると数式12が求められる。   The friction loss coefficient λ of the refrigerant can be derived based on the following Expression 11. Re in Equation 11 is the Reynolds number, and Equation 12 is obtained by substituting Equation 6 for the Reynolds number Re in Equation 11.

Figure 2019215155
Figure 2019215155

Figure 2019215155
Figure 2019215155

数式10の冷媒の摩擦損失係数λに数式12を代入すると、以下の数式13が求められる。ここで数式13の平均流速u以外の記号は全て定数として扱っており、数式13より冷媒の摩擦損失係数λは平均流速uの1.75乗に比例し、平均流速uが速いほど、冷媒の摩擦損失係数λは大きくなることがわかる。   By substituting Equation 12 for the friction loss coefficient λ of the refrigerant in Equation 10, the following Equation 13 is obtained. Here, all symbols other than the average flow velocity u in Equation 13 are treated as constants. From Equation 13, the friction loss coefficient λ of the refrigerant is proportional to the 1.75 power of the average flow velocity u. It can be seen that the friction loss coefficient λ increases.

Figure 2019215155
Figure 2019215155

上述したように冷媒の種類が定まれば詳細な蒸発器4の圧力損失ΔPと蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの関係式も一意に定まり、数式13は平均流速u以外の記号は全て定数であるため、冷媒の種類が定まれば数式14のように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは平均流速uの関数Tsat(u)として表すことができる。また、蒸発器4の圧力損失が大きくなるほど蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが大きくなる関係があり、数式13に示したように平均流速uが速いほど冷媒の摩擦損失係数λは大きくなる関係がある。この2つの関係より、平均流速uの値が大きくなるほど、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値、つまり関数Tsat(u)の値は大きくなる。 If the type of the refrigerant is determined as described above, the detailed relation between the pressure loss ΔP of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is also uniquely determined. Are all constants, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 can be expressed as a function T sat (u) of the average flow velocity u as shown in Expression 14 when the type of the refrigerant is determined. it can. Further, there is a relationship that the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 increases as the pressure loss of the evaporator 4 increases. There is a relationship that λ increases. From these two relationships, as the value of the average flow velocity u increases, the value of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, that is, the value of the function T sat (u) increases.

Figure 2019215155
Figure 2019215155

そして、数式2の蒸発器4の入口の冷媒飽和温度Tsat_inに数式8を代入し、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatに数式14を代入すると、数式15が求められる。数式15において、平均流速u以外の記号は全て定数として扱われているため、数式15の第1項と第2項は定数である。また、数式15の第3項と第4項はそれぞれ平均流速uの値によって取る値が異なり、数式16に示すように平均流速uに起因する蒸発器4での温度低下量を導出する平均流速uの関数Tsat_u(u)として表すことができ、数式15に数式16を代入すると数式17が求められる。この数式17より、蒸発器4の出口の冷媒飽和温度Tsat_outを最大化するためには、数式16に示す関数Tsat_u(u)を最小化すれば良いことがわかる。また、数式16より蒸発器4の出口の冷媒飽和温度が最大値Tsat_out_maxとなる平均流速uは、関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uであることが分かる。このため、実施の形態1の冷凍サイクル装置100では、冷媒は、関数Tsat_u(u)が最小値Tsat_u_minとなるような平均流速uで、蒸発器4を流れている。 Then, when Equation 8 is substituted for the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4 in Equation 2, and Equation 14 is substituted for the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4, Equation 15 is obtained. In Equation 15, since all symbols other than the average flow velocity u are treated as constants, the first and second terms of Equation 15 are constants. The third term and the fourth term in Equation 15 each take different values depending on the value of the average flow velocity u, and as shown in Equation 16, the average flow velocity which derives the amount of temperature decrease in the evaporator 4 due to the average flow velocity u. Equation (17) can be obtained by substituting Equation (16) into Equation (15). From Equation 17, it can be seen that the function T sat_u (u) shown in Equation 16 should be minimized in order to maximize the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4. Further, from Expression 16, it can be seen that the average flow velocity u at which the refrigerant saturation temperature at the outlet of the evaporator 4 becomes the maximum value T sat_out_max is the average flow velocity u at which the function T sat_u (u) becomes the minimum value T sat_u_min . For this reason, in the refrigeration cycle apparatus 100 of the first embodiment, the refrigerant flows through the evaporator 4 at an average flow velocity u such that the function T sat — u (u) becomes the minimum value T sat — u — min.

Figure 2019215155
Figure 2019215155

Figure 2019215155
Figure 2019215155

Figure 2019215155
Figure 2019215155

ここで、数式16に示す関数Tsat_u(u)の最小化が可能か否かを説明する。数式16の第1項は、平均流速uの0.8乗に反比例し、平均流速uが小さいほど大きくなることがわかる。また、数式16の第2項は、上述の通り蒸発器4の入口と出口の冷媒飽和温度差ΔTsatと平均流速uの関係を示す関数Tsat(u)の値は平均流速uが大きくなり、平均流速uが大きいほど大きくなることがわかる。このため、数式16の関数Tsat_u(u)は、平均流速uが小さいほど大きくなる項と、平均流速uが大きいほど大きくなる項との加算であるため、関数Tsat_u(u)には最小値Tsat_u_minが存在し、関数Tsat_u(u)の最小化が可能であることが分かる。また、平均流速uが0の場合は数式16の第1項が無限大に発散するため、関数Tsat_u(u)の最小値Tsat_u_minは平均流速uが0よりも大きな値である場合に存在することが分かる。 Here, whether or not the function T sat — u (u) shown in Expression 16 can be minimized will be described. The first term of Expression 16 is inversely proportional to the average flow velocity u raised to the 0.8th power, and it is understood that the average flow velocity u increases as the average flow velocity u decreases. Further, as described above, the value of the function T sat (u) indicating the relationship between the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 and the average flow velocity u indicates that the average flow velocity u is large. It can be seen that the larger the average flow velocity u, the larger the flow velocity. Therefore, the function T sat — u (u) in Equation 16 is an addition of a term that increases as the average flow velocity u decreases and a term that increases as the average flow velocity u increases. It can be seen that there is a value T sat — u — min and that the function T sat — u (u) can be minimized. In addition, when the average flow velocity u is 0, the first term of Expression 16 diverges to infinity. Therefore , the minimum value T sat_u_min of the function T sat — u (u) exists when the average flow velocity u is larger than 0. You can see that

