JPH1137587A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1137587A
JPH1137587A JP9194558A JP19455897A JPH1137587A JP H1137587 A JPH1137587 A JP H1137587A JP 9194558 A JP9194558 A JP 9194558A JP 19455897 A JP19455897 A JP 19455897A JP H1137587 A JPH1137587 A JP H1137587A
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
solenoid valve
refrigerant flow
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9194558A
Other languages
Japanese (ja)
Inventor
Atsushi Koizumi
淳 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP9194558A priority Critical patent/JPH1137587A/en
Publication of JPH1137587A publication Critical patent/JPH1137587A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02344Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02541Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during cooling

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump-type air-conditioner that can be most efficiently used as a condenser and an evaporator. SOLUTION: In an air conditioner, first solenoid valves 11 and 21 are included between a four-way valve 2 and refrigerant channels 3b and 5b of one of heat exchangers 3 and 5, second solenoid valves 12 and 22 are included between the confluences A and B of the refrigerant channels of the other of the heat exchangers 3 and 5 and a pressure reducer 4, third solenoid valves 13 and 23 are connected between the area between each of the first solenoid valves 11 and 21 and the area between the first solenoid valves 11 and 21 and one refrigerant channel at each side and the area between the pressure reducer 4 and each of the solenoid valves 12 and 22, and each solenoid valve is controlled so that the refrigerant channels of the heat exchanger on the condenser side are connected in series and those of the heat exchanger at the evaporator side can be connected in parallel in synchronization with the switching between cooling and heating. As a result, the refrigeration cycle of the air conditioner can be configured efficiently regardless of the operating mode, cooling or heating mode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房、暖房兼用の
ヒートポンプ式空気調和機に係わり、とくに、代替冷媒
を使用するものの効率を向上させたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner for both cooling and heating, and more particularly to a heat pump type air conditioner using an alternative refrigerant which has improved efficiency.

【0002】[0002]

【従来の技術】従来、図3の冷凍サイクルの系統図に示
すように、圧縮機1の吐出口から吐出される冷媒を、四
方弁2、室外熱交換器3、減圧器4、室内熱交換器5、
四方弁2を経て圧縮機1の吸込口に循環するヒートポン
プ式冷凍サイクルを備える空気調和機は、室内熱交換器
5と室外熱交換器3の冷媒流路を例えば2流路設け、冷
房時、暖房時共に同じ、直列流路または並列流路として
動作させていた。即ち、平成7年度日本冷凍協会講演論
文集(7−10−31,11−1,2,東京)に掲載の
「HFC混合冷媒を用いたルームエアコンの性能評価」
に示されるように、熱交換器のパス数(流路数)を減少
すると、伝熱性能の向上により凝縮器としての性能は上
昇するが、圧力損失が増大するため、蒸発器として使用
した場合はサイクル効率の低下を招くため、通常、上述
のように、凝縮器としての伝熱性能と、蒸発器としての
圧力損失をバランスさせて熱交換器のパス数(流路数)
を決定していた。しかし、この方法では、凝縮器または
蒸発器として最も効率の良い状態で使用しておらず、よ
り高い効率の向上が求められていた。
2. Description of the Related Art Conventionally, as shown in a system diagram of a refrigeration cycle in FIG. 3, a refrigerant discharged from a discharge port of a compressor 1 is supplied to a four-way valve 2, an outdoor heat exchanger 3, a pressure reducer 4, and an indoor heat exchanger. Vessel 5,
An air conditioner including a heat pump refrigeration cycle that circulates through the four-way valve 2 to the suction port of the compressor 1 is provided with, for example, two refrigerant flow paths for the indoor heat exchanger 5 and the outdoor heat exchanger 3, and for cooling. At the time of heating, they were operated as the same serial flow path or parallel flow path. That is, "Performance evaluation of room air conditioner using HFC mixed refrigerant" published in the 1995 Refrigeration Society of Japan Lecture Papers (7-10-31, 11-1, 2, Tokyo).
As shown in the figure, when the number of passes (number of channels) of the heat exchanger is reduced, the performance as a condenser increases due to the improvement of the heat transfer performance, but the pressure loss increases. As described above, the heat transfer performance of the condenser and the pressure loss of the evaporator are usually balanced to reduce the number of passes (the number of passages) of the heat exchanger.
Was decided. However, in this method, the condenser or the evaporator is not used in the most efficient state, and a higher efficiency is required.

