JP5927415B2 - Refrigeration cycle equipment - Google Patents
Refrigeration cycle equipment Download PDFInfo
- Publication number
- JP5927415B2 JP5927415B2 JP2011268843A JP2011268843A JP5927415B2 JP 5927415 B2 JP5927415 B2 JP 5927415B2 JP 2011268843 A JP2011268843 A JP 2011268843A JP 2011268843 A JP2011268843 A JP 2011268843A JP 5927415 B2 JP5927415 B2 JP 5927415B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pipe
- refrigerant
- refrigeration cycle
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0234—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
- F25B2313/02344—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0254—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
- F25B2313/02543—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本発明は、冷凍サイクル装置に関するもので、特に熱交換器に係るものである。 The present invention relates to a refrigeration cycle apparatus, and particularly relates to a heat exchanger.
従来この種の冷凍サイクル装置において、熱交換器の損失を最小限としてより効率よく使用するために、蒸発器として使用する場合には圧力損失を削減するために多パス化して冷媒流速を低減したほうが良い。しかし凝縮器として使用する場合には圧力損失を考慮する必要性が低いため、パス数を削減したほうが冷媒の熱伝達率を増加でき、効率良く運転することができる。 Conventionally, in this type of refrigeration cycle device, in order to use heat exchangers more efficiently with minimum loss, when used as an evaporator, the refrigerant flow rate was reduced by using multiple passes to reduce pressure loss. Better. However, since it is less necessary to consider the pressure loss when used as a condenser, the heat transfer coefficient of the refrigerant can be increased and the operation can be efficiently performed by reducing the number of passes.
例えば図22は特許文献1に記載された従来の冷凍サイクル装置であるが、蒸発器と凝縮器の切り換えに応じて電磁二方弁又は逆止弁を複数組み合わせることでパス数の切り換えを可能としている。 For example, FIG. 22 shows a conventional refrigeration cycle apparatus described in Patent Document 1, but it is possible to switch the number of passes by combining a plurality of electromagnetic two-way valves or check valves in accordance with switching between an evaporator and a condenser. Yes.
しかしながら前記従来の冷凍サイクル装置の構成では以下のような課題があった。 However, the configuration of the conventional refrigeration cycle apparatus has the following problems.
パス数を切り換えるために配置された電磁二方弁は高価であり、かつ複数(3個)配置するため製造原価を考慮した場合、商品への採用が困難であった。また実施例にあるように安価な逆止弁による切り換え方式では熱交換器の一部を使用できないため、熱交換器を最大限効率良く使用できるとはいえない構成となっていた。また熱交換器と圧縮機を接続する吸接配管については特に記載がなく効率改善効果を完全には確保できない構成となっていた。 The electromagnetic two-way valve arranged for switching the number of passes is expensive, and since a plurality (three) of the electromagnetic valves are arranged, it is difficult to adopt it for a product in consideration of the manufacturing cost. Further, as described in the embodiment, since a part of the heat exchanger cannot be used in the switching method using an inexpensive check valve, the heat exchanger cannot be used to the maximum efficiency. Further, the suction pipe connecting the heat exchanger and the compressor is not particularly described, and the efficiency improvement effect cannot be completely ensured.
本発明は前記従来の課題を解決し、安価な構成でパス数の切り換えを行うことのできる冷凍サイクル装置を目的としている。 The present invention is directed to a refrigeration cycle apparatus that solves the above-described conventional problems and can switch the number of passes with an inexpensive configuration.
前記従来の課題を解決するために、本発明の冷凍サイクル装置では、圧縮機1、四方弁2、室外側熱交換器3、膨張弁7、室内側熱交換器12、吸接配管8、9を環状に接続し、室外側熱交換器3に逆止弁20、21を配置し、冷房運転し凝縮器として使用される場合には熱交換器が直列につながれ、暖房運転し蒸発器として使用される場合には熱交換器が並列につながれる構成となっている。このような構成により凝縮器としては冷媒流速が増加し、熱伝達率が増加する。また蒸発器としては圧力損失が減少し効率が改善する。そして吸接配管の内部断面積を蒸発器として多パス化した場合の最大内部断面積或いは最小断面積に対して一定の割合以上となるような構成となっている。 In order to solve the conventional problems, in the refrigeration cycle apparatus of the present invention, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 7, the indoor heat exchanger 12, the suction pipes 8 and 9 Are connected in a ring, and the check valves 20 and 21 are arranged in the outdoor heat exchanger 3, and when used as a condenser for cooling operation, the heat exchangers are connected in series, used for heating operation and as an evaporator In such a case, the heat exchangers are connected in parallel. With such a configuration, the flow rate of the refrigerant increases as the condenser, and the heat transfer coefficient increases. In addition, the pressure loss of the evaporator is reduced and the efficiency is improved. And it becomes the structure which becomes more than a fixed ratio with respect to the maximum internal cross-sectional area or the minimum cross-sectional area at the time of making the internal cross-sectional area of a suction pipe into a multipass as an evaporator.
この構成によれば、新たに追加した部品は安価な逆止弁だけであり、一般的なエアコン
ではオゾン層破壊係数の小さな高圧冷媒(R410A)が使用されているため弁圧損は無視でき、安価で効率の良い熱交換器を構成することができる。また吸接配管のみを最適な配管径とすることで銅管コスト及び冷媒保持量と冷媒の圧力損失を最適化することができる。
According to this configuration, the newly added parts are only inexpensive check valves, and in general air conditioners, high-pressure refrigerant (R410A) with a small ozone layer depletion coefficient is used, so that valve pressure loss can be ignored and inexpensive. Thus, an efficient heat exchanger can be configured. In addition, the copper pipe cost, the amount of refrigerant retained, and the pressure loss of the refrigerant can be optimized by setting the suction pipe only to the optimum pipe diameter.
本発明の冷凍サイクル装置によれば、安価な逆止弁のみで熱交換器を高効率に使用することが可能となる。 According to the refrigeration cycle apparatus of the present invention, it is possible to use the heat exchanger with high efficiency only with an inexpensive check valve.
第1の発明は少なくとも圧縮機、四方弁、室外熱交換器、絞り装置、室内熱交換器を順次接続して形成された冷媒回路を備え、2つの熱交換器のうち少なくとも1つに、複数の熱交換器ブロックを並列に配置し、冷媒入口と出口をそれぞれ直結された熱交換器において、凝縮器時の熱交換器入口管を一番外側に配置された熱交換器ブロックとその隣の2番目の熱交換器ブロックの間に接続し、前記熱交換器ブロックの冷媒入口を直結した第1の分岐配管において熱交換器入口管の方向のみに流れる逆止弁を熱交換器ブロックの奇数番目と隣接する熱交換器出口管側の偶数番目の間に配置し、前記熱交換器ブロックの冷媒出口を直結した第2の分岐配管において熱交換器出口管とは反対の方向のみに流れる逆止弁を熱交換器ブロックの偶数番目と隣接する出口管側の奇数番目の間に配置し、凝縮器時の熱交換器出口管を熱交換器入口管とは反対側の一番外側に配置された熱交換器ブロックとその隣の熱交換器ブロックの間に接続したことにより、凝縮器の場合は直列に、蒸発器の場合は並列に構成し、蒸発器として用いた場合に蒸発器入口部でのレイノルズ数が3000以上となるようにパス数を決定することで熱交換器能力を最も効率よく利用することができる。 The first invention includes a refrigerant circuit formed by sequentially connecting at least a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, and at least one of the two heat exchangers includes a plurality of refrigerant circuits. In the heat exchanger in which the refrigerant heat exchanger block is arranged in parallel and the refrigerant inlet and outlet are directly connected to each other, the heat exchanger inlet pipe at the time of the condenser is the outermost heat exchanger block and the adjacent one. connected between the second heat exchanger block, a check valve which flows only in the direction of the heat exchanger inlet pipe in the first branch pipe directly connected to the refrigerant inlet mouth of the heat exchanger block of the heat exchanger block disposed between the even-numbered odd and adjacent heat exchanger outlet pipe side, only in a direction opposite to the heat exchanger outlet pipe in a second branch pipe that directly connects the refrigerant exit of the heat exchanger block Even number of heat exchanger block with flowing check valve The heat exchanger outlet pipe at the time of the condenser and the heat exchanger block arranged on the outermost side opposite to the heat exchanger inlet pipe are adjacent to the odd number on the outlet pipe side adjacent to the heat exchanger inlet pipe. By connecting between the heat exchanger blocks, the condenser is configured in series, the evaporator is configured in parallel, and when used as an evaporator, the Reynolds number at the evaporator inlet becomes 3000 or more. Thus, by determining the number of passes, the heat exchanger capacity can be utilized most efficiently.
第2の発明は少なくとも圧縮機、四方弁、室外熱交換器、絞り装置、室内熱交換器を順次接続して形成された冷媒回路を備え、室内熱交換器及び室外熱交換器の少なくとも一方に、熱交換器全体又はその一部が2個の熱交換器ブロックと凝縮時出口方向のみに冷媒を通過させる逆止弁を含む配管を並列に配置しかつ冷媒入口と出口をそれぞれ直結された熱交換器において、凝縮器時の熱交換器入口管を熱交換器出口管から最も遠い位置に配置された熱交換器ブロックとその隣の熱交換器ブロックの間に接続し、前記熱交換器ブロックの冷媒入口を直結した第1の分岐配管において熱交換器入口管の方向のみに流れる逆止弁を熱交換器ブロックの1番目と隣接する熱交換器出口管側の2番目の間に配置し、前記熱交換器ブロックの冷媒出口を直結した第2の分岐配管において熱交換器出口管とは反対の方向のみに流れる逆止弁を熱交換器ブロックの2番目と前記隣接する逆止弁を含む配管の間に配置し、凝縮器時の熱交換器出口管を熱交換器入口管とは反対側に配置された熱交換器ブロックとその隣の前記逆止弁を含む配管の間に接続し、蒸発器として用いた場合に蒸発器入口部でのレイノルズ数が3000以上となるようにしたことにより蒸発器時は2つの熱交換器ブロックを並列に冷媒が流れ、圧力損失が削減され、凝縮器時には直列に冷媒が流れるため冷媒の熱伝達率を増加させることで熱交換器性能を最大限利用することができる。 The second invention includes a refrigerant circuit formed by sequentially connecting at least a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, and at least one of the indoor heat exchanger and the outdoor heat exchanger. , is directly connected across the heat exchanger, or a portion thereof are two only to the heat exchanger block and condensed at the outlet direction a pipe containing a check valve Ru passed through a refrigerant are arranged in parallel and coolant inlet and outlet, respectively In the heat exchanger, the heat exchanger inlet pipe at the time of the condenser is connected between the heat exchanger block arranged farthest from the heat exchanger outlet pipe and the adjacent heat exchanger block, and the heat exchange during a check valve flow only in the direction of the heat exchanger inlet pipe in the first branch pipe directly connected to the refrigerant inlet mouth vessel blocks of the second 1st and adjacent heat exchanger outlet pipe side of the heat exchanger block placed straight refrigerant exit of the heat exchanger block It was the heat exchanger outlet pipe in a second branch pipe disposed between the pipe containing the check valve to the second and the adjacent check valve a heat exchanger block which flows only in the opposite direction, when the condenser When the heat exchanger outlet pipe is connected between the heat exchanger block arranged on the opposite side of the heat exchanger inlet pipe and the pipe including the check valve adjacent thereto , the evaporator is used as an evaporator. By setting the Reynolds number at the inlet to be 3000 or more , the refrigerant flows in parallel through the two heat exchanger blocks at the time of the evaporator, the pressure loss is reduced, and the refrigerant flows in series at the time of the condenser. By increasing the heat transfer rate, the heat exchanger performance can be maximized.
第3の発明は特に第1又は2の発明の逆止弁を電磁二方弁とすることにより循環量や空調条件等に応じて弁開閉を選択することによって最適な熱交換器能力を得ることができる。 In the third aspect of the invention, in particular, the check valve of the first or second aspect of the invention is an electromagnetic two-way valve, and an optimum heat exchanger capacity is obtained by selecting valve opening / closing according to the circulation amount, air conditioning conditions, etc. Can do.
第4の発明は特に第1〜3のいずれかの発明において複数の熱交換器ブロックを直列、並列切り換えをする熱交換器を蒸発器時冷媒入口部に配置したことにより、最小限のブロックのみに対して本システムを適用するだけで最大限の効率向上を図ることができる。 In the fourth aspect of the invention, in particular, in any one of the first to third aspects, the heat exchanger for switching the plurality of heat exchanger blocks in series and in parallel is arranged at the refrigerant inlet portion at the time of the evaporator, so that only the minimum block is provided. However, the maximum efficiency improvement can be achieved by simply applying this system.