以上より、実施の形態1の冷凍サイクル装置100では、冷媒は、関数Tsat_u(u)が最小値Tsat_u_minとなるような平均流速uで、蒸発器4を流れるため、蒸発器の出口の冷媒飽和温度を最大化でき、結果的に冷凍サイクル装置の運転性能が最大となり、冷凍サイクル装置全体の運転性能の低下を防止することができる。さらに、蒸発温度の低い低温機器、寒冷地での給湯・暖房運転、動作圧力の低い冷媒などにおいては、圧縮機の吸入圧力の運転性能に対する影響が大きいため、特に有効となる。 As described above, in the refrigeration cycle apparatus 100 of the first embodiment, the refrigerant flows through the evaporator 4 at the average flow rate u such that the function T sat — u (u) becomes the minimum value T sat — u — min. The saturation temperature can be maximized, and as a result, the operation performance of the refrigeration cycle device becomes maximum, and a decrease in the operation performance of the entire refrigeration cycle device can be prevented. Furthermore, low-temperature equipment having a low evaporation temperature, hot water supply / heating operation in cold regions, and refrigerant having a low operating pressure are particularly effective because the suction pressure of the compressor has a large effect on the operation performance.

なお、冷凍サイクル装置100全体の運転性能の低下を防止するためには、必ず平均流速uが、関数Tsat_u(u)が最小値Tsat_u_minとなるようにする必要は無く、冷凍サイクル装置100の運転性能が極端に低下しない程度に平均流速uに範囲を持たせても構わない。例えば、一般的に用いられる冷媒において、蒸発器4の出口の冷媒飽和温度Tsat_outが0.3℃以上低下すると、運転性能が1%低下し、無視できない影響となることが知られている。このため、冷凍サイクル装置は、冷媒が、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような平均流速uで蒸発器を流れていれば、冷凍サイクル装置100全体の運転性能の低下を防止する効果を発揮する。 In order to prevent a decrease in the operation performance of the entire refrigeration cycle apparatus 100, the average flow velocity u does not necessarily need to be such that the function T sat — u (u) becomes the minimum value T sat — u — min. The average flow velocity u may have a range to such an extent that the operation performance is not extremely reduced. For example, it is known that, in a generally used refrigerant, when the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is reduced by 0.3 ° C. or more, the operating performance is reduced by 1%, which has a considerable effect. Therefore, if the refrigerant flows through the evaporator at an average flow rate u such that the function T sat — u (u) shown in Expression 16 is less than T sat — u — min +0.3 (° C.), the refrigeration cycle apparatus The effect of preventing a decrease in the driving performance of the whole 100 is exhibited.

また、平均流速uが制御可能であれば、平均流速uを取得し、取得した平均流速uに基づき平均流速uを制御する制御装置を備えていても良い。   If the average flow velocity u can be controlled, a control device that acquires the average flow velocity u and controls the average flow velocity u based on the acquired average flow velocity u may be provided.

蒸発器4を流れる冷媒の平均流速u(m/s)は、以下の数式18で表される。ここで数式18で使用しているGrは冷媒の質量流量(kg/s)である。冷媒の質量流量は圧縮機1の回転数及び膨張弁3の開度等で制御を行うことができる。なお、数式18のρ,Aは、上述で定義した冷媒の平均密度ρ(kg/m)と、蒸発器の管内側伝熱面積をA(m)であるため、ここでの定義を割愛する。 The average flow velocity u (m / s) of the refrigerant flowing through the evaporator 4 is represented by the following Expression 18. Here, Gr used in Expression 18 is the mass flow rate (kg / s) of the refrigerant. The mass flow rate of the refrigerant can be controlled by the rotation speed of the compressor 1, the opening degree of the expansion valve 3, and the like. Incidentally, [rho formula 18, A i is the mean density of the refrigerant as defined above ρ (kg / m 3), the tube-side heat transfer area of the evaporator for a A i (m 2), here I omit the definition.

Figure 2019215155
Figure 2019215155

数式18より蒸発器4を流れる冷媒の平均流速uを制御するには冷媒の質量流量Grを制御すればよいことが分かる。つまり、平均流速uを制御する手段として、圧縮機1の回転数を制御する、膨張弁3の開度を制御する、などの手段が挙げられる。圧縮機1では、回転数を上げることで平均流速uを大きくすることができ、回転数を下げることで平均流速uを小さくすることができる。また、膨張弁3では、開度を下げることで平均流速uを大きくすることができ、開度を上げることで平均流速uを小さくすることができる。   From Expression 18, it can be seen that the average flow rate u of the refrigerant flowing through the evaporator 4 can be controlled by controlling the mass flow rate Gr of the refrigerant. That is, means for controlling the average flow velocity u include means for controlling the number of revolutions of the compressor 1, controlling the opening of the expansion valve 3, and the like. In the compressor 1, the average flow velocity u can be increased by increasing the rotation speed, and the average flow velocity u can be reduced by decreasing the rotation speed. In the expansion valve 3, the average flow velocity u can be increased by lowering the opening degree, and the average flow velocity u can be reduced by increasing the opening degree.