【0003】[0003]

【発明が解決しようとする課題】本発明は以上述べた問
題点を解決し、凝縮器としても、蒸発器としても最も効
率の良い状態で使用可能なヒートポンプ式の空気調和機
を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a heat pump type air conditioner which can be used in the most efficient state as a condenser or an evaporator. The purpose is.

【0004】[0004]

【課題を解決するための手段】本発明は上述の課題を解
決するため、圧縮機の吐出口から吐出される冷媒を、四
方弁、2つの冷媒流路を有する室外熱交換器、減圧器、
2つの冷媒流路を有する室内熱交換器、四方弁を経て圧
縮機の吸込口に循環するヒートポンプ式冷凍サイクルを
備える空気調和機において、前記四方弁と、前記各熱交
換器の一方の冷媒流路との間に、第1の電磁弁を各々介
装し、各熱交換器の他側の冷媒流路の合流点から前記減
圧器との間に第2の電磁弁を各々介装し、前記各第1の
電磁弁と各一側一方の冷媒流路との間から前記減圧器と
各第2の電磁弁との間に、第3の電磁弁を各々連結し、
冷房および、暖房時に、凝縮器側となる熱交換器の冷媒
流路を直列接続、蒸発器側の熱交換器の冷媒流路を並列
接続となるように、各電磁弁を制御するようにした空気
調和機とした。
According to the present invention, there is provided an outdoor heat exchanger having a four-way valve, two refrigerant passages, a pressure reducer, and a refrigerant discharged from a discharge port of a compressor.
In an air conditioner having an indoor heat exchanger having two refrigerant flow paths and a heat pump refrigeration cycle circulating to a suction port of a compressor via a four-way valve, the four-way valve and one refrigerant flow of each of the heat exchangers are provided. The first electromagnetic valves are interposed between the first and second passages, respectively, and the second electromagnetic valves are respectively interposed between the heat exchangers and the pressure reducing device from the junction of the refrigerant flow paths on the other side of each heat exchanger. Third solenoid valves are respectively connected between the decompressor and each second solenoid valve from between each of the first solenoid valves and one of the refrigerant passages on one side,
During cooling and heating, each solenoid valve is controlled such that the refrigerant flow paths of the heat exchanger on the condenser side are connected in series and the refrigerant flow paths of the heat exchanger on the evaporator side are connected in parallel. An air conditioner.

【0005】また、冷房時には、室内熱交換器側の第1
の電磁弁と第2の電磁弁を開放し、第3の電磁弁を閉塞
する一方、室外熱交換器側の第1の電磁弁と第2の電磁
弁を閉塞し、第3の電磁弁を開放するようにし、また、
暖房時には、室内熱交換器側の第1の電磁弁と第2の電
磁弁を閉塞し、第3の電磁弁を開放する一方、室外熱交
換器側の第1の電磁弁と第2の電磁弁を開放し、第3の
電磁弁を閉塞するようにした。
During cooling, the first heat exchanger on the indoor heat exchanger side
The second electromagnetic valve and the second electromagnetic valve are opened and the third electromagnetic valve is closed, while the first electromagnetic valve and the second electromagnetic valve on the outdoor heat exchanger side are closed, and the third electromagnetic valve is closed. To be open, and
During heating, the first electromagnetic valve and the second electromagnetic valve on the indoor heat exchanger side are closed and the third electromagnetic valve is opened, while the first electromagnetic valve and the second electromagnetic valve on the outdoor heat exchanger side are opened. The valve was opened and the third solenoid valve was closed.