第5の発明は特に第1〜4の発明において複数の熱交換器ブロックの配管本数を冷媒流れ方向に対して同一としたことにより、冷媒の偏流を削減し最大限の熱交換器効率向上を図ることができる。 In the fifth aspect of the invention, in particular, in the first to fourth aspects of the invention, the number of pipes of the plurality of heat exchanger blocks is made the same with respect to the refrigerant flow direction, thereby reducing the refrigerant drift and improving the maximum heat exchanger efficiency. Can be planned.
第6の発明は特に第1〜5の発明において蒸発器時冷媒流れの上流に配置された逆止弁の口径よりも下流側に配置された逆止弁の口径を同等以上とすることにより、冷媒圧力損失の削減を図ることができる。 In the sixth aspect of the invention, in particular, in the first to fifth aspects of the invention, by making the diameter of the check valve arranged on the downstream side of the check valve arranged upstream of the refrigerant flow at the time of the evaporator equal to or greater than, Reduction of refrigerant pressure loss can be achieved.
第7の発明は特に可変パス熱交換器の配管が直径7mmの場合、蒸発器として用いたときのパス数を6パス以下、直径6.35mmの場合、蒸発器として用いたときのパス数を7パス以下、直径5mmの場合、蒸発器として用いたときのパス数を12パス以下、直径7.94mm以上の場合、蒸発器として用いたときのパス数を4パス以下とすることで熱交換器能力を最も効率よく利用することができる。 In the seventh aspect of the invention, in particular, when the pipe of the variable path heat exchanger has a diameter of 7 mm, the number of passes when used as an evaporator is 6 or less, and when the diameter is 6.35 mm, the number of passes when used as an evaporator is When the number of passes is 7 or less and the diameter is 5 mm, the number of passes when used as an evaporator is 12 or less. When the diameter is 7.94 mm or more, the number of passes when used as an evaporator is 4 or less and heat exchange is performed. The most efficient use of vessel capacity.
第8の発明は特に可変パス熱交換器が凝縮器として用いられた場合の1パス部の配管本数を配管が直径7mmの場合4本又は6本とし、凝縮器出口配管8本を熱交換器の風上側に配置したことで熱交換器能力を最も効率よく利用することができる。 In the eighth aspect of the invention, in particular, when the variable path heat exchanger is used as a condenser, the number of pipes in one path section is four or six when the pipe has a diameter of 7 mm, and eight condenser outlet pipes are heat exchangers. The heat exchanger capacity can be utilized most efficiently by arranging it on the windward side.
第9の発明は可変パス熱交換器が、両端の熱交換器ブロックの冷媒流れ方向の配管本数のいずれか或いは両方よりも、内側の熱交換器ブロックの冷媒流れ方向の配管本数を少なくすることで分流特性を改善することができる。 According to a ninth aspect of the invention, the variable path heat exchanger reduces the number of pipes in the refrigerant flow direction of the inner heat exchanger block than either or both of the number of pipes in the refrigerant flow direction of the heat exchanger blocks at both ends. Can improve the shunt characteristics.
第10の発明は特に第1〜9の発明において冷房運転と暖房運転に応じてパス数が切り替わるシステムを有する室外熱交換器と四方弁とを接続する吸接配管に対して、(室外熱交換器内配管の最大断面積)×1.2>(吸接配管の断面積)≧(室外熱交換器内配管の最大断面積)×0.8の条件を満たすように吸接配管の径を決定することによって、室外熱交換器を流出したガス冷媒による吸接配管における圧力損失を適切なレベルに抑制しつつ、製造原価の増加や充填冷媒量の増加等の課題と両立することができる。 The tenth aspect of the invention relates to the suction pipe connecting the outdoor heat exchanger and the four-way valve having a system in which the number of passes is switched according to the cooling operation and the heating operation in the first to ninth inventions. Maximum cross-sectional area of the piping inside the unit) x 1.2> (Cross-sectional area of the suction piping) ≥ (Maximum cross-sectional area of the piping inside the outdoor heat exchanger) x 0.8 By determining the pressure loss in the suction pipe due to the gas refrigerant that has flowed out of the outdoor heat exchanger can be suppressed to an appropriate level, it is possible to achieve compatibility with problems such as an increase in manufacturing cost and an increase in the amount of charged refrigerant.
第11の発明は特に第1〜9の発明において冷房運転と暖房運転に応じてパス数が切り替わるシステムを有する室外熱交換器と四方弁を介して圧縮機吸入部とを接続する吸接配管が、四方弁及び接続部位を除いて、(室外熱交換器内配管の最大断面積)×1.0>(吸接配管の断面積)≧(室外熱交換器内配管の最大断面積)×0.6の条件を満たすように吸接配管の径を決定することによって、室外熱交換器を流出したガス冷媒による吸接配管における圧力損失を適切なレベルに抑制しつつ、製造原価の増加や充填冷媒量の増加等の課題と両立することができる。 In an eleventh aspect of the invention, in particular, in the first to ninth aspects of the invention, there is provided a suction pipe for connecting an outdoor heat exchanger having a system in which the number of passes is switched according to cooling operation and heating operation and a compressor suction portion via a four-way valve. Except for the four-way valve and connecting part, (maximum cross-sectional area of piping in outdoor heat exchanger) x 1.0> (cross-sectional area of suction pipe) ≥ (maximum cross-sectional area of piping in outdoor heat exchanger) x 0 By determining the diameter of the suction pipe so as to satisfy the condition of .6, the pressure loss in the suction pipe due to the gas refrigerant flowing out of the outdoor heat exchanger is suppressed to an appropriate level, and the manufacturing cost is increased or filled. It can be compatible with problems such as an increase in the amount of refrigerant.
第12の発明は特に第1〜9の発明において冷房運転と暖房運転に応じてパス数が切り替わるシステムを有する室外熱交換器と四方弁とを接続する吸接配管が、(室外熱交換器内配管の最大断面積)×1.0>(吸接配管の断面積)≧(室外熱交換器内配管の最小断面積)×1.1の条件を満たすように吸接配管の径を決定することによって、室外熱交換器を流出したガス冷媒による吸接配管における圧力損失を適切なレベルに抑制しつつ、製造原価の増加や充填冷媒量の増加等の課題と両立することができる。 In a twelfth aspect of the invention, in particular, in the first to ninth aspects of the invention, there is provided a suction pipe for connecting the outdoor heat exchanger having a system in which the number of passes is switched according to the cooling operation and the heating operation and the four-way valve (in the outdoor heat exchanger). The diameter of the suction pipe is determined so as to satisfy the condition of (the maximum cross-sectional area of the pipe) × 1.0> (the cross-sectional area of the suction pipe) ≧ (the minimum cross-sectional area of the pipe in the outdoor heat exchanger) × 1.1. Thus, while suppressing the pressure loss in the suction pipe due to the gas refrigerant flowing out of the outdoor heat exchanger to an appropriate level, it is possible to achieve compatibility with problems such as an increase in manufacturing cost and an increase in the amount of refrigerant charged.
第13の発明は第10〜12の発明において、特に熱交換器の配管としてφ7mm管及び6分岐を用いた場合には、吸接配管として5分管、4分岐を用いた場合には吸接配管として4分管を用いたことによって室外熱交換器を流出したガス冷媒による吸接配管における圧力損失を適切なレベルに抑制しつつ、製造原価の増加や充填冷媒量の増加等の課題と両立することができる。 The thirteenth invention is the tenth to twelfth invention, particularly when a φ7 mm pipe and six branches are used as a heat exchanger pipe, and a suction pipe when a quintuple pipe and four branches are used as a suction pipe. As a quadrant, the pressure loss in the suction pipe due to the gas refrigerant flowing out of the outdoor heat exchanger is suppressed to an appropriate level, while at the same time satisfying issues such as an increase in manufacturing costs and an increase in the amount of refrigerant charged. Can do.
第14の発明は第10〜12の発明において、特に熱交換器の配管としてφ5mm管及び12分岐を用いた場合に吸接配管として5分管、8分岐を用いた場合に吸接配管として4分管を用いたことによって室外熱交換器を流出したガス冷媒による吸接配管における圧力損失を適切なレベルに抑制しつつ、製造原価の増加や充填冷媒量の増加等の課題と両立することができる。 The fourteenth invention is the invention according to the tenth to twelfth inventions, in particular when a φ5 mm pipe and 12 branches are used as a heat exchanger pipe, a five-part pipe as a suction pipe, and a quadrant pipe as a suction pipe when eight branches are used. As a result, the pressure loss in the suction pipe due to the gas refrigerant that has flowed out of the outdoor heat exchanger can be suppressed to an appropriate level, and problems such as an increase in manufacturing costs and an increase in the amount of refrigerant charged can be achieved.
第15の発明は第1〜9の発明において、冷房運転と暖房運転に応じてパス数が切り替わるシステムを有する室外熱交換器と四方弁とを接続する吸接配管が、(吸接配管の断面積)<(室外熱交換器内配管の最大断面積)×0.8の条件を満たす場合において、熱交換器出口部から四方弁或いは圧縮機吸入部へ直結する配管を配置し、その中間部に電磁二方弁を有することで、必要に応じてバイパス回路を開閉し、圧力損失を最適に制御することができる。 A fifteenth aspect of the invention is that in the first to ninth aspects of the invention, there is provided a suction pipe that connects the outdoor heat exchanger having a system in which the number of passes is switched according to the cooling operation and the heating operation and the four-way valve. When the condition of (area) <(maximum cross-sectional area of the pipe in the outdoor heat exchanger) × 0.8 is satisfied, a pipe directly connected from the heat exchanger outlet to the four-way valve or the compressor suction is arranged, and the middle part By having an electromagnetic two-way valve, the pressure circuit can be optimally controlled by opening and closing the bypass circuit as necessary.
第16の発明は第1〜9の発明において、冷房運転と暖房運転に応じてパス数が切り替わるシステムを有する室外熱交換器と四方弁を介して圧縮機吸入部とを接続する吸接配管が、四方弁及び接続部位を除いて、(吸接配管の断面積)<(室外熱交換器内配管の最大断面積)×0.6の条件を満たす場合において、熱交換器出口部から四方弁或いは圧縮機吸入部へ直結する配管を配置し、その中間部に電磁二方弁を有することで、必要に応じてバイパス回路を開閉し、圧力損失を最適に制御することができる。 A sixteenth aspect of the invention is the first to ninth aspects of the invention, wherein the suction pipe for connecting the outdoor heat exchanger having a system in which the number of passes is switched according to the cooling operation and the heating operation and the compressor suction portion via the four-way valve is provided. Except for the four-way valve and connecting part, when the condition of (cross-sectional area of suction pipe) <(maximum cross-sectional area of pipe in outdoor heat exchanger) x 0.6, the four-way valve from the heat exchanger outlet Alternatively, by arranging a pipe directly connected to the compressor suction part and having an electromagnetic two-way valve in the middle part thereof, the bypass circuit can be opened and closed as necessary, and the pressure loss can be optimally controlled.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は本発明の第1の実施の形態における冷凍サイクル装置の熱交換器の特に3つの熱交換器ブロックからなる場合を示すものである。
(Embodiment 1)
FIG. 1 shows a case where the heat exchanger of the refrigeration cycle apparatus according to the first embodiment of the present invention is composed of three heat exchanger blocks.
図1において熱交換器を蒸発器として使用した場合、熱交換器入口管5から気液二相の低圧冷媒が流入する。この場合は逆止弁21を冷媒が通過することができるので、3つの並列に配置された熱交換器ブロック22、23、24を平行して冷媒が通過することができ、熱交換後、逆止弁20を通過した冷媒と合流し出口管へ流出する。 When the heat exchanger is used as an evaporator in FIG. 1, a gas-liquid two-phase low-pressure refrigerant flows from the heat exchanger inlet pipe 5. In this case, since the refrigerant can pass through the check valve 21, the refrigerant can pass in parallel through the three heat exchanger blocks 22, 23, 24 arranged in parallel. The refrigerant that has passed through the stop valve 20 merges and flows out to the outlet pipe.
また、熱交換器を構成する銅管内を通過するときに冷媒が受ける圧力損失は一般的に冷媒流速の2乗に比例するため、流速を3分の1にすることのできる本発明の実施の形態1では圧力損失を9分の1にすることができる。冷媒流速が低下することによって冷媒側の熱伝達率も低下するが、一般的に圧力損失は圧縮機単体の入力に直接効果があるため、熱伝達率の低下よりも影響が大きい。そのため本発明では冷凍サイクル装置全体の消費電力削減を図ることができる構成となっている。 Further, since the pressure loss experienced by the refrigerant when passing through the copper pipe constituting the heat exchanger is generally proportional to the square of the refrigerant flow rate, the flow rate can be reduced to one third. In Form 1, the pressure loss can be reduced to 1/9. As the refrigerant flow rate decreases, the heat transfer coefficient on the refrigerant side also decreases. In general, pressure loss has a direct effect on the input of the compressor alone, and thus has a greater influence than a decrease in heat transfer coefficient. Therefore, in this invention, it becomes the structure which can aim at the power consumption reduction of the whole refrigerating-cycle apparatus.