また、蒸発器4を流れる冷媒の平均流速uを取得する方法としては、流速センサを用いて蒸発器4を流れる冷媒の平均流速uを直接測定する方法が挙げられる。さらに、数式18より冷媒の質量流量Grと冷媒の平均流速uは比例の関係にあるため、流量計を用いて測定した蒸発器4に流れる質量流量Gr、又は圧縮機の回転数の設定値と膨張弁の開度の設定値との2つの設定値に基づいて冷媒の平均流速uを取得することができる。   In addition, as a method of obtaining the average flow velocity u of the refrigerant flowing through the evaporator 4, a method of directly measuring the average flow velocity u of the refrigerant flowing through the evaporator 4 using a flow velocity sensor can be used. Furthermore, since the mass flow rate Gr of the refrigerant and the average flow rate u of the refrigerant are proportional to each other according to Expression 18, the mass flow rate Gr flowing through the evaporator 4 measured using the flow meter or the set value of the rotation speed of the compressor is different from the mass flow rate Gr. The average flow velocity u of the refrigerant can be obtained based on two set values, that is, the set value of the opening degree of the expansion valve.

制御装置は、例えば蒸発器4の伝熱管41に取り付けられた流速センサの測定値と、予め設定した数式16に示す関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uの設定値を比較し、測定値を設定値に近づける様に平均流速uを制御すればよい。また、冷媒の状態として、蒸発器4の出口の冷媒飽和温度Tsat_outを使用する場合において、制御装置は、冷凍サイクル装置100の運転開始時に圧縮機の回転数又は蒸発器の開度を予め定められた範囲で変化させて、二分法などの方法で蒸発器4の出口の冷媒飽和温度Tsat_outが最小値Tsat_u_minとなる圧縮機の回転数又は蒸発器の開度で運転するよう制御すればよい。 The control device calculates, for example, the measured value of the flow velocity sensor attached to the heat transfer tube 41 of the evaporator 4 and the set value of the average flow velocity u at which the function T sat — u (u) shown in Expression 16 becomes the minimum value T sat — u — min. By comparison, the average flow velocity u may be controlled so that the measured value approaches the set value. Further, when the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is used as the state of the refrigerant, the control device determines in advance the rotation speed of the compressor or the opening degree of the evaporator at the start of the operation of the refrigeration cycle device 100. If the temperature is controlled in such a range that the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 becomes the minimum value T sat_u_min by a method such as the bisection method, the compressor is operated at the rotation speed of the compressor or the opening degree of the evaporator. Good.

また、実施の形態1の冷凍サイクル装置100の構造は一例であり、本発明の冷凍サイクル装置の構造は実施の形態1の構造に限らない。例えば、実施の形態1の伝熱管41の流路の断面は円形であるが、これに限らず、伝熱管の断面は楕円形、扁平形又は矩形でも構わない。伝熱管の流路の断面が楕円形、扁平形又は矩形の場合の冷媒流路径d(m)は、等価直径を用いればよい。   Further, the structure of the refrigeration cycle device 100 of the first embodiment is an example, and the structure of the refrigeration cycle device of the present invention is not limited to the structure of the first embodiment. For example, the cross section of the flow path of the heat transfer tube 41 of the first embodiment is circular, but the present invention is not limited to this, and the cross section of the heat transfer tube may be elliptical, flat, or rectangular. When the cross section of the flow path of the heat transfer tube is elliptical, flat, or rectangular, an equivalent diameter may be used as the refrigerant flow path diameter d (m).

実施の形態2.
実施の形態2に係る冷凍サイクル装置100は、実施の形態1に係る冷凍サイクル装置100と比べて、冷凍サイクル装置100内を循環する冷媒の組成を限定している点が異なる。なお、それ以外の冷凍サイクル装置100自体の構成は実施の形態1と同様であるため、説明を割愛する。
Embodiment 2. FIG.
The refrigeration cycle apparatus 100 according to the second embodiment is different from the refrigeration cycle apparatus 100 according to the first embodiment in that the composition of the refrigerant circulating in the refrigeration cycle apparatus 100 is limited. The other configuration of the refrigeration cycle device 100 itself is the same as that of the first embodiment, and thus the description is omitted.

実施の形態2の冷凍サイクル装置100を循環する冷媒は、R32と、R1234yfと、R125の混合冷媒であり、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である。このような冷媒を使用することで以下に示すような効果を得ることができる。 The refrigerant circulating in the refrigeration cycle apparatus 100 according to the second embodiment is a mixed refrigerant of R32, R1234yf, and R125. The ratio XR32 of R32 is 67 (wt%), and the ratio X R1234yf of R1234yf is 26 (wt%). ), The ratio of R125 X R125 is 7 (wt%). By using such a refrigerant, the following effects can be obtained.

まず、各単一冷媒では長所または短所となる物性が備わっているが、複数冷媒を混合することで、短所を低減して長所を増長させることができる。R32の物性としては動作圧力が高いため、圧力損失による性能低下影響を低減でき、スーパーマーケットのショーケースなど低温の利用でも冷凍能力を向上することができる。また、R1234yfの物性としては、地球温暖化係数が0のため、環境影響を低減できる。R125の物性としては不燃性のため、R32とR1234yfの燃焼性を低減し、安全性を高めることができる。よって、上述の混合冷媒により、地球環境に影響が少なく、かつ安全性と性能を同時に向上することができる。   First, each single refrigerant has physical properties that are advantages or disadvantages, but by mixing a plurality of refrigerants, the disadvantages can be reduced and the advantages can be increased. As the physical properties of R32, since the operating pressure is high, the effect of performance degradation due to pressure loss can be reduced, and the refrigeration capacity can be improved even at a low temperature such as a supermarket showcase. In addition, R1234yf has a global warming potential of 0, and thus can reduce environmental impact. Since the physical properties of R125 are nonflammable, the flammability of R32 and R1234yf can be reduced and safety can be improved. Therefore, the above-mentioned mixed refrigerant has little effect on the global environment and can simultaneously improve safety and performance.