【0006】[0006]

【発明の実施の形態】以上のように、本発明の空気調和
機においては、四方弁と、前記各熱交換器の一方の冷媒
流路との間に、第1の電磁弁を各々介装し、各熱交換器
の他側の冷媒流路の合流点から前記減圧器との間に第2
の電磁弁を各々介装し、前記各第1の電磁弁と各一側一
方の冷媒流路との間から前記減圧器と各第2の電磁弁と
の間に、第3の電磁弁を各々連結し、冷房時には、室内
熱交換器側の第1の電磁弁と第2の電磁弁を開放し、第
3の電磁弁を閉塞する一方、室外熱交換器側の第1の電
磁弁と第2の電磁弁を閉塞し、第3の電磁弁を開放する
ようにし、また、暖房時には、室内熱交換器側の第1の
電磁弁と第2の電磁弁を閉塞し、第3の電磁弁を開放す
る一方、室外熱交換器側の第1の電磁弁と第2の電磁弁
を開放し、第3の電磁弁を閉塞するようにしたので、冷
房および、暖房時に、凝縮器側となる熱交換器の冷媒流
路を直列接続、蒸発器側の熱交換器の冷媒流路を並列接
続となるように、各電磁弁を制御することができ、冷
房、暖房に係わらず、効率の良い空気調和器を提供する
ことができる。
As described above, in the air conditioner of the present invention, the first solenoid valves are interposed between the four-way valve and one of the refrigerant passages of each of the heat exchangers. And a second space between the condensing point of the refrigerant flow paths on the other side of each heat exchanger and the decompressor.
And a third solenoid valve is provided between the pressure reducer and each second solenoid valve from between each of the first solenoid valves and one of the refrigerant passages on one side. The first electromagnetic valve and the second electromagnetic valve on the indoor heat exchanger side are opened and the third electromagnetic valve is closed during cooling, while the first electromagnetic valve on the outdoor heat exchanger side is closed. The second solenoid valve is closed and the third solenoid valve is opened. During heating, the first solenoid valve and the second solenoid valve on the indoor heat exchanger side are closed, and the third solenoid valve is closed. While opening the valve, the first solenoid valve and the second solenoid valve on the side of the outdoor heat exchanger were opened and the third solenoid valve was closed, so that during cooling and heating, the first solenoid valve and the second solenoid valve were closed. Each solenoid valve can be controlled so that the refrigerant flow paths of the heat exchanger are connected in series, and the refrigerant flow paths of the heat exchanger on the evaporator side are connected in parallel, regardless of cooling or heating. It is possible to provide an efficient air conditioner.

【0007】[0007]