次に熱交換器が凝縮器として使用される場合は、熱交換器出口管4から冷媒は高圧のガス冷媒又は気液二相冷媒として流入する。この場合、逆止弁20を冷媒が通過できないためまず熱交換器ブロック22を通過し、熱交換する。次にもう1つの逆止弁21も冷媒が通過できないため熱交換器ブロック23を逆方向へ流れ熱交換する。熱交換器には方向による悪影響はないため問題はない。 Next, when the heat exchanger is used as a condenser, the refrigerant flows from the heat exchanger outlet pipe 4 as a high-pressure gas refrigerant or a gas-liquid two-phase refrigerant. In this case, since the refrigerant cannot pass through the check valve 20, the refrigerant first passes through the heat exchanger block 22 to exchange heat. Next, since the refrigerant cannot pass through the other check valve 21, the heat flows through the heat exchanger block 23 in the reverse direction to exchange heat. There is no problem because the heat exchanger has no adverse effects depending on the direction.
そして逆止弁20は圧力の関係から逆方向へ流れないため冷媒は熱交換器ブロック24を通過し、熱交換される。最後に逆止弁21は圧力の関係から通過せず熱交換器入口管5を通過して次の冷凍サイクル過程へと流れていく。凝縮器の場合はこのように直列にした熱交換器ブロックを冷媒が通過するため、冷媒流速を増加させ熱伝達率を向上させることができる。冷媒の圧力損失も同時に増加してしまうが高圧の冷媒は冷媒密度が小さいため圧力損失は十分に小さく冷凍サイクル装置への影響は小さい。 Since the check valve 20 does not flow in the reverse direction because of the pressure, the refrigerant passes through the heat exchanger block 24 and is heat-exchanged. Finally, the check valve 21 does not pass due to the pressure, passes through the heat exchanger inlet pipe 5 and flows to the next refrigeration cycle process. In the case of a condenser, since the refrigerant passes through the heat exchanger blocks arranged in series in this way, the refrigerant flow rate can be increased and the heat transfer rate can be improved. Although the pressure loss of the refrigerant also increases at the same time, the high pressure refrigerant has a small refrigerant density, so the pressure loss is sufficiently small and the influence on the refrigeration cycle apparatus is small.
以上のような構成をなすことで、蒸発器としても凝縮器としても熱交換器効率を増大させることができる。そして本発明の実施の形態1では図1からわかるように追加部品は逆止弁(電磁二方弁の数分の1の価格)2つのみであり、従来から提案されているような構成(電磁二方弁、四方弁を使用している)とは異なり、安価な構成とすることができるだけでなく、本体収納上も逆止弁が配管形状をしているため課題が小さく、電気を使用しないため電装部品も追加する必要がない。 By configuring as described above, the heat exchanger efficiency can be increased both as an evaporator and as a condenser. In the first embodiment of the present invention, as can be seen from FIG. 1, there are only two additional parts (a fraction of the price of the electromagnetic two-way valve), and a configuration as proposed previously ( Unlike the electromagnetic two-way valve and four-way valve), not only can the structure be inexpensive, but the problem is small because the check valve has a pipe shape on the main body. There is no need to add electrical parts.
信頼性上もこのような冷媒状態で使用実績が十分にあり問題がない。仮に逆止弁が完全閉塞又は常時開放状態となっても冷媒は熱交換器を通過するため不安全な状態にはならない。 In terms of reliability, there is no problem because there is a sufficient record of use in such a refrigerant state. Even if the check valve is completely closed or normally opened, the refrigerant passes through the heat exchanger and does not enter an unsafe state.
またこのとき、熱交換器ブロック22、23、24の内部構成にたいする列数、本数等の制限は特になく、最適な構成とすることが可能である。例えば熱交換器ブロック22は1列4本とし、熱交換器ブロック23、24は2列6本とすることなども可能である。しかし熱交換器の性能を最大限有効利用するためには分流を均等にしたほうが良く、後述するが、銅管本数に制限を設けたほうがよい。 At this time, there is no particular limitation on the number of rows, the number, etc. of the internal configuration of the heat exchanger blocks 22, 23, 24, and an optimal configuration can be achieved. For example, the heat exchanger block 22 may be four in one row, and the heat exchanger blocks 23 and 24 may be six in two rows. However, in order to make the best use of the performance of the heat exchanger, it is better to make the flow split even, and as described later, it is better to limit the number of copper tubes.
図2は前述した3つの熱交換器ブロックによる場合を拡張し、熱交換器ブロックB1〜
Bnをn個並列に配置した場合を示す図である。このように熱交換器ブロックは3個に限定されることはなく、増加させることができる。
FIG. 2 expands the case of the three heat exchanger blocks described above, and heat exchanger blocks B 1 to B 1 .
The B n is a diagram illustrating a case of arranging the n pieces parallel. Thus, the number of heat exchanger blocks is not limited to three and can be increased.
このような場合には、凝縮器時の冷媒入口管4を一番外側に配置された熱交換器ブロックB1とその隣の2番目の熱交換器ブロックB2の間に接続し、前記熱交換器ブロックの冷媒入口管を直結した配管において入口管とは反対方向のみに流れる逆止弁201を熱交換器ブロックの奇数番目と隣接する出口管側の偶数番目の間に配置し、前記熱交換器ブロックの冷媒出口管を直結した配管において出口管方向のみに流れる逆止弁211を熱交換器ブロックの偶数番目と隣接する出口管側の奇数番目の間に配置する。 In such a case, the refrigerant inlet pipe 4 at the time of the condenser is connected between the heat exchanger block B 1 disposed on the outermost side and the second heat exchanger block B 2 adjacent thereto, and the heat in piping directly connected to the refrigerant inlet pipe exchanger blocks the inlet pipe disposed between the even-numbered outlet pipe side adjacent the check valve 20 1 which flows only in a direction opposite to the odd-numbered heat exchanger block, the the check valve 21 1 flows only in the outlet pipe direction in the piping directly connected to the refrigerant outlet pipe of the heat exchanger block is placed between the odd-numbered outlet pipe side and an adjacent even-numbered heat exchanger block.
以下同様にして逆止弁を順次配置し、凝縮器時の熱交換器出口管を入口管とは反対側の一番外側に配置された熱交換器ブロックBn−1とその隣の熱交換器ブロックBnの間に接続した構成となる。 In the same manner, the check valves are sequentially arranged, and the heat exchanger outlet pipe at the time of the condenser is arranged at the outermost side opposite to the inlet pipe and the heat exchanger block B n-1 and the adjacent heat exchange. It becomes the structure connected between unit block Bn .
このような配置とすることですべての熱交換器ブロックを蒸発器時並列、凝縮器時直列にすることができる。もちろん、内部の一部のみ逆止弁を配置せず、直列並列の切り換えができない構成とすることもできる。 With this arrangement, all the heat exchanger blocks can be arranged in parallel in the evaporator and in series in the condenser. Of course, it is also possible to employ a configuration in which a check valve is not arranged only in a part of the interior and switching in series and parallel cannot be performed.
以下本発明の実施の形態1について実際の適用例や効果を含め説明する。 Embodiment 1 of the present invention will be described below including actual application examples and effects.
室外熱交換器は暖房運転した場合、蒸発器となるため冷媒の圧力損失が大きな消費電力の増大の原因となっていた。この場合、熱交換器のパス数を増加させ、銅管内の冷媒速度を低減させることで圧力損失を削減することが一般的な方法となっているが、このような方式を採用した場合、冷房運転に切り替わり凝縮器として使用する場合、冷媒流速の過度の低下が熱伝達率の低下につながり、熱交換器効率の低下を招いてしまう。 When the outdoor heat exchanger is operated for heating, it becomes an evaporator, and the pressure loss of the refrigerant causes a large increase in power consumption. In this case, it is a common method to reduce the pressure loss by increasing the number of passes of the heat exchanger and reducing the refrigerant speed in the copper tube, but when such a method is adopted, When switching to cooling operation and using as a condenser, an excessive decrease in the refrigerant flow rate leads to a decrease in heat transfer coefficient, leading to a decrease in heat exchanger efficiency.
そこで従来は図8のように凝縮器としての最適な構成と蒸発器としての最適な構成の折衷点で折り合いをつける構成を採用していたが、必ずしも熱交換器効率は最大ではなかった。図7はこの関係を説明したもので、蒸発器として最適なパス数よりも圧力損失の影響が小さい凝縮器として最適なパス数は小さく、一般的に3分の1程度が多い。 Conventionally, as shown in FIG. 8, a configuration in which a compromise is made between the optimum configuration as a condenser and the optimum configuration as an evaporator has been adopted, but the efficiency of the heat exchanger is not necessarily the maximum. FIG. 7 illustrates this relationship. The optimum number of passes as a condenser having a smaller influence of pressure loss than the optimum number of passes as an evaporator is small, and generally about one third.
図3は冷凍サイクル装置の室外熱交換器の一部へ適用した場合である。
一般的に熱交換器の構成は前述したように蒸発器と凝縮器の折衷点で構成されるため、蒸発器時の冷媒入口管部分の構成が配管断面積の小さな構成となってしまうため、この部分に圧力損失の大部分が集中する。図12のグラフは熱交換器内部を冷媒が通過する場合の圧力の動きを示したもので、入口管から流入した後、1パス部、2パス部、3パス部の細管部で圧力が急激に低下し、その後は多パス化(6パス)されるため流速が低下し圧力はさほど低下しなくなる。
FIG. 3 shows a case where the present invention is applied to a part of the outdoor heat exchanger of the refrigeration cycle apparatus.
Since the configuration of the heat exchanger is generally composed of a compromise between the evaporator and the condenser as described above, the configuration of the refrigerant inlet pipe portion at the time of the evaporator becomes a configuration with a small pipe cross-sectional area. Most of the pressure loss is concentrated in this area. The graph in FIG. 12 shows the pressure movement when the refrigerant passes through the heat exchanger. After flowing from the inlet pipe, the pressure suddenly increases in the narrow tube section of the 1-pass part, 2-pass part, and 3-pass part. After that, since the number of passes is increased (six passes), the flow velocity is lowered and the pressure is not lowered so much.
つまり圧力損失の大部分が熱交換器入口近傍の3分の1程度に集中していることがわかる。このような圧力損失の集中は既に説明したとおり凝縮器となった場合の凝縮能力を確保するためであり、熱交換器として従来から不可避なものであった。しかしながら本発明では図3に示されるように、蒸発器時の熱交換器入口部分にのみパス可変システムを適用することで、図12の一点破線に示されるように入口周辺の冷媒流速が減少するため(この図の場合入口部5パス化)圧力損失が大きく削減される。 That is, it can be seen that most of the pressure loss is concentrated in about one third of the vicinity of the heat exchanger inlet. Such concentration of pressure loss is to secure the condensing capacity when it becomes a condenser as already described, and has been inevitable as a heat exchanger. However, in the present invention, as shown in FIG. 3, by applying the variable path system only to the heat exchanger inlet portion at the time of the evaporator, the refrigerant flow velocity around the inlet is reduced as shown by the dashed line in FIG. Therefore (in the case of this figure, the inlet portion has five paths), the pressure loss is greatly reduced.
このような構成とすることで暖房運転時の圧縮機動力の削減による消費電力の削減を実現することができる。また冷房運転時には熱交換器ブロックが3つ直列に接続されるため熱伝達率の向上効果により高圧低下、サブクール(過冷却度)増加によって熱交換器効率の上昇=消費電力の削減を図ることができる。 By setting it as such a structure, the reduction of the power consumption by reduction of the compressor motive power at the time of heating operation is realizable. In addition, since three heat exchanger blocks are connected in series during the cooling operation, the heat transfer efficiency is improved, the pressure is reduced, and the subcooling (supercooling degree) is increased, so that the efficiency of the heat exchanger is increased = the power consumption is reduced. it can.
