JP2003207227A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003207227A
JP2003207227A JP2002006055A JP2002006055A JP2003207227A JP 2003207227 A JP2003207227 A JP 2003207227A JP 2002006055 A JP2002006055 A JP 2002006055A JP 2002006055 A JP2002006055 A JP 2002006055A JP 2003207227 A JP2003207227 A JP 2003207227A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air conditioner
receiver
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002006055A
Other languages
Japanese (ja)
Inventor
Hiroshi Komano
宏 駒野
Manabu Yoshimi
学 吉見
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002006055A priority Critical patent/JP2003207227A/en
Publication of JP2003207227A publication Critical patent/JP2003207227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of securing the refrigerant dryness at an inlet of a reheater while preventing the shortage of the refrigerant in a reheating dehumidifying operation, and securing the sufficient reheatability. <P>SOLUTION: A gas storing part 25 of a receiver 20 is communicated to an upstream side of an indoor heat exchanger 10 by a communication passage 23, and a switching mechanism 24 is mounted on the communication passage 23. In the reheating dehumidifying operation, the gas refrigerant from the gas storing part 25 of the receiver 20 is supplied to a first heat exchanger 11 having reheating function, when the switching mechanism 24 is opened. Accordingly, the refrigerant dryness at the inlet of the first heat exchanger 11 is increased, and the reheating amount can be increased. As the discharged refrigerant from the compressor 1 is passed through an outdoor heat exchanger 6, the retaining of the refrigerant in the outdoor heat exchanger 6 can be prevented, and the sufficient refrigerant circulation can be secured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は再熱除湿可能な空気
調和機に関するものであり、特に再熱能力を向上するこ
とが可能な空気調和機に係るものである。
TECHNICAL FIELD The present invention relates to an air conditioner capable of reheat dehumidification, and more particularly to an air conditioner capable of improving reheat capacity.

【0002】[0002]

【従来の技術】再熱除湿可能な従来の空気調和機の一例
を、図12に示している。この空気調和機は、圧縮機5
1の吐出管52と吸入管53とを四路切換弁54の一対
の1次ポートに接続すると共に、四路切換弁54の一方
の2次ポートに順に、第1ガス管55、室外熱交換器5
6、第1液管57、主電動膨張弁58、第2液管59、
室内熱交換器60、第2ガス管64を接続し、この第2
ガス管64を四路切換弁54の他方の2次ポートに接続
して冷媒回路を構成している。上記室内熱交換器60
は、第2液管59側の第1熱交換器61と、第2ガス管
64側の第2熱交換器62とに分割構成され、両熱交換
器61、62間に室内電動膨張弁63が介設されてい
る。また、上記第1液管57には、レシーバ65が介設
されている。
2. Description of the Related Art An example of a conventional air conditioner capable of reheat dehumidification is shown in FIG. This air conditioner has a compressor 5
The discharge pipe 52 and the suction pipe 53 of No. 1 are connected to a pair of primary ports of the four-way switching valve 54, and one secondary port of the four-way switching valve 54 is sequentially provided with the first gas pipe 55 and the outdoor heat exchange. Bowl 5
6, the first liquid pipe 57, the main electric expansion valve 58, the second liquid pipe 59,
The indoor heat exchanger 60 and the second gas pipe 64 are connected to each other
The gas pipe 64 is connected to the other secondary port of the four-way switching valve 54 to form a refrigerant circuit. The indoor heat exchanger 60
Is divided into a first heat exchanger 61 on the second liquid pipe 59 side and a second heat exchanger 62 on the second gas pipe 64 side, and the indoor electric expansion valve 63 is provided between the heat exchangers 61, 62. Is installed. Further, a receiver 65 is interposed in the first liquid pipe 57.

【0003】この空気調和機では、室外熱交換器56を
凝縮器として機能させる一方、室内熱交換器56を蒸発
器として機能させることで冷房運転を行い、また室内熱
交換器60を凝縮器として機能させる一方、室外熱交換
器56を蒸発器として機能させることで暖房運転を行う
ようになっている。さらに冷房運転モードにおいて、主
電動膨張弁58を大開度にした状態において、第1熱交
換器61を凝縮器として機能させる一方、第2熱交換器
62を蒸発器として機能させることで再熱除湿運転を行
うことが可能である。
In this air conditioner, the outdoor heat exchanger 56 functions as a condenser while the indoor heat exchanger 56 functions as an evaporator to perform cooling operation, and the indoor heat exchanger 60 functions as a condenser. While functioning, the outdoor heat exchanger 56 functions as an evaporator to perform heating operation. Further, in the cooling operation mode, the first heat exchanger 61 functions as a condenser while the second heat exchanger 62 functions as an evaporator in a state where the main electric expansion valve 58 is set to a large opening degree, whereby reheat dehumidification is performed. It is possible to drive.

【0004】上記のような空気調和機において、室外熱
交換器56と主電動膨張弁58との間に介設されるレシ
ーバ65は、余剰冷媒を一時的に貯溜すると共に、気液
分離し、レシーバ65から主電動膨張弁58へと流出す
る冷媒を液状態とするためのもので、これにより冷房運
転時の冷凍サイクルの効率を向上している。しかしなが
らこの種の空気調和機においては、再熱除湿運転時に、
室内熱交換器60に対して、液冷媒が供給されてしま
う。すなわち、再熱除湿運転時において、再熱能力を確
保するためには、第1熱交換器61に対して気液二層状
態の冷媒を供給する必要があるのに対して、上記従来の
空気調和機においては、図13、図14に示すように、
レシーバ65の底部側から液冷媒が供給されてしまうの
で、第1熱交換器61の入口の冷媒乾き度が小さくなっ
て、殆ど液単相の凝縮となってしまい、再熱量が低下し
てしまうという問題が生じるのである。
In the air conditioner as described above, the receiver 65 provided between the outdoor heat exchanger 56 and the main electric expansion valve 58 temporarily stores the excess refrigerant and separates it into gas and liquid, This is for making the refrigerant flowing from the receiver 65 to the main electric expansion valve 58 into a liquid state, thereby improving the efficiency of the refrigeration cycle during the cooling operation. However, in this type of air conditioner, during reheat dehumidification operation,
The liquid refrigerant is supplied to the indoor heat exchanger 60. That is, in the reheat dehumidification operation, in order to secure the reheat capacity, it is necessary to supply the refrigerant in the gas-liquid two-layer state to the first heat exchanger 61, while In the harmony machine, as shown in FIG. 13 and FIG.
Since the liquid refrigerant is supplied from the bottom side of the receiver 65, the dryness of the refrigerant at the inlet of the first heat exchanger 61 becomes small, and almost the liquid single phase is condensed, so that the reheat amount decreases. The problem arises.

