JPH1137588A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH1137588A
JPH1137588A JP19458297A JP19458297A JPH1137588A JP H1137588 A JPH1137588 A JP H1137588A JP 19458297 A JP19458297 A JP 19458297A JP 19458297 A JP19458297 A JP 19458297A JP H1137588 A JPH1137588 A JP H1137588A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
refrigerant flow
valve
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19458297A
Other languages
Japanese (ja)
Inventor
Hiroki Igarashi
浩樹 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP19458297A priority Critical patent/JPH1137588A/en
Publication of JPH1137588A publication Critical patent/JPH1137588A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an effective air conditioner that can maintain path balance even on capacity control operation. SOLUTION: In an air-conditioner, first solenoid switching valve 7 is provided at an intermediate position of one refrigerant channel 5b of a two-channel indoor heat exchanger 5 so as to divide the refrigerant channel 5b into a first refrigerant channel 5b1 and a second refrigerant channel 5b2, a first bypass channel 8 consisting of a refrigerant tube that is narrower than the refrigerant channel 5b is connected between the first solenoid switching valve and a second refrigerant channel 5b2 from the inlet of the first refrigerant channel 5b1, and a second bypass channel 9 consisting of the refrigerant tube that is narrower than the refrigerant channel 5b is connected to the outlet of the second refrigerant channel 5b2 from the area between the first refrigerant channel 5b1 and the first solenoid switching valve. On capacity control operation, the first solenoid switching valve is closed and one refrigerant channel is set to a two-path operation. On normal operation, the first solenoid switching valve is opened, the other refrigerant channel is set to a one-path operation and is added to one refrigerant 5b for forming a two-path operation, thus maintaining path balance and achieving effective operation on both of normal and capacity control operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房、暖房兼用の
ヒートポンプ式冷凍サイクルを備え、容量制御運転可能
な空気調和機に係わり、とくに、容量制御運転時にパス
バランスを維持して効率の低下を防止するようにしたも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a heat pump type refrigeration cycle for both cooling and heating and capable of capacity control operation, and in particular, maintains a path balance during capacity control operation to reduce the efficiency. Regarding what was to be prevented.

【0002】[0002]

【従来の技術】従来、図1に示すように、圧縮機1の吐
出口から吐出される冷媒を、四方弁2、室外熱交換器
3、減圧器4、2つの冷媒流路5a、5bを有し、一方
の冷媒流路5aに容量制御用の電磁開閉弁6を設けた室
内熱交換器5、四方弁2を経て圧縮機1の吸込口に循環
するヒートポンプ式冷凍サイクルを備え、前記電磁開閉
弁6を開閉制御することにより容量制御運転可能として
いた。また、前記室内熱交換器5のパス数(流路数)は
凝縮器としての伝熱性能と、蒸発器としての圧力損失を
バランスさせて決定していた。しかし、この構成では、
前記電磁開閉弁6を閉じ、圧縮機1の回転数を上げて運
転する容量制御運転時は、室内熱交換器5の冷媒の通過
するパス数が1となり、パスバランスが崩れ、伝熱性能
の向上により凝縮器としての性能は上昇するが、圧力損
失の増大により蒸発器としてのサイクル効率の低下を招
くという問題があった。
2. Description of the Related Art Conventionally, as shown in FIG. 1, a refrigerant discharged from a discharge port of a compressor 1 is supplied to a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and two refrigerant passages 5a and 5b. An indoor heat exchanger 5 provided with an electromagnetic on-off valve 6 for capacity control in one refrigerant flow path 5a, and a heat pump refrigeration cycle circulating to a suction port of the compressor 1 via a four-way valve 2. The capacity control operation can be performed by controlling the opening and closing of the on-off valve 6. The number of passes (the number of channels) of the indoor heat exchanger 5 is determined by balancing the heat transfer performance as a condenser and the pressure loss as an evaporator. However, in this configuration,
During the capacity control operation in which the electromagnetic on-off valve 6 is closed and the compressor 1 is operated at a higher rotation speed, the number of passes of the refrigerant in the indoor heat exchanger 5 becomes 1, the path balance is lost, and the heat transfer performance is reduced. The performance as a condenser increases with the improvement, but there is a problem that the cycle efficiency as an evaporator decreases due to an increase in pressure loss.