図9はこの場合の熱交換器を詳細な構成例を示している。室外熱交換器は従来図9(a)のような構成が一般的だった。凝縮運転時6パス風下側から冷媒が流入し、順次3パス、2パス、1パスと冷媒密度の増加に逆比例させて配管断面積を低下させていく。蒸発運転時は逆に冷媒の密度に逆比例させて配管断面積を増加させる構成となっているが、蒸発器入口付近は凝縮運転時において100%液冷媒だが蒸発運転時は約80%程度の液比率にしかならない。低圧冷媒では圧力損失が大きいということもあり、最適配管構成にはなっていなかった。図9(b)は本発明の実施例で、蒸発器入口部のみ3ブロック化し、冷媒入口間から熱交換器最下部の熱交換器ブロック(1列4本)へ流入する回路と逆止弁を通過して2つの熱交換器ブロック(それぞれ2列8本)へ分岐する冷媒流れに別れ、5パスで熱交換器ブロックを通過後、逆止弁を通り合流する。その後は再度冷媒分岐し、上部の6パスブロックへと流出する。 FIG. 9 shows a detailed configuration example of the heat exchanger in this case. Conventionally, an outdoor heat exchanger is generally configured as shown in FIG. During the condensing operation, the refrigerant flows in from the 6-pass leeward side, and the pipe cross-sectional area is decreased in inverse proportion to the increase in the refrigerant density in order of 3 passes, 2 passes, and 1 pass. In the evaporating operation, the pipe cross-sectional area is increased in inverse proportion to the refrigerant density. The vicinity of the evaporator inlet is 100% liquid refrigerant in the condensing operation, but about 80% in the evaporating operation. Only liquid ratio. The low pressure refrigerant has a large pressure loss, and the optimum piping configuration has not been achieved. FIG. 9B shows an embodiment of the present invention, in which only the evaporator inlet section is divided into three blocks, and a circuit and check valve that flows from between the refrigerant inlets to the heat exchanger block (four lines in one row) at the bottom of the heat exchanger. The refrigerant flows into two heat exchanger blocks (each in two rows and eight), and then flows through the heat exchanger block in five passes and then merges through the check valve. Thereafter, the refrigerant branches again and flows out to the upper 6-pass block.
その結果、蒸発器時は5パスにすることができ、冷媒流速は約3分の1、圧力損失は約9分の1にすることができる。同時に凝縮運転時には1パスが2本しか配置できなかった従来例とは異なり4本配置しても蒸発運転時の圧力損失を増加させることがないので、凝縮運転時の熱交換器能力を増加させることができる。 As a result, when the evaporator is used, the number of passes can be five, the refrigerant flow rate can be reduced to about one third, and the pressure loss can be reduced to about one ninth. At the same time, unlike the conventional example where only two passes can be arranged during the condensation operation, the pressure loss during the evaporation operation does not increase even if four are arranged, so the heat exchanger capacity during the condensation operation is increased. be able to.
図10はこの場合の各運転モードにおける熱交換器能力と圧力損失をまとめたものである。従来構成と比較して、蒸発能力としてはほぼ同等の性能を確保しつつ、圧力損失は循環量に比例して削減されていることがわかる。この圧力損失は冷凍サイクル装置の中で最も消費電力の大きな圧縮機の動力に直接影響を与えるため、装置全体の消費電力を大きく削減することができる。また凝縮能力については、圧力損失は若干増加しているが絶対値としての影響は小さく、それ以上に凝縮能力が増加している。そのため冷媒循環量を削減する形で圧縮機の動力を削減し、冷凍サイクル装置全体の消費電力を削減することができる。 FIG. 10 summarizes the heat exchanger capacity and pressure loss in each operation mode in this case. It can be seen that the pressure loss is reduced in proportion to the circulation rate while securing substantially the same performance as the evaporation capacity as compared with the conventional configuration. Since this pressure loss directly affects the power of the compressor having the largest power consumption in the refrigeration cycle apparatus, the power consumption of the entire apparatus can be greatly reduced. As for the condensing capacity, the pressure loss is slightly increased, but the influence as an absolute value is small, and the condensing capacity is further increased. Therefore, the power of the compressor can be reduced by reducing the refrigerant circulation amount, and the power consumption of the entire refrigeration cycle apparatus can be reduced.
(実施の形態2)
図4は室外熱交換器全体に適用した場合を示している。熱交換器全体をブロック化する場合でも同様の効果を得ることができる。また図5,6は室内熱交換器へ適用した場合で、このような場合も既に述べた効果を得ることができる。
(Embodiment 2)
FIG. 4 shows a case where the present invention is applied to the entire outdoor heat exchanger. Even when the entire heat exchanger is blocked, the same effect can be obtained. 5 and 6 show a case where the present invention is applied to an indoor heat exchanger. In such a case, the effects already described can be obtained.
さらに製造原価の課題を考慮しなければ逆止弁の替わりに電磁二方弁を採用することも可能である。その場合は電磁弁の消費電力を考慮する必要がある。 Furthermore, an electromagnetic two-way valve can be used instead of the check valve if the problem of manufacturing cost is not taken into consideration. In that case, it is necessary to consider the power consumption of the solenoid valve.
図11は本発明の実施の形態2におけるブロック化する熱交換器の具体的な配置構成を示した例である。図11(a)は本発明の実施の場合で各ブロックの冷媒流量を均一化するために同一本数(4本)としている。しかし図11(b)は本数を変化させている。この場合、各銅管を通過する冷媒量はアンバランスになりやすく、熱交換器性能を十分に発揮することが困難になる。図の下に示した蒸発能力は定格運転時で比較した場合の数値で、約18Wの差が発生している。 FIG. 11 is an example showing a specific arrangement configuration of the heat exchanger to be blocked in the second embodiment of the present invention. FIG. 11A shows the same number (four) in order to make the refrigerant flow rate of each block uniform in the case of the embodiment of the present invention. However, in FIG. 11B, the number is changed. In this case, the amount of refrigerant passing through each copper tube is likely to be unbalanced, and it becomes difficult to sufficiently exhibit the heat exchanger performance. The evaporating capacity shown at the bottom of the figure is a numerical value when compared at the rated operation, and a difference of about 18 W occurs.
(実施の形態3)
図13は本発明の実施の形態3における熱交換器ブロックの構成を示した図である。蒸発器時において冷媒は図下の熱交換器入口間5から気液二相の低圧冷媒として流入する。冷媒は逆止弁25を通過できないため逆止弁21を通過し、2つの熱交換器ブロック22,23に分岐して平行して通過し、熱交換する。その後熱交換器ブロック22を通過した冷媒に熱交換器ブロック23と逆止弁20を通過した冷媒が合流し、熱交換器出口管4を通って下流側の冷凍サイクルへと流出する。凝縮器時には熱交換器出口管4から高圧の気液二相又はガス冷媒として流入し、逆止弁20は通過できないため、全量熱交換器ブロッ
ク22を通過しながら熱交換し、逆止弁21も通過できないため熱交換器ブロック23を通過しながら熱交換する。逆止弁25は通過できるため、熱交換器入口間5を通じて下流側の冷凍サイクル装置へと流出する。
(Embodiment 3)
FIG. 13 is a diagram showing a configuration of a heat exchanger block according to Embodiment 3 of the present invention. At the time of the evaporator, the refrigerant flows in as a gas-liquid two-phase low-pressure refrigerant from the heat exchanger inlet 5 at the bottom of the figure. Since the refrigerant cannot pass through the check valve 25, it passes through the check valve 21, branches into two heat exchanger blocks 22 and 23, passes in parallel, and exchanges heat. Thereafter, the refrigerant that has passed through the heat exchanger block 22 merges with the refrigerant that has passed through the heat exchanger block 23 and the check valve 20, and flows out through the heat exchanger outlet pipe 4 to the downstream refrigeration cycle. At the time of the condenser, since it flows as a high-pressure gas-liquid two-phase or gas refrigerant from the heat exchanger outlet pipe 4 and cannot pass through the check valve 20, heat is exchanged while passing through the entire heat exchanger block 22, and the check valve 21 Therefore, heat exchange is performed while passing through the heat exchanger block 23. Since the check valve 25 can pass, it flows out to the refrigeration cycle apparatus on the downstream side through the heat exchanger inlet 5.
このように冷媒が流れるため、蒸発器時は2パスの平行流で圧力損失を削減し、凝縮器時には直列接続で熱伝達率を増加させ、熱交換器としての効率を最大限発揮できる構成となっている。本発明の実施の形態3は実施の形態1に比較して、逆止弁が一つ多い構成となっているが、蒸発器時のパス数が少なくなるため、熱伝達率の低下による性能低下が大きな場合に有効な構成となっている。 Since the refrigerant flows in this way, the pressure loss is reduced by two-pass parallel flow at the time of the evaporator, and the heat transfer coefficient is increased by serial connection at the time of the condenser, so that the efficiency as a heat exchanger can be maximized. It has become. The third embodiment of the present invention has one check valve more than the first embodiment, but the number of passes at the time of the evaporator is reduced, so the performance deteriorates due to a decrease in heat transfer coefficient. This is an effective configuration when the is large.
(実施の形態4)
図14は本発明の第2の実施の形態における冷凍サイクル装置の熱交換器の特に蒸発器時のパス数が3パスの場合を示したものである。また図16は図14の熱交換器を室外熱交換器へ適用した場合を示した冷凍サイクル図である。本発明の実施の形態4では配管径φ7mmの熱交換器を用い、冷房標準能力4.0kW、暖房標準能力5.0kWのエアコンを想定している。
(Embodiment 4)
FIG. 14 shows a case where the number of passes in the heat exchanger of the refrigeration cycle apparatus according to the second embodiment of the present invention, particularly when the evaporator is three passes. FIG. 16 is a refrigeration cycle diagram showing a case where the heat exchanger of FIG. 14 is applied to an outdoor heat exchanger. Embodiment 4 of the present invention assumes an air conditioner having a cooling standard capacity of 4.0 kW and a heating standard capacity of 5.0 kW using a heat exchanger having a pipe diameter of 7 mm.
図16において、圧縮機1から吐出された高温高圧のガス冷媒(本発明では冷媒としてR410Aを使用している)は四方弁2によって室内熱交換器12へ流れ、凝縮される。液化した冷媒は室外機に搭載されている膨張弁7あるいはキャピラリーによって減圧され気液二相の冷媒として室外熱交換器へと入る。従来の熱交換器では入口部が1パスあるいは2パスなどの流路断面積の狭い構成となっていたが、本発明では図16あるいは図14に示されるように2パス部42と1パス部44のあわせて3パスに冷媒が流れるようになる。 In FIG. 16, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 (in the present invention, R410A is used as the refrigerant) flows to the indoor heat exchanger 12 through the four-way valve 2 and is condensed. The liquefied refrigerant is decompressed by the expansion valve 7 or capillary mounted in the outdoor unit, and enters the outdoor heat exchanger as a gas-liquid two-phase refrigerant. In the conventional heat exchanger, the inlet portion has a narrow channel cross-sectional area such as one pass or two passes. However, in the present invention, as shown in FIG. 16 or FIG. Thus, the refrigerant flows through three passes.
このことは1パスとした場合に比べ流路断面積にして3倍、冷媒流速は3分の1、冷媒圧力損失は9分の1になることを意味している。しかしながら冷媒流速を低下させることは同時に冷媒側の熱伝達率を低下させることになるため、どこまでパス数を増加させた場合が最適なのかに関して明確ではなかった。図17の(a)と(b)は5パス、7パスとした場合の熱交換器構成を示している。これら3つの構成において暖房定格運転(暖房能力5kWに相当)した場合の室外熱交換器能力(蒸発器能力)を比較したものが図18である。図18からわかるようにパス数を3から5パスとした場合は能力が向上しているが、7パスとすると逆に能力が低下してしまっている。 This means that the cross-sectional area of the flow path is tripled, the refrigerant flow rate is 1/3, and the refrigerant pressure loss is 1/9 compared to the case of one pass. However, reducing the refrigerant flow rate simultaneously reduces the heat transfer coefficient on the refrigerant side, so it was not clear how far the optimum number of passes was increased. (A) and (b) of FIG. 17 have shown the heat exchanger structure at the time of using 5 passes and 7 passes. FIG. 18 shows a comparison of outdoor heat exchanger capacity (evaporator capacity) when rated heating operation (corresponding to a heating capacity of 5 kW) is performed in these three configurations. As can be seen from FIG. 18, when the number of passes is changed from 3 to 5, the performance is improved, but when the number is 7 passes, the performance is reduced.
また図18は同時に蒸発器入口部での冷媒レイノルズ数を示しているが7パスの場合のみ乱流域ではなく乱流遷移域になってしまっていることがわかる。図15は非特許文献1より抽出した層流、乱流、乱流遷移域の一般的な区別(レイノルズ数との関係)を示した表であるが、レイノルズ数が2000〜3000の間で層流と乱流の遷移現象が起こることを示し、その場合、冷媒熱伝達率を代表するヌッセルト数は現在明確な関係式が見つかっていない(非特許文献1より)。 FIG. 18 also shows the refrigerant Reynolds number at the inlet of the evaporator at the same time, but it can be seen that only in the case of 7 passes, it is not a turbulent region but a turbulent transition region. FIG. 15 is a table showing general distinction (relationship with Reynolds number) of laminar flow, turbulent flow, and turbulent transition regions extracted from Non-Patent Document 1. In this case, no clear relational expression has been found for the Nusselt number representing the refrigerant heat transfer coefficient (from Non-Patent Document 1).