【0005】上記問題点を解決するため、特開平6−2
07763号公報や特開平7−294059号公報にお
いては、図15に示すような構成の空気調和機が提案さ
れている。これは、図12と同じ構成の空気調和機にお
いて、圧縮機51の吐出側と第2液管59とを接続する
バイパス路66を設けると共に、このバイパス路66に
バイパス弁67を介設した構造のものである。この空気
調和機においては、再熱除湿運転時において、圧縮機5
1からの吐出冷媒を、室外熱交換器56、レシーバ6
5、主電動膨張弁58をバイパスさせて、バイパス路6
6から室内熱交換器60に供給し、第1熱交換器61の
入口の冷媒乾き度を確保して、再熱量を増加させようと
するものである。
In order to solve the above problems, Japanese Patent Laid-Open No. 6-2
In Japanese Patent Publication No. 07763 and Japanese Patent Laid-Open No. 7-294059, an air conditioner having a configuration as shown in FIG. 15 is proposed. This is a structure in which, in an air conditioner having the same configuration as in FIG. 12, a bypass passage 66 that connects the discharge side of the compressor 51 and the second liquid pipe 59 is provided, and a bypass valve 67 is provided in this bypass passage 66. belongs to. In this air conditioner, during the reheat dehumidifying operation, the compressor 5
Refrigerant discharged from No. 1 is the outdoor heat exchanger 56 and the receiver 6
5. Bypassing the main electric expansion valve 58, the bypass path 6
6 to the indoor heat exchanger 60 to secure the dryness of the refrigerant at the inlet of the first heat exchanger 61 and increase the amount of reheat.

【0006】[0006]

【発明が解決しようとする課題】ところが、図15に示
す空気調和機においては、圧縮機51からの吐出ガス冷
媒の一部が室外熱交換器56に流入し、室外熱交換器5
6の内部に溜まり込んでしまうという不具合が生じる。
すなわち、室外熱交換器56の容量が比較的大きいため
に、この溜まり込み量が相当なものになるのは避けられ
ないのである。しかも、外気温度が低い条件下において
は、第1熱交換器61では一段と多くの再熱量を必要と
するが、このような場合において、低外気温に起因して
室外熱交換器56での凝縮が一段と進行するため、結果
として冷媒不足を生じるという問題がある。
However, in the air conditioner shown in FIG. 15, a part of the gas refrigerant discharged from the compressor 51 flows into the outdoor heat exchanger 56, and the outdoor heat exchanger 5 is discharged.
There is a problem in that it accumulates inside 6.
That is, since the capacity of the outdoor heat exchanger 56 is relatively large, it is unavoidable that the accumulated amount becomes considerable. Moreover, under a condition where the outside air temperature is low, the first heat exchanger 61 needs a much larger amount of reheat, but in such a case, the condensation in the outdoor heat exchanger 56 is caused by the low outside air temperature. However, there is a problem that a shortage of the refrigerant occurs as a result.

【0007】この発明は上記した従来の問題点を解決す
るためになされたものであって、その目的は、再熱除湿
運転を行う際に、冷媒不足を回避しつつも、再熱器入口
での冷媒乾き度を確保して、充分な再熱能力を確保する
ことが可能な空気調和機を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to avoid a shortage of the refrigerant at the time of performing the reheat dehumidifying operation and at the reheater inlet. Another object of the present invention is to provide an air conditioner capable of ensuring the dryness of the refrigerant and ensuring a sufficient reheat capacity.

【0008】[0008]

【課題を解決するための手段】そこで請求項1の空気調
和機は、圧縮機1からの吐出冷媒を、室外熱交換器6、
レシーバ20、主減圧機構8、室内熱交換器10を通過
させて圧縮機1へと返流させる冷媒回路を構成し、上記
室内熱交換器10を第1熱交換器11と第2熱交換器1
2とに分割構成すると共に、両熱交換器11、12間に
室内減圧機構13を介設した空気調和機であって、上記
レシーバ20のガス溜部25を、上記室内熱交換器10
の上流側に連通させる連通路23を設け、この連通路2
3に開閉機構24を介設したことを特徴としている。
Therefore, in the air conditioner of claim 1, the refrigerant discharged from the compressor 1 is transferred to the outdoor heat exchanger 6,
A refrigerant circuit that passes the receiver 20, the main decompression mechanism 8, and the indoor heat exchanger 10 and returns to the compressor 1 is configured, and the indoor heat exchanger 10 is a first heat exchanger 11 and a second heat exchanger. 1
It is an air conditioner that is divided into two parts and has an indoor decompression mechanism 13 interposed between both heat exchangers 11 and 12, wherein the gas reservoir 25 of the receiver 20 is connected to the indoor heat exchanger 10
Is provided with a communication passage 23 that communicates with the upstream side of the
The opening and closing mechanism 24 is provided in the third member 3.

【0009】請求項1の空気調和機によれば、再熱除湿
運転時において、開閉機構24を開動作させれば、レシ
ーバ20のガス溜部25からのガス冷媒が、再熱機能を
果たす第1熱交換器11へと供給される。従って、第1
熱交換器11の入口での冷媒乾き度が大きくなり、再熱
量を大きくできる。またこのとき、圧縮機1からの吐出
冷媒が室外熱交換器6を通過するので、室外熱交換器6
への冷媒の溜まり込みを抑制でき、充分な冷媒循環量を
確保できる。
According to the air conditioner of the first aspect, when the opening / closing mechanism 24 is opened during the reheat dehumidifying operation, the gas refrigerant from the gas reservoir 25 of the receiver 20 performs the reheat function. 1 Heat exchanger 11 is supplied. Therefore, the first
The dryness of the refrigerant at the inlet of the heat exchanger 11 is increased, and the amount of reheat can be increased. Further, at this time, since the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 6, the outdoor heat exchanger 6
It is possible to prevent the refrigerant from accumulating in the refrigerant and to secure a sufficient refrigerant circulation amount.