【0003】[0003]

【発明が解決しようとする課題】本発明は以上述べた問
題点を解決し、容量制御運転時においてもパスバランス
を維持し、効率のよい空気調和機を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an efficient air conditioner which maintains a path balance even during a capacity control operation.

【0004】[0004]

【課題を解決するための手段】本発明は上述の課題を解
決するため、圧縮機の吐出口から吐出される冷媒を、四
方弁、室外熱交換器、減圧器、2つの冷媒流路を有し、
一方の冷媒流路に容量制御用の電磁開閉弁を設けた室内
熱交換器、四方弁を経て圧縮機の吸込口に循環するヒー
トポンプ式冷凍サイクルを備え、前記電磁開閉弁を開閉
制御することにより容量制御運転可能とした空気調和機
において、前記室内熱交換器の他方の冷媒流路の中間
に、第1の電磁開閉弁を介装して第1の冷媒流路と第2
の冷媒流路とに直列に分割し、同第1の冷媒流路の流入
口から、第1の電磁開閉弁と第2の冷媒流路との間に第
1の冷媒流路より細い径の冷媒管でなる第1のバイパス
流路を接続し、第1の冷媒流路と第1の電磁開閉弁との
間から第2の冷媒流路の流出口に第2の冷媒流路より細
い径の冷媒管でなる第2のバイパス流路を接続し、前記
容量制御用の電磁開閉弁を閉じ、圧縮機の回転を上げて
運転される容量制御運転時に、前記第1の電磁開閉弁を
閉じて、他方の冷媒流路を2パスとする一方、前記容量
制御用電磁開閉弁を開き、圧縮機の回転を下げて運転さ
れる通常運転時に、前記第1の電磁開閉弁を開いて、他
方の冷媒流路を1パスとし、一方の冷媒流路と合わせて
2パスとなるよう制御してなる空気調和機とした。
According to the present invention, a refrigerant discharged from a discharge port of a compressor is provided with a four-way valve, an outdoor heat exchanger, a pressure reducer, and two refrigerant passages. And
An indoor heat exchanger provided with an electromagnetic on-off valve for capacity control in one of the refrigerant passages, a heat pump refrigeration cycle circulating to the suction port of the compressor via a four-way valve, and by opening and closing the electromagnetic on-off valve In the air conditioner capable of capacity control operation, a first solenoid on-off valve is interposed between the other refrigerant flow path of the indoor heat exchanger and the first refrigerant flow path and the second refrigerant flow path.
The first refrigerant flow path is divided in series with the first refrigerant flow path, and has a smaller diameter than the first refrigerant flow path between the first solenoid on-off valve and the second refrigerant flow path from the inlet of the first refrigerant flow path. A first bypass flow path composed of a refrigerant pipe is connected, and a diameter smaller than the second refrigerant flow path from between the first refrigerant flow path and the first solenoid on-off valve to an outlet of the second refrigerant flow path. A second bypass flow path composed of a refrigerant pipe is connected, the electromagnetic on / off valve for controlling the capacity is closed, and the first electromagnetic on / off valve is closed during the capacity control operation in which the compressor is operated by increasing the rotation. In the meantime, while the other refrigerant flow path has two paths, the capacity control electromagnetic on-off valve is opened, and during normal operation in which the rotation of the compressor is reduced, the first electromagnetic on-off valve is opened. The air conditioner was controlled so that the refrigerant flow path of 1 was one path, and was controlled to be two paths together with one of the refrigerant flow paths.

【0005】また、前記第1のバイパス流路または第2
のバイパス流路の冷媒管の径を、第1の冷媒流路または
第2の冷媒流路の各冷媒管の径の半分以下とし、第1の
冷媒流路または第2の冷媒流路と第1のバイパス流路ま
たは第2のバイパス流路とを並列に接続した場合、冷媒
が第1の冷媒流路または第2の冷媒流路に殆ど流れ、第
1のバイパス流路または第2のバイパス流路に流れない
ようにした。
In addition, the first bypass passage or the second bypass passage
The diameter of the refrigerant pipe of the bypass flow path is less than half the diameter of each refrigerant pipe of the first refrigerant flow path or the second refrigerant flow path, and the first refrigerant flow path or the second refrigerant flow path is When the first bypass flow path or the second bypass flow path is connected in parallel, the refrigerant almost flows through the first refrigerant flow path or the second refrigerant flow path, and the first bypass flow path or the second bypass flow path It did not flow into the flow path.