また、混合冷媒は非共沸混合冷媒であり、非共沸混合冷媒は同圧力下において相変化で温度が変化し、蒸発過程において下流側が上流側より温度が高くなり、冷凍サイクル装置100の冷媒に非共沸混合冷媒を用いると蒸発器4の出口側の方が蒸発器4の入口側よりも温度が高くなる。特に、R32の混合冷媒は低温の利用でも冷凍能力が向上するため、冷凍サイクル装置100がショーケースなどの飽和温度が氷点下未満の低温機器に用いられることが多く、このように飽和温度が氷点下未満の低温機器で用いられる場合には蒸発器4に着霜が発生する。着霜が発生する機器に蒸発過程において温度勾配を有する冷媒を用いると、冷媒の温度が低い蒸発器4の入口側では空気の冷却が促進されて着霜量が多く、冷媒の温度が高い蒸発器4の出口側では空気の冷却が進まず着霜量は少なくなり、蒸発器4の着霜に偏りが生じる。着霜に偏りが生じた場合は、着霜が均等な場合に比べて全体の着霜量が同じとしても、早期に蒸発器4の入口側のフィン42の間の空間が霜によって目詰まりが発生して熱交換不能に陥ってしまう。   Further, the mixed refrigerant is a non-azeotropic mixed refrigerant, and the temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure, and the temperature of the downstream side becomes higher than that of the upstream side in the evaporation process. When a non-azeotropic mixed refrigerant is used, the temperature of the outlet side of the evaporator 4 becomes higher than that of the inlet side of the evaporator 4. In particular, since the refrigerant mixture of R32 improves the refrigerating capacity even at low temperatures, the refrigeration cycle apparatus 100 is often used for low-temperature equipment such as a showcase having a saturation temperature below the freezing point. When the evaporator 4 is used in a low temperature device, frost is formed on the evaporator 4. If a refrigerant having a temperature gradient is used in the evaporation process for a device in which frost occurs, cooling of the air is promoted at the inlet side of the evaporator 4 where the temperature of the refrigerant is low, so that the amount of frost is large and the temperature of the refrigerant is high. At the outlet side of the vessel 4, the cooling of the air does not proceed and the amount of frost is reduced, and the frost formation of the evaporator 4 is biased. When the frost is unevenly distributed, the space between the fins 42 on the inlet side of the evaporator 4 is clogged by frost at an early stage, even if the entire amount of frost is the same as compared to the case where the frost is uniform. It occurs and heat exchange becomes impossible.

非共沸混合冷媒は、蒸発器4内部の圧力をある所定の勾配で連続的に下げることによって蒸発器4に流れる冷媒の温度を均一とすることができ、蒸発器4の着霜の偏りは蒸発器4に流れる冷媒の温度を均一にすることで抑制することができる。蒸発器4内部の圧力を徐々に下げると蒸発器4の入口と出口に圧力差が生じるため、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差が、非共沸混合冷媒の組成に応じて一意に決まる。このため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにすることで、蒸発器4の着霜の偏りを抑制することができる。 The non-azeotropic mixed refrigerant can make the temperature of the refrigerant flowing through the evaporator 4 uniform by continuously lowering the pressure inside the evaporator 4 at a predetermined gradient. The temperature can be suppressed by making the temperature of the refrigerant flowing through the evaporator 4 uniform. When the pressure inside the evaporator 4 is gradually reduced, a pressure difference is generated between the inlet and the outlet of the evaporator 4. The difference is uniquely determined according to the composition of the non-azeotropic refrigerant mixture. For this reason, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is made substantially the same as the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. Thus, the uneven formation of frost on the evaporator 4 can be suppressed.

しかし、冷媒の種類によっては、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにすると、平均流速(m/s)における数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満とならない場合や、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満になったとしても蒸発器4の冷媒流路長さL(m)又は冷媒流路径d(m)などの数値が非現実的な値となり実際の冷凍サイクル装置としては成り立たない場合がありえる。 However, depending on the type of the refrigerant, the difference between the refrigerant saturation temperature at the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform by the difference between the refrigerant saturation temperatures ΔT sat at the inlet and the outlet of the evaporator 4 If the functions are substantially the same, the function T sat — u (u) shown in Expression 16 at the average flow velocity (m / s) does not become less than T sat — u — min +0.3 (° C.), or the function T sat — u (u) shown in Expression 16 becomes T Even if it is less than sat_u_min + 0.3 (° C.), the numerical value such as the refrigerant flow path length L (m) or the refrigerant flow path diameter d (m) of the evaporator 4 becomes an unrealistic value, and as an actual refrigeration cycle apparatus May not hold.

ここで、実施の形態2の冷凍サイクル装置100において、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と略同じにした場合について説明する。なお、以下の説明では上述の混合冷媒の冷媒物性の値や関数Tsat(u)の算出結果のグラフを示すが、これらの値はNIST(National Institute of Standards and Technology)が作成するソフト「Refprop」のVer.9.1と当ソフトに標準搭載されている混合則を用いてシミュレーションを行ったものである。 Here, in the refrigeration cycle apparatus 100 of the second embodiment, the difference between the refrigerant saturation temperature ΔT sat at the inlet and the outlet of the evaporator 4 is determined by the difference between the inlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. The case where the difference is substantially the same as the refrigerant saturation temperature difference at the outlet will be described. In the following description, the values of the physical properties of the mixed refrigerant and the calculation results of the function T sat (u) are shown as graphs. These values are represented by software “Refprop” created by NIST (National Institute of Standards and Technology). Ver. The simulation was performed using 9.1 and the mixing rule that is standardly installed in this software.