【0010】請求項2の空気調和機は、圧縮機1からの
吐出冷媒を、室外熱交換器6、レシーバ20、主減圧機
構8、室内熱交換器10を通過させて圧縮機1へと返流
させる冷媒回路を構成し、上記室内熱交換器10を第1
熱交換器11と第2熱交換器12とに分割構成すると共
に、両熱交換器11、12間に室内減圧機構13を介設
した空気調和機であって、上記室外熱交換器6とレシー
バ20との間の位置を、上記室内熱交換器10の上流側
に連通させる連通路33を設け、この連通路33に開閉
機構34を介設したことを特徴としている。
In the air conditioner of claim 2, the refrigerant discharged from the compressor 1 is returned to the compressor 1 through the outdoor heat exchanger 6, the receiver 20, the main decompression mechanism 8 and the indoor heat exchanger 10. A refrigerant circuit for causing the flow is formed, and the indoor heat exchanger 10 is first
An air conditioner that is divided into a heat exchanger 11 and a second heat exchanger 12, and an indoor decompression mechanism 13 is provided between the heat exchangers 11 and 12, wherein the outdoor heat exchanger 6 and the receiver are provided. It is characterized in that a communication passage 33 that communicates a position between the heat exchanger 20 and the interior heat exchanger 20 with the upstream side of the indoor heat exchanger 10 is provided, and an opening / closing mechanism 34 is provided in the communication passage 33.

【0011】請求項2の空気調和機によれば、再熱除湿
運転時において、開閉機構34を開動作させれば、室外
熱交換器6からのガス冷媒が、再熱機能を果たす第1熱
交換器11へと供給される。従って、第1熱交換器11
の入口での冷媒乾き度が大きくなり、再熱量を大きくで
きる。またこのとき、圧縮機1からの吐出冷媒が室外熱
交換器6を通過するので、室外熱交換器6への冷媒の溜
まり込みを抑制でき、充分な冷媒循環量を確保できる。
According to the air conditioner of the second aspect, when the opening / closing mechanism 34 is opened during the reheat dehumidifying operation, the gas refrigerant from the outdoor heat exchanger 6 performs the first heat fulfilling the reheat function. It is supplied to the exchanger 11. Therefore, the first heat exchanger 11
The degree of dryness of the refrigerant at the inlet of is increased, and the amount of reheat can be increased. Further, at this time, since the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 6, it is possible to prevent the refrigerant from accumulating in the outdoor heat exchanger 6 and to secure a sufficient refrigerant circulation amount.

【0012】請求項3の空気調和機は、上記連通路2
3、33の下流側は、主減圧機構8の下流側に接続さ
れ、上記主減圧機構8は、その開度を調整可能に構成さ
れていることを特徴としている。
An air conditioner according to a third aspect of the present invention is the communication passage 2 described above.
The downstream side of 3, 33 is connected to the downstream side of the main pressure reducing mechanism 8, and the main pressure reducing mechanism 8 is characterized in that its opening can be adjusted.

【0013】請求項1及び請求項2の空気調和機におい
ては、連通路23、33の下流側は、主減圧機構8の下
流側(主減圧機構8と室内熱交換器10との間)にで
も、また主減圧機構8の上流側にでも接続可能である。
しかしながらこの請求項3のように、連通路23、33
の下流側を、主減圧機構8の下流側(主減圧機構8と室
内熱交換器10との間)に接続すれば、主減圧機構8の
開度を調整することによって、第1熱交換器11へと供
給される液冷媒量を調整できる。従って、第1熱交換器
11の入口での冷媒乾き度を調整できることになり、精
度の高い制御を行えることになる。さらに、請求項4の
ように、開閉機構24、34を、その開度を調整可能に
構成すれば、主減圧機構8と開閉機構24、34との両
者の開度調整によって、冷媒循環量と第1熱交換器11
の入口での冷媒乾き度との両者を制御でき、その制御精
度は一段と高くなる。
In the air conditioners of claims 1 and 2, the downstream side of the communication passages 23 and 33 is located downstream of the main pressure reducing mechanism 8 (between the main pressure reducing mechanism 8 and the indoor heat exchanger 10). However, it can also be connected to the upstream side of the main decompression mechanism 8.
However, as in claim 3, the communication passages 23, 33
If the downstream side of the main decompression mechanism 8 is connected to the downstream side (between the main decompression mechanism 8 and the indoor heat exchanger 10), the opening degree of the main decompression mechanism 8 can be adjusted to adjust the first heat exchanger. The amount of liquid refrigerant supplied to 11 can be adjusted. Therefore, the dryness of the refrigerant at the inlet of the first heat exchanger 11 can be adjusted, and highly accurate control can be performed. Further, if the opening / closing mechanisms 24 and 34 are configured so that their opening degrees can be adjusted as in claim 4, the opening degree of both the main decompression mechanism 8 and the opening / closing mechanisms 24 and 34 can be adjusted to determine the refrigerant circulation amount. First heat exchanger 11
Both the dryness of the refrigerant at the inlet of the control valve can be controlled, and the control accuracy is further improved.

【0014】請求項5の空気調和機は、圧縮機1からの
吐出冷媒を、室外熱交換器6、レシーバ20、主減圧機
構8、室内熱交換器10を通過させて圧縮機1へと返流
させる冷媒回路を構成し、上記室内熱交換器10を第1
熱交換器11と第2熱交換器12とに分割構成すると共
に、両熱交換器11、12間に室内減圧機構13を介設
した空気調和機であって、上記レシーバ20は、室外熱
交換器6からの冷媒が流入する流入管21と、主減圧機
構8へと冷媒が流出する流出管42とを備え、上記流出
管42は、レシーバ20内のガス溜部25に開口すると
共に、その途中が液溜部26を通過すべく構成し、液溜
部26を通過する部分に透孔43を設けたことを特徴と
している。
In the air conditioner of claim 5, the refrigerant discharged from the compressor 1 is returned to the compressor 1 through the outdoor heat exchanger 6, the receiver 20, the main decompression mechanism 8 and the indoor heat exchanger 10. A refrigerant circuit for causing the flow is formed, and the indoor heat exchanger 10 is first
An air conditioner that is divided into a heat exchanger 11 and a second heat exchanger 12, and an indoor pressure reducing mechanism 13 is provided between the heat exchangers 11 and 12, and the receiver 20 is an outdoor heat exchanger. An inflow pipe 21 through which the refrigerant from the vessel 6 flows and an outflow pipe 42 through which the refrigerant flows out to the main decompression mechanism 8 are provided. The outflow pipe 42 opens at the gas reservoir 25 in the receiver 20 and It is characterized in that it is configured to pass through the liquid reservoir 26 in the middle, and a through hole 43 is provided in a portion passing through the liquid reservoir 26.