【実施例】以下、図面に基づいて本発明による空気調和
機を詳細に説明する。図1は本発明による空気調和機の
一実施例を示す冷凍サイクルの系統図、図2は同電磁弁
の動作を示す動作表である。図において、図3と同一機
能は同一記号を使用しており、従来の技術の項で説明し
たので、説明を省略する。図において、3a、3bは室
外熱交換器3の冷媒管の挿通される冷媒流路、5a、5
bは室内熱交換器5の冷媒管の挿通される冷媒流路であ
る。6は二方弁で、室外機と室内機との冷媒管の接続に
使用される。7は三方弁で、二方弁6と同様に室外機と
室内機との冷媒管の接続に使用される他、冷媒の追加等
に使用される。11、21は第1の電磁弁で、冷媒流路
3bと四方弁2の間、または、冷媒流路5bと四方弁2
(三方弁7)の間に各々介装され、各々の冷媒流を開閉
するように制御される。12、22は第2の電磁弁で、
減圧器4と室外熱交換器3の冷媒流路3a、3bの合流
点Aとの間、減圧器4(二方弁6)と室内熱交換器5の
冷媒流路5a、5bの合流点Bとの間に各々介装され、
各々の冷媒流を開閉するよう制御される。13、23は
第3の電磁弁で、前記冷媒流路3bと第1の電磁弁11
との間の点Cと減圧器4と第2の電磁弁12との間の点
E間、冷媒流路5bと第1の電磁弁21との間の点Dと
減圧器4と第2の電磁弁22との間の点F間に各々連結
され、各々の冷媒流を開閉するよう制御される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an air conditioner according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram of a refrigeration cycle showing an embodiment of an air conditioner according to the present invention, and FIG. 2 is an operation table showing the operation of the solenoid valve. In the figure, the same functions as those in FIG. 3 use the same symbols and have been described in the section of the related art, so that the description will be omitted. In the figure, reference numerals 3a and 3b denote refrigerant passages through which the refrigerant tubes of the outdoor heat exchanger 3 are inserted.
“b” is a refrigerant passage through which the refrigerant tube of the indoor heat exchanger 5 is inserted. Reference numeral 6 denotes a two-way valve which is used to connect refrigerant pipes between the outdoor unit and the indoor unit. Reference numeral 7 denotes a three-way valve, which is used for connecting refrigerant pipes between the outdoor unit and the indoor unit similarly to the two-way valve 6, and is used for adding refrigerant. Reference numerals 11 and 21 denote first solenoid valves which are provided between the refrigerant flow path 3b and the four-way valve 2 or between the refrigerant flow path 5b and the four-way valve 2
(Three-way valves 7) are interposed between each other, and are controlled so as to open and close each refrigerant flow. 12 and 22 are second solenoid valves,
Between the decompressor 4 and the junction A of the refrigerant flow paths 3a and 3b of the outdoor heat exchanger 3, the junction B of the decompressor 4 (two-way valve 6) and the refrigerant flow paths 5a and 5b of the indoor heat exchanger 5 Between each other,
Each refrigerant flow is controlled to open and close. Reference numerals 13 and 23 denote third solenoid valves, which are the refrigerant passage 3b and the first solenoid valve 11 respectively.
C, a point E between the pressure reducer 4 and the second solenoid valve 12, a point D between the refrigerant flow path 5b and the first solenoid valve 21, the pressure reducer 4 and the second Each is connected between the points F between the solenoid valve 22 and is controlled to open and close each refrigerant flow.

【0008】以上の構成において、つぎにその動作を説
明する。図2は前記各電磁弁の動作を示す動作表であ
る。図に示すように、冷房時は、室外側の第1の電磁弁
11、第2の電磁弁12は閉塞され、第3の電磁弁13
が開放されるので、冷媒流路3aと冷媒流路3bが直列
に接続され、冷媒は図の実線で示す矢印の方向に流れ
る。また、室内側の第1の電磁弁21、第2の電磁弁2
2は開放され、第3の電磁弁23が閉塞されるので、冷
媒流路5aと冷媒流路5bが並列に接続され、冷媒は図
の実線で示す矢印の方向に流れる。
Next, the operation of the above configuration will be described. FIG. 2 is an operation table showing the operation of each solenoid valve. As shown in the figure, at the time of cooling, the first electromagnetic valve 11 and the second electromagnetic valve 12 on the outdoor side are closed, and the third electromagnetic valve 13 is closed.
Is opened, the refrigerant flow path 3a and the refrigerant flow path 3b are connected in series, and the refrigerant flows in the direction of the arrow shown by the solid line in the figure. Also, the first electromagnetic valve 21 and the second electromagnetic valve 2 on the indoor side
2 is opened and the third solenoid valve 23 is closed, so that the refrigerant flow path 5a and the refrigerant flow path 5b are connected in parallel, and the refrigerant flows in the direction of the arrow indicated by the solid line in the figure.

【0009】暖房時は、室外側の第1の電磁弁11、第
2の電磁弁12は開放され、第3の電磁弁13が閉塞さ
れるので、冷媒流路3aと冷媒流路3bが並列に接続さ
れ、冷媒は図の点線で示す矢印の方向に流れる。また、
室内側の第1の電磁弁21、第2の電磁弁22は閉塞さ
れ、第3の電磁弁23が開放されるので、冷媒流路5a
と冷媒流路5bが直列に接続され、冷媒は図の実線で示
す矢印の方向に流れる。
During heating, the first electromagnetic valve 11 and the second electromagnetic valve 12 on the outdoor side are opened and the third electromagnetic valve 13 is closed, so that the refrigerant flow path 3a and the refrigerant flow path 3b are arranged in parallel. And the refrigerant flows in the direction of the arrow indicated by the dotted line in the figure. Also,
Since the first electromagnetic valve 21 and the second electromagnetic valve 22 on the indoor side are closed and the third electromagnetic valve 23 is opened, the refrigerant flow path 5a
And the refrigerant flow path 5b are connected in series, and the refrigerant flows in the direction of the arrow shown by the solid line in the figure.