次に数式2から数式17で説明した記号のうち、冷媒に依存する記号について上述の混合冷媒を用いた場合の具体的な数値を説明する。まず、冷媒の平均密度ρ(kg/m)は、飽和ガス状態の冷媒の密度が約17.6(kg/m)、飽和液状態の冷媒の密度が約1126.8(kg/m)であるため、両者の平均値より572.2(kg/m)である。また、冷媒の平均粘度μ(Pa・s)は、飽和ガス状態の冷媒の粘度が約1.1×10−5(Pa・s)、飽和液状態の冷媒の粘度が約1.72×10−4(Pa・s)であるため、両者の平均値より約9.2×10−5(Pa・s)である。また、冷媒の平均熱伝導率k(W/mK)は、飽和ガス状態の冷媒の熱伝導率が約0.011(W/mK)、飽和液状態の冷媒の熱伝導率が約0.126(W/mK)であるため、両者の平均値より約0.069(W/mK)である。プラントル数Prは、約1.766である。二相流れ圧力損失の平均補正係数Φは、約3である。 Next, among the symbols described in Expressions 2 to 17, symbols that depend on the refrigerant will be described with specific numerical values when the above-described mixed refrigerant is used. First, the average density ρ (kg / m 3 ) of the refrigerant is such that the density of the refrigerant in the saturated gas state is about 17.6 (kg / m 3 ), and the density of the refrigerant in the saturated liquid state is about 1126.8 (kg / m 3 ). 3 ), it is 572.2 (kg / m 3 ) from the average value of both. The average viscosity μ (Pa · s) of the refrigerant is such that the viscosity of the refrigerant in the saturated gas state is about 1.1 × 10 −5 (Pa · s) and the viscosity of the refrigerant in the saturated liquid state is about 1.72 × 10 −4 (Pa · s), which is about 9.2 × 10 −5 (Pa · s) from the average value of both. The average thermal conductivity k (W / mK) of the refrigerant is such that the thermal conductivity of the refrigerant in the saturated gas state is about 0.011 (W / mK), and the thermal conductivity of the refrigerant in the saturated liquid state is about 0.126. (W / mK), which is about 0.069 (W / mK) from the average value of both. The Prandtl number Pr is about 1.766. The average correction factor Φ for the two-phase flow pressure loss is about 3.

次に数式2から数式17で説明した記号のうち、冷凍サイクル装置100の構造に依存する記号について、具体的な数値を説明する。蒸発器4の冷媒流路長さL(m)は9(m)、冷媒流路径d(m)は9.52×10−3(m)、管外側伝熱面積A(m)は29.4(m)、管内側伝熱面積A(m)は4.8(m)、熱交換量Q(W)は20000(W)である。なお、これらの数値は冷凍サイクル装置100を構成するに当たって、現実的な値であり、実際の冷凍サイクル装置として成り立つ。 Next, among the symbols described in Equations 2 to 17, symbols that depend on the structure of the refrigeration cycle apparatus 100 will be described with specific numerical values. The refrigerant flow path length L (m) of the evaporator 4 is 9 (m), the refrigerant flow path diameter d (m) is 9.52 × 10 −3 (m), and the tube outer heat transfer area A o (m 2 ) is 29.4 (m 2 ), the heat transfer area inside the tube A i (m 2 ) is 4.8 (m 2 ), and the heat exchange amount Q (W) is 20,000 (W). Note that these numerical values are realistic values when configuring the refrigeration cycle apparatus 100, and are realized as an actual refrigeration cycle apparatus.

また、数式2から数式17で説明した記号のうち、冷却対象に依存する記号について、具体的な数値を説明する。Tairは、蒸発器4が冷却する冷却対象の温度Tair(℃)は0.7(℃)、冷却対象の熱伝達率α(W/mK)は100(W/mK)である。 Further, among the symbols described in Equations 2 to 17, symbols that depend on the object to be cooled will be described with specific numerical values. T air is the temperature T air (° C.) of the object to be cooled by the evaporator 4 is 0.7 (° C.), and the heat transfer coefficient α o (W / m 2 K) of the object to be cooled is 100 (W / m 2 K). ).

また、上述の混合冷媒は、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差が約1.3℃となる。このため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatを約1.3℃とすれば、蒸発過程における温度の上昇が抑制され、蒸発器4を流れる冷媒の温度を均一になる。 Further, in the above-described mixed refrigerant, a difference in refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform is about 1.3 ° C. For this reason, if the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is set to about 1.3 ° C., an increase in the temperature during the evaporation process is suppressed, and the temperature of the refrigerant flowing through the evaporator 4 becomes uniform.

図4は、実施の形態2に係る冷凍サイクル装置の蒸発器の入口と出口の冷媒飽和温度差ΔTsatと、蒸発器を流れる冷媒の平均流速uのグラフである。図4のグラフは換言すると関数Tsat(u)のグラフであり、上述の通り、平均流速uの値が大きくなるほど、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値は大きくなる関係であることが分かる。また、図4のグラフより蒸発器4の入口と出口の冷媒飽和温度差ΔTsatの値が1.3℃となる平均流速uの値は約1.2(m/s)である。このため、実施の形態2における冷凍サイクル装置100では、平均流速uの値を約1.2(m/s)とすれば、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなり、蒸発器4を流れる冷媒の温度を均一にすることができる。 FIG. 4 is a graph of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator of the refrigeration cycle apparatus according to Embodiment 2, and the average flow velocity u of the refrigerant flowing through the evaporator. In other words, the graph of FIG. 4 is a graph of the function T sat (u). As described above, as the value of the average flow velocity u increases, the value of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 increases. It turns out that they are relationships. Also, from the graph of FIG. 4, the value of the average flow velocity u at which the value of the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is 1.3 ° C. is about 1.2 (m / s). For this reason, in the refrigeration cycle apparatus 100 according to the second embodiment, if the value of the average flow velocity u is about 1.2 (m / s), the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is uniformed And the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 becomes equal, and the temperature of the refrigerant flowing through the evaporator 4 can be made uniform.