【0006】[0006]

【発明の実施の形態】以上のように、本発明の空気調和
機においては、室内熱交換器の他方の冷媒流路の中間
に、第1の電磁開閉弁を介装して第1の冷媒流路と第2
の冷媒流路とに直列に分割し、同第1の冷媒流路の流入
口から、第1の電磁開閉弁と第2の冷媒流路との間に第
1の冷媒流路より細い径の冷媒管でなる第1のバイパス
流路を接続し、第1の冷媒流路と第1の電磁開閉弁との
間から第2の冷媒流路の流出口に第2の冷媒流路より細
い径の冷媒管でなる第2のバイパス流路を接続し、前記
容量制御用の電磁開閉弁を閉じ、圧縮機の回転を上げて
運転される容量制御運転時に、前記第1の電磁開閉弁を
閉じて、他方の冷媒流路を2パスとする一方、前記容量
制御用電磁開閉弁を開き、圧縮機の回転を下げて運転さ
れる通常運転時に、前記第1の電磁開閉弁を開いて、他
方の冷媒流路を1パスとし、一方の冷媒流路と合わせて
2パスとなるよう制御できるので、通常運転時と容量制
御運転時のパス数を同じとすることができ、容量制御運
転時においてもパスバランスが崩れず、効率のよい運転
を可能としている。
As described above, in the air conditioner of the present invention, the first refrigerant on-off valve is interposed in the middle of the other refrigerant flow path of the indoor heat exchanger. Channel and second
The first refrigerant flow path is divided in series with the first refrigerant flow path, and has a smaller diameter than the first refrigerant flow path between the first solenoid on-off valve and the second refrigerant flow path from the inlet of the first refrigerant flow path. A first bypass flow path composed of a refrigerant pipe is connected, and a diameter smaller than the second refrigerant flow path from between the first refrigerant flow path and the first solenoid on-off valve to an outlet of the second refrigerant flow path. A second bypass flow path composed of a refrigerant pipe is connected, the electromagnetic on / off valve for controlling the capacity is closed, and the first electromagnetic on / off valve is closed during the capacity control operation in which the compressor is operated by increasing the rotation. In the meantime, while the other refrigerant flow path has two paths, the capacity control electromagnetic on-off valve is opened, and during normal operation in which the rotation of the compressor is reduced, the first electromagnetic on-off valve is opened. The number of passes during normal operation and during the capacity control operation can be controlled so that the refrigerant flow path is one path and two paths are combined with one of the refrigerant flow paths. It can be the same, neither collapse path balance during capacity control operation, thereby enabling efficient operation.

【0007】[0007]

【実施例】以下、図面に基づいて本発明による空気調和
機を詳細に説明する。図1は従来および本発明による空
気調和機の冷凍サイクルを示す系統図、図2は本発明に
よる空気調和機の熱交換器の詳細を示す要部冷媒流路図
である。図1については、従来の技術の項で説明したの
で、説明を省略する。図2において、7は第1の電磁開
閉弁で、熱交換器5の容量制御用の電磁開閉弁6の接続
されていない側の、冷媒流路5bの中間に介装され、同
第1の電磁開閉弁7により冷媒流路5bを第1の冷媒流
路5b1と、第2の冷媒流路5b2とを直列に分割して
いる。8は第1のバイパス流路で、前記第1の冷媒流路
5b1の流入口から前記第1の電磁開閉弁7と第2の冷
媒流路5b2との間に接続されている。9は第2のバイ
パス流路で、前記第1の冷媒流路5b1と第1の電磁開
閉弁7との間から第2の冷媒流路5b2の流出口に接続
されている。この各バイパス流路8、9は各々第1の冷
媒流路5b1、第2の冷媒流路5b2の径より細い(例
えば半分の)冷媒管で形成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an air conditioner according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing a refrigeration cycle of an air conditioner according to the related art and the present invention, and FIG. 2 is a main part refrigerant flow diagram showing details of a heat exchanger of the air conditioner according to the present invention. FIG. 1 has been described in the section of the related art, and a description thereof will be omitted. In FIG. 2, reference numeral 7 denotes a first electromagnetic on-off valve, which is interposed in the middle of the refrigerant flow path 5b on the side where the electromagnetic on-off valve 6 for controlling the capacity of the heat exchanger 5 is not connected. The electromagnetic on-off valve 7 divides the refrigerant flow path 5b into a first refrigerant flow path 5b1 and a second refrigerant flow path 5b2 in series. Reference numeral 8 denotes a first bypass passage, which is connected between the first electromagnetic on-off valve 7 and the second coolant passage 5b2 from the inlet of the first coolant passage 5b1. Reference numeral 9 denotes a second bypass flow passage which is connected between the first refrigerant flow passage 5b1 and the first solenoid on-off valve 7 to an outlet of the second refrigerant flow passage 5b2. Each of the bypass passages 8 and 9 is formed of a refrigerant pipe smaller (for example, half) in diameter than the first refrigerant passage 5b1 and the second refrigerant passage 5b2.