つまり7パス化まで多パス化してしまうと乱流遷移域になってしまい、極端な熱交換器能力の低下を招く可能性があることを図15と図18は示している。さらに図15は乱流域にある場合に最適なレイノルズ数、すなわちパス数が、乱流域のなかで最も低いレイノルズ数の時、圧力損失が低く、熱伝達率の低下が最も抑制されることも示している。 In other words, FIG. 15 and FIG. 18 show that if the number of passes is increased to 7 passes, a turbulent flow transition region is obtained, and there is a possibility that extreme heat exchanger capacity may be lowered. Further, FIG. 15 also shows that when the optimum Reynolds number, that is, the number of passes in the turbulent region, is the lowest Reynolds number in the turbulent region, the pressure loss is low and the decrease in heat transfer coefficient is most suppressed. ing.
この点についてさらに詳細な説明をすると、パス数の増加は前述したように冷媒流速の低下=レイノルズ数の低下を生じるが熱伝達率はレイノルズ数=冷媒流速の0.8乗に比例して低下する。しかし冷媒の圧力損失は冷媒流速の2乗に比例して増加するため冷媒流速は最大限低下させた方が、効率が良い。つまりパス数を増加させて冷媒流速を減少させ
、できるだけ圧力損失を低減したほうが良いが、乱流域から外れて遷移域或いは層流域になってしまうと熱伝達率が急減するため、乱流域の最も低いレイノルズ数である3000になるようにパス数を決定することが最も効率の良い構成となる。
To explain this point in more detail, as described above, an increase in the number of passes causes a decrease in the refrigerant flow rate = a decrease in the Reynolds number, but a heat transfer coefficient decreases in proportion to the Reynolds number = the 0.8th power of the refrigerant flow rate. To do. However, since the pressure loss of the refrigerant increases in proportion to the square of the refrigerant flow rate, it is more efficient to reduce the refrigerant flow rate to the maximum. In other words, it is better to reduce the refrigerant flow speed by increasing the number of passes and reduce the pressure loss as much as possible.However, if the transition to the laminar flow region is lost and the heat transfer coefficient decreases rapidly, the most in the turbulent flow region. The most efficient configuration is to determine the number of passes so that the low Reynolds number is 3000.
本発明の形態4は熱交換器の配管径、冷房/暖房能力の大小に対して限定されるわけではない。 Form 4 of the present invention is not limited to the pipe diameter of the heat exchanger and the size of the cooling / heating capacity.
例えば暖房能力(蒸発器能力)が5.0kWの場合、熱交換器の配管が直径6.35mm(2分管)の場合、蒸発器として用いたときのパス数を7パス以下、直径5mmの場合、蒸発器として用いたときのパス数を12パス以下、直径7.94mm(2.5分管)以上の場合、蒸発器として用いたときのパス数を4パス以下とすることで前述した冷媒レイノルズ数が3000以上となり最適な構成とすることができる。 For example, when the heating capacity (evaporator capacity) is 5.0 kW, the heat exchanger pipe has a diameter of 6.35 mm (2 split pipes), the number of paths when used as an evaporator is 7 paths or less, and the diameter is 5 mm If the number of passes when used as an evaporator is 12 or less and the diameter is 7.94 mm (2.5 split pipes) or more, the number of passes when used as an evaporator is 4 or less and the refrigerant Reynolds described above is used. The number is 3000 or more, and an optimum configuration can be obtained.
(実施の形態5)
従来のパス可変システムを搭載しない構成では1パス部の配管本数は自由に選択することができた。しかしながら本発明のようにパス可変システムを搭載した場合、1パス部の長さによって蒸発器時の配管本数がある程度制約を受ける。例えば1パス本数を8本、蒸発器時の熱交入口でのパス数を5パスと仮定すると、この熱交換器ブロックでは8×5=40本の配管が必要となる。
(Embodiment 5)
In the configuration in which the conventional variable path system is not installed, the number of pipes in one path portion can be freely selected. However, when the variable path system is installed as in the present invention, the number of pipes in the evaporator is limited to some extent by the length of one path part. For example, assuming that the number of one path is eight and the number of paths at the heat exchange inlet in the evaporator is five, this heat exchanger block requires 8 × 5 = 40 pipes.
一般的に熱交換の配管本数は配管同士のピッチやコスト、通風抵抗等の制約からφ7mmの配管を使用した2列熱交では約60〜70本しか投入できない。このうちの40本を固定されてしまうと分流性能の悪化や配管の収納性などから熱交換器全体としては最適化が困難となる。つまり1パス部の配管本数を最適化しないと、熱交換器効率の向上が困難となる。 In general, the number of pipes for heat exchange can be charged only about 60 to 70 in two rows of heat exchanges using φ7 mm pipes due to restrictions such as the pitch between pipes, cost, and ventilation resistance. If 40 of these are fixed, it becomes difficult to optimize the heat exchanger as a whole due to the deterioration of the diversion performance and the storage capacity of the piping. In other words, it is difficult to improve the efficiency of the heat exchanger unless the number of pipes in one pass portion is optimized.
そこで本発明の実施の形態5は凝縮器としての最適な構成を明確とすることを目的とする。実施例としてはφ7mmの室外熱交換器を想定する。凝縮器出口部にパス可変構成を採用した場合、図14、図16に示されるような構成となるが、凝縮能力を向上させるためには凝縮器出口部の液密度の高い冷媒を圧力損失がさほど増加しないようにしながら配管断面積を減少させ冷媒流速を増加させて熱交換能力を増加させる必要がある。 Then, Embodiment 5 of this invention aims at clarifying the optimal structure as a condenser. As an example, a 7 mm outdoor heat exchanger is assumed. When the variable path configuration is adopted at the outlet of the condenser, the configuration is as shown in FIGS. 14 and 16. However, in order to improve the condensing capacity, the refrigerant having a high liquid density at the outlet of the condenser has a pressure loss. It is necessary to increase the heat exchange capacity by decreasing the pipe cross-sectional area and increasing the refrigerant flow rate while not increasing so much.
最適な出口部構成、特に1パス部の配管本数及び配置場所が重要になるが、1パス本数を2本、4本、6本、8本とした場合の熱交換器能力を比較した表が図19である。蒸発器時のパス数はすべて5パスで統一している。この表からわかるように1パスの配管本数によって凝縮性能が変化し、1パスが2本の場合よりも本数を増加させた4本、6本、8本の方が相対的に性能は向上していることがわかる。 The optimal outlet configuration, especially the number of pipes and the location of one pass, is important, but there is a table comparing the heat exchanger capacity when the number of passes is 2, 4, 6, and 8. FIG. The number of passes at the time of the evaporator is all unified at 5 passes. As can be seen from this table, the condensing performance varies depending on the number of pipes in one pass, and the performance is improved relatively for 4, 6, and 8 pipes with the number of pipes being increased compared to the case of two 1 pass. You can see that
しかし本数を増加させても本数に比例して能力が向上するのではなく、4本〜6本あたりで上限に達し、代わりに圧力損失が急激に増加してしまっている。冷媒の圧力損失増加は圧縮機1の動力増加原因となり冷凍サイクル装置の大きな効率低下要因となるため、凝縮効率が最高となるのは1パス本数が4本ないし6本であることがわかる。 However, even if the number is increased, the capacity does not improve in proportion to the number, but the upper limit is reached around 4 to 6, and instead, the pressure loss rapidly increases. Since the increase in the pressure loss of the refrigerant causes an increase in the power of the compressor 1 and causes a large reduction in the efficiency of the refrigeration cycle apparatus, it can be understood that the number of one-pass number is four or six for the highest condensing efficiency.
そこで1パス本数は4本としつつ、1パス部を含む凝縮器出口配管8本を、より熱交換器効率の良い風上側に配置し、対交流効果を利用することとする。図20(a)は風上側に配置しない例であり、図20(b)は風上側に1パス4本を含む出口側8本の配管を配置した熱交換器の構成を示している。凝縮器出口部を熱交換器の風上側に配置した場合とそうでない場合の凝縮能力の差を図21に示す。この図20、21から、1パス4本を含む凝縮器出口配管を風上側に配置することが凝縮器としても熱交換器効率が最大限発揮されている構成であることがわかる。 Therefore, while the number of one pass is four, eight condenser outlet pipes including one pass portion are arranged on the windward side with better heat exchanger efficiency, and the anti-AC effect is used. FIG. 20A shows an example in which the pipe is not arranged on the windward side, and FIG. 20B shows a configuration of a heat exchanger in which eight outlet-side pipes including four 1-pass are arranged on the windward side. FIG. 21 shows the difference in condensing capacity between the case where the condenser outlet is disposed on the windward side of the heat exchanger and the case where the condenser outlet is not. 20 and 21, it can be seen that arranging the condenser outlet pipe including four one-pass on the windward side is the configuration in which the heat exchanger efficiency is exhibited to the maximum even as the condenser.
(実施の形態6)
図20(b)は本発明の実施の形態6の冷凍サイクル装置の熱交換器の構成を示す。熱交換器の蒸発器時の入口部を5パスにした例を示している。
(Embodiment 6)
FIG.20 (b) shows the structure of the heat exchanger of the refrigerating-cycle apparatus of Embodiment 6 of this invention. The example which made the entrance part at the time of the evaporator of a heat exchanger 5 passes is shown.
まず3つのブロックからなるパス可変構成は、凝縮器時、まず2パスで4本ずつ配管がある第一番目の熱交換器ブロック42を冷媒が通過し放熱する。その後合流し風上側に配置された第二番目の熱交換器ブロック43へ入り2パス2本ずつ配置された配管を冷媒が通過し、通常はこの配管途中でサブクールがとれ液化する。合流後に1パス部である第三番目の熱交換器ブロック46へ入り、風上側かつ1パスで冷媒流速が増加して熱伝達率が上昇した配管4本で十分にサブクールが確保される。 First, in the variable path configuration composed of three blocks, the refrigerant passes through the first heat exchanger block 42 having four pipes in two passes, and dissipates heat. Thereafter, the refrigerant enters the second heat exchanger block 43 arranged on the windward side, and the refrigerant passes through two pipes arranged two by two. Usually, the subcool is removed and liquefied in the middle of the pipe. After joining, the third heat exchanger block 46, which is a one-pass part, enters the third heat exchanger block 46, and the subcooling is sufficiently ensured by four pipes whose heat transfer rate is increased by increasing the refrigerant flow rate in the windward and one pass.
次に蒸発器時について説明する。蒸発器時は凝縮器時とは逆に冷媒が流れ、冷媒入口管47から流入した冷媒は凝縮器時の1パス部である第三番目の熱交換器ブロック46の配管4本へ入る冷媒流と逆止弁21を通過した後第一番目と第二番目熱交換器ブロック42、43へと流れる冷媒流2に分岐管48で分かれる。 Next, the evaporator will be described. In the evaporator, the refrigerant flows in the opposite direction to that in the condenser, and the refrigerant flowing in from the refrigerant inlet pipe 47 flows into the four pipes of the third heat exchanger block 46 that is a one-pass portion in the condenser. After passing through the check valve 21, the refrigerant flow 2 flowing to the first and second heat exchanger blocks 42 and 43 is divided by the branch pipe 48.
まず冷媒流は分岐管49で分岐して第一と第二番目の熱交換器ブロック42、43に分かれる。第一番目の熱交換器ブロック22は2パス4本の合計8本の配管で蒸発し、逆止弁を通過することなく合流部50で合流し、次の室外側熱交換器3へと流れていく。第二番目の熱交換器ブロック43は2パス2本の合計4本の配管で構成され、ここで冷媒は蒸発し、第三番目の熱交換器ブロック46で蒸発された冷媒流と合流する。合流後冷媒は逆止弁20を通過した後、合流部50で合流後、次の室外側熱交換器3へと流れる。 First, the refrigerant flow is branched by a branch pipe 49 and divided into first and second heat exchanger blocks 42 and 43. The first heat exchanger block 22 evaporates through a total of eight pipes with two 2 passes, merges at the junction 50 without passing through the check valve, and flows to the next outdoor heat exchanger 3. To go. The second heat exchanger block 43 is composed of a total of four pipes with two two paths, where the refrigerant evaporates and merges with the refrigerant flow evaporated in the third heat exchanger block 46. After the merged refrigerant passes through the check valve 20, it merges at the merge section 50, and then flows to the next outdoor heat exchanger 3.