また、関数Tsat(u)は数式9から14に示すように蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは蒸発器4の圧力損失ΔPの関係より導出している。この圧力損失ΔPは、冷媒と配管との摩擦による圧力損失であり、蒸発器4の入口から出口にかけて連続的に増加する。このため、蒸発器4内の圧力の変化は蒸発器4の入口から出口にかけて勾配を持って連続的に下げることができる。よって、蒸発器4の着霜の偏りを抑制するには、蒸発器4は、実施の形態1と同じく図3に示すようなプレートフィンチューブ熱交換器であり、圧縮機1の回転数、膨張弁3の開度、冷媒流路の分岐数に応じて平均流速uを変化させて圧力損失を変化させる方法が最適である。 The function T sat (u) is derived from the relationship between the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 as shown in Expressions 9 to 14 from the pressure loss ΔP of the evaporator 4. The pressure loss ΔP is a pressure loss due to friction between the refrigerant and the pipe, and increases continuously from the inlet to the outlet of the evaporator 4. For this reason, the pressure change in the evaporator 4 can be continuously reduced with a gradient from the inlet to the outlet of the evaporator 4. Therefore, in order to suppress the uneven frost formation of the evaporator 4, the evaporator 4 is a plate fin tube heat exchanger as shown in FIG. The optimal method is to change the average flow velocity u according to the opening degree of the valve 3 and the number of branches of the refrigerant flow path to change the pressure loss.

図5は、実施の形態2に係る冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差と、蒸発器を流れる冷媒の平均流速uのグラフである。図5より平均流速uの値が小さいほど伝熱性能により冷却対象と冷媒に生じる温度差の値が大きくなっていることが分かる。以下にこの理由を説明する。まず、冷凍サイクル装置の伝熱性能により冷却対象と冷媒に生じる温度差は換言すると、冷却対象の温度Tairと蒸発器4の入口の冷媒飽和温度Tsat_inの差Tair−Tsat_inで表される。また、数式8を変形することで、数式19が導出できる。数式19よりTair−Tsat_inは平均流速uの0.8乗に反比例し、平均流速uの値が小さいほどTair−Tsat_inは大きくなることがわかる。 FIG. 5 is a graph of a temperature difference between a cooling target and a refrigerant due to heat transfer performance of the refrigeration cycle apparatus according to Embodiment 2, and an average flow velocity u of the refrigerant flowing through the evaporator. From FIG. 5, it can be seen that the smaller the value of the average flow velocity u, the larger the value of the temperature difference generated between the cooling target and the refrigerant due to the heat transfer performance. The reason will be described below. First, the temperature difference generated between the cooling target and the refrigerant due to the heat transfer performance of the refrigeration cycle device is expressed in other words as a difference T air -T sat_in between the temperature T air of the cooling target and the refrigerant saturation temperature T sat_in at the inlet of the evaporator 4. . Also, by transforming Expression 8, Expression 19 can be derived. T air -T sat_in from Equation 19 is inversely proportional to the 0.8 power of the average flow velocity u, T air -T sat_in as the value of the average flow velocity u is small it can be seen that the increase.

Figure 2019215155
Figure 2019215155

図6は、実施の形態2に係る冷凍サイクル装置の蒸発器4の出口の冷媒飽和温度Tsat_outと、蒸発器を流れる冷媒の平均流速uのグラフである。図6のグラフは換言すると、数式15のグラフであり、蒸発器4の出口の冷媒飽和温度Tsat_outに最大値Tsat_out_maxが存在することが分かる。また、数式15と数式17の関係より、蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなる平均流速uは、関数Tsat_u(u)が最小値Tsat_u_minとなる平均流速uでもある。 FIG. 6 is a graph of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 of the refrigeration cycle apparatus according to Embodiment 2, and the average flow rate u of the refrigerant flowing through the evaporator. In other words, the graph of FIG. 6 is a graph of Expression 15, and it can be seen that the maximum value T sat_out_max exists at the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4. From the relationship between Expressions 15 and 17, the average flow speed u at which the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 becomes the maximum value T sat_out_max is the average flow speed u at which the function T sat_u (u) becomes the minimum value T sat_u_min. But also.

図6のグラフより蒸発器4の出口の冷媒飽和温度Tsat_outの最大値Tsat_out_maxは約−10.0℃である。また、蒸発器4の出口の冷媒飽和温度Tsat_outの最大値Tsat_out_maxとなる平均流速uは、約1.2(m/s)であり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uとが略等しくなる。このため、実施の形態2に係る冷凍サイクル装置100は、蒸発器4を流れる冷媒の温度を均一にして着霜の偏りを防止すると同時に、確実に冷凍サイクル装置全体の運転性能の最大化することができる。 According to the graph of FIG. 6, the maximum value T sat_out_max of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is about −10.0 ° C. Further, the average flow velocity u at which the maximum value T sat_out_max of the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is about 1.2 (m / s), and when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. And the average flow velocity u at which the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 becomes equal. For this reason, the refrigeration cycle apparatus 100 according to Embodiment 2 makes the temperature of the refrigerant flowing through the evaporator 4 uniform to prevent uneven frost formation, and at the same time, reliably maximizes the operation performance of the entire refrigeration cycle apparatus. Can be.

以上より、実施の形態2のように、冷凍サイクル装置を循環する冷媒に、組成がR32が67wt%、R1234yfが26wt%、R125が7wt%である混合冷媒を用いた場合では、実際の冷凍サイクル装置として成り立つ範囲で、蒸発器4を流れる冷媒の温度を均一にして着霜の偏りを抑制すると同時に、確実に冷凍サイクル装置全体の運転性能の最大化を行うことができる。   As described above, in the case where the refrigerant circulating in the refrigeration cycle apparatus is a mixed refrigerant having a composition of 67% by weight of R32, 26% by weight of R1234yf, and 7% by weight of R125 as in Embodiment 2, an actual refrigeration cycle is used. As long as the device can be realized, the temperature of the refrigerant flowing through the evaporator 4 can be made uniform to suppress frost formation, and at the same time, the operating performance of the entire refrigeration cycle device can be reliably maximized.