【0008】以上の構成において、つぎにその動作を説
明する。圧縮機1の回転数を下げて運転される通常運転
時には、容量制御用の電磁開閉弁6が開かれて一方の冷
媒流路5aにも冷媒が流され、他方の冷媒流路5bは、
同冷媒流路5bの第1の電磁開閉弁7が開かれるので、
冷媒が第一の冷媒流路5b1、第1の電磁開放弁7、お
よび、第2の冷媒流路5b2を流通する1パスとなり、
前記一方の冷媒流路5aと他方の冷媒流路5bを合わせ
て2パスとなる。いま、圧縮機1の回転数を上げ、容量
制御用の電磁開閉弁6を閉じて運転される容量制御運転
時には、一方の冷媒流路5aには冷媒が流されず、他方
の冷媒流路5bは、同冷媒流路5bの第1の電磁開閉弁
7が閉ざされるので、冷媒が第一の冷媒流路5b1から
第2のバイパス流路9に流れるパスと、第1のバイパス
流路8から第2の冷媒流路5b2に流れるパスとの2パ
スとなり通常運転時のパス数と同じにしている。
Next, the operation of the above configuration will be described. At the time of normal operation in which the rotation speed of the compressor 1 is reduced, the electromagnetic on-off valve 6 for controlling the capacity is opened and the refrigerant flows through one of the refrigerant channels 5a, and the other refrigerant channel 5b
Since the first solenoid on-off valve 7 of the refrigerant channel 5b is opened,
The refrigerant becomes one path that circulates through the first refrigerant flow path 5b1, the first electromagnetic release valve 7, and the second refrigerant flow path 5b2,
The one refrigerant flow path 5a and the other refrigerant flow path 5b together constitute two passes. Now, at the time of the capacity control operation in which the rotation speed of the compressor 1 is increased and the electromagnetic on-off valve 6 for capacity control is closed, the refrigerant does not flow through one refrigerant flow path 5a and the other refrigerant flow path 5b Since the first electromagnetic on-off valve 7 of the refrigerant flow path 5b is closed, the refrigerant flows from the first refrigerant flow path 5b1 to the second bypass flow path 9 and from the first bypass flow path 8 The number of paths is the same as the number of paths during normal operation, which is two paths including the path flowing through the second refrigerant flow path 5b2.

【0009】[0009]