【0010】従って、室外熱交換器3および室内熱交換
器5は、凝縮器として働く時は、その冷媒流路を直列に
接続することにより、熱交換器のパス数(流路数)を減
少して、伝熱性能の向上させ、蒸発器として働くとき
は、その冷媒流路を並列に接続することにより、熱交換
器のパス数(流路数)を増加して、圧力損失を減少させ
るので、冷房時、暖房時共、最も効率のよい空気調和器
の冷凍サイクルを構成することができる。
Therefore, when the outdoor heat exchanger 3 and the indoor heat exchanger 5 function as a condenser, their refrigerant flow paths are connected in series to reduce the number of heat exchanger paths (the number of flow paths). In order to improve the heat transfer performance and to work as an evaporator, the number of passes (the number of passes) of the heat exchanger is increased and the pressure loss is reduced by connecting the refrigerant passages in parallel. Therefore, the most efficient refrigeration cycle of the air conditioner can be configured for both cooling and heating.

【0011】[0011]

【発明の効果】以上説明したように、本発明による空気
調和機によれば、四方弁と、前記各熱交換器の一方の冷
媒流路との間に、第1の電磁弁を各々介装し、各熱交換
器の他側の冷媒流路の合流点から前記減圧器との間に第
2の電磁弁を各々介装し、前記各第1の電磁弁と各一側
一方の冷媒流路との間から前記減圧器と各第2の電磁弁
との間に、第3の電磁弁を各々連結し、冷房時には、室
内熱交換器側の第1の電磁弁と第2の電磁弁を開放し、
第3の電磁弁を閉塞する一方、室外熱交換器側の第1の
電磁弁と第2の電磁弁を閉塞し、第3の電磁弁を開放す
るようにし、また、暖房時には、室内熱交換器側の第1
の電磁弁と第2の電磁弁を閉塞し、第3の電磁弁を開放
する一方、室外熱交換器側の第1の電磁弁と第2の電磁
弁を開放し、第3の電磁弁を閉塞するようにしたので、
冷房および、暖房時に、凝縮器側となる熱交換器の冷媒
流路を直列接続、蒸発器側の熱交換器の冷媒流路を並列
接続となるように、各電磁弁を制御することができ、冷
房、暖房に係わらず、効率の良い空気調和器を提供する
ことができる。
As described above, according to the air conditioner of the present invention, the first solenoid valves are interposed between the four-way valve and one of the refrigerant passages of each of the heat exchangers. Then, a second solenoid valve is interposed between the condensing point of the refrigerant flow path on the other side of each heat exchanger and the decompressor, and the first solenoid valve and the refrigerant flow on one side of each one are provided. A third solenoid valve is connected between the pressure reducer and each of the second solenoid valves from between the first solenoid valve and the first solenoid valve on the indoor heat exchanger side during cooling. Release
While closing the third electromagnetic valve, the first electromagnetic valve and the second electromagnetic valve on the outdoor heat exchanger side are closed, and the third electromagnetic valve is opened. Container side first
And the third electromagnetic valve is closed and the third electromagnetic valve is opened, while the first electromagnetic valve and the second electromagnetic valve on the outdoor heat exchanger side are opened, and the third electromagnetic valve is opened. Because I chose to block,
During cooling and heating, each solenoid valve can be controlled such that the refrigerant flow paths of the heat exchanger on the condenser side are connected in series and the refrigerant flow paths of the heat exchanger on the evaporator side are connected in parallel. An efficient air conditioner can be provided irrespective of cooling and heating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和機の一実施例を示す冷媒
流路図である。
FIG. 1 is a refrigerant flow diagram showing one embodiment of an air conditioner according to the present invention.