【0015】請求項5の空気調和機によれば、この透孔
43の開口面積と、ガス溜部25における開口面積との
面積比を適度に選択して、主減圧機構8へと流出する冷
媒が気液混合状態となるようにすれば、第1熱交換器1
1の入口での冷媒乾き度を大きくして、充分な再熱量を
確保することができる。また、圧縮機1からの吐出冷媒
が室外熱交換器6を通過するので、室外熱交換器6への
冷媒の溜まり込みを抑制でき、充分な冷媒循環量を確保
できる。
According to the air conditioner of the fifth aspect, the refrigerant flowing out to the main decompression mechanism 8 is appropriately selected with an area ratio of the opening area of the through hole 43 and the opening area of the gas reservoir 25. When the gas and liquid are mixed, the first heat exchanger 1
The dryness of the refrigerant at the inlet of No. 1 can be increased to secure a sufficient amount of reheat. Further, since the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 6, it is possible to prevent the refrigerant from accumulating in the outdoor heat exchanger 6 and to secure a sufficient refrigerant circulation amount.

【0016】[0016]

【発明の実施の形態】次にこの発明の空気調和機の具体
的な実施の形態について、図面を参照しつつ詳細に説明
する。図1に第1実施形態を示しているが、この空気調
和機は、圧縮機1の吐出管2と吸入管3とを四路切換弁
4の一対の1次ポートに接続すると共に、四路切換弁4
の一方の2次ポートに順に、第1ガス管5、室外熱交換
器6、第1液管7、主電動膨張弁(主減圧機構)8、第
2液管9、室内熱交換器10、第2ガス管14を接続
し、この第2ガス管14を四路切換弁4の他方の2次ポ
ートに接続して冷媒回路を構成している。上記室内熱交
換器10は、第2液管9側の第1熱交換器(再熱器又は
室内凝縮器)11と、第2ガス管14側の第2熱交換器
(除湿器又は室内蒸発器)12とに分割構成され、両熱
交換器11、12間に室内電動膨張弁(室内減圧機構)
13が介設されている。また、上記第1液管7には、レ
シーバ20が介設されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a first embodiment, but this air conditioner connects the discharge pipe 2 and the suction pipe 3 of the compressor 1 to a pair of primary ports of a four-way switching valve 4, and Switching valve 4
The first gas pipe 5, the outdoor heat exchanger 6, the first liquid pipe 7, the main electric expansion valve (main decompression mechanism) 8, the second liquid pipe 9, the indoor heat exchanger 10, in that order to one of the secondary ports. The second gas pipe 14 is connected, and the second gas pipe 14 is connected to the other secondary port of the four-way switching valve 4 to form a refrigerant circuit. The indoor heat exchanger 10 includes a first heat exchanger (reheater or indoor condenser) 11 on the second liquid pipe 9 side and a second heat exchanger (dehumidifier or indoor evaporation) on the second gas pipe 14 side. And an internal electric expansion valve (indoor decompression mechanism) between the two heat exchangers 11 and 12.
13 is provided. Further, a receiver 20 is provided in the first liquid pipe 7.

【0017】上記レシーバ20は、図1及び図2に示す
ように、密閉容器状のもので、その頂部に室外熱交換器
6から冷媒の流入する流入管21が接続され、また、そ
の底部には、主電動膨張弁8に向けて冷媒の流出する流
出管22が接続されている。さらに、レシーバ20の頂
部には、レシーバ20の上部を主電動膨張弁8の下流側
(主電動膨張弁8と室内熱交換器10との間の第2液管
9)に連通させる連通路23が接続され、この連通管2
3には、図のように、開閉機構としての流量制御弁24
が介設されている。すなわち、レシーバ20内部におい
て、上記流入管21は、レシーバ20の上側に形成され
るガス溜部25内に開口し、また上記流出管22は、そ
れよりも底部側に形成される液溜部26内に開口してい
るのであり、さらに上記連通管23は、ガス溜部25内
に開口しているのである。
As shown in FIGS. 1 and 2, the receiver 20 is in the shape of a closed container, and an inflow pipe 21 into which the refrigerant flows from the outdoor heat exchanger 6 is connected to the top of the receiver 20 and the bottom thereof. Is connected to an outflow pipe 22 through which the refrigerant flows toward the main electric expansion valve 8. Further, at the top of the receiver 20, a communication passage 23 that connects the upper portion of the receiver 20 to the downstream side of the main electric expansion valve 8 (the second liquid pipe 9 between the main electric expansion valve 8 and the indoor heat exchanger 10). Is connected to this communication pipe 2
3 is a flow control valve 24 as an opening / closing mechanism as shown in the figure.
Is installed. That is, inside the receiver 20, the inflow pipe 21 opens into the gas reservoir 25 formed on the upper side of the receiver 20, and the outflow pipe 22 further forms the liquid reservoir 26 formed on the bottom side thereof. The communication pipe 23 is opened inside the gas reservoir 25.

【0018】この空気調和機では、上記流量制御弁24
を閉弁状態とすると共に、上記室内電動膨張弁13を、
大開度(全開)に維持した状態で通常の冷暖房運転を行
う。すなわち、室外熱交換器6を凝縮器として機能させ
る一方、室内熱交換器10を蒸発器として機能させるこ
とで冷房運転を行い、また室内熱交換器10を凝縮器と
して機能させる一方、室外熱交換器6を蒸発器として機
能させることで暖房運転を行うのである。この場合、流
量制御弁24を閉弁状態としているので、冷房運転にお
いては、気液分離された液冷媒が流出管22から室内熱
交換器10へと流出し、効率の良い冷凍サイクルを構成
できる。
In this air conditioner, the flow rate control valve 24
Is closed, and the indoor electric expansion valve 13 is
Normal cooling and heating operation is performed while maintaining a large opening (fully opened). That is, while the outdoor heat exchanger 6 functions as a condenser, the indoor heat exchanger 10 functions as an evaporator to perform cooling operation, and the indoor heat exchanger 10 functions as a condenser, while the outdoor heat exchange is performed. The heating operation is performed by causing the container 6 to function as an evaporator. In this case, since the flow rate control valve 24 is closed, in the cooling operation, the gas-liquid separated liquid refrigerant flows out from the outflow pipe 22 to the indoor heat exchanger 10 to form an efficient refrigeration cycle. .