【発明の効果】以上説明したように、本発明による空気
調和機によれば、室内熱交換器の他方の冷媒流路の中間
に、第1の電磁開閉弁を介装して第1の冷媒流路と第2
の冷媒流路とに直列に分割し、同第1の冷媒流路の流入
口から、第1の電磁開閉弁と第2の冷媒流路との間に第
1の冷媒流路より細い径の冷媒管でなる第1のバイパス
流路を接続し、第1の冷媒流路と第1の電磁開閉弁との
間から第2の冷媒流路の流出口に第2の冷媒流路より細
い径の冷媒管でなる第2のバイパス流路を接続し、前記
容量制御用の電磁開閉弁を閉じ、圧縮機の回転を上げて
運転される容量制御運転時に、前記第1の電磁開閉弁を
閉じて、他方の冷媒流路を2パスとする一方、前記容量
制御用電磁開閉弁を開き、圧縮機の回転を下げて運転さ
れる通常運転時に、前記第1の電磁開閉弁を開いて、他
方の冷媒流路を1パスとし、一方の冷媒流路と合わせて
2パスとなるよう制御できるので、通常運転時と容量制
御運転時のパス数を同じとすることができ、容量制御運
転時においてもパスバランスが崩れず、効率のよい運転
を可能としている。
As described above, according to the air conditioner of the present invention, the first refrigerant is provided by interposing the first solenoid on-off valve in the middle of the other refrigerant flow path of the indoor heat exchanger. Channel and second
The first refrigerant flow path is divided in series with the first refrigerant flow path, and has a smaller diameter than the first refrigerant flow path between the first solenoid on-off valve and the second refrigerant flow path from the inlet of the first refrigerant flow path. A first bypass flow path composed of a refrigerant pipe is connected, and a diameter smaller than the second refrigerant flow path from between the first refrigerant flow path and the first solenoid on-off valve to an outlet of the second refrigerant flow path. A second bypass flow path composed of a refrigerant pipe is connected, the electromagnetic on / off valve for controlling the capacity is closed, and the first electromagnetic on / off valve is closed during the capacity control operation in which the compressor is operated by increasing the rotation. In the meantime, while the other refrigerant flow path has two paths, the capacity control electromagnetic on-off valve is opened, and during normal operation in which the rotation of the compressor is reduced, the first electromagnetic on-off valve is opened. The number of passes during normal operation and during the capacity control operation can be controlled so that the refrigerant flow path is one path and two paths are combined with one of the refrigerant flow paths. It can be the same, neither collapse path balance during capacity control operation, thereby enabling efficient operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来および本発明による空気調和機を示す冷凍
サイクルの系統図である。
FIG. 1 is a system diagram of a refrigeration cycle showing an air conditioner according to the related art and the present invention.