このことからわかるように、冷媒は第二番目の熱交換器ブロック23を通過する場合のみ逆止弁を2回通過することになる。逆止弁はR410Aのような高圧冷媒であれば圧力損失は無視しうるレベルにあるが0ではない。よって第二番目の熱交換器ブロック43を通過する冷媒は逆止弁を余分に通過するだけ循環量が減少しやすい傾向を有している。本発明の実施の形態3ではこの冷媒循環量が減少しやすい第二番目の熱交換器ブロック43のみ他の熱交換器ブロックよりも冷媒流方向の配管本数を減らし2本にしている。結果として暖房運転時低周波数〜定格周波数〜暖房低温時最大周波数のすべての領域において5パスという多パス熱交換器にもかかわらずパスバランスが大きく悪化することはない。 As can be seen from this, the refrigerant passes through the check valve twice only when passing through the second heat exchanger block 23. If the check valve is a high-pressure refrigerant such as R410A, the pressure loss is at a negligible level, but it is not zero. Therefore, the refrigerant passing through the second heat exchanger block 43 tends to decrease in circulation amount as much as it passes through the check valve. In Embodiment 3 of the present invention, only the second heat exchanger block 43 in which the refrigerant circulation amount is likely to decrease is reduced to two pipes in the refrigerant flow direction as compared with the other heat exchanger blocks. As a result, the path balance is not greatly deteriorated in spite of the multi-pass heat exchanger of 5 passes in all regions from the low frequency during heating operation to the rated frequency to the maximum frequency during heating low temperature.
さらに配管設計という観点から考えた場合、前述したように蒸発器入口から入る冷媒を2分岐するが、今回の熱交換器はφ7mmのため1パス部である第一番目の熱交換器ブロック42への配管はφ7mmである。これに対して第二、三番目の熱交換器ブロック43,46は合わせて4パスのため4倍の冷媒循環量が必要であり、この冷媒循環量を得るためにはφ14mmの配管が必要とされる。しかしこのような太い配管は室外機の構造上収納できなくなる場合があり、製造原価の増大や性能低下を招いてしまう。そこで本発明の実施の形態3では第二番目の熱交換器ブロック43は既に述べたように配管本数を半分の2本とすることで必要な冷媒循環量を削減し、細い配管(本発明ではφ9.54mmの配管を採用)でも冷媒の偏流や圧力損失の発生を抑制しつつ、収納性を向上させることができる。 Further, from the viewpoint of piping design, as described above, the refrigerant entering from the evaporator inlet is branched into two, but since the current heat exchanger is φ7 mm, the first heat exchanger block 42 which is a one-pass portion is used. This pipe is φ7 mm. On the other hand, the second and third heat exchanger blocks 43 and 46 have a total of four passes and therefore require four times the amount of refrigerant circulation. To obtain this amount of refrigerant circulation, a φ14 mm pipe is required. Is done. However, such a thick pipe may not be accommodated due to the structure of the outdoor unit, resulting in an increase in manufacturing cost and a decrease in performance. Therefore, in the third embodiment of the present invention, the second heat exchanger block 43 reduces the necessary amount of refrigerant circulation by reducing the number of pipes to two, as already described. Even when a φ9.54 mm pipe is used), storage efficiency can be improved while suppressing the occurrence of refrigerant drift and pressure loss.
(実施の形態7)
図22は本発明の実施の形態7の冷凍サイクル構成図を示すものである。この実施の形態では既に説明をしたパス可変システムを搭載した熱交換器(φ7.00mm管、出口部6パス分岐)を室外熱交換器へ採用した場合で記載している。但し図示した例に限定されるものではない。
(Embodiment 7)
FIG. 22 shows a refrigeration cycle configuration diagram of Embodiment 7 of the present invention. In this embodiment, the heat exchanger (φ7.00 mm pipe, outlet 6-path branch) equipped with the variable path system already described is described as an outdoor heat exchanger. However, it is not limited to the illustrated example.
図22に記載の通り、暖房時の蒸発器圧力損失を削減し、熱交換器効率を向上させるために蒸発器入口部(22,23,24)を多パス化する。膨張弁7によって減圧膨張させられた気液二相冷媒は図に示されるように5パスに分岐し流れるため、この部分での冷媒圧力損失はほとんど発生しない。一旦合流後再度6パスに分岐するがこの部分(熱交換器3)でも冷媒圧損は発生しない。しかし、熱交換器の内部として冷媒側からみた管内断面積は2種類あり、前半の5パス部(22,23,24)に存在する最小管内断面積(A)と後半部(3)に存在する最大管内断面積(B)がある。例えば室外熱交換器の配管としてφ7.00mm管を用いた場合はそれぞれA=171mm2、B=205mm2となる。 As shown in FIG. 22, in order to reduce the evaporator pressure loss during heating and improve the heat exchanger efficiency, the evaporator inlet portions (22, 23, 24) are multipassed. Since the gas-liquid two-phase refrigerant decompressed and expanded by the expansion valve 7 branches and flows in five paths as shown in the figure, almost no refrigerant pressure loss occurs in this portion. Once merged, it branches again into 6 passes, but no refrigerant pressure loss occurs in this part (heat exchanger 3). However, there are two types of cross-sectional areas in the pipe as seen from the refrigerant side as the inside of the heat exchanger, existing in the minimum pipe cross-sectional area (A) and the latter half (3) that exist in the first five passes (22, 23, 24). There is a maximum cross-sectional area (B). For example each case of using the φ7.00mm tube becomes A = 171mm 2, B = 205mm 2 as pipe of the outdoor heat exchanger.
しかし、熱交換器を流出した冷媒は流速を高めて、吸接配管8を通過して圧縮機1吸入部にあるアキュームへと戻る。この時アキュームや途中に配置される四方弁2は一般的(一般住宅向けRACエアコンでは)に4分配管(φ12.70mm)を用いている場合が多く、必然的に周辺の吸接配管8も4分管(φ12.70mm)が使用される。ここで、4分管(φ12.70mm)の内部断面積(C)を計算すると、C=119mm2しかない。 However, the refrigerant flowing out of the heat exchanger increases the flow velocity, passes through the suction pipe 8 and returns to the accumulator in the compressor 1 suction portion. At this time, the accumulator and the four-way valve 2 arranged in the middle generally use a quadrant pipe (φ12.70 mm) (in a general-use RAC air conditioner), and the surrounding suction pipe 8 is inevitably also used. A quadrant (φ12.70 mm) is used. Here, when the internal cross-sectional area (C) of the quadrant (φ12.70 mm) is calculated, it is only C = 119 mm 2 .
前記熱交換器内部の断面積A、Bと比較すると、半分程度しかなく、本来冷媒の体積流量が増加し、圧力損失が増加しやすいこの吸接配管部分には熱交換器(A及びB)よりも断面積の大きな配管を用いるべきであるが、逆に細くなってしまっている。この場合のデメリットとして冷媒の大きな圧力損失が発生することがある。また本発明の実施の形態1〜6において熱交換器内部の圧力損失を削減したにも関わらず、この細い吸接配管での抵抗が律速となり十分な効果を引き出せなかった部分もある。そこで上記断面積A、B、Cの関係を最適化することによって、熱交換器効率を最大限発揮できる構成を明らかとする。 Compared to the cross-sectional areas A and B inside the heat exchanger, the heat exchanger (A and B) has only about a half, and the suction pipe portion where the volume flow rate of the refrigerant increases and pressure loss tends to increase. Pipes with a larger cross-sectional area should be used, but they are getting thinner. In this case, a large pressure loss of the refrigerant may occur as a disadvantage. In addition, in Embodiments 1 to 6 of the present invention, although the pressure loss inside the heat exchanger is reduced, there is a portion where the resistance in the thin suction pipe is rate limiting and a sufficient effect cannot be obtained. Therefore, by optimizing the relationship between the cross-sectional areas A, B, and C, a configuration that can maximize the heat exchanger efficiency is clarified.
図23は図22に記載の室外熱交換器の配管断面積を熱交換器入口から圧縮機まで比較したものである。この図からわかるように熱交換器入口よりも冷媒乾き度が増加し、体積流速の高い熱交換器出口〜圧縮機までの吸接配管8の方が、熱交換器内部よりも減少してしまっている。 FIG. 23 compares the pipe cross-sectional area of the outdoor heat exchanger shown in FIG. 22 from the heat exchanger inlet to the compressor. As can be seen from this figure, the dryness of the refrigerant increases compared to the heat exchanger inlet, and the suction pipe 8 from the heat exchanger outlet to the compressor having a high volumetric flow velocity has decreased from the inside of the heat exchanger. ing.
ここで冷媒の圧力損失をYとし、冷媒の体積流速をXとすると、下記の関係を満たす。Y=X2・・・(式1)
また、管内断面積をZとすると、下記の関係を満たす。
X=(1/Z)・・・(式2)
つまり吸接配管によって冷媒の圧力損失は約3倍に増加してしまっている。しかし、吸接配管8は室外機機械室内にあり、収納スペースに限りがあることや、製造原価の増加、配管内に保持される冷媒量の増加等を総合的に考慮して判断する必要がある。
Here, when the pressure loss of the refrigerant is Y and the volume flow rate of the refrigerant is X, the following relationship is satisfied. Y = X 2 (Formula 1)
Further, when the cross-sectional area in the tube is Z, the following relationship is satisfied.
X = (1 / Z) (Formula 2)
In other words, the pressure loss of the refrigerant has increased about three times by the suction pipe. However, the suction pipe 8 is in the outdoor unit machine room, and it is necessary to make a comprehensive determination in consideration of limited storage space, an increase in manufacturing costs, an increase in the amount of refrigerant retained in the pipe, and the like. is there.
そこで吸接配管8を4分管(φ12.75mm)、5分管(φ15.875mm)、6分管(φ19.05mm)とした場合について、1.6mあたりの銅管質量(g)、保持冷媒量(g)、冷媒圧力損失(MPa)について、暖房定格運転条件(Q=5000W、冷媒R410A)計算によって比較した。 Therefore, in the case where the suction pipe 8 is a quadrant (φ12.75 mm), a quadrant (φ15.875 mm), and a 6-segment pipe (φ19.05 mm), the copper pipe mass (g) per 1.6 m, the retained refrigerant amount ( g) The refrigerant pressure loss (MPa) was compared by calculating the heating rated operating condition (Q = 5000 W, refrigerant R410A).
この計算結果から、5分管にすれば圧力損失を十分削減しつつ、冷媒保持量や銅質量の増加を抑制することができる。6分管以上では効果がそれほど増えないだけではなく、配管ブロックとして曲げ加工等の製造課題が大きく効果的な構成とは言えない。 From this calculation result, it is possible to suppress an increase in the amount of refrigerant retained and the mass of copper while sufficiently reducing the pressure loss if the quintuple pipe is used. Not only the effect does not increase so much at 6 or more pipes, but it cannot be said that the production problems such as bending work as a piping block are greatly effective.
実機において、冷媒量は同一のまま、5分管相当の断面積を有する配管を用いて比較した結果が図24である。この図からわかるように冷媒圧力損失は0.006MPa削減された。この時、吸接配管8の冷媒圧力損失削減効果は冷凍サイクルの律速条件により熱交換器入口に現れ、圧縮機吸入圧力は同一であって圧縮機入力増加はほとんどなく、蒸発器の温度が全体に約0.1K低下し、空気側との温度差が増加(約2%)することで能力として約20W(約0.4%)増加し、冷凍サイクルとしての効率が向上した。 FIG. 24 shows the result of comparison using a pipe having a cross-sectional area equivalent to a quintuple pipe with the same amount of refrigerant in the actual machine. As can be seen from this figure, the refrigerant pressure loss was reduced by 0.006 MPa. At this time, the effect of reducing the refrigerant pressure loss of the suction pipe 8 appears at the inlet of the heat exchanger due to the rate-determining condition of the refrigeration cycle, the compressor suction pressure is the same, the compressor input hardly increases, and the evaporator temperature When the temperature difference from the air side increased (about 2%), the capacity increased by about 20 W (about 0.4%), and the efficiency of the refrigeration cycle was improved.
また暖房中間能力運転時(Q=2500W)には圧縮機吸入部の冷媒圧力が0.003MPa上昇し、冷凍サイクルの効率が改善した。さらに暖房低温条件(室外低温条件:2/1℃)では圧縮機が100Hz以上で運転するため効率改善効果が大きく、圧縮機吸入圧力が上昇し、圧縮機入力が同一のまま暖房能力が約90W(約1%)増加した。 In addition, during the heating intermediate capacity operation (Q = 2500 W), the refrigerant pressure in the compressor suction portion increased by 0.003 MPa, and the efficiency of the refrigeration cycle was improved. Furthermore, under the low-temperature heating conditions (outdoor low-temperature conditions: 2/1 ° C.), the compressor operates at 100 Hz or more, so the efficiency improvement effect is large, the compressor suction pressure rises, and the heating capacity is about 90 W while the compressor input remains the same. Increased (about 1%).
以上の結果をまとめると吸接配管8の管内断面積Cは最大管内断面積(B)に対して Summarizing the above results, the cross-sectional area C of the suction pipe 8 is larger than the maximum cross-sectional area (B).