なお、冷凍サイクル装置100全体の運転性能の低下を防止し、蒸発器4の着霜の偏りを抑制するためには、必ず平均流速uを蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる必要は無い。実施の形態1と同様の理由で、冷媒が、数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となるような平均流速uで蒸発器を流れていれば、冷凍サイクル装置100全体の運転性能の低下を防止する効果を発揮し、また蒸発器4の着霜の偏りも抑制できる。実施の形態2の条件では、関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となる平均流速u、つまり蒸発器4の出口の冷媒飽和温度Tsat_outが−10.3℃より大きくなる平均流速uは、図6より平均流速uが0.85(m/s)<u<1.6(m/s)の条件を満たせばよい。また、平均流速uが0.85(m/s)<u<1.6(m/s)の条件を満たす場合の蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、図4より0.7(℃)<ΔTsat<2.1(℃)の条件を満たしており、この条件を満たす冷媒飽和温度差ΔTsatは少なくとも平均流速uが1.6(m/s)以上に比べて、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatと蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差の差が小さくなり、蒸発器4の着霜の偏りが抑制できることがわかる。 In order to prevent a decrease in the operating performance of the entire refrigeration cycle apparatus 100 and to suppress the uneven formation of frost on the evaporator 4, the average flow velocity u must be set such that the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 is the maximum value. T sat_out_max , and it is necessary that the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform are equal. There is no. For the same reason as in the first embodiment, if the refrigerant flows through the evaporator at an average flow rate u such that the function T sat — u (u) shown in Equation 16 is less than T sat — u — min +0.3 (° C.), The effect of preventing a decrease in the operation performance of the entire cycle device 100 is exerted, and the uneven formation of frost on the evaporator 4 can also be suppressed. Under the conditions of the second embodiment, the average flow velocity u that function T sat_u (u) is the T sat_u_min +0.3 below (° C.), i.e. the refrigerant saturation temperature T Sat_out the outlet of the evaporator 4 is greater than -10.3 ° C. As shown in FIG. 6, the average flow velocity u may satisfy the condition that the average flow velocity u is 0.85 (m / s) <u <1.6 (m / s). When the average flow velocity u satisfies the condition of 0.85 (m / s) <u <1.6 (m / s), the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 is shown in FIG. The condition of 0.7 (° C.) <ΔT sat <2.1 (° C.) is satisfied, and the refrigerant saturation temperature difference ΔT sat that satisfies the condition is at least when the average flow velocity u is 1.6 (m / s) or more. As a result, the difference between the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 and the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform is reduced. It can be seen that the bias of frost formation on the vessel 4 can be suppressed.

また、実施の形態2の冷凍サイクル装置100では、蒸発器4の出口の冷媒飽和温度Tsat_outが最大値Tsat_out_maxとなる平均流速uと、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器4の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uと、が略等しくなるようになっているが、これに限らない。蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uにおける数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となっていれば、冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制できる。 In the refrigeration cycle apparatus 100 of the second embodiment, the average flow velocity u at which the refrigerant saturation temperature T sat_out at the outlet of the evaporator 4 reaches the maximum value T sat_out_max and the temperature of the refrigerant flowing through the evaporator 4 are made uniform. The average flow velocity u at which the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 and the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 become substantially equal, but is not limited to this. . When the temperature of the refrigerant flowing through the evaporator 4 is made uniform, the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 becomes equal to the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator. If the indicated function T sat — u (u) is less than T sat — u — min +0.3 (° C.), the effect of preventing a decrease in the operation performance of the entire refrigeration cycle apparatus is exhibited, and the unevenness of frost formation on the evaporator is also suppressed. it can.

また、実施の形態2では、R32と、R1234yfと、R125の混合冷媒であり、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である冷媒を使用しているがこれには限らず、非共沸混合冷媒であり、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口と出口の冷媒飽和温度差と蒸発器の入口と出口の冷媒飽和温度差ΔTsatが等しくなる平均流速uにおける数式16に示す関数Tsat_u(u)がTsat_u_min+0.3(℃)未満となっていれば、冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制する効果を発揮する。 Further, in the second embodiment, a refrigerant mixture of R32, R1234yf, and R125, the ratio XR32 of R32 is 67 (wt%), the ratio XR1234yf of R1234yf is 26 (wt%), and the ratio XR125 of R125. Is 7 (wt%), but is not limited thereto, and is a non-azeotropic mixed refrigerant, and the inlet and outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. long as the refrigerant saturation temperature difference between the evaporator inlet and the refrigerant saturation temperature difference [Delta] T sat outlet equals the average function shown in equation 16 in flow velocity u T sat_u (u) becomes less than T sat_u_min +0.3 (℃) For example, an effect of preventing a decrease in the operation performance of the entire refrigeration cycle device is exerted, and an effect of suppressing uneven frost formation of the evaporator is exhibited.

特に、実施の形態2の混合冷媒のそれぞれの組成が±3wt%未満の範囲で異なる冷媒、つまりR32の割合XR32(wt%)が64<XR32<70である条件と、R1234yfの割合XR1234yf(wt%)が23<XR1234yf<29である条件と、R125の割合XR125(wt%)が4<XR125<10である条件と、XR32とXR1234yfとXR125の総和が100である条件と、を全て満たす冷媒は、R32の割合XR32が67(wt%)、R1234yfの割合XR1234yfが26(wt%)、R125の割合XR125が7(wt%)である混合冷媒と比較して、各種物性、蒸発器4の入口と出口の冷媒飽和温度差ΔTsat及び関数Tsat(u)は大きく変わらないため、蒸発器4の入口と出口の冷媒飽和温度差ΔTsatは、図4より0.7(℃)<ΔTsat<2.1(℃)の条件を満たしていれば冷凍サイクル装置全体の運転性能の低下を防止する効果を発揮し、また蒸発器の着霜の偏りも抑制する効果を発揮する。 In particular, the refrigerants in which the respective compositions of the mixed refrigerants of the second embodiment differ in a range of less than ± 3 wt%, that is, the condition that the ratio X R32 (wt%) of R32 is 64 <X R32 <70, and the ratio X of R1234yf and conditions R1234yf (wt%) 23 <a X R1234yf <29, and conditions the proportion of R125 X R125 (wt%) is 4 <X R125 <10, the sum of X R32 and X R1234yf and X R125 100 The refrigerant satisfying all of the following conditions is a mixed refrigerant in which the ratio R32 of R32 is 67 (wt%), the ratio X1234yf of R1234yf is 26 (wt%), and the ratio XR125 of R125 is 7 (wt%). As compared with the above, the various physical properties, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 and the function T sat (u) are not significantly changed. As shown in FIG. 4, the refrigerant saturation temperature difference ΔT sat between the inlet and the outlet of the evaporator 4 satisfies the condition of 0.7 (° C.) <ΔT sat <2.1 (° C.). It has the effect of preventing the reduction of the frost and the effect of suppressing the uneven frost formation of the evaporator.