【図2】本発明による空気調和機の各電磁弁の動作を示
す動作図である。
FIG. 2 is an operation diagram showing the operation of each solenoid valve of the air conditioner according to the present invention.

【図3】従来の空気調和機を示す冷媒流路図である。FIG. 3 is a refrigerant flow diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 3a、3b 冷媒流路 4 減圧器 5 室内熱交換器 5a、5b 冷媒流路 6 二方弁 7 三方弁 11、21 第1の電磁弁 12、22 第2の電磁弁 13、23 第3の電磁弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 3a, 3b Refrigerant flow path 4 Decompressor 5 Indoor heat exchanger 5a, 5b Refrigerant flow path 6 Two-way valve 7 Three-way valve 11, 21 First electromagnetic valve 12, 22 First Second solenoid valve 13, 23 Third solenoid valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出口から吐出される冷媒を、
四方弁、2つの冷媒流路を有する室外熱交換器、減圧
器、2つの冷媒流路を有する室内熱交換器、四方弁を経
て圧縮機の吸込口に循環するヒートポンプ式冷凍サイク
ルを備える空気調和機において、 前記四方弁と、前記各熱交換器の一方の冷媒流路との間
に、第1の電磁弁を各々介装し、各熱交換器の他側の冷
媒流路の合流点から前記減圧器との間に第2の電磁弁を
各々介装し、前記各第1の電磁弁と各一側一方の冷媒流
路との間から前記減圧器と各第2の電磁弁との間に、第
3の電磁弁を各々連結し、冷房および、暖房時に、凝縮
器側となる熱交換器の冷媒流路を直列接続、蒸発器側の
熱交換器の冷媒流路を並列接続となるように、各電磁弁
を制御するようにしたことを特徴とする空気調和機。
1. A refrigerant discharged from a discharge port of a compressor,
Air conditioning including a four-way valve, an outdoor heat exchanger having two refrigerant flow paths, a decompressor, an indoor heat exchanger having two refrigerant flow paths, and a heat pump refrigeration cycle circulating through a four-way valve to a suction port of a compressor. In the machine, a first solenoid valve is interposed between the four-way valve and one of the refrigerant flow paths of each of the heat exchangers, from a junction of the refrigerant flow paths on the other side of each of the heat exchangers. A second solenoid valve is interposed between the pressure reducer and each of the first solenoid valves and one of the refrigerant passages on one side. In the meantime, the third solenoid valves are connected to each other, and during cooling and heating, the refrigerant flow paths of the heat exchanger on the condenser side are connected in series, and the refrigerant flow paths of the heat exchanger on the evaporator side are connected in parallel. An air conditioner characterized by controlling each solenoid valve.
【請求項2】 冷房時には、室内熱交換器側の第1の電
磁弁と第2の電磁弁を開放し、第3の電磁弁を閉塞する
一方、室外熱交換器側の第1の電磁弁と第2の電磁弁を
閉塞し、第3の電磁弁を開放するようにし、また、暖房
時には、室内熱交換器側の第1の電磁弁と第2の電磁弁
を閉塞し、第3の電磁弁を開放する一方、室外熱交換器
側の第1の電磁弁と第2の電磁弁を開放し、第3の電磁
弁を閉塞するようにしたことを特徴とする請求項1記載
の空気調和機。
2. During cooling, the first solenoid valve and the second solenoid valve on the indoor heat exchanger side are opened and the third solenoid valve is closed, while the first solenoid valve on the outdoor heat exchanger side is closed. And the second solenoid valve are closed, and the third solenoid valve is opened. During heating, the first and second solenoid valves on the indoor heat exchanger side are closed, and the third solenoid valve is closed. 2. The air according to claim 1, wherein the electromagnetic valve is opened, the first electromagnetic valve and the second electromagnetic valve on the outdoor heat exchanger side are opened, and the third electromagnetic valve is closed. Harmony machine.
JP9194558A 1997-07-18 1997-07-18 Air conditioner Pending JPH1137587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9194558A JPH1137587A (en) 1997-07-18 1997-07-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9194558A JPH1137587A (en) 1997-07-18 1997-07-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPH1137587A true JPH1137587A (en) 1999-02-12