【図2】本発明による空気調和機の室内熱交換器の詳細
を示す要部冷媒流路図である。
FIG. 2 is a main part refrigerant flow diagram showing details of an indoor heat exchanger of the air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 減圧器 5 室内熱交換器 5a 一方の冷媒流路 5b 他方の冷媒流路 5b1 第1の冷媒流路 5b2 第2の冷媒流路 6 電磁開閉弁 7 第1の電磁開閉弁 8 第1のバイパス流路 9 第2のバイパス流路 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Decompressor 5 Indoor heat exchanger 5a One refrigerant flow path 5b The other refrigerant flow path 5b1 First refrigerant flow path 5b2 Second refrigerant flow path 6 Electromagnetic on-off valve 7 First electromagnetic on-off valve 8 First bypass flow path 9 Second bypass flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の吐出口から吐出される冷媒を、
四方弁、室外熱交換器、減圧器、2つの冷媒流路を有
し、一方の冷媒流路に容量制御用の電磁開閉弁を設けた
室内熱交換器、四方弁を経て圧縮機の吸込口に循環する
ヒートポンプ式冷凍サイクルを備え、前記電磁開閉弁を
開閉制御することにより容量制御運転可能とした空気調
和機において、 前記室内熱交換器の他方の冷媒流路の中間に、第1の電
磁開閉弁を介装して第1の冷媒流路と第2の冷媒流路と
に直列に分割し、同第1の冷媒流路の流入口から、第1
の電磁開閉弁と第2の冷媒流路との間に第1の冷媒流路
より細い径の冷媒管でなる第1のバイパス流路を接続
し、第1の冷媒流路と第1の電磁開閉弁との間から第2
の冷媒流路の流出口に第2の冷媒流路より細い径の冷媒
管でなる第2のバイパス流路を接続し、前記容量制御用
の電磁開閉弁を閉じ、圧縮機の回転を上げて運転される
容量制御運転時に、前記第1の電磁開閉弁を閉じて、他
方の冷媒流路を2パスとする一方、前記容量制御用電磁
開閉弁を開き、圧縮機の回転を下げて運転される通常運
転時に、前記第1の電磁開閉弁を開いて、他方の冷媒流
路を1パスとし、一方の冷媒流路と合わせて2パスとな
るよう制御してなることを特徴とする空気調和機。
1. A refrigerant discharged from a discharge port of a compressor,
An indoor heat exchanger having a four-way valve, an outdoor heat exchanger, a decompressor, and two refrigerant flow paths, and an electromagnetic on-off valve for capacity control in one of the refrigerant flow paths, and a suction port of the compressor via the four-way valve. An air conditioner comprising a heat pump refrigeration cycle that circulates in the air conditioner and capable of controlling the capacity by opening and closing the electromagnetic on-off valve. A first refrigerant flow path and a second refrigerant flow path are divided in series with an on-off valve interposed, and the first refrigerant flow path
A first bypass flow path comprising a refrigerant pipe having a smaller diameter than the first refrigerant flow path is connected between the electromagnetic on-off valve and the second refrigerant flow path, and the first refrigerant flow path and the first electromagnetic flow path are connected to each other. The second from between the on-off valve
A second bypass flow path composed of a refrigerant pipe having a diameter smaller than that of the second refrigerant flow path is connected to the outlet of the refrigerant flow path, the electromagnetic control valve for controlling the capacity is closed, and the rotation of the compressor is increased. During the capacity control operation to be performed, the first solenoid on-off valve is closed, and the other refrigerant flow path is set to two paths, while the capacity control solenoid on-off valve is opened to operate the compressor with the rotation of the compressor lowered. During normal operation, the first solenoid on-off valve is opened, the other refrigerant flow path is controlled to be one path, and one of the refrigerant flow paths is controlled to perform two paths. Machine.
【請求項2】 前記第1のバイパス流路または第2のバ
イパス流路の冷媒管の径を、第1の冷媒流路または第2
の冷媒流路の各冷媒管の径の半分以下とし、第1の冷媒
流路または第2の冷媒流路と第1のバイパス流路または
第2のバイパス流路とを並列に接続した場合、冷媒が第
1の冷媒流路または第2の冷媒流路に殆ど流れ、第1の
バイパス流路または第2のバイパス流路に流れないよう
にしたことを特徴とする請求項1記載の空気調和機。
2. The diameter of the refrigerant pipe of the first bypass flow path or the second bypass flow path is set to the first refrigerant flow path or the second refrigerant flow path.
When less than half the diameter of each refrigerant pipe of the refrigerant flow path, and the first refrigerant flow path or the second refrigerant flow path and the first bypass flow path or the second bypass flow path are connected in parallel, The air conditioner according to claim 1, wherein the refrigerant hardly flows in the first refrigerant flow path or the second refrigerant flow path, and does not flow in the first bypass flow path or the second bypass flow path. Machine.
JP19458297A 1997-07-18 1997-07-18 Air-conditioner Pending JPH1137588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19458297A JPH1137588A (en) 1997-07-18 1997-07-18 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19458297A JPH1137588A (en) 1997-07-18 1997-07-18 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH1137588A true JPH1137588A (en) 1999-02-12

Family

ID=16326951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19458297A Pending JPH1137588A (en) 1997-07-18 1997-07-18 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH1137588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857280B1 (en) * 2002-06-26 2005-02-22 Denso Corporation Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857280B1 (en) * 2002-06-26 2005-02-22 Denso Corporation Air conditioner

Similar Documents

Publication Publication Date Title
JP3816860B2 (en) Heat pump air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
EP1666806A2 (en) Multi-air condition system and method for controlling the same
JPH04110576A (en) Heat pump type air conditioner
JPH1137587A (en) Air conditioner
JP2007046895A (en) Operation control device and method for air conditioner equipped with plural compressors
US6446456B2 (en) Heat pump and method for controlling operation thereof
JPH06185822A (en) Air conditioner
JPH1137588A (en) Air-conditioner
JP2000146360A (en) Air conditioner
JP2000055482A (en) Air conditioner
JPH09310931A (en) Air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH05340625A (en) Air conditioner
JP2000213822A (en) Air conditioner
JPH04263742A (en) Refrigerator
JPH025323Y2 (en)
JP3164840B2 (en) Air conditioner refrigeration oil recovery equipment
JP2003343895A (en) Air conditioner
JPH09269160A (en) Air conditioner
JPH08320172A (en) Air conditioner
JP2003207227A (en) Air conditioner
JPH10141797A (en) Air conditioner
JPH07280387A (en) Air conditioner
JPH01179874A (en) Air-conditioner