1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 冷媒配管、5a〜5d 冷媒配管、6 凝縮器送風機、7 蒸発器送風機、41 伝熱管、41a 流路、41b 接合箇所、41c 接合箇所、42 フィン、42a フィン、42b フィン、43 冷媒分配器、44 ヘッダ、100 冷凍サイクル装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 condenser, 3 expansion valve, 4 evaporator, 5 refrigerant piping, 5a-5d refrigerant piping, 6 condenser blower, 7 evaporator blower, 41 heat transfer tube, 41a flow path, 41b joint, 41c joint Location, 42 fins, 42a fins, 42b fins, 43 refrigerant distributor, 44 header, 100 refrigeration cycle device.

Claims (2)

圧縮機と、凝縮器と、減圧装置と、蒸発器を有し、内部で冷媒が循環する冷凍サイクルを備え、
前記冷媒は、R32と、R1234yfと、R125の混合冷媒であり、前記R32の割合XR32(wt%)が64<XR32<70である条件と、前記R1234yfの割合XR1234yf(wt%)が23<XR1234yf<29である条件と、前記R125の割合XR125(wt%)が4<XR125<10である条件と、前記R32の割合XR32と前記R1234yfの割合XR1234yfと前記R125の割合XR125の総和が100である条件と、を全て満たす冷媒であり、
前記蒸発器の入口と出口の冷媒飽和温度差ΔTsat(℃)は、0.7<ΔTsat<2.1の条件を満たす冷凍サイクル装置。
A compressor, a condenser, a decompression device, and an evaporator, including a refrigeration cycle in which a refrigerant circulates,
The refrigerant, the R32, and R1234yf, a mixed refrigerant of R125, and conditions the ratio of R32 X R32 (wt%) is 64 <X R32 <70, the proportion X R1234yf (wt%) of the R1234yf is 23 <a condition is X R1234yf <29, the proportion X R125 (wt%) of the R125 is 4 <and conditions are X R125 <10, the ratio X R32 of the R32 and the ratio X R1234yf of the R1234yf of the R125 A condition that the sum of the proportions X R125 is 100, and
A refrigeration cycle apparatus that satisfies the condition of 0.7 <ΔT sat <2.1, wherein a difference between the refrigerant saturation temperatures ΔT sat (° C.) between the inlet and the outlet of the evaporator.
前記冷媒は、前記R32の割合XR32が67(wt%)、前記R1234yfの割合XR1234yfが26(wt%)、前記R125の割合XR125が7(wt%)であり、
蒸発器の入口と出口の冷媒飽和温度差ΔTsat(℃)は、1.3℃である請求項1に記載の冷凍サイクル装置。
In the refrigerant, the ratio X R32 of the R32 is 67 (wt%), the ratio XR1234yf of the R1234yf is 26 (wt%), and the ratio XR125 of the R125 is 7 (wt%),
2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant saturation temperature difference ΔT sat (° C.) between the inlet and the outlet of the evaporator is 1.3 ° C. 3.
JP2019141915A 2019-08-01 2019-08-01 Refrigeration cycle device Pending JP2019215155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141915A JP2019215155A (en) 2019-08-01 2019-08-01 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141915A JP2019215155A (en) 2019-08-01 2019-08-01 Refrigeration cycle device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018502900A Division JP6715918B2 (en) 2016-03-01 2016-03-01 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JP2019215155A true JP2019215155A (en) 2019-12-19

Family

ID=68917998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141915A Pending JP2019215155A (en) 2019-08-01 2019-08-01 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2019215155A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226715A (en) * 1995-02-23 1996-09-03 Mitsubishi Electric Corp Heat pump type air conditioning equipment
JPH09105560A (en) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp Freezer
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226715A (en) * 1995-02-23 1996-09-03 Mitsubishi Electric Corp Heat pump type air conditioning equipment
JPH09105560A (en) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp Freezer
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Is DR-55 best option to replace R410A?", [ONLINE], JPN6020026903, 2 September 2015 (2015-09-02), ISSN: 0004548202 *

Similar Documents

Publication Publication Date Title
US11175080B2 (en) Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
WO2017221382A1 (en) Binary refrigeration device
JP6479181B2 (en) Air conditioner
WO2017221400A1 (en) Refrigerating cycle device and outdoor heat exchanger used in same
KR19980013707A (en) A refrigerating machine
JPWO2019082372A1 (en) Refrigeration cycle equipment
CN110177988A (en) Heat source side unit and refrigerating circulatory device
US11112151B2 (en) Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size
JP6715918B2 (en) Refrigeration cycle equipment
Hwang et al. Performance Measurement of CO 2 Heat Exchangers.
JP2008039233A (en) Refrigerating device
JP6758506B2 (en) Air conditioner
JP6765538B2 (en) Refrigeration equipment and operation method of refrigeration equipment
WO2020188756A1 (en) Air conditioner
JP6698951B1 (en) Air conditioner
JPH09145076A (en) Heat exchanger
JP2019215155A (en) Refrigeration cycle device
JP2012237518A (en) Air conditioner
JP2013134024A (en) Refrigeration cycle device
WO2018008129A1 (en) Refrigeration cycle device
JPWO2018101439A1 (en) Piping diameter determining method, piping diameter determining apparatus, and refrigeration apparatus
CN113646597B (en) Refrigeration cycle device
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
WO2020148826A1 (en) Air conditioner
WO2018216187A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713