の関係があり、最大管内断面積(B)×1.2> 管内断面積C≧最大管内断面積(B)×0.8が最適な構成となった。また最小管内断面積(A)に対する関係を検討すると、 The maximum cross-sectional area in the pipe (B) × 1.2> The cross-sectional area in the pipe C ≧ the maximum cross-sectional area in the pipe (B) × 0.8 was optimal. Also, considering the relationship to the minimum cross-sectional area (A),
の関係となり、最適な構成としては管内断面積C≧最小管内断面積(A)×1.1となる。 Therefore, as an optimum configuration, the cross-sectional area in the pipe C ≧ the cross-sectional area in the minimum pipe (A) × 1.1.
また、熱交換器としてφ5.00mm管を使用した場合、熱交換器の圧力損失増加を現状程度に抑制するためには12パスが必要とされ、この場合、上述した例と同様に試算すると吸接配管8として5分管を使用することで
最大管内断面積(B)×1.2>管内断面積C≧最大管内断面積(B)×0.8(式1)
管内断面積C≧最小管内断面積(A)×1.1
を満足する構成とすることができる。さらに8パスとした場合には4分管が最適であり上記関係式を満足する。
In addition, when a φ5.00 mm tube is used as a heat exchanger, 12 passes are required to suppress the increase in the pressure loss of the heat exchanger to the present level. By using a quintuple pipe as the connecting pipe 8, the maximum cross-sectional area (B) x 1.2> the cross-sectional area C within the pipe C ≥ the maximum cross-sectional area (B) x 0.8
Pipe cross-sectional area C ≧ Minimum pipe cross-sectional area (A) × 1.1
It can be set as the structure which satisfies these. In the case of 8 passes, the quadrant is optimal and satisfies the above relational expression.
(実施の形態8)
図25は本発明の実施の形態8における冷凍サイクル構成図を示すものである。実施の形態8は前述した実施の形態7と異なり、吸接配管のうち室外側熱交換器3から四方弁2までのみを5分管化し、四方弁2から圧縮機1までは従来通り4分管とした例である。図26はこの時の管内断面積を示している。熱交換器出口から四方弁までのみを5分管としたため、断面積は119から188mm2へ増加している。この部分だけでも変更することによって、図27に示されるように蒸発器での冷媒圧力損失削減効果を得ることができる。
この時の構成は以下の関係式を満足している。
(Embodiment 8)
FIG. 25 shows a refrigeration cycle configuration diagram according to Embodiment 8 of the present invention. In the eighth embodiment, unlike the above-described seventh embodiment, only the pipes from the outdoor heat exchanger 3 to the four-way valve 2 in the suction pipe are divided into five, and the four-way pipe from the four-way valve 2 to the compressor 1 is a quarter pipe as before. This is an example. FIG. 26 shows the cross-sectional area in the tube at this time. Since only the five-way pipe from the heat exchanger outlet to the four-way valve is used, the cross-sectional area increases from 119 to 188 mm 2 . By changing only this portion, the refrigerant pressure loss reduction effect in the evaporator can be obtained as shown in FIG.
The configuration at this time satisfies the following relational expression.
最大管内断面積(B)×1.0> 管内断面積C≧最大管内断面積(B)×0.6、また管内断面積C≧最小管内断面積(A)×1.1
本実施の形態8によれば、実施の形態7と比較して効果は小さいものの配管ブロックの構成が容易であり製造上の課題が小さいという利点を持つ。
Maximum pipe cross-sectional area (B) × 1.0> Pipe cross-sectional area C ≧ Maximum pipe cross-sectional area (B) × 0.6, and Pipe cross-sectional area C ≧ Minimum pipe cross-sectional area (A) × 1.1
According to the eighth embodiment, although the effect is small as compared with the seventh embodiment, there is an advantage that the configuration of the piping block is easy and the manufacturing problems are small.
(実施の形態9)
図28は本発明の実施の形態9における冷凍サイクル構成図を示すものである。実施の形態9は、前述した実施の形態7、8とは異なり、室外側熱交換器3を流出した冷媒が吸接配管8を経由せずにバイパスさせるバイパス回路10を作成し、暖房時のみ電磁二方弁9を開放する(冷房時は閉塞)ことで実質的に吸接配管の断面積を増加させる効果を得るものである。具体的にはバイパス回路として2.5分管(φ7.94mm、断面積44.7mm2)を用いることで、ほぼ所定の効果を得ることができる。
(Embodiment 9)
FIG. 28 shows a refrigeration cycle configuration diagram in Embodiment 9 of the present invention. Unlike Embodiments 7 and 8 described above, Embodiment 9 creates a bypass circuit 10 that bypasses the refrigerant that has flowed out of the outdoor heat exchanger 3 without passing through the suction pipe 8, and only during heating. By opening the electromagnetic two-way valve 9 (blocking during cooling), the effect of substantially increasing the cross-sectional area of the suction pipe is obtained. Specifically, a predetermined effect can be obtained by using a 2.5 branch pipe (φ7.94 mm, cross-sectional area 44.7 mm 2 ) as a bypass circuit.
また図28は熱交換器出口から圧縮機へ直接バイパスしているが、効率改善効果は減少するものの構造上の制約等から四方弁前後へつなぐ構成も可能である。 In FIG. 28, the bypass is directly bypassed from the outlet of the heat exchanger to the compressor. However, although the efficiency improvement effect is reduced, it is possible to connect to the front and rear of the four-way valve due to structural limitations.
以上のように、本発明にかかる冷凍サイクル装置は、簡単な構成により凝縮器の場合は直列に、蒸発器の場合は並列に構成することができ、熱交換器性能を最大限利用することが可能となるので、空気調和機を始めとして種々の冷凍サイクル装置に適用することができる。 As described above, the refrigeration cycle apparatus according to the present invention can be configured in series in the case of a condenser and in parallel in the case of an evaporator with a simple configuration, and can maximize the performance of the heat exchanger. Therefore, it can be applied to various refrigeration cycle apparatuses including an air conditioner.
1 圧縮機
2 四方弁
3 室外側熱交換器
4 熱交換器出口管
5 熱交換器入口管
7 膨張弁
8 吸接配管
9 電磁二方弁
10 バイパス回路
12 室内熱交換器
20 逆止弁
21 逆止弁
22 第一番目の熱交換器ブロック
23 第二番目の熱交換器ブロック
24 第三番目の熱交換器ブロック
25 逆止弁
42 2パス部
43 2パス部
44 1パス部
46 1パス部の熱交換器
47 蒸発器時の冷媒入口管
48 分岐管
49 分岐管
50 合流部
101 パス1
102 パス2
103 開閉弁1
104 開閉弁2
105 開閉弁3
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Heat exchanger exit pipe 5 Heat exchanger inlet pipe 7 Expansion valve 8 Suction piping 9 Electromagnetic two-way valve 10 Bypass circuit 12 Indoor heat exchanger 20 Check valve 21 Reverse Stop valve 22 First heat exchanger block 23 Second heat exchanger block 24 Third heat exchanger block 25 Check valve 42 2 pass part 43 2 pass part 44 1 pass part 46 1 pass part Heat exchanger 47 Refrigerant inlet pipe for evaporator 48 Branch pipe 49 Branch pipe 50 Junction section 101 Pass 1
102 Pass 2
103 On-off valve 1
104 On-off valve 2
105 On-off valve 3
Claims (16)
前記室内熱交換器及び前記室外熱交換器の少なくとも一方は、熱交換器全体又はその一部に、並列に配置された奇数個の熱交換器ブロックと、前記熱交換器ブロックが蒸発器時に入口となる冷媒入口をそれぞれ直結した第1の分岐配管と、前記熱交換器ブロックが蒸発器時に出口となる冷媒出口をそれぞれ直結した第2の分岐配管とを備え、
前記熱交換器は、当該熱交換器が凝縮器時に入口となる熱交換器入口管と、当該熱交換器が凝縮器時に出口となる熱交換器出口管とを備え、
前記熱交換器入口管は、一番外側に配置された熱交換器ブロックとその隣の2番目の熱交換器ブロックの間で前記第2の分岐配管に接続され、
前記熱交換器出口管は、前記熱交換器入口管とは反対側の一番外側に配置された熱交換器ブロックとその隣の熱交換器ブロックの間で前記第1の分岐配管に接続され、
前記第2の分岐配管には、前記熱交換器入口管の方向のみに流れる逆止弁が、熱交換器ブロックの奇数番目と隣接する前記熱交換器出口管側の偶数番目の間に配置され、
前記第1の分岐配管には、前記熱交換器出口管とは反対の方向のみに流れる逆止弁が、熱交換器ブロックの偶数番目と隣接する前記熱交換器出口管側の奇数番目の間に配置された可変パス熱交換器であり、
定格運転時に、前記可変パス熱交換器が蒸発器となる場合に前記可変パス熱交換器の入口での冷媒のレイノルズ数が3000以上となることを特徴とする冷凍サイクル装置。 At least a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and a refrigerant circuit formed by sequentially connecting an indoor heat exchanger,
At least one of the indoor heat exchanger and the outdoor heat exchanger, in whole or in part the heat exchanger, the odd number of heat exchanger blocks arranged in parallel, the heat exchanger block inlet at the evaporator A first branch pipe directly connected to each refrigerant inlet , and a second branch pipe directly connected to each refrigerant outlet serving as an outlet when the heat exchanger block is an evaporator ,
The heat exchanger includes a heat exchanger inlet pipe that serves as an inlet when the heat exchanger is a condenser, and a heat exchanger outlet pipe that serves as an outlet when the heat exchanger is a condenser.
The heat exchanger inlet pipe is connected to the second branch pipe between a heat exchanger block arranged on the outermost side and a second heat exchanger block adjacent thereto,
The heat exchanger outlet pipe is connected to the first branch pipe between the heat exchanger block arranged on the outermost side opposite to the heat exchanger inlet pipe and the adjacent heat exchanger block. ,
Wherein the second branch pipe, the check valve to flow only in the direction of the heat exchanger inlet pipe is disposed between the even-numbered of the heat exchanger outlet pipe side and an adjacent odd-numbered heat exchanger block ,
In the first branch pipe, a check valve that flows only in the direction opposite to the heat exchanger outlet pipe is between the even number of the heat exchanger block and the odd number of the adjacent heat exchanger outlet pipe. A variable path heat exchanger located in
A refrigeration cycle apparatus , wherein the Reynolds number of the refrigerant at the inlet of the variable path heat exchanger is 3000 or more when the variable path heat exchanger is an evaporator during rated operation .
前記室内熱交換器及び前記室外熱交換器の少なくとも一方は、熱交換器全体又はその一部に、並列に配置された2個の熱交換器ブロックと、前記熱交換器ブロックと並列に配置され、当該熱交換器が凝縮時に出口方向のみに冷媒を通過させる逆止弁を含む配管と、前記熱交換器ブロックが蒸発器時に入口となる冷媒入口をそれぞれ直結した第1の分岐配管と、前記熱交換器ブロックが蒸発器時に出口となる冷媒出口をそれぞれ直結した第2の分岐配管とを備え、
前記熱交換器入口管は、前記熱交換器出口管から最も遠い位置に配置された熱交換器ブロ
ックとその隣の熱交換器ブロックの間で前記第2の分岐配管に接続され、
前記熱交換器出口管は、前記熱交換器入口管とは反対側に配置された熱交換器ブロックとその隣の前記逆止弁を含む配管の間で前記第1の分岐配管に接続され、
前記第2の分岐配管には、前記熱交換器入口管の方向のみに流れる逆止弁が、熱交換器ブロックの1番目と隣接する前記熱交換器出口管側の2番目の間に配置され、
前記第1の分岐配管には、前記冷媒出口管とは反対の方向のみに流れる逆止弁が、熱交換器ブロックの2番目と前記隣接する前記逆止弁を含む配管の間に配置された可変パス熱交換器であり、
定格運転時に、前記可変パス熱交換器が蒸発器となる場合に前記可変パス熱交換器の入口での冷媒のレイノルズ数が3000以上となることを特徴とする冷凍サイクル装置。 At least a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and a refrigerant circuit formed by sequentially connecting an indoor heat exchanger,
At least one of the indoor heat exchanger and the outdoor heat exchanger, in whole or in part the heat exchanger, and two heat exchangers blocks arranged in parallel, are arranged in parallel with the heat exchanger block a first branch pipe to which the heat exchanger is directly connected with piping including a check valve Ru passed through a refrigerant only in the exit direction at the time of condensation, the refrigerant inlet the heat exchanger block is an inlet at the evaporator, respectively And a second branch pipe in which the heat exchanger block is directly connected to a refrigerant outlet that is an outlet at the time of the evaporator ,
The heat exchanger inlet pipe is connected to the second branch pipe between a heat exchanger block disposed farthest from the heat exchanger outlet pipe and the adjacent heat exchanger block,
The heat exchanger outlet pipe is connected to the first branch pipe between a heat exchanger block disposed on the opposite side of the heat exchanger inlet pipe and a pipe including the check valve adjacent thereto,
Wherein the second branch pipe, the check valve to flow only in the direction of the heat exchanger inlet pipe is disposed between the second of said heat exchanger outlet pipe side adjacent to the first heat exchanger block ,
Wherein the first branch pipe, said refrigerant outlet pipe check valve to flow only in the opposite direction, is arranged between the pipe comprising the second and the check valve in which the adjacent heat exchanger block Variable path heat exchanger,
A refrigeration cycle apparatus , wherein the Reynolds number of the refrigerant at the inlet of the variable path heat exchanger is 3000 or more when the variable path heat exchanger is an evaporator during rated operation .