Family

ID=16326537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9194558A Pending JPH1137587A (en) 1997-07-18 1997-07-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH1137587A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
KR101233209B1 (en) 2010-11-18 2013-02-15 엘지전자 주식회사 Heat pump
WO2013038615A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Refrigeration device
JP5752135B2 (en) * 2010-09-14 2015-07-22 三菱電機株式会社 Air conditioner
JPWO2018025305A1 (en) * 2016-08-01 2019-03-22 三菱電機株式会社 Air conditioner
JPWO2018055741A1 (en) * 2016-09-23 2019-07-04 三菱電機株式会社 Refrigeration cycle device
WO2020143540A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
US20210048233A1 (en) * 2018-02-23 2021-02-18 Mitsubishi Electric Corporation Flow path switching valve and air conditioner
US11262106B2 (en) 2016-09-13 2022-03-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN114383217A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383218A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752135B2 (en) * 2010-09-14 2015-07-22 三菱電機株式会社 Air conditioner
US9587861B2 (en) 2010-09-14 2017-03-07 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101233209B1 (en) 2010-11-18 2013-02-15 엘지전자 주식회사 Heat pump
US9140474B2 (en) 2010-11-18 2015-09-22 Lg Electronics Inc. Air conditioner
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
CN103518107A (en) * 2011-04-25 2014-01-15 松下电器产业株式会社 Refrigeration cycle device
CN103518107B (en) * 2011-04-25 2015-08-26 松下电器产业株式会社 Refrigerating circulatory device
WO2013038615A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Refrigeration device
JP2013061091A (en) * 2011-09-12 2013-04-04 Daikin Industries Ltd Refrigeration device
EP2759785B1 (en) * 2011-09-12 2020-03-18 Daikin Industries, Ltd. Refrigeration device
EP3492844A4 (en) * 2016-08-01 2019-06-05 Mitsubishi Electric Corporation Air conditioner
JPWO2018025305A1 (en) * 2016-08-01 2019-03-22 三菱電機株式会社 Air conditioner
US11262106B2 (en) 2016-09-13 2022-03-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2018055741A1 (en) * 2016-09-23 2019-07-04 三菱電機株式会社 Refrigeration cycle device
EP3517853A4 (en) * 2016-09-23 2019-10-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US20210048233A1 (en) * 2018-02-23 2021-02-18 Mitsubishi Electric Corporation Flow path switching valve and air conditioner
WO2020143540A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
CN114383217A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383218A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383218B (en) * 2021-12-14 2024-03-19 郑州海尔空调器有限公司 Method and device for controlling air conditioner, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JPH1137587A (en) Air conditioner
EP1978315A2 (en) Outdoor Unit for Multi-Air Conditioner
JP2001099510A (en) Air conditioner
JP2911434B2 (en) Multi air conditioner
CN210951943U (en) Air conditioning system
JP2005147409A (en) Heat pump type cooler/heater
JP2000146360A (en) Air conditioner
JP2001227799A (en) Multi-chamber type air conditioner
JPH09152216A (en) Air-conditioner
KR20200114123A (en) An air conditioning apparatus
JP2000154941A (en) Refrigerator
CN110748962A (en) Air conditioning system and control method thereof
JPH06257874A (en) Heat pump type air-conditioning machine
JP2529352B2 (en) Multi-room air conditioner
JPH10281585A (en) Multi-room type air conditioner
JP2001147057A (en) Air conditioner
JPH1137588A (en) Air-conditioner
EP3726162A1 (en) Air conditioning apparatus
JPH11148737A (en) Air conditioner
JPH10238894A (en) Heat exchanger
JPH07293975A (en) Air conditioner
JP2001116381A (en) Air conditioner
JPH1082565A (en) Multi-chamber type air conditioner
JP2002089996A (en) Multi-chamber type air conditioner
JPH10232042A (en) Multiroom-type air-conditioner