【0019】また、再熱除湿運転は、圧縮機1からの吐
出冷媒を、室外熱交換器6から室内熱交換器10へと回
流させることによって行う。すなわち、上記主電動膨張
弁8及び流量制御弁24を制御開度にすると共に、図示
しない室外ファンを停止(又は低速)にし、室内電動膨
張弁13の開度を制御して、第1熱交換器11を凝縮器
として機能させる一方、第2熱交換器12を蒸発器とし
て機能させることで再熱除湿運転を行う。つまり、室内
空気を第2熱交換器12で冷却して除湿を行いながら、
この冷却された空気を第1熱交換器11で加熱して室内
へ供給したり、あるいは別の室内空気を第1熱交換器1
1で加熱して、第2熱交換器12で冷却、除湿された空
気と混合して室内へと供給するのである。このとき、上
記主電動膨張弁8と流量制御弁24との開度を制御し、
ガス冷媒と液冷媒との流出量を別々に制御することによ
り、余剰冷媒はレシーバ20に貯溜させながら、第1熱
交換器(再熱器)11の入口での冷媒乾き度を大きくし
て、充分な再熱量を確保することができる。
The reheat dehumidifying operation is performed by circulating the refrigerant discharged from the compressor 1 from the outdoor heat exchanger 6 to the indoor heat exchanger 10. That is, the main electric expansion valve 8 and the flow rate control valve 24 are set to control openings, the outdoor fan (not shown) is stopped (or low speed), the opening of the indoor electric expansion valve 13 is controlled, and the first heat exchange is performed. The reheat dehumidification operation is performed by causing the second heat exchanger 12 to function as an evaporator while the device 11 functions as a condenser. That is, while the room air is cooled by the second heat exchanger 12 to perform dehumidification,
This cooled air is heated by the first heat exchanger 11 and supplied to the room, or another room air is heated by the first heat exchanger 1
It is heated by 1 and mixed with the air which has been cooled and dehumidified by the second heat exchanger 12 and supplied to the room. At this time, the opening degree of the main electric expansion valve 8 and the flow control valve 24 is controlled,
By separately controlling the outflow amounts of the gas refrigerant and the liquid refrigerant, the excess refrigerant is accumulated in the receiver 20, and the refrigerant dryness at the inlet of the first heat exchanger (reheater) 11 is increased, A sufficient amount of reheat can be secured.

【0020】次に、上記した主電動膨張弁8と流量制御
弁24との開度制御方法について簡単に説明する。ま
ず、冷媒回路(システム)全体の冷媒循環量を調節する
際には、主電動膨張弁8と流量制御弁24とを等量だけ
開閉制御する。図10に示すように、弁開度を増加する
と冷媒循環量が増加し、弁開度を減少すると冷媒循環量
は減少する。また、再熱量を調節する際には、主電動膨
張弁8と流量制御弁24とを等量だけ逆方向に開閉制御
する。図10に示すように、流量制御弁24の開度を大
きくし、主電動膨張弁8の開度を小さくすると、第1熱
交換器11の入口での冷媒乾き度が大きくなり、再熱量
が増加するし、これとは逆に、流量制御弁24の開度を
小さくし、主電動膨張弁8の開度を大きくすると、第1
熱交換器11の入口での冷媒乾き度が小さくなり、再熱
量が減少する。実用上は、冷媒循環量と冷媒乾き度との
両者を勘案して、最適開度を選択する。
Next, a method for controlling the opening degree of the main electric expansion valve 8 and the flow control valve 24 will be briefly described. First, when adjusting the refrigerant circulation amount of the entire refrigerant circuit (system), the main electric expansion valve 8 and the flow rate control valve 24 are controlled to be opened and closed by an equal amount. As shown in FIG. 10, when the valve opening degree increases, the refrigerant circulation amount increases, and when the valve opening degree decreases, the refrigerant circulation amount decreases. Further, when adjusting the amount of reheat, the main electric expansion valve 8 and the flow control valve 24 are controlled to be opened and closed by an equal amount in opposite directions. As shown in FIG. 10, when the opening degree of the flow control valve 24 is increased and the opening degree of the main electric expansion valve 8 is decreased, the dryness of the refrigerant at the inlet of the first heat exchanger 11 is increased and the reheat amount is increased. If the opening degree of the flow control valve 24 is decreased and the opening degree of the main electric expansion valve 8 is increased on the contrary, the first
The dryness of the refrigerant at the inlet of the heat exchanger 11 is reduced, and the amount of reheat is reduced. Practically, the optimum opening is selected in consideration of both the refrigerant circulation amount and the refrigerant dryness.

【0021】上記した空気調和機によれば、再熱除湿運
転時において、冷媒循環を確保しつつ、第1熱交換器
(再熱器)11の入口での冷媒乾き度を確保して、充分
な再熱能力を確保することが可能となる。例えば、図1
1に示しているように、従来(図12)の空気調和機で
は、小さな再熱能力(図示a)しか得られなかったが、
上記実施形態の空気調和機によれば、乾き度の向上によ
って、大きな再熱能力(図示b)が得られるようにな
る。
According to the above-mentioned air conditioner, during the reheat dehumidifying operation, while ensuring the circulation of the refrigerant, the dryness of the refrigerant at the inlet of the first heat exchanger (reheater) 11 is ensured, which is sufficient. It is possible to secure a good reheat capacity. For example, in FIG.
As shown in FIG. 1, in the conventional air conditioner (FIG. 12), only a small reheat capacity (a in the figure) was obtained.
According to the air conditioner of the above-described embodiment, a large reheat capacity (illustrated in b) can be obtained by improving the dryness.

【0022】図3は、レシーバ20の変更例であり、こ
れはレシーバ20を横長に形成したものである。また、
図4は、流出管22の変更例であり、この場合、流出管
22をレシーバ20の頂部からその内部に挿入し、液溜
部26内の底部近くに開口させたものである。これらい
ずれの場合にも、上記同様の作用、効果が得られる。ま
た、図5に示すのは、流量制御弁24に代えて、電磁開
閉27を使用した変形例であり、このような態様で実施
すれば、その構成を簡素にできることから、安価に実施
可能となるのに加えて、その制御構成を簡略化できると
の利点が生じる。さらに、図6には、4個の逆止弁を用
いたブリッジ回路28を使用した変更例を示している
が、これは冷房時のみならず、暖房時においてもレシー
バ20を高圧側に位置させて機能させるようにした構造
のものである。この空気調和機においても上記同様の作
用、効果が得られる。
FIG. 3 shows a modified example of the receiver 20, which is a horizontally long receiver 20. Also,
FIG. 4 shows a modified example of the outflow pipe 22. In this case, the outflow pipe 22 is inserted from the top of the receiver 20 into the inside thereof and opened near the bottom of the liquid reservoir 26. In any of these cases, the same actions and effects as above can be obtained. Further, FIG. 5 shows a modified example in which an electromagnetic opening / closing 27 is used in place of the flow rate control valve 24, and if it is carried out in such a mode, its configuration can be simplified, so that it can be implemented at low cost. In addition to the above, there is an advantage that the control configuration can be simplified. Further, FIG. 6 shows a modified example using the bridge circuit 28 using four check valves. This is because the receiver 20 is positioned on the high pressure side not only during cooling but also during heating. It has a structure that allows it to function. Also in this air conditioner, the same actions and effects as above can be obtained.

【0023】次に、第2実施形態について説明する。こ
れは、図7に示すように、室外熱交換器6とレシーバ2
0との間の位置を、連通路33を介して、主電動膨張弁
8と室内熱交換器10との間の位置に連通させた構造の
ものである。この場合にも、連通路33には、流量制御
弁34を介設している。この実施形態においても、再熱
除湿運転時において、主電動膨張弁8と流量制御弁24
との開度を、上記第1実施形態と同様に制御し、室外熱
交換器6からのガス冷媒と、レシーバ20からの液冷媒
との流出量を別々に制御することにより、余剰冷媒はレ
シーバ20に貯溜させると共に、充分な冷媒循環量を確
保しながら、第1熱交換器(再熱器)11の入口での冷
媒の乾き度を大きくして、充分な再熱量を確保すること
ができる。
Next, a second embodiment will be described. As shown in FIG. 7, this is the outdoor heat exchanger 6 and the receiver 2.
The position between 0 and 0 is connected to the position between the main electric expansion valve 8 and the indoor heat exchanger 10 via the communication passage 33. Also in this case, a flow rate control valve 34 is provided in the communication passage 33. Also in this embodiment, during the reheat dehumidifying operation, the main electric expansion valve 8 and the flow control valve 24
By controlling the opening degrees of the same as in the first embodiment and separately controlling the outflow amounts of the gas refrigerant from the outdoor heat exchanger 6 and the liquid refrigerant from the receiver 20, the excess refrigerant is received by the receiver. It is possible to secure a sufficient amount of reheat by increasing the dryness of the refrigerant at the inlet of the first heat exchanger (reheater) 11 while storing a sufficient amount of refrigerant circulation in 20. .

【0024】図8及び図9に第3実施形態を示してい
る。この実施形態においては、レシーバ20における流
出管42の構造に特徴を有している。このレシーバ20
は、上記同様に、室外熱交換器6からの冷媒が流入する
流入管21と、主電動膨張弁8へと冷媒が流出する流出
管42とを備えている。上記流出管42は、概略U字状
のもので、レシーバ20の頂部から内部へと挿入されて
いる。そしてこの流出管42の内端部は、レシーバ20
内のガス溜部25において開口部44を有すると共に、
その途中が下方へと湾曲して液溜部26を通過すべく構
成されている。この流出管42において、液溜部26を
通過する部分に透孔43が設けられている。この透孔4
3は、その開口面積が、ガス溜部25における開口部4
4の面積よりも充分に小さくなるようにされている。す
なわち、主電動膨張弁8へと流出する冷媒が、気液混合
状態となるように、その面積比が選択されている。この
実施形態においても、第1熱交換器(再熱器)11の入
口での冷媒乾き度を大きくして、充分な再熱量を確保す
ることができる。また、圧縮機1からの吐出冷媒が室外
熱交換器6を通過するので、室外熱交換器6への冷媒の
溜まり込みを抑制でき、充分な冷媒循環量を確保でき
る。
A third embodiment is shown in FIGS. 8 and 9. This embodiment is characterized by the structure of the outflow pipe 42 of the receiver 20. This receiver 20
Similarly to the above, includes an inflow pipe 21 into which the refrigerant from the outdoor heat exchanger 6 flows, and an outflow pipe 42 from which the refrigerant flows to the main electric expansion valve 8. The outflow pipe 42 is generally U-shaped, and is inserted from the top of the receiver 20 to the inside. The inner end of the outflow pipe 42 is connected to the receiver 20.
While having an opening 44 in the gas reservoir 25 inside,
The middle part is curved downward and passes through the liquid reservoir 26. In this outflow pipe 42, a through hole 43 is provided in a portion that passes through the liquid reservoir 26. This through hole 4
3 has an opening area of the opening 4 in the gas reservoir 25.
It is designed to be sufficiently smaller than the area of 4. That is, the area ratio is selected so that the refrigerant flowing out to the main electric expansion valve 8 is in a gas-liquid mixed state. Also in this embodiment, the dryness of the refrigerant at the inlet of the first heat exchanger (reheater) 11 can be increased to secure a sufficient amount of reheat. Further, since the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 6, it is possible to prevent the refrigerant from accumulating in the outdoor heat exchanger 6 and to secure a sufficient refrigerant circulation amount.

【0025】以上にこの発明の空気調和機の具体的な実
施の形態について説明したが、この発明の空気調和機は
上記実施の形態に限定されるものではなく、種々変更し
して実施することが可能である。例えば、上記において
は、主電動膨張弁8及び室内電動膨張弁13を用いて、
その開度を調整可能としているが、これは開度の固定さ
れたものであってもよい。また、上記空気調和機におい
ては、連通路23、33の下流側は、主減圧機構8の下
流側、すなわち主減圧機構8と室内熱交換器10との間
の位置に接続しているが、連通路23、33の下流側
は、主減圧機構8の上流側にも接続可能である。
Although specific embodiments of the air conditioner of the present invention have been described above, the air conditioner of the present invention is not limited to the above-mentioned embodiments, and various modifications may be made. Is possible. For example, in the above, using the main electric expansion valve 8 and the indoor electric expansion valve 13,
Although the opening can be adjusted, the opening may be fixed. Further, in the air conditioner, the downstream sides of the communication passages 23 and 33 are connected to the downstream side of the main pressure reducing mechanism 8, that is, the position between the main pressure reducing mechanism 8 and the indoor heat exchanger 10. The downstream side of the communication passages 23 and 33 can also be connected to the upstream side of the main pressure reducing mechanism 8.

【0026】[0026]

【発明の効果】請求項1及び請求項2の空気調和機によ
れば、再熱除湿運転時において、再熱機能を果たす第1
熱交換器の入口での冷媒乾き度が大きくなり、再熱量を
大きくできると共に、室外熱交換器への冷媒の溜まり込
みを抑制でき、充分な冷媒循環量を確保できるので、再
熱除湿運転時の空調使用快適性を向上できる。
According to the air conditioner of the first and second aspects, the first aspect of performing the reheat function during the reheat dehumidifying operation.
The degree of dryness of the refrigerant at the inlet of the heat exchanger is increased, the amount of reheat can be increased, the accumulation of refrigerant in the outdoor heat exchanger can be suppressed, and a sufficient amount of refrigerant circulation can be secured. The air-conditioning use comfort of can be improved.

【0027】請求項3の空気調和機によれば、主減圧機
構によって、第1熱交換器へと供給される液冷媒量を調
整できるので、第1熱交換器の入口での冷媒乾き度を調
整できることになり、精度の高い制御を行えることにな
り、再熱除湿運転時の空調使用快適性を向上できる。
According to the air conditioner of the third aspect, the amount of liquid refrigerant supplied to the first heat exchanger can be adjusted by the main pressure reducing mechanism, so that the dryness of the refrigerant at the inlet of the first heat exchanger can be controlled. Since it can be adjusted, highly accurate control can be performed, and the comfort of using the air conditioning during the reheat dehumidification operation can be improved.

【0028】請求項4の空気調和機によれば、冷媒循環
量と第1熱交換器11の入口での冷媒乾き度との両者を
制御でき、その制御精度は一段と高くなり、再熱除湿運
転時の空調使用快適性を一段と向上できる。
According to the air conditioner of the fourth aspect, both the refrigerant circulation amount and the refrigerant dryness at the inlet of the first heat exchanger 11 can be controlled, the control accuracy thereof is further enhanced, and the reheat dehumidification operation is performed. It is possible to further improve the comfort of using the air conditioner.

【0029】請求項5の空気調和機によれば、主減圧機
構へと流出する冷媒が、気液混合状態となるので、第1
熱交換器の入口での冷媒乾き度を大きくなり、充分な再
熱量を確保することができる。また、室外熱交換器への
冷媒の溜まり込みを抑制でき、充分な冷媒循環量を確保
できる。従って、再熱除湿運転時の空調使用快適性を向
上できる。
According to the air conditioner of the fifth aspect, the refrigerant flowing out to the main pressure reducing mechanism is in a gas-liquid mixed state.
The dryness of the refrigerant at the inlet of the heat exchanger is increased, and a sufficient amount of reheat can be secured. Further, it is possible to prevent the refrigerant from accumulating in the outdoor heat exchanger, and to secure a sufficient refrigerant circulation amount. Therefore, the comfort of using the air conditioning during the reheat dehumidification operation can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の空気調和機の第1実施形態を示す冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing a first embodiment of an air conditioner of the present invention.

【図2】上記実施形態において使用するレシーバの構造
の概略図である。
FIG. 2 is a schematic diagram of the structure of a receiver used in the above embodiment.

【図3】上記実施形態において使用するレシーバの他の
構造の概略図である。
FIG. 3 is a schematic view of another structure of the receiver used in the above embodiment.

【図4】上記実施形態において使用するレシーバのさら
に他の構造の概略図である。
FIG. 4 is a schematic view of still another structure of the receiver used in the above embodiment.

【図5】上記実施形態において使用するレシーバのさら
に他の構造の概略図である。
FIG. 5 is a schematic view of still another structure of the receiver used in the above embodiment.

【図6】上記第1実施形態の冷媒回路の変更例を示す回
路図である。
FIG. 6 is a circuit diagram showing a modified example of the refrigerant circuit of the first embodiment.

【図7】この発明の空気調和機の第2実施形態を示す冷
媒回路図である。
FIG. 7 is a refrigerant circuit diagram showing a second embodiment of the air conditioner of the present invention.

【図8】この発明の空気調和機の第3実施形態において
使用するレシーバの構造の概略図である。
FIG. 8 is a schematic view of the structure of a receiver used in the third embodiment of the air conditioner of the present invention.

【図9】上記レシーバの要部を示す拡大略図である。FIG. 9 is an enlarged schematic view showing a main part of the receiver.

【図10】第1実施形態における主電動膨張弁と流量制
御弁との開度制御方向を説明するための略図である。
FIG. 10 is a schematic diagram for explaining the opening control directions of the main electric expansion valve and the flow rate control valve in the first embodiment.

【図11】上記第1実施形態の効果を従来例と対比して
示すモリエル線図である。
FIG. 11 is a Mollier diagram showing the effect of the first embodiment in comparison with a conventional example.

【図12】従来例を示す冷媒回路である。FIG. 12 is a refrigerant circuit showing a conventional example.

【図13】上記従来例において使用するレシーバの構造
の概略図である。
FIG. 13 is a schematic view of the structure of a receiver used in the above-mentioned conventional example.

【図14】上記従来例において使用するレシーバの他の
構造の概略図である。
FIG. 14 is a schematic view of another structure of the receiver used in the above-mentioned conventional example.

【図15】他の従来例の冷媒回路図である。FIG. 15 is a refrigerant circuit diagram of another conventional example.

【符号の説明】[Explanation of symbols]

1.圧縮機 6.室外熱交換器 8.主減圧機構(主電動膨張弁) 10.室内熱交換器 11.第1熱交換器 12.第2熱交換器 13.室内減圧機構(室内電動膨張弁) 20.レシーバ 21.流入管 23.連通路 24.開閉機構(流量制御弁) 25.ガス溜部 26.液溜部 33.連通路 34.開閉機構(流量制御弁) 42.流出管 43.透孔 1. Compressor 6. Outdoor heat exchanger 8. Main decompression mechanism (main electric expansion valve) 10. Indoor heat exchanger 11. First heat exchanger 12. Second heat exchanger 13. Indoor decompression mechanism (indoor electric expansion valve) 20. Receiver 21. Inflow pipe 23. Communication passage 24. Open / close mechanism (flow control valve) 25. Gas reservoir 26. Liquid reservoir 33. Communication passage 34. Open / close mechanism (flow control valve) 42. Outflow pipe 43. Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢嶋 龍三郎 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryusaburo Yajima             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)からの吐出冷媒を、室外熱
交換器(6)、レシーバ(20)、主減圧機構(8)、
室内熱交換器(10)を通過させて圧縮機(1)へと返
流させる冷媒回路を構成し、上記室内熱交換器(10)
を第1熱交換器(11)と第2熱交換器(12)とに分
割構成すると共に、両熱交換器(11)(12)間に室
内減圧機構(13)を介設した空気調和機であって、上
記レシーバ(20)のガス溜部(25)を、上記室内熱
交換器(10)の上流側に連通させる連通路(23)を
設け、この連通路(23)に開閉機構(24)を介設し
たことを特徴とする空気調和機。
1. A refrigerant discharged from a compressor (1) is supplied to an outdoor heat exchanger (6), a receiver (20), a main pressure reducing mechanism (8),
A refrigerant circuit for passing the indoor heat exchanger (10) and returning it to the compressor (1) is constituted, and the indoor heat exchanger (10) is provided.
The air conditioner in which the first heat exchanger (11) and the second heat exchanger (12) are divided and the indoor pressure reducing mechanism (13) is interposed between the two heat exchangers (11) and (12). A communication passageway (23) for communicating the gas reservoir (25) of the receiver (20) with the upstream side of the indoor heat exchanger (10) is provided, and an opening / closing mechanism (23) is provided in the communication passageway (23). 24) An air conditioner characterized by being installed.
【請求項2】 圧縮機(1)からの吐出冷媒を、室外熱
交換器(6)、レシーバ(20)、主減圧機構(8)、
室内熱交換器(10)を通過させて圧縮機(1)へと返
流させる冷媒回路を構成し、上記室内熱交換器(10)
を第1熱交換器(11)と第2熱交換器(12)とに分
割構成すると共に、両熱交換器(11)(12)間に室
内減圧機構(13)を介設した空気調和機であって、上
記室外熱交換器(6)とレシーバ(20)との間の位置
を、上記室内熱交換器(10)の上流側に連通させる連
通路(33)を設け、この連通路(33)に開閉機構
(34)を介設したことを特徴とする空気調和機。
2. The refrigerant discharged from the compressor (1) is supplied to an outdoor heat exchanger (6), a receiver (20), a main pressure reducing mechanism (8),
A refrigerant circuit for passing the indoor heat exchanger (10) and returning it to the compressor (1) is constituted, and the indoor heat exchanger (10) is provided.
The air conditioner in which the first heat exchanger (11) and the second heat exchanger (12) are divided and the indoor pressure reducing mechanism (13) is interposed between the two heat exchangers (11) and (12). A communication passage (33) for communicating the position between the outdoor heat exchanger (6) and the receiver (20) with the upstream side of the indoor heat exchanger (10) is provided. 33) An air conditioner having an opening / closing mechanism (34) provided in (33).
【請求項3】 上記連通路(23)(33)の下流側
は、主減圧機構(8)の下流側に接続され、上記主減圧
機構(8)は、その開度を調整可能に構成されているこ
とを特徴とする請求項1又は請求項2の空気調和機。
3. The downstream side of the communication passages (23) (33) is connected to the downstream side of the main decompression mechanism (8), and the main decompression mechanism (8) is configured so that its opening can be adjusted. The air conditioner according to claim 1 or 2, characterized in that.
【請求項4】 上記開閉機構(24)(34)は、その
開度を調整可能に構成されていることを特徴とする請求
項3の空気調和機。
4. The air conditioner according to claim 3, wherein the opening / closing mechanisms (24) (34) are configured so that their opening degrees can be adjusted.
【請求項5】 圧縮機(1)からの吐出冷媒を、室外熱
交換器(6)、レシーバ(20)、主減圧機構(8)、
室内熱交換器(10)を通過させて圧縮機(1)へと返
流させる冷媒回路を構成し、上記室内熱交換器(10)
を第1熱交換器(11)と第2熱交換器(12)とに分
割構成すると共に、両熱交換器(11)(12)間に室
内減圧機構(13)を介設した空気調和機であって、上
記レシーバ(20)は、室外熱交換器(6)からの冷媒
が流入する流入管(21)と、主減圧機構(8)へと冷
媒が流出する流出管(42)とを備え、上記流出管(4
2)は、レシーバ(20)内のガス溜部(25)に開口
すると共に、その途中が液溜部(26)を通過すべく構
成し、液溜部(26)を通過する部分に透孔(43)を
設けたことを特徴とする空気調和機。
5. The refrigerant discharged from the compressor (1) is supplied to an outdoor heat exchanger (6), a receiver (20), a main pressure reducing mechanism (8),
A refrigerant circuit for passing the indoor heat exchanger (10) and returning it to the compressor (1) is constituted, and the indoor heat exchanger (10) is provided.
The air conditioner in which the first heat exchanger (11) and the second heat exchanger (12) are divided and the indoor pressure reducing mechanism (13) is interposed between the two heat exchangers (11) and (12). The receiver (20) includes an inflow pipe (21) into which the refrigerant from the outdoor heat exchanger (6) flows and an outflow pipe (42) into which the refrigerant flows out to the main decompression mechanism (8). The above-mentioned outflow pipe (4
2) is configured to open to the gas reservoir (25) in the receiver (20) and pass through the liquid reservoir (26) in the middle, and a through hole is formed in the portion passing through the liquid reservoir (26). An air conditioner comprising (43).
JP2002006055A 2002-01-15 2002-01-15 Air conditioner Pending JP2003207227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006055A JP2003207227A (en) 2002-01-15 2002-01-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006055A JP2003207227A (en) 2002-01-15 2002-01-15 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003207227A true JP2003207227A (en) 2003-07-25

Family

ID=27644927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006055A Pending JP2003207227A (en) 2002-01-15 2002-01-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003207227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8397522B2 (en) 2004-04-27 2013-03-19 Davis Energy Group, Inc. Integrated dehumidification system
WO2023199431A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8397522B2 (en) 2004-04-27 2013-03-19 Davis Energy Group, Inc. Integrated dehumidification system
WO2023199431A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6644154B2 (en) Air conditioner
EP2722616B1 (en) Air conditioner
WO2010015123A1 (en) Constant temperature dehumidifying air-conditioner
JP3884591B2 (en) Air conditioner
KR20230053495A (en) Floor Placement Type Packaged Heat Pump Device with Heat Recovery Ventilation Unit
JPH04110576A (en) Heat pump type air conditioner
JP2006336971A (en) Ventilating and air conditioning device
CN109373529B (en) Air conditioner and control method thereof
JP2006194525A (en) Multi-chamber type air conditioner
JP2003207227A (en) Air conditioner
JP2008309362A (en) Air conditioner
CN110207417B (en) Air conditioning system
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP2000055444A (en) Air conditioner
JP2998740B2 (en) Air conditioner
KR20220098604A (en) Constant temperature and humidity air conditioner using heat pump and the control method thereof
JPH0942706A (en) Air conditioner
JPH07324835A (en) Multi-type air conditioner
CN220852568U (en) Heat exchange system and air conditioner
KR100535807B1 (en) Refrigerating cycle
CN220355711U (en) Heat exchange system and air conditioner
CN212431127U (en) Air conditioner
JP4752145B2 (en) Air conditioner
JP2001116287A (en) Air conditioner
JP2018105514A (en) Heat pump type temperature adjustment device