(室外熱交換器内配管の最大断面積)×1.2>(吸接配管の断面積)≧(室外熱交換器内配管の最大断面積)×0.8
の条件を満たす事を特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 The outdoor heat exchanger is the variable path heat exchanger, and the suction pipe connecting the outdoor heat exchanger and the four-way valve is (maximum cross-sectional area of the pipe in the outdoor heat exchanger) × 1.2> (suction (Cross sectional area of piping) ≥ (Maximum cross sectional area of piping in outdoor heat exchanger) x 0.8
The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the condition is satisfied.
(室外熱交換器内配管の最大断面積)×1.0>(吸接配管の断面積)≧(室外熱交換器
内配管の最大断面積)×0.6
の条件を満たす事を特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 The outdoor heat exchanger is the variable pass heat exchanger,吸接piping connecting the suction part of the compressor via the four-way valve and the outdoor heat exchanger, except the four-way valve and connecting portion (Maximum cross-sectional area of piping in outdoor heat exchanger) × 1.0> (cross-sectional area of suction pipe) ≧ (maximum cross-sectional area of piping in outdoor heat exchanger) × 0.6
The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the condition is satisfied.
(室外熱交換器内配管の最大断面積)×1.0>(吸接配管の断面積)≧(室外熱交換器内配管の最小断面積)×1.1
の条件を満たす事を特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 Wherein an outdoor heat exchanger wherein the variable pass heat exchanger, (maximum cross-sectional area of the outdoor heat exchanger pipe)吸接pipe that connects the four-way valve and the outdoor heat exchanger × 1.0> ( (Cross sectional area of suction pipe) ≧ (Minimum cross sectional area of pipe in outdoor heat exchanger) × 1.1
The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the condition is satisfied.
(吸接配管の断面積)<(室外熱交換器内配管の最大断面積)×0.8
の条件を満たす場合において、前記室外熱交換器の出口部から前記四方弁或いは前記圧縮機の吸入部へ直結する配管を配置し、その中間部に電磁二方弁を有することを特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 Maximum wherein an outdoor heat exchanger wherein the variable pass heat exchanger,吸接piping that connects the four-way valve and the outdoor heat exchanger (cross-sectional area of吸接piping) <(the outdoor heat exchanger in the pipe (Cross sectional area) x 0.8
In the case conditions are satisfied, according to the piping directly connected to the suction portion of the four-way valve or the compressor from the outlet portion of the outdoor heat exchanger is disposed, and having a solenoid two-way valve in the middle part Item 10. The refrigeration cycle apparatus according to any one of Items 1 to 9 .
(吸接配管の断面積)<(室外熱交換器内配管の最大断面積)×0.6
の条件を満たす場合において、前記室外熱交換器の出口部から前記四方弁或いは前記圧縮機の吸入部へ直結する配管を配置し、その中間部に電磁二方弁を有することを特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 The outdoor heat exchanger is the variable pass heat exchanger,吸接piping connecting the suction part of the compressor via the four-way valve and the outdoor heat exchanger, except the four-way valve and connecting portion (Cross sectional area of suction pipe) <(Maximum cross sectional area of pipe in outdoor heat exchanger) x 0.6
In the case conditions are satisfied, according to the piping directly connected to the suction portion of the four-way valve or the compressor from the outlet portion of the outdoor heat exchanger is disposed, and having a solenoid two-way valve in the middle part Item 10. The refrigeration cycle apparatus according to any one of Items 1 to 9 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011268843A JP5927415B2 (en) | 2011-04-25 | 2011-12-08 | Refrigeration cycle equipment |
CN201280020395.0A CN103518107B (en) | 2011-04-25 | 2012-04-24 | Refrigerating circulatory device |
PCT/JP2012/002804 WO2012147336A1 (en) | 2011-04-25 | 2012-04-24 | Refrigeration cycle device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011096799 | 2011-04-25 | ||
JP2011096799 | 2011-04-25 | ||
JP2011268843A JP5927415B2 (en) | 2011-04-25 | 2011-12-08 | Refrigeration cycle equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012237543A JP2012237543A (en) | 2012-12-06 |
JP5927415B2 true JP5927415B2 (en) | 2016-06-01 |
Family
ID=47071867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011268843A Expired - Fee Related JP5927415B2 (en) | 2011-04-25 | 2011-12-08 | Refrigeration cycle equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5927415B2 (en) |
CN (1) | CN103518107B (en) |
WO (1) | WO2012147336A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9752803B2 (en) * | 2011-02-16 | 2017-09-05 | Johnson Controls Technology Company | Heat pump system with a flow directing system |
CN104819590B (en) * | 2014-02-03 | 2019-10-25 | 东普雷股份有限公司 | The method of operation of refrigerating plant and refrigerating plant |
JP6494916B2 (en) * | 2014-03-07 | 2019-04-03 | 三菱重工サーマルシステムズ株式会社 | Heat exchanger and air conditioner using the same |
CN105318605B (en) * | 2014-07-17 | 2018-02-02 | 广东美的制冷设备有限公司 | Parallel-flow heat exchanger and the air conditioner with the parallel-flow heat exchanger |
JP2016035376A (en) * | 2014-08-04 | 2016-03-17 | 株式会社デンソー | Evaporator |
EP3348935B1 (en) * | 2015-09-10 | 2021-01-27 | Hitachi-Johnson Controls Air Conditioning, Inc. | Heat exchanger |
JP6605117B2 (en) * | 2016-02-22 | 2019-11-13 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP6715918B2 (en) * | 2016-03-01 | 2020-07-01 | 三菱電機株式会社 | Refrigeration cycle equipment |
EP3757483A1 (en) * | 2016-07-08 | 2020-12-30 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus and air-conditioning apparatus provided with same |
JPWO2018025305A1 (en) * | 2016-08-01 | 2019-03-22 | 三菱電機株式会社 | Air conditioner |
CN106352609B (en) * | 2016-08-22 | 2018-01-16 | 合肥华凌股份有限公司 | A kind of evaporator and refrigeration plant |
WO2018047330A1 (en) * | 2016-09-12 | 2018-03-15 | 三菱電機株式会社 | Air conditioner |
EP3511651B1 (en) * | 2016-09-12 | 2020-12-02 | Mitsubishi Electric Corporation | Air conditioning device |
EP3517855B1 (en) * | 2016-09-23 | 2020-09-16 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle device |
JP6664503B2 (en) * | 2016-09-23 | 2020-03-13 | 三菱電機株式会社 | Air conditioner |
JP6676180B2 (en) * | 2016-09-23 | 2020-04-08 | 三菱電機株式会社 | Refrigeration cycle device |
CN107631512A (en) * | 2017-09-04 | 2018-01-26 | 广东美的暖通设备有限公司 | Multiple on-line system |
JPWO2019225005A1 (en) * | 2018-05-25 | 2021-03-25 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
CN109751754B (en) * | 2019-01-10 | 2023-04-07 | 青岛海尔空调器有限总公司 | Heat exchanger and air conditioner |
CN109751752B (en) * | 2019-01-10 | 2023-04-07 | 青岛海尔空调器有限总公司 | Heat exchanger and air conditioner |
ES2943887T3 (en) * | 2019-03-26 | 2023-06-16 | Mitsubishi Electric Corp | Heat exchanger and refrigeration cycle device |
JP6888068B2 (en) * | 2019-11-08 | 2021-06-16 | 三菱電機株式会社 | Refrigeration cycle device and air conditioner equipped with it |
WO2021106079A1 (en) * | 2019-11-26 | 2021-06-03 | 三菱電機株式会社 | Refrigeration apparatus |
CN111380108A (en) * | 2020-03-23 | 2020-07-07 | 广东美的制冷设备有限公司 | Heat exchanger, air conditioner indoor unit and air conditioner |
CN112664323B (en) * | 2020-12-22 | 2022-11-01 | 中国航空发动机研究院 | High-speed fluid heat exchanger structure with variable flow |
CN113977213B (en) * | 2021-02-07 | 2024-03-08 | 山东烯泰天工节能科技有限公司 | Preparation method of heat exchanger for micro-pipe air conditioner |
CN113932488A (en) * | 2021-09-19 | 2022-01-14 | 青岛海尔空调器有限总公司 | Heat exchanger, refrigeration cycle system and air conditioner |
CN114383218B (en) * | 2021-12-14 | 2024-03-19 | 郑州海尔空调器有限公司 | Method and device for controlling air conditioner, air conditioner and storage medium |
CN114383217B (en) * | 2021-12-14 | 2024-05-24 | 郑州海尔空调器有限公司 | Method and device for controlling air conditioner, air conditioner and storage medium |
CN114593466B (en) * | 2022-02-21 | 2023-09-12 | 青岛海信日立空调系统有限公司 | air conditioner |
WO2023175926A1 (en) * | 2022-03-18 | 2023-09-21 | 三菱電機株式会社 | Outdoor machine for air conditioning device and air conditioning device |
CN114576888B (en) * | 2022-03-23 | 2024-05-28 | 广东美的制冷设备有限公司 | Heat exchanger, heat exchanger flow path control method, readable storage medium, and household appliance |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08200860A (en) * | 1995-01-19 | 1996-08-06 | Nippondenso Co Ltd | Refrigerator |
JPH08247576A (en) * | 1995-03-14 | 1996-09-27 | Toshiba Corp | Air-conditioner |
JPH10170081A (en) * | 1996-12-11 | 1998-06-26 | Toshiba Corp | Air conditioner |
JPH1137587A (en) * | 1997-07-18 | 1999-02-12 | Fujitsu General Ltd | Air conditioner |
JP2001099510A (en) * | 1999-09-30 | 2001-04-13 | Fujitsu General Ltd | Air conditioner |
JP2002243296A (en) * | 2001-02-20 | 2002-08-28 | Fujitsu General Ltd | Air conditioner |
JP2007255785A (en) * | 2006-03-23 | 2007-10-04 | Matsushita Electric Ind Co Ltd | Heat exchanger with fin and air conditioner |
-
2011
- 2011-12-08 JP JP2011268843A patent/JP5927415B2/en not_active Expired - Fee Related
-
2012
- 2012-04-24 CN CN201280020395.0A patent/CN103518107B/en not_active Expired - Fee Related
- 2012-04-24 WO PCT/JP2012/002804 patent/WO2012147336A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012147336A1 (en) | 2012-11-01 |
CN103518107A (en) | 2014-01-15 |
JP2012237543A (en) | 2012-12-06 |
CN103518107B (en) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927415B2 (en) | Refrigeration cycle equipment | |
US9651317B2 (en) | Heat exchanger and air conditioner | |
JP6087611B2 (en) | Refrigeration cycle and air conditioner equipped with the same | |
CN107003048B (en) | Air conditioner | |
CN217357660U (en) | Heat exchanger and air conditioner | |
CN214581751U (en) | Heat exchanger and air conditioner | |
JP6676180B2 (en) | Refrigeration cycle device | |
US10670311B2 (en) | Heat exchanger | |
EP3499142A1 (en) | Refrigeration cycle device | |
JP5889745B2 (en) | Refrigeration cycle apparatus, and refrigeration apparatus and air conditioner equipped with the refrigeration cycle apparatus | |
CN105352225A (en) | Air conditioner | |
WO2014083651A1 (en) | Air conditioner | |
JP2007278676A (en) | Heat exchanger | |
US10907902B2 (en) | Heat exchanger | |
JP5704898B2 (en) | Heat exchanger and air conditioner equipped with the heat exchanger | |
JP6273838B2 (en) | Heat exchanger | |
AU2017444848B2 (en) | Heat exchanger and refrigeration cycle device | |
EP4083558B1 (en) | Heat exchanger and refrigeration cycle device | |
CN113646597B (en) | Refrigeration cycle device | |
JP6596541B2 (en) | Air conditioner | |
JP6537868B2 (en) | Heat exchanger | |
WO2015025414A1 (en) | Refrigeration cycle device, and air conditioner and water heater using same refrigeration cycle device | |
CN118532846A (en) | Condenser, outdoor unit and air conditioner | |
KR20110103827A (en) | Heat exchanger for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160222 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5927415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |