JP2018105514A - Heat pump type temperature adjustment device - Google Patents
Heat pump type temperature adjustment device Download PDFInfo
- Publication number
- JP2018105514A JP2018105514A JP2016249213A JP2016249213A JP2018105514A JP 2018105514 A JP2018105514 A JP 2018105514A JP 2016249213 A JP2016249213 A JP 2016249213A JP 2016249213 A JP2016249213 A JP 2016249213A JP 2018105514 A JP2018105514 A JP 2018105514A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heating
- cooling
- condenser
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 205
- 238000001816 cooling Methods 0.000 claims abstract description 191
- 238000010438 heat treatment Methods 0.000 claims abstract description 178
- 239000012530 fluid Substances 0.000 claims abstract description 43
- 230000005855 radiation Effects 0.000 claims abstract description 41
- 238000001704 evaporation Methods 0.000 claims abstract description 34
- 230000008020 evaporation Effects 0.000 claims abstract description 33
- 230000005494 condensation Effects 0.000 claims abstract description 26
- 238000009833 condensation Methods 0.000 claims abstract description 26
- 230000017525 heat dissipation Effects 0.000 claims description 22
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000004378 air conditioning Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000007791 dehumidification Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、ヒートポンプ式温調装置に関し、詳しくは、圧縮機により冷媒を循環させる蒸気圧縮式の冷媒回路を備え、流体の冷却負荷を処理する冷却運転と前記流体の加熱負荷を処理する加熱運転との切り換え実施を可能にしたヒートポンプ式温調装置に関する。 TECHNICAL FIELD The present invention relates to a heat pump temperature control device, and more particularly, includes a vapor compression refrigerant circuit that circulates refrigerant by a compressor, a cooling operation that processes a cooling load of fluid, and a heating operation that processes the heating load of the fluid. It is related with the heat pump type temperature control apparatus which enabled switching implementation.
従来、この種のヒートポンプ式温調装置では、図12に示すように、調整対象の流体OAを冷媒rと熱交換させる温調側熱交換器Niと、冷媒rを吸放熱原Aと熱交換させる熱源側熱交換器Noとを設けるとともに、冷媒rを圧縮機Cmp→熱源側熱交換器No→膨張手段Ex→温調側熱交換器Ni→圧縮機Cmpの順で循環させる冷却用循環状態(図中、実線の矢印で示す)と、冷媒rを圧縮機Cmp→温調側熱交換器Ni→膨張手段Ex→熱源側熱交換器No→圧縮機Cmpの順で循環させる加熱用循環状態(図中、破線の矢印で示す)とに、冷媒回路RCにおける冷媒rの流れの向きを反転させる四方弁Vを設け、この四方弁Vの切り換え操作により冷却運転と加熱運転との切り換えを行うようにしていた。 Conventionally, in this type of heat pump temperature control device, as shown in FIG. 12, the temperature adjustment side heat exchanger Ni that exchanges heat between the fluid OA to be adjusted and the refrigerant r, and the heat exchange between the refrigerant r and the heat absorbing / dissipating source A And a cooling circulation state in which the refrigerant r is circulated in the order of the compressor Cmp → the heat source side heat exchanger No → the expansion means Ex → the temperature adjustment side heat exchanger Ni → the compressor Cmp. (Indicated by a solid arrow in the figure) and a circulating state for heating in which the refrigerant r is circulated in the order of the compressor Cmp → the temperature adjustment side heat exchanger Ni → the expansion means Ex → the heat source side heat exchanger No → the compressor Cmp. A four-way valve V that reverses the direction of the flow of the refrigerant r in the refrigerant circuit RC is provided in the refrigerant circuit RC (indicated by a dashed arrow in the figure), and switching between the cooling operation and the heating operation is performed by the switching operation of the four-way valve V. It was like that.
即ち、冷却運転(実線の矢印)では、熱源側熱交換器Noを凝縮器として機能させるとともに、温調側熱交換器Niを蒸発器として機能させて、調整対象の流体OAを温調側熱交換器Niにおいて蒸発過程の冷媒rと熱交換させることで冷却するようにし、一方、加熱運転(破線の矢印)では、逆に、熱源側熱交換器Noを蒸発器として機能させるとともに、温調側熱交換器Niを凝縮器として機能させて、調整対象の流体OAを温調側熱交換器Niにおいて凝縮過程の冷媒rと熱交換させることで加熱するようにしていた。 That is, in the cooling operation (solid arrow), the heat source side heat exchanger No. functions as a condenser, and the temperature adjustment side heat exchanger Ni functions as an evaporator, so that the fluid OA to be adjusted is temperature adjusted side heat. In the exchanger Ni, cooling is performed by exchanging heat with the refrigerant r in the evaporation process. On the other hand, in the heating operation (broken arrow), the heat source side heat exchanger No. functions as an evaporator and temperature control is performed. The side heat exchanger Ni is caused to function as a condenser, and the fluid OA to be adjusted is heated by exchanging heat with the refrigerant r in the condensation process in the temperature adjustment side heat exchanger Ni.
しかし、上記した従来のヒートポンプ式温調装置では、冷媒回路RCのほぼ全体(具体的には、圧縮機Cmpと四方弁Vとの間の部分を除く全ての回路部分)について冷媒rの流れの向きを反転させることで冷却運転と加熱運転との切り換えを行うため、その切り換えの際には一時的にせよ圧縮機Cmpの運転を停止して、冷媒回路RCにおける冷媒rの流れを全体的に停止させることが必要で、その停止期間中は、冷却負荷や加熱負荷に対して全く対応できなくなり、この点で、装置の性能が低く制限される問題があった。 However, in the above-described conventional heat pump temperature control device, the flow of the refrigerant r is substantially the entire refrigerant circuit RC (specifically, all circuit portions except for the portion between the compressor Cmp and the four-way valve V). Since the switching between the cooling operation and the heating operation is performed by reversing the direction, the operation of the compressor Cmp is temporarily stopped at the time of the switching, and the flow of the refrigerant r in the refrigerant circuit RC is totally changed. During the stop period, it is impossible to cope with the cooling load and the heating load. In this respect, there is a problem that the performance of the apparatus is limited to be low.
また、圧縮機Cmpの出力調整範囲には下限値が存在して、冷却負荷や加熱負荷の低下に対し圧縮機Cmpの出力を下限値未満には低下させることができないため、冷却運転での圧縮機Cmpの出力調整で対応できる負荷範囲と加熱運転での圧縮機Cmpの出力調整で対応できる負荷範囲との間には、対応不能な負荷範囲が存在し、この点からも、装置性能が低く制限される問題があった。 In addition, there is a lower limit in the output adjustment range of the compressor Cmp, and the output of the compressor Cmp cannot be reduced below the lower limit with respect to a decrease in cooling load or heating load. There is a load range that cannot be handled between the load range that can be handled by adjusting the output of the compressor Cmp and the load range that can be handled by adjusting the output of the compressor Cmp during heating operation. There was a limited problem.
この実情に鑑み、本発明の主たる課題は、上記の如き問題を一挙に解消して、ヒートポンプ式温調装置の装置性能を効果的に高める点にある。 In view of this situation, the main problem of the present invention is to solve the above problems at once and to effectively improve the performance of the heat pump temperature control device.
本発明の第1特徴構成はヒートポンプ式温調装置に係り、その特徴は、
圧縮機により冷媒を循環させる蒸気圧縮式の冷媒回路を備え、
流体の冷却負荷を処理する冷却運転と前記流体の加熱負荷を処理する加熱運転との切り換え実施を可能にしたヒートポンプ式温調装置であって、
前記冷媒回路における蒸発器として、冷媒を前記流体と熱交換させる流体冷却器としての冷却用蒸発器と、冷媒を吸熱源と熱交換させる吸熱用蒸発器とを各別に設け、
前記冷媒回路における凝縮器として、冷媒を前記流体と熱交換させる流体加熱器としての加熱用凝縮器と、冷媒を放熱源と熱交換させる放熱用凝縮器とを各別に設け、
前記冷却用蒸発器に通過させる冷媒と前記吸熱用蒸発器に通過させる冷媒との分流比を調整する蒸発側の分流比調整手段を設けるとともに、
この蒸発側の分流比調整手段による分流比調整とは独立して、前記加熱用凝縮器に通過させる冷媒と前記放熱用凝縮器に通過させる冷媒との分流比を調整する凝縮側の分流比調整手段を設けてある点にある。
The first characteristic configuration of the present invention relates to a heat pump temperature control device,
Provided with a vapor compression refrigerant circuit that circulates refrigerant with a compressor,
A heat pump temperature control device that enables switching between a cooling operation for processing a cooling load of a fluid and a heating operation for processing a heating load of the fluid,
As an evaporator in the refrigerant circuit, a cooling evaporator as a fluid cooler for exchanging heat between the refrigerant and the fluid, and an endothermic evaporator for exchanging heat between the refrigerant and an endothermic source are provided separately.
As the condenser in the refrigerant circuit, a heating condenser as a fluid heater for exchanging heat between the refrigerant and the fluid, and a heat dissipating condenser for exchanging heat between the refrigerant and a heat radiation source are provided separately.
Providing an evaporation-side diversion ratio adjusting means for adjusting a diversion ratio between the refrigerant that passes through the cooling evaporator and the refrigerant that passes through the endothermic evaporator;
Independently of the diversion ratio adjustment by the diversion ratio adjustment means on the evaporation side, the diversion ratio adjustment on the condensation side that adjusts the diversion ratio between the refrigerant that passes through the heating condenser and the refrigerant that passes through the heat dissipation condenser Means is provided.
この構成によれば、圧縮機の出力は一定に保ちながらも、冷却運転では、蒸発側の分流比調整手段による分流比調整において、冷却用蒸発器に通過させる側の冷媒の流量比率を小さくするほど、冷却用蒸発器での流体に対する冷却量を小さくすることができ、また、加熱運転では、凝縮側の分流比調整手段による分流比調整において、加熱用凝縮器に通過させる側の冷媒の流量比率を小さくするほど、加熱用凝縮器での流体に対する加熱量を小さくすることができる。 According to this configuration, while the output of the compressor is kept constant, in the cooling operation, the flow rate ratio of the refrigerant on the side to be passed through the cooling evaporator is reduced in the diversion ratio adjustment by the evaporation side diversion ratio adjusting means. The cooling amount for the fluid in the cooling evaporator can be reduced, and in the heating operation, the flow rate of the refrigerant on the side to be passed to the heating condenser in the diversion ratio adjustment by the diversion ratio adjustment means on the condensation side The smaller the ratio, the smaller the heating amount for the fluid in the heating condenser.
そして、このことにより、冷却運転で対応することができる負荷範囲と加熱運転で対応することができる負荷範囲とを実質的に連続させることができて、それら対応可能な負荷範囲どうしの間に対応不能な負荷範囲が介在するのを回避することができる。 As a result, the load range that can be handled by the cooling operation and the load range that can be handled by the heating operation can be made substantially continuous, and the load ranges that can be handled can be handled. It is possible to avoid an impossible load range.
また、上記構成によれば、冷却用蒸発器での流体に対する冷却量と加熱用凝縮器での流体に対する加熱量とのバランスを変えることで、冷却運転状態と加熱運転状態との夫々を実質的に現出することができるから、蒸発側及び凝縮側の分流比調整手段による分流比調整だけで、冷却運転と加熱運転との切り換えを行うことができる。 Further, according to the above configuration, the cooling operation state and the heating operation state are substantially changed by changing the balance between the cooling amount for the fluid in the cooling evaporator and the heating amount for the fluid in the heating condenser. Therefore, switching between the cooling operation and the heating operation can be performed only by adjusting the diversion ratio by the diversion ratio adjustment means on the evaporation side and the condensation side.
即ち、このことにより、冷却運転と加熱運転との切り換えを四方弁により行う従来装置のように、冷却運転と加熱運転との切り換えの際に一時的にせよ圧縮機の運転を停止する期間が必要になることを回避することができる。 In other words, this requires a period for temporarily stopping the compressor operation when switching between the cooling operation and the heating operation, as in the case of a conventional device in which switching between the cooling operation and the heating operation is performed by a four-way valve. Can be avoided.
したがって、この構成によれば、圧縮機の一時的な運転停止を伴うことなく、また、負荷変化に対して温調出力を常に適切に追従させながら、冷却運転と加熱運転との切り換えを行うことができ、この点で、従来装置に比べ装置性能を効果的に高めることができる。 Therefore, according to this configuration, the switching between the cooling operation and the heating operation can be performed without causing the temporary operation stop of the compressor and constantly following the temperature control output appropriately with respect to the load change. In this respect, the device performance can be effectively enhanced as compared with the conventional device.
また、上記構成の実施において、流体の温調負荷が冷却負荷から加熱負荷に変化するのに伴い冷却運転から加熱運転への切り換えを自動的に実行し、また、流体の温調負荷が加熱負荷から冷却負荷に変化するのに伴い加熱運転から冷却運転への切り換えを自動的に実行する構成にすれば、装置の利便性も一層高めることができる。 In addition, in the implementation of the above configuration, the switching from the cooling operation to the heating operation is automatically executed as the fluid temperature control load changes from the cooling load to the heating load, and the fluid temperature control load is changed to the heating load. If the configuration is such that the switching from the heating operation to the cooling operation is automatically performed in accordance with the change from the cooling load to the cooling load, the convenience of the apparatus can be further enhanced.
なお、本発明で言う「分流比の調整」とは、一方の冷媒の流量比率を0%にすることを含む調整であってよい。 The “adjustment of the diversion ratio” referred to in the present invention may be an adjustment including setting the flow rate ratio of one refrigerant to 0%.
本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記冷却運転として、前記蒸発側の分流比調整手段による分流比調整において前記冷却用蒸発器に通過させる側の冷媒の流量比率を最大化した状態で、前記圧縮機の出力を前記流体の冷却負荷に応じて調整する通常冷却運転と、
前記圧縮機の出力を最小化した状態で、前記冷却用蒸発器に通過させる冷媒と前記吸熱用蒸発器に通過させる冷媒との分流比を前記流体の冷却負荷に応じて前記蒸発側の分流比調整手段により調整する低負荷冷却運転とを、選択的に実施し、
前記加熱運転として、前記凝縮側の分流比調整手段による分流比調整において前記加熱用凝縮器に通過させる側の冷媒の流量比率を最大化した状態で、前記圧縮機の出力を前記流体の加熱負荷に応じて調整する通常加熱運転と、
前記圧縮機の出力を最小化した状態で、前記加熱用凝縮器に通過させる冷媒と前記放熱用凝縮器に通過させる冷媒との分流比を前記流体の加熱負荷に応じて前記凝縮側の分流比調整手段により調整する低負荷加熱運転とを、選択的に実施する構成にしてある点にある。
この構成によれば、冷却負荷が大きい状況では、冷却運転として通常冷却運転を実施し、また、冷却負荷が小さい状況では、冷却運転として低負荷冷却運転を実施するようにして、対応可能な冷却負荷の範囲を大きく確保することができる。
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
As the cooling operation, in the state where the flow rate ratio of the refrigerant passing through the cooling evaporator is maximized in the diversion ratio adjustment by the diversion ratio adjustment means on the evaporation side, the output of the compressor is set to the cooling load of the fluid. Normal cooling operation to adjust according to,
With the output of the compressor minimized, the diversion ratio between the refrigerant passing through the cooling evaporator and the refrigerant passing through the endothermic evaporator is determined according to the cooling load of the fluid. Selectively performing the low-load cooling operation adjusted by the adjusting means,
As the heating operation, in the state where the flow rate ratio of the refrigerant passing through the heating condenser in the diversion ratio adjustment by the condensing side diversion ratio adjusting means is maximized, the output of the compressor is set to the heating load of the fluid. Normal heating operation to adjust according to,
In the state where the output of the compressor is minimized, the diversion ratio between the refrigerant that passes through the heating condenser and the refrigerant that passes through the heat dissipation condenser depends on the heating load of the fluid. The low load heating operation adjusted by the adjusting means is selectively implemented.
According to this configuration, a normal cooling operation is performed as a cooling operation when the cooling load is large, and a low-load cooling operation is performed as a cooling operation when the cooling load is small. A large load range can be secured.
また同様に、加熱負荷が大きい状況では、加熱運転として通常加熱運転を実施し、また、加熱負荷が小さい状況では、加熱運転として低負荷加熱運転を実施するようにして、対応可能な加熱負荷の範囲を大きく確保することができる。 Similarly, when the heating load is large, the normal heating operation is performed as the heating operation, and when the heating load is small, the low load heating operation is performed as the heating operation. A large range can be secured.
本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記通常冷却運転の実施中では、前記圧縮機の出力が最小化したとき、前記低負荷冷却運転への切り換えを実行し、
前記低負荷冷却運転の実施中では、前記蒸発側の分流比調整手段による分流比調整において前記冷却用蒸発器に通過させる側の冷媒の流量比率が最大化したとき、前記通常冷却運転への切り換えを実行し、
前記通常加熱運転の実施中では、前記圧縮機の出力が最小化したとき、前記低負荷加熱運転への切り換えを実行し、
前記低負荷加熱運転の実施中では、前記凝縮側の分流比調整手段による分流比調整において前記加熱用凝縮器に通過させる側の冷媒の流量比率が最大化したとき、前記通常加熱運転への切り換えを実行する構成にしてある点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
During the implementation of the normal cooling operation, when the output of the compressor is minimized, switching to the low-load cooling operation is performed,
During the execution of the low load cooling operation, when the flow rate ratio of the refrigerant passing through the cooling evaporator is maximized in the diversion ratio adjustment by the evaporation diversion ratio adjustment means, the switching to the normal cooling operation is performed. Run
During the implementation of the normal heating operation, when the output of the compressor is minimized, switching to the low load heating operation is performed,
During the execution of the low load heating operation, when the flow rate ratio of the refrigerant passing through the heating condenser is maximized in the diversion ratio adjustment by the condensing side diversion ratio adjusting means, switching to the normal heating operation is performed. The point is that it is configured to execute.
この構成によれば、冷却負荷の変化に伴い通常冷却運転と低負荷冷却運転との切り換えが自動的に行われ、また、加熱負荷の変化に伴い通常加熱運転と低負荷加熱運転との切り換えが自動的に行われるから、装置の利便性を一層高めることができる。 According to this configuration, the switching between the normal cooling operation and the low load cooling operation is automatically performed according to the change in the cooling load, and the switching between the normal heating operation and the low load heating operation is performed according to the change in the heating load. Since it is performed automatically, the convenience of the apparatus can be further enhanced.
本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記冷媒回路は、前記圧縮機から吐出される冷媒を2流に分流して、一方の分流冷媒を前記加熱用凝縮器に通過させ、他方の分流冷媒と前記加熱用凝縮器から送出される凝縮冷媒とを合流させて前記放熱用凝縮器に通過させる構成にしてある点にある。
The fourth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
The refrigerant circuit divides the refrigerant discharged from the compressor into two flows, passes one of the divided refrigerants through the heating condenser, and condenses sent from the other divided refrigerant and the heating condenser. The refrigerant is combined and passed through the heat dissipation condenser.
この構成によれば、冷媒を調整対象の流体と熱交換させる加熱用凝縮器と、冷媒を放熱源と熱交換させる放熱用凝縮器との夫々で冷媒を凝縮させながらも、次に膨張手段を通じて蒸発工程に送る冷媒の状態を放熱用凝縮器において均一にすることができるから、冷媒回路の運転を安定化することができる。 According to this configuration, while condensing the refrigerant in each of the heating condenser that exchanges heat between the refrigerant and the fluid to be adjusted and the heat radiation condenser that exchanges heat between the refrigerant and the heat radiation source, Since the state of the refrigerant sent to the evaporation step can be made uniform in the heat dissipation condenser, the operation of the refrigerant circuit can be stabilized.
本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記流体が空気であり、
前記冷却運転では、前記空気を前記冷却用蒸発器において冷却除湿し、それに続いて、冷却除湿した前記空気を前記加熱用凝縮器において所要温度まで再熱する構成にしてある点にある。
The fifth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any of the first to fourth characteristic configurations,
The fluid is air;
In the cooling operation, the air is cooled and dehumidified in the cooling evaporator, and then the cooled and dehumidified air is reheated to a required temperature in the heating condenser.
この構成によれば、冷却運転において調整対象の空気を冷却除湿しながら、その空気を所要温度に調整できるから、空気の温度調整とともに冷却運転において空気の除湿も要求されるような空調用途に好適な装置することができる。 According to this configuration, the air to be adjusted can be adjusted to the required temperature while cooling and dehumidifying the air to be adjusted in the cooling operation. Can be a perfect device.
図1は、ヒートポンプ式温調装置の一例であるヒートポンプ式空調機を示し、このヒートポンプ式空調機は、導入した外気OAを調整対象の流体として、その導入外気OAの温湿度を調整する。 FIG. 1 shows a heat pump type air conditioner which is an example of a heat pump type temperature control device, and this heat pump type air conditioner adjusts the temperature and humidity of the introduced outside air OA using the introduced outside air OA as a fluid to be adjusted.
また、このヒートポンプ式空調機は、圧縮機Cmpにより冷媒rを循環させる蒸気圧縮式の冷媒回路RCを備えている。 In addition, the heat pump air conditioner includes a vapor compression refrigerant circuit RC that circulates the refrigerant r by the compressor Cmp.
1は空調機ケーシングであり、この空調機ケーシング1の一端には空気入口2を形成し、空調機ケーシング1の他端には空気出口3を形成してある。
空調機ケーシング1の内部には、空気冷却器としてのフィンチューブ型の冷却用蒸発器E1と、空気加熱器としてのフィンチューブ型の加熱用凝縮器C1と、水蒸気sの噴霧により空気を加湿する加湿器4とを、その順で空気入口2の側から空気出口3の側へ並べて装備してある。
Inside the
空調機ケーシング1における空気出口3には給気用送風機6を装備してあり、この給気用送風機6の運転により、空気入口2を通じて調整対象の外気OAを空調機ケーシング1に導入するとともに、空調機ケーシング1の内部で温湿度調整した外気を調整済み空気SAとして空気出口3を通じ空調機ケーシング1から空調対象空間5に送出する。
The
7Aは放熱用室外機であり、この放熱用室外機7Aには、放熱器としてのフィンチューブ型の放熱用凝縮器C2と、この放熱用凝縮器C2に対し放熱源として放熱用空気Aa(例えば、外気など)を通風する放熱用ファン8とを装備してある。
また、この放熱用室外機7Aには、冷媒回路RCにおける圧縮機Cmpも装備してある。
Further, the
7Bは吸熱用室外機であり、この吸熱用室外機7Bには、吸熱器としてのフィンチューブ型の吸熱用蒸発器E2と、この吸熱用蒸発器E2に対し吸熱源として吸熱用空気Ab(例えば、外気や空調対象空間5からの排出空気など)を通風する吸熱用ファン9とを装備してある。
冷媒回路RCを構成するのに、圧縮機Cmpの冷媒吐出口は、冷媒路10を通じて加熱用凝縮器C1の冷媒入口に接続し、加熱用凝縮器C1の冷媒出口は、冷媒路11を通じて放熱用凝縮器C2の冷媒入口に接続してある。
冷媒路10と冷媒路11とは、バイパス冷媒路12により短絡的に接続してあり、圧縮機Cmpからの吐出冷媒rの一部は、バイパス冷媒路12を通じて直接に放熱用凝縮器C2の冷媒入口に導くようにしてある。
In configuring the refrigerant circuit RC, the refrigerant discharge port of the compressor Cmp is connected to the refrigerant inlet of the heating condenser C1 through the
The
即ち、この冷媒回路RCでは、圧縮機Cmpから吐出される冷媒rを2流に分流して、一方の分流冷媒rを加熱用凝縮器C1に通過させ、他方の分流冷媒rと加熱用凝縮器C1から送出される凝縮冷媒rとを合流させて放熱用凝縮器C2に通過させる。 That is, in this refrigerant circuit RC, the refrigerant r discharged from the compressor Cmp is divided into two flows, one of the divided refrigerants r is passed through the heating condenser C1, and the other divided refrigerant r and the heating condenser are passed. The condensed refrigerant r delivered from C1 is merged and passed through the heat radiation condenser C2.
そして、加熱用凝縮器C1の冷媒入口には、加熱用流量調整弁Mv1を装備し、バイパス冷媒路12には、放熱用流量調整弁Mv2を装備してある。
The refrigerant inlet of the heating condenser C1 is equipped with a heating flow rate adjustment valve Mv1, and the
これら加熱用流量調整弁Mv1及び放熱用流量調整弁Mv2は、加熱用凝縮器C1に通過させる冷媒rと放熱用凝縮器C2に通過させる冷媒rとの分流比を調整する凝縮側の分流比調整手段を構成する。 The heating flow rate adjustment valve Mv1 and the heat dissipation flow rate adjustment valve Mv2 are used to adjust the diversion ratio on the condensing side for adjusting the diversion ratio between the refrigerant r passed through the heating condenser C1 and the refrigerant r passed through the heat dissipation condenser C2. Configure the means.
放熱用凝縮器C2の冷媒出口は、冷媒路13を通じて冷却用蒸発器E1の冷媒入口に接続し、冷却用蒸発器E1の冷媒出口は冷媒路14を通じて圧縮機Cmpの冷媒吸込口に接続してある。
The refrigerant outlet of the heat dissipating condenser C2 is connected to the refrigerant inlet of the cooling evaporator E1 through the
また、冷媒路13から分岐した冷媒路15は、吸熱用蒸発器E2の冷媒入口に接続し、吸熱用蒸発器E2の冷媒出口は、冷媒路16を通じて冷媒路14に接続してある。
The
そして、冷却用蒸発器E1の冷媒入口には、冷却用膨張弁Ex1を装備し、冷却用蒸発器E1の冷媒出口には、蒸発圧力制御弁Erを装備し、吸熱用蒸発器E2の冷媒入口には、吸熱用膨張弁Ex2を装備してある。 The refrigerant inlet of the cooling evaporator E1 is equipped with a cooling expansion valve Ex1, the refrigerant outlet of the cooling evaporator E1 is equipped with an evaporation pressure control valve Er, and the refrigerant inlet of the endothermic evaporator E2 is installed. Is equipped with an endothermic expansion valve Ex2.
これら冷却用膨張弁Ex1及び吸熱用膨張弁Ex2は、膨張弁であると同時に、冷却用蒸発器E1に通過させる冷媒rと吸熱用蒸発器E2に通過させる冷媒rとの分流比を調整する蒸発側の分流比調整手段を構成する。 The cooling expansion valve Ex1 and the endothermic expansion valve Ex2 are expansion valves, and at the same time, an evaporation that adjusts the diversion ratio between the refrigerant r that passes through the cooling evaporator E1 and the refrigerant r that passes through the endothermic evaporator E2. Side diversion ratio adjusting means.
なお、圧縮機Cmpからの吐出後に2流に分流された冷媒rは、放熱用凝縮器C2への流入段階で合流し、また、冷却用蒸発器E1及び吸熱用蒸発器E2の夫々から送出される冷媒rは、圧縮機Cmpへの戻し段階で合流するから、前記した凝縮側の分流比調整手段Mv1,Mv2による分流比調整と、上記した蒸発側の分流比調整手段Ex1,Ex2による分流比調整とは、互いに独立したものになる。 The refrigerant r that has been split into two streams after being discharged from the compressor Cmp joins at the inflow stage to the heat radiation condenser C2, and is sent out from each of the cooling evaporator E1 and the endothermic evaporator E2. Since the refrigerant r is combined at the return stage to the compressor Cmp, the diversion ratio adjustment by the condensation side diversion ratio adjusting means Mv1 and Mv2 and the diversion ratio by the evaporation side diversion ratio adjusting means Ex1 and Ex2 are described above. Adjustments are independent of each other.
一方、センサ類については、調整対象である外気OAの温度T0を検出する温度センサS0、冷却用蒸発器E1における出口空気の温度T1を検出する温度センサS1、空調機ケーシング1から送出する調整済み空気SAの温度T2を検出する温度センサS2、同じく調整済み空気SAの湿度X2を検出する湿度センサS3を設けてある。 On the other hand, with respect to the sensors, a temperature sensor S0 that detects the temperature T0 of the outside air OA to be adjusted, a temperature sensor S1 that detects the temperature T1 of the outlet air in the cooling evaporator E1, and an adjustment that is sent from the air conditioner casing 1 A temperature sensor S2 for detecting the temperature T2 of the air SA and a humidity sensor S3 for detecting the humidity X2 of the adjusted air SA are provided.
また、その他のセンサ類として、圧縮機Cmpの吸込圧力Ps、冷却用蒸発器E1における出口冷媒rの過熱度Sh1、吸熱用蒸発器E2における出口冷媒rの過熱度Sh2、放熱用凝縮器C2での冷媒rの凝縮圧力Pcなどを検出するセンサ類(図示省略)を設けてある。 Other sensors include the suction pressure Ps of the compressor Cmp, the degree of superheat Sh1 of the outlet refrigerant r in the cooling evaporator E1, the degree of superheat Sh2 of the outlet refrigerant r in the endothermic evaporator E2, and the heat radiation condenser C2. Sensors (not shown) for detecting the condensing pressure Pc of the refrigerant r are provided.
このヒートポンプ式空調機では、基本的に、導入外気OAの冷却負荷を処理する冷却運転と導入外気OAの加熱負荷を処理する加熱運転とを択一的に実施する。 In this heat pump type air conditioner, basically, a cooling operation for processing the cooling load of the introduced outside air OA and a heating operation for processing the heating load of the introduced outside air OA are alternatively performed.
具体的には、冷却運転では、空調機ケーシング1に導入した外気OAを、冷却用蒸発器E1において蒸発過程の冷媒rと熱交換させることで冷却除湿し、続いて、この冷却除湿した空気を、加熱用凝縮器C1において凝縮過程の冷媒rと熱交換させることで再熱(冷却除湿後の加熱)し、この再熱した空気を、必要に応じ加湿器4により加湿した上で、調整済み空気SAとして空調機ケーシング1から空調対象空間5に送出する。
Specifically, in the cooling operation, the outside air OA introduced into the
また、加熱運転では、空調機ケーシング1に導入した外気OAを、加熱用凝縮器C1において凝縮過程の冷媒rと熱交換させることで加熱し、続いて、この加熱した空気を、加湿器4により加湿し、この加湿した空気を、調整済み空気SAとして空調機ケーシング1から空調対象空間5に送出する。
In the heating operation, the outside air OA introduced into the
冷却運転には、冷却負荷が大きい状況で実施する「通常冷却運転」と、冷却負荷が小さい状況で実施する「低負荷冷却運転」との2種があり、通常冷却運転では、図2に示すように、圧縮機Cmpからの吐出冷媒rを2流に分流し、一方の分流冷媒rは、加熱用流量調整弁Mv1を通じ加熱用凝縮器C1に供給して、この加熱用凝縮器C1での凝縮過程で冷却除湿後の空気と熱交換させる。 There are two types of cooling operation, “normal cooling operation” performed under a large cooling load condition and “low load cooling operation” performed under a small cooling load condition. As described above, the refrigerant r discharged from the compressor Cmp is divided into two flows, and one of the refrigerants r is supplied to the heating condenser C1 through the heating flow rate adjusting valve Mv1, and is supplied to the heating condenser C1. Heat exchange with air after cooling and dehumidification in the condensation process.
これに併行して、他方の分流冷媒rは、放熱用流量調整弁Mv2を通じ、加熱用凝縮器C1からの送出冷媒rと合流させた状態で放熱用凝縮器C2に供給して、この放熱用凝縮器C2での凝縮過程で放熱用空気Aaと熱交換させる。 In parallel with this, the other shunt refrigerant r is supplied to the heat radiation condenser C2 through the heat radiation flow adjustment valve Mv2 in a state where it is combined with the refrigerant r sent out from the heating condenser C1, and this heat radiation refrigerant C In the condensation process in the condenser C2, heat is exchanged with the heat radiation air Aa.
放熱用凝縮器C2から送出される凝縮冷媒rは、冷却用膨張弁Ex1を通じ冷却用蒸発器E1に供給して、この冷却用蒸発器E1での蒸発過程で導入外気OAと熱交換させる。 The condensed refrigerant r delivered from the heat radiation condenser C2 is supplied to the cooling evaporator E1 through the cooling expansion valve Ex1, and is exchanged with the introduced outside air OA in the evaporation process in the cooling evaporator E1.
そして、冷却用蒸発器E1から送出される蒸発冷媒rは、蒸発圧力制御弁Erを通じて圧縮機Cmpに戻す。 And the evaporative refrigerant | coolant r sent out from the evaporator E1 for cooling returns to the compressor Cmp through the evaporating pressure control valve Er.
これに対し、低負荷冷却運転では、図3に示すように、圧縮機Cmpからの吐出冷媒rを2流に分流し、一方の分流冷媒rは、加熱用流量調整弁Mv1を通じ加熱用凝縮器C1に供給して、この加熱用凝縮器C1での凝縮過程で冷却除湿後の空気と熱交換させる。 On the other hand, in the low load cooling operation, as shown in FIG. 3, the refrigerant r discharged from the compressor Cmp is divided into two flows, and one of the refrigerants r is supplied to the heating condenser through the heating flow rate adjustment valve Mv1. It supplies to C1, and heat-exchanges with the air after cooling dehumidification in the condensation process in this condenser C1 for a heating.
これに併行して、他方の分流冷媒rは、放熱用流量調整弁Mv2を通じ、加熱用凝縮器C1からの送出冷媒rと合流させた状態で放熱用凝縮器C2に供給して、この放熱用凝縮器C2での凝縮過程で放熱用空気Aaと熱交換させる。 In parallel with this, the other shunt refrigerant r is supplied to the heat radiation condenser C2 through the heat radiation flow adjustment valve Mv2 in a state where it is combined with the refrigerant r sent out from the heating condenser C1, and this heat radiation refrigerant C In the condensation process in the condenser C2, heat is exchanged with the heat radiation air Aa.
放熱用凝縮器C2から送出される凝縮冷媒rは再び2流に分流し、一方の分流冷媒rは、冷却用膨張弁Ex1を通じ冷却用蒸発器E1に供給して、この冷却用蒸発器E1での蒸発過程で導入外気OAと熱交換させる。 The condensed refrigerant r sent out from the heat radiation condenser C2 is again divided into two flows, and one of the divided refrigerants r is supplied to the cooling evaporator E1 through the cooling expansion valve Ex1, and this cooling evaporator E1 In the evaporation process, heat is exchanged with the introduced outside air OA.
これに併行して、他方の分流冷媒rは、吸熱用膨張弁Ex2を通じ吸熱用蒸発器E2に供給して、この吸熱用蒸発器E2での蒸発過程で吸熱用空気Abと熱交換させる。 In parallel with this, the other shunt refrigerant r is supplied to the endothermic evaporator E2 through the endothermic expansion valve Ex2, and exchanges heat with the endothermic air Ab in the evaporation process in the endothermic evaporator E2.
そして、冷却用蒸発器E1から送出される蒸発冷媒rと、吸熱用蒸発器E2から送出される蒸発冷媒rとを合流させて圧縮機Cmpに戻す。 Then, the evaporative refrigerant r delivered from the cooling evaporator E1 and the evaporative refrigerant r delivered from the endothermic evaporator E2 are merged and returned to the compressor Cmp.
同様に、加熱運転には、加熱負荷が大きい状況で実施する「通常加熱運転」と、加熱負荷が小さい状況で実施する「低負荷加熱運転」との2種があり、通常加熱運転では、図4に示すように、圧縮機Cmpからの吐出冷媒rは、その全量を加熱用流量調整弁Mv1を通じ加熱用凝縮器C1に供給して、この加熱用凝縮器C1での凝縮過程で導入外気OAと熱交換させる。 Similarly, there are two types of heating operation, “normal heating operation” performed under a large heating load condition and “low load heating operation” performed under a small heating load condition. As shown in FIG. 4, the entire amount of refrigerant r discharged from the compressor Cmp is supplied to the heating condenser C1 through the heating flow rate adjusting valve Mv1, and introduced outside air OA in the condensation process in the heating condenser C1. Heat exchange.
加熱用凝縮器C1から送出される凝縮冷媒rは、放熱用凝縮器C2及び吸熱用膨張弁Ex2を通じ吸熱用蒸発器E2に供給して、この吸熱用蒸発器E2での蒸発過程で吸熱用空気Abと熱交換させる。 The condensed refrigerant r sent out from the heating condenser C1 is supplied to the endothermic evaporator E2 through the radiating condenser C2 and the endothermic expansion valve Ex2, and the endothermic air is evaporated in the endothermic evaporator E2. Heat exchange with Ab.
そして、吸熱用蒸発器E2から送出される蒸発冷媒rは圧縮機Cmpに戻す。 Then, the evaporative refrigerant r delivered from the endothermic evaporator E2 is returned to the compressor Cmp.
これに対し、低負荷加熱運転では、図5に示すように、圧縮機Cmpからの吐出冷媒rを2流に分流し、一方の分流冷媒rは、加熱用流量調整弁Mv1を通じ加熱用凝縮器C1に供給して、この加熱用凝縮器C1での凝縮過程で導入外気OAと熱交換させる。 On the other hand, in the low load heating operation, as shown in FIG. 5, the discharge refrigerant r from the compressor Cmp is divided into two flows, and one of the divided refrigerant r passes through the heating flow rate adjustment valve Mv1. C1 is supplied, and heat is exchanged with the introduced outside air OA in the condensation process in the heating condenser C1.
これに併行して、他方の分流冷媒rは、放熱用流量調整弁Mv2を通じ、加熱用凝縮器C1からの送出冷媒と合流させた状態で放熱用凝縮器C2に供給して、この放熱用凝縮器C2での凝縮過程で放熱用空気Aaと熱交換させる。 In parallel with this, the other shunt refrigerant r is supplied to the heat radiation condenser C2 through the heat radiation flow rate adjustment valve Mv2 in a state of being merged with the refrigerant sent from the heating condenser C1, and this heat radiation condensation is performed. The heat is exchanged with the heat radiation air Aa in the condensation process in the vessel C2.
放熱用凝縮器C2から送出される凝縮冷媒rは、その全量を吸熱用膨張弁Ex2を通じ吸熱用蒸発器E2に供給して、この吸熱用蒸発器E2での蒸発過程で吸熱用空気Abと熱交換させる。 The entire amount of the condensed refrigerant r delivered from the heat radiation condenser C2 is supplied to the heat absorption evaporator E2 through the heat absorption expansion valve Ex2, and the heat absorption air Ab and heat are evaporated in the heat absorption evaporator E2. Let them exchange.
そして、吸熱用蒸発器E2から送出される蒸発冷媒rは圧縮機Cmpに戻す。 Then, the evaporative refrigerant r delivered from the endothermic evaporator E2 is returned to the compressor Cmp.
即ち、低負荷冷却運転では、放熱用凝縮器C2から送出される凝縮冷媒rを、冷却用蒸発器E1で導入外気OAに対し冷却作用させるのに加えて、吸熱用蒸発器E2でも吸熱用空気Aaに対して吸熱作用(換言すれば冷却作用)させることで、圧縮機Cmpの必要出力Gを高く保つようにし、これにより、導入外気OAの冷却負荷が小さい状況でも、圧縮機Cmpの出力Gが調整範囲の下限値Gmin未満になることを回避して、冷却運転を継続できるようにする。 That is, in the low load cooling operation, the condensed refrigerant r delivered from the heat radiation condenser C2 is cooled by the cooling evaporator E1 with respect to the introduced outside air OA, and the endothermic evaporator E2 also performs the heat absorption air. An endothermic action (in other words, a cooling action) is performed on Aa, so that the required output G of the compressor Cmp is kept high, so that the output G of the compressor Cmp can be maintained even when the cooling load of the introduced outside air OA is small. Is less than the lower limit value Gmin of the adjustment range, so that the cooling operation can be continued.
また同様に、低負荷加熱運転では、圧縮機Cmpからの吐出冷媒rを、加熱用凝縮器C1で導入外気OAに対して加熱作用させるのに加えて、放熱用凝縮器C2でも放熱用空気Aaに対して放熱作用(換言すれば加熱作用)させることで、圧縮機Cmpの必要出力Gを高く保つようにし、これにより、導入外気OAの加熱負荷が小さい状況でも、圧縮機Cmpの出力Gが調整範囲の下限値Gmin未満になることを回避して、加熱運転を継続できるようにする。 Similarly, in the low load heating operation, in addition to heating the discharged refrigerant r from the compressor Cmp to the introduced outside air OA by the heating condenser C1, the radiating air Aa is also discharged by the radiating condenser C2. The required output G of the compressor Cmp is kept high by performing a heat dissipating action (in other words, a heating action), so that the output G of the compressor Cmp is reduced even in a situation where the heating load of the introduced outside air OA is small. The heating operation can be continued by avoiding being less than the lower limit Gmin of the adjustment range.
17は制御装置であり、この制御装置17は、上記4種の各運転において次の制御を実行する。
(通常冷却運転)図6参照
a.圧縮機Cmpにおける吸込圧力Psの検出値に基づき圧縮機Cmpの出力G(具体的には圧縮機モータの回転周波数)を調整することで、圧縮機Cmpの吸込圧力Psを設定値に調整する。
(Normal cooling operation) See Fig. 6 a. The suction pressure Ps of the compressor Cmp is adjusted to a set value by adjusting the output G of the compressor Cmp (specifically, the rotational frequency of the compressor motor) based on the detected value of the suction pressure Ps in the compressor Cmp.
b.冷却用蒸発器E1における出口冷媒rの過熱度Sh1の検出値に基づき冷却用膨張弁Ex1の開度を調整することで、冷却用蒸発器E1における出口冷媒rの過熱度Sh1を設定値に調整する。 b. The degree of superheat Sh1 of the outlet refrigerant r in the cooling evaporator E1 is adjusted to a set value by adjusting the opening of the cooling expansion valve Ex1 based on the detected value of the degree of superheat Sh1 of the outlet refrigerant r in the cooling evaporator E1. To do.
c.吸熱用膨張弁Ex2は全閉状態に固定する。 c. The endothermic expansion valve Ex2 is fixed in a fully closed state.
d.冷却用蒸発器E1における出口空気の温度T1の検出値に基づき蒸発圧力制御弁Erの開度を調整することで、冷却用蒸発器E1における出口空気の温度T1を設定値Ts1に調整する。 d. By adjusting the opening degree of the evaporation pressure control valve Er based on the detected value of the outlet air temperature T1 in the cooling evaporator E1, the outlet air temperature T1 in the cooling evaporator E1 is adjusted to the set value Ts1.
e.調整済み空気SAの温度T2の検出値に基づき加熱用流量調整弁Mv1の開度を調整することで、空調対象空間5に送出する調整済み空気SAの温度T2を設定値Ts2に調整する。
e. The temperature T2 of the adjusted air SA sent to the air-
f.放熱用流量調整弁Mv2の開度を、加熱用流量調整弁Mv1の開度とは背反させる状態に調整する。 f. The opening degree of the heat dissipation flow rate adjustment valve Mv2 is adjusted to a state opposite to the opening degree of the heating flow rate adjustment valve Mv1.
g.調整済み空気SAの湿度X2の検出値に基づき加湿用流量調整弁Mv3の開度を調整して、加湿器4での水蒸気sの噴霧量を調整することで、空調対象空間5に送出する調整済み空気SAの湿度X2を設定値Xs2に調整する。
g. Adjustment sent out to the air-
h.放熱用凝縮器C2における冷媒rの凝縮圧力Pcの検出値に基づき放熱用ファン8の出力を調整することで、放熱用凝縮器C2における冷媒rの凝縮圧力Pcを設定値に調整する。 h. By adjusting the output of the heat radiation fan 8 based on the detected value of the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2, the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2 is adjusted to a set value.
(低負荷冷却運転)同図6参照
a.圧縮機Cmpの出力Gは調整範囲の下限値Gminに固定する。
(Low-load cooling operation) See Fig. 6 a. The output G of the compressor Cmp is fixed to the lower limit value Gmin of the adjustment range.
b.通常冷却運転と同様、冷却用蒸発器E1における出口冷媒rの過熱度Sh1の検出値に基づき冷却用膨張弁Ex1の開度を調整することで、冷却用蒸発器E1における出口冷媒rの過熱度Sh1を設定値に調整する。 b. Similar to the normal cooling operation, the degree of superheat of the outlet refrigerant r in the cooling evaporator E1 is adjusted by adjusting the opening of the cooling expansion valve Ex1 based on the detected value of the degree of superheat Sh1 of the outlet refrigerant r in the cooling evaporator E1. Sh1 is adjusted to a set value.
c.圧縮機Cmpにおける吸込圧力Psの検出値に基づき吸熱用膨張弁Ex2の開度を調整することで、圧縮機Cmpの吸込圧力Psを設定値に調整する。 c. The suction pressure Ps of the compressor Cmp is adjusted to a set value by adjusting the opening of the heat absorption expansion valve Ex2 based on the detected value of the suction pressure Ps in the compressor Cmp.
d.通常冷却運転と同様、冷却用蒸発器E1における出口空気の温度T1の検出値に基づき蒸発圧力制御弁Erの開度を調整することで、冷却用蒸発器E1における出口空気の温度T1を設定値Ts1に調整する。 d. As in the normal cooling operation, the outlet air temperature T1 in the cooling evaporator E1 is set by adjusting the opening of the evaporation pressure control valve Er based on the detected value of the outlet air temperature T1 in the cooling evaporator E1. Adjust to Ts1.
e.通常冷却運転と同様、調整済み空気SAの温度T2の検出値に基づき加熱用流量調整弁Mv1の開度を調整することで、空調対象空間5に送出する調整済み空気SAの温度T2を設定値Ts2に調整する。
e. Similar to the normal cooling operation, the temperature T2 of the adjusted air SA sent to the air-
f.通常冷却運転と同様、放熱用流量調整弁Mv2の開度を、加熱用流量調整弁Mv1の開度とは背反させる状態に調整する。 f. Similar to the normal cooling operation, the opening degree of the heat-dissipation flow rate adjustment valve Mv2 is adjusted to be in a state opposite to that of the heating flow rate adjustment valve Mv1.
g.通常冷却運転と同様、調整済み空気SAの湿度X2の検出値に基づき加湿用流量調整弁Mv3の開度を調整して、加湿器4での水蒸気sの噴霧量を調整することで、空調対象空間5に送出する調整済み空気SAの湿度X2を設定値Xs2に調整する。
g. Similar to the normal cooling operation, the opening degree of the humidification flow rate adjustment valve Mv3 is adjusted based on the detected value of the humidity X2 of the adjusted air SA, and the amount of water vapor s sprayed in the humidifier 4 is adjusted. The humidity X2 of the adjusted air SA sent to the
h.通常冷却運転と同様、放熱用凝縮器C2における冷媒rの凝縮圧力Pcの検出値に基づき放熱用ファン8の出力を調整することで、放熱用凝縮器C2における冷媒rの凝縮圧力Pcを設定値に調整する。 h. As with the normal cooling operation, the condensation pressure Pc of the refrigerant r in the heat dissipation condenser C2 is adjusted by adjusting the output of the heat dissipation fan 8 based on the detected value of the condensation pressure Pc of the refrigerant r in the heat dissipation condenser C2. Adjust to.
つまり、通常冷却運転では、前記した蒸発側の分流比調整手段Ex1,Ex2による分流比調整において冷却用蒸発器E1に通過させる側の冷媒rの流量比率を最大化した状態で、圧縮機Cmpの出力Gを導入外気OAの冷却負荷に応じて調整する運転形態を採る。 That is, in the normal cooling operation, in the state where the flow rate ratio of the refrigerant r on the side to be passed through the cooling evaporator E1 is maximized in the diversion ratio adjustment by the evaporation side diversion ratio adjusting means Ex1 and Ex2, the compressor Cmp An operation mode in which the output G is adjusted according to the cooling load of the introduced outside air OA is employed.
これに対して、低負荷冷却運転では、圧縮機Cmpの出力Gを最小化した状態で、冷却用蒸発器E1に通過させる冷媒rと吸熱用蒸発器E2に通過させる冷媒rとの分流比を導入外気OAの冷却負荷に応じて蒸発側の分流比調整手段Ex1,Ex2により調整する運転形態を採る。 On the other hand, in the low load cooling operation, with the output G of the compressor Cmp minimized, the flow dividing ratio between the refrigerant r passed through the cooling evaporator E1 and the refrigerant r passed through the endothermic evaporator E2 is set. An operation mode is adopted in which adjustment is performed by the diversion ratio adjusting means Ex1, Ex2 on the evaporation side according to the cooling load of the introduced outside air OA.
(通常加熱運転)図7参照
a.調整済み空気SAの温度T2の検出値に基づき圧縮機Cmpの出力Gを調整することで、空調対象空間5に送出する調整済み空気SAの温度T2を設定値Ts2に調整する。
(Normal heating operation) See FIG. 7 a. By adjusting the output G of the compressor Cmp based on the detected value of the temperature T2 of the adjusted air SA, the temperature T2 of the adjusted air SA sent to the air-
b.冷却用膨張弁Ex1は全閉状態に固定する。 b. The cooling expansion valve Ex1 is fixed in a fully closed state.
c.導入外気OAの温度T0の検出値が設定閾値Teより小さい状況(T0<Te)では、吸熱用蒸発器E2における出口冷媒rの過熱度Sh2の検出値に基づき吸熱用膨張弁Ex2の開度を調整することで、吸熱用蒸発器E2における出口冷媒rの過熱度Sh2を設定値に調整する。 c. In a situation where the detected value of the temperature T0 of the introduced outside air OA is smaller than the set threshold Te (T0 <Te), the opening degree of the endothermic expansion valve Ex2 is set based on the detected value of the degree of superheat Sh2 of the outlet refrigerant r in the endothermic evaporator E2. By adjusting, the degree of superheat Sh2 of the outlet refrigerant r in the endothermic evaporator E2 is adjusted to a set value.
また、導入外気OAの温度T0の検出値が設定閾値Te以上の状況(T0≧Te)では、圧縮機Cmpにおける吸込圧力Psの検出値に基づき吸熱用膨張弁Ex2の開度を調整することで、圧縮機Cmpの吸込圧力Psを設定値に調整する。 Further, in a situation where the detected value of the temperature T0 of the introduced outside air OA is equal to or higher than the set threshold Te (T0 ≧ Te), the opening degree of the endothermic expansion valve Ex2 is adjusted based on the detected value of the suction pressure Ps in the compressor Cmp. Then, the suction pressure Ps of the compressor Cmp is adjusted to a set value.
d.蒸発圧力制御弁Erは全閉若しくは最小開度状態に固定する。 d. The evaporation pressure control valve Er is fixed in a fully closed state or a minimum opening state.
e.加熱用流量調整弁Mv1は全開状態に固定する。 e. The heating flow rate adjustment valve Mv1 is fixed in a fully open state.
f.放熱用流量調整弁Mv2は全閉状態に固定する。 f. The heat dissipation flow adjustment valve Mv2 is fixed in a fully closed state.
g.冷却運転と同様、調整済み空気SAの湿度X2の検出値に基づき加湿用流量調整弁Mv3の開度を調整して、加湿器4での水蒸気sの噴霧量を調整することで、空調対象空間5に送出する調整済み空気SAの湿度X2を設定値Xs2に調整する。 g. As in the cooling operation, the opening degree of the humidification flow rate adjustment valve Mv3 is adjusted based on the detected value of the humidity X2 of the adjusted air SA, and the amount of water vapor s sprayed in the humidifier 4 is adjusted. The humidity X2 of the adjusted air SA sent to 5 is adjusted to the set value Xs2.
h.冷却運転と同様、放熱用凝縮器C2における冷媒rの凝縮圧力Pcの検出値に基づき放熱用ファン8の出力を調整することで、放熱用凝縮器C2における冷媒rの凝縮圧力Pcを設定値に調整する。 h. Similar to the cooling operation, the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2 is adjusted to the set value by adjusting the output of the heat radiation fan 8 based on the detected value of the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2. adjust.
(低負荷加熱運転)同図7参照
a.圧縮機Cmpの出力Gは調整範囲の下限値Gminに固定する。
(Low load heating operation) See Fig. 7 a. The output G of the compressor Cmp is fixed to the lower limit value Gmin of the adjustment range.
b.通常加熱運転と同様、冷却用膨張弁Ex1は全閉状態に固定する。 b. As in the normal heating operation, the cooling expansion valve Ex1 is fixed in a fully closed state.
c.通常加熱運転と同様、導入外気OAの温度T0の検出値が設定閾値Teより小さい状況(T0<Te)では、吸熱用蒸発器E2における出口冷媒rの過熱度Sh2の検出値に基づき吸熱用膨張弁Ex2の開度を調整することで、吸熱用蒸発器E2における出口冷媒rの過熱度Sh2を設定値に調整する。 c. As in the normal heating operation, in a situation where the detected value of the temperature T0 of the introduced outside air OA is smaller than the set threshold Te (T0 <Te), the endothermic expansion is based on the detected value of the superheat degree Sh2 of the outlet refrigerant r in the endothermic evaporator E2. By adjusting the opening degree of the valve Ex2, the superheat degree Sh2 of the outlet refrigerant r in the endothermic evaporator E2 is adjusted to a set value.
また、導入外気OAの温度T0の検出値が設定閾値Te以上の状況(T0≧Te)では、圧縮機Cmpにおける吸込圧力Psの検出値に基づき吸熱用膨張弁Ex2の開度を調整することで、圧縮機Cmpの吸込圧力Psを設定値に調整する。 Further, in a situation where the detected value of the temperature T0 of the introduced outside air OA is equal to or higher than the set threshold Te (T0 ≧ Te), the opening degree of the endothermic expansion valve Ex2 is adjusted based on the detected value of the suction pressure Ps in the compressor Cmp. Then, the suction pressure Ps of the compressor Cmp is adjusted to a set value.
d.通常加熱運転と同様、蒸発圧力制御弁Erは全閉若しくは最小開度状態に固定する。 d. Similar to the normal heating operation, the evaporation pressure control valve Er is fully closed or fixed to the minimum opening state.
e.調整済み空気SAの温度T2の検出値に基づき加熱用流量調整弁Mv1の開度を調整することで、空調対象空間5に送出する調整済み空気SAの温度T2を設定値Ts2に調整する。
e. The temperature T2 of the adjusted air SA sent to the air-
f.放熱用流量調整弁Mv2の開度を、加熱用流量調整弁Mv1の開度とは背反させる状態に調整する。 f. The opening degree of the heat dissipation flow rate adjustment valve Mv2 is adjusted to a state opposite to the opening degree of the heating flow rate adjustment valve Mv1.
g.冷却運転と同様、調整済み空気SAの湿度X2の検出値に基づき加湿用流量調整弁Mv3の開度を調整して、加湿器4での水蒸気sの噴霧量を調整することで、空調対象空間5に送出する調整済み空気SAの湿度X2を設定値Xs2に調整する。 g. As in the cooling operation, the opening degree of the humidification flow rate adjustment valve Mv3 is adjusted based on the detected value of the humidity X2 of the adjusted air SA, and the amount of water vapor s sprayed in the humidifier 4 is adjusted. The humidity X2 of the adjusted air SA sent to 5 is adjusted to the set value Xs2.
h.冷却運転と同様、放熱用凝縮器C2における冷媒rの凝縮圧力Pcの検出値に基づき放熱用ファン8の出力を調整することで、放熱用凝縮器C2における冷媒rの凝縮圧力Pcを設定値に調整する。 h. Similar to the cooling operation, the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2 is adjusted to the set value by adjusting the output of the heat radiation fan 8 based on the detected value of the condensation pressure Pc of the refrigerant r in the heat radiation condenser C2. adjust.
つまり、通常加熱運転では、前記した凝縮側の分流比調整手段Mv1,Mv2による分流比調整において加熱用凝縮器C1に通過させる側の冷媒rの流量比率を最大化した状態で、圧縮機Cmpの出力Gを導入外気OAの加熱負荷に応じて調整する運転形態を採る。 That is, in the normal heating operation, in the state where the flow rate ratio of the refrigerant r on the side to be passed to the heating condenser C1 is maximized in the diversion ratio adjustment by the condensation side diversion ratio adjusting means Mv1 and Mv2, the compressor Cmp The driving | running form which adjusts the output G according to the heating load of introduction external air OA is taken.
また、低負荷加熱運転では、圧縮機Cmpの出力Gを最小化した状態で、加熱用凝縮器C1に通過させる冷媒rと放熱用凝縮器C2に通過させる冷媒rとの分流比を導入外気OAの加熱負荷に応じて凝縮側の分流比調整手段Mv1,Mv2により調整する運転形態を採る。 Further, in the low load heating operation, the shunt ratio between the refrigerant r passed through the heating condenser C1 and the refrigerant r passed through the heat radiation condenser C2 in the state where the output G of the compressor Cmp is minimized is introduced outside air OA. The operation form is adjusted by the diversion ratio adjusting means Mv1, Mv2 on the condensing side according to the heating load.
以上の各制御に加えて、制御装置17は、通常冷却運転と低負荷冷却運転との切り換え、及び、通常加熱運転と低負荷加熱運転との切り換えの夫々を自動的に実行する。
In addition to the above controls, the
具体的には、図8に示すように、圧縮機Cmpの出力Gを調整することで圧縮機Cmpにおける吸込圧力Psを設定値に調整する「通常冷却運転」の実施下では、圧縮機Cmpの出力Gが調整範囲の下限値Gminまで低下すると、通常冷却運転から低負荷冷却運転への切り換えを実行する。 Specifically, as shown in FIG. 8, under the “normal cooling operation” in which the suction pressure Ps in the compressor Cmp is adjusted to the set value by adjusting the output G of the compressor Cmp, the compressor Cmp When the output G decreases to the lower limit value Gmin of the adjustment range, switching from the normal cooling operation to the low load cooling operation is executed.
また、吸熱用膨張弁Ex2の開度を調整することで圧縮機Cmpにおける吸込圧力Psを設定値に調整する「低負荷冷却運転」の実施下では、吸熱用膨張弁Ex2の開度が全閉状態に至る(換言すれば、蒸発側の分流比調整手段Ex1,Ex2による分流比調整において冷却用蒸発器E1に通過させる側の冷媒rの流量比率が最大化する)と、低負荷冷却運転から通常冷却運転への切り換えを実行する。 In addition, when the “low load cooling operation” is performed in which the suction pressure Ps in the compressor Cmp is adjusted to the set value by adjusting the opening of the endothermic expansion valve Ex2, the opening of the endothermic expansion valve Ex2 is fully closed. When the state is reached (in other words, the flow rate ratio of the refrigerant r on the side that passes through the cooling evaporator E1 is maximized in the diversion ratio adjustment by the evaporation side diversion ratio adjusting means Ex1, Ex2), the low load cooling operation is started. Switch to normal cooling operation.
一方、図9に示すように、圧縮機Cmpの出力Gを調整することで調整済み空気SAの温度T2を設定値Ts2に調整する「通常加熱運転」の実施下では、圧縮機Cmpの出力Gが調整範囲の下限値Gminまで低下すると、通常加熱運転から低負荷加熱運転への切り換えを実行する。 On the other hand, as shown in FIG. 9, under the “normal heating operation” in which the temperature T2 of the adjusted air SA is adjusted to the set value Ts2 by adjusting the output G of the compressor Cmp, the output G of the compressor Cmp. Decreases to the lower limit value Gmin of the adjustment range, switching from the normal heating operation to the low load heating operation is executed.
また、加熱用流量調整弁Mv1の開度を調整することで調整済み空気SAの温度T2を設定値Ts2に調整する「低負荷加熱運転」の実施下では、加熱用流量調整弁Mv1の開度が全開状態になる(換言すれば、凝縮側の分流比調整手段Mv1,Mv2による分流比調整において加熱用凝縮器C1に通過させる側の冷媒rの流量比率が最大化する)と、低負荷加熱運転から通常加熱運転への切り換えを実行する。 Further, under the “low load heating operation” in which the temperature T2 of the adjusted air SA is adjusted to the set value Ts2 by adjusting the opening of the heating flow rate adjusting valve Mv1, the opening of the heating flow rate adjusting valve Mv1 is adjusted. Is fully opened (in other words, the flow rate ratio of the refrigerant r on the side to be passed through the heating condenser C1 is maximized in the diversion ratio adjustment by the condensing side diversion ratio adjusting means Mv1, Mv2). Switch from operation to normal heating operation.
さらに、制御装置17は、冷却運転と加熱運転との切り換えも自動的に実行し、具体的には、図10に示すように、蒸発圧力制御弁Erの開度を調整することで冷却用蒸発器E1における出口空気の温度T1を設定値Ts1に調整する「冷却運転」の実施下では、温度センサS0により検出される外気OAの温度T0が冷却用蒸発器E1における出口空気温度T1の設定値Ts1以下(T0≦Ts1)になる(即ち、導入外気OAの冷却負荷が解消して加熱負荷が発生する)と、冷却運転から加熱運転への切り換え(通常は、低負荷冷却運転から低負荷加熱運転への切り換え)を実行する。
Further, the
また、「加熱運転」の実施下では、温度センサS0により検出される外気OAの温度T0が冷却用蒸発器E1における出口空気温度T1の設定値Ts1より高く(T0>Ts1)なる(即ち、導入外気OAの加熱負荷が解消して冷却負荷が発生する)と、加熱運転から冷却運転への切り換え(通常は、低負荷加熱運転から低負荷冷却運転への切り換え)を実行する。 Further, under the “heating operation”, the temperature T0 of the outside air OA detected by the temperature sensor S0 becomes higher than the set value Ts1 of the outlet air temperature T1 in the cooling evaporator E1 (T0> Ts1) (that is, introduction) When the heating load of the outside air OA is eliminated and a cooling load is generated), switching from the heating operation to the cooling operation (usually switching from the low load heating operation to the low load cooling operation) is performed.
即ち、このヒートポンプ式空調機であれば、冷却運転で対応できる負荷範囲と加熱運転で対応できる負荷範囲とが連続するから、また、四方弁により冷却運転と加熱運転との切り換えを行う従来装置のように、冷却運転と加熱運転とで冷媒回路の大部分における冷媒の流れの向きを反転させるといったことがなく、実質的に冷媒回路RCの全体について冷媒rの流れの向きを保ったままで冷却運転と加熱運転とを実施するから、冷却運転と加熱運転との間に運転停止期間を介在させることなく冷却運転と加熱運転との切り換えを行うことができる。 That is, with this heat pump type air conditioner, the load range that can be handled by the cooling operation and the load range that can be handled by the heating operation are continuous, and the conventional device that switches between the cooling operation and the heating operation by a four-way valve is also available. As described above, the cooling operation and the heating operation do not reverse the flow direction of the refrigerant in the majority of the refrigerant circuit, and the cooling operation is performed while maintaining the flow direction of the refrigerant r for the entire refrigerant circuit RC. Therefore, the switching between the cooling operation and the heating operation can be performed without interposing the operation stop period between the cooling operation and the heating operation.
この点で、従来機に比べ、ヒートポンプ式空調機の性能を効果的に高めることができる。 In this respect, the performance of the heat pump air conditioner can be effectively enhanced as compared with the conventional machine.
図11は、実験機での冷却運転と加熱運転との切り換え時における各部の推移状態を示すグラフであり、このグラフでは、導入外気OAの温度T0が冷却用蒸発器E1における出口空気温度T1の設定値Ts1より高く(T0>Ts1)なると、冷却用膨張弁Ex1及び蒸発圧力制御弁Erが開弁し始めて、加熱運転から冷却運転への切り換えが行われていることが認められる。 FIG. 11 is a graph showing a transition state of each part at the time of switching between the cooling operation and the heating operation in the experimental machine. In this graph, the temperature T0 of the introduced outside air OA is equal to the outlet air temperature T1 in the cooling evaporator E1. When it becomes higher than the set value Ts1 (T0> Ts1), it is recognized that the cooling expansion valve Ex1 and the evaporation pressure control valve Er start to open, and the switching from the heating operation to the cooling operation is performed.
また逆に、導入外気OAの温度T0が冷却用蒸発器E1における出口空気温度T1の設定値Ts1より低く(T0≦Ts1)なると、冷却用膨張弁Ex1及び蒸発圧力制御弁Erが閉弁し始めて、冷却運転から加熱運転への切り換えが行われていることが認められる。 Conversely, when the temperature T0 of the introduced outside air OA becomes lower than the set value Ts1 of the outlet air temperature T1 in the cooling evaporator E1 (T0 ≦ Ts1), the cooling expansion valve Ex1 and the evaporation pressure control valve Er start to close. It can be seen that switching from the cooling operation to the heating operation is performed.
〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
上記の実施形態では、ヒートポンプ式温調装置の一例としてヒートポンプ式空調機を示したが、本発明によるヒートポンプ式温調装置は、空調機に限らず、各種分野において種々の用途に適用することができる。 In the above embodiment, the heat pump type air conditioner is shown as an example of the heat pump type temperature control device. However, the heat pump type temperature control device according to the present invention is not limited to the air conditioner and can be applied to various uses in various fields. it can.
温調対象の流体は、気体あるいは液体を問わず、冷却又は加熱による温度調整が要求される流体であれば、どのような流体であってもよい。 The fluid whose temperature is to be controlled may be any fluid, regardless of whether it is a gas or a liquid, as long as the temperature is adjusted by cooling or heating.
また、ヒートポンプ式空調機としての適用においても、その空調機に導入する空気は、外気OAに限らず、空調対象空間5からの還気空気、あるいは、還気空気と外気との混合空気、あるいはまた、他室からの取り入れ空気や他装置からの送出空気などであってもよい。
Also, in application as a heat pump air conditioner, the air to be introduced into the air conditioner is not limited to the outside air OA, but the return air from the air-
吸熱用蒸発器E2において冷媒rと熱交換させる吸熱源、及び、放熱用凝縮器C2において冷媒rと熱交換させる放熱源の夫々も、外気などの空気Aa,Abや他設備からの排出気体など、どのような気体であってもよく、また、河川水や井戸水あるいは廃水などの液体あるいは土壌や躯体などの固体であってもよい。 The heat absorption source that exchanges heat with the refrigerant r in the heat absorption evaporator E2 and the heat radiation source that exchanges heat with the refrigerant r in the heat radiation condenser C2 are also air Aa and Ab such as outside air, exhaust gas from other equipment, etc. Any gas may be used, and it may be a liquid such as river water, well water, or waste water, or a solid such as soil or skeleton.
前述の実施形態では、冷却用蒸発器E1に通過させる冷媒rと吸熱用蒸発器E2に通過させる冷媒rとの分流比を調整する蒸発側の分流比調整手段を、各蒸発器E1,E2に対する膨張弁Ex1,Ex2により構成する例を示したが、専用の流量調整弁や分流比調整用の三方弁など、その他の形式の弁装置を用いて蒸発側の分流比調整手段を構成するようにしてもよい。 In the above-described embodiment, the diversion ratio adjusting means on the evaporation side that adjusts the diversion ratio between the refrigerant r that passes through the cooling evaporator E1 and the refrigerant r that passes through the endothermic evaporator E2 is provided for each of the evaporators E1 and E2. Although an example in which the expansion valves Ex1 and Ex2 are configured has been shown, the diversion ratio adjustment means on the evaporation side is configured by using other types of valve devices such as a dedicated flow rate adjustment valve and a three-way valve for adjusting the diversion ratio. May be.
また、前述の実施形態では、加熱用凝縮器C1に通過させる冷媒rと、放熱用凝縮器C2に通過させる冷媒rとの分流比を調整する凝縮側の分流比調整手段を、2つの流量調整弁Mv1,Mv2により構成する例を示したが、凝縮側の分流比調整手段も分流比調整用の三方弁など、その他の形式の弁装置を用いて構成するようにしてもよい。 Further, in the above-described embodiment, the flow rate adjustment means for adjusting the diversion ratio on the condensing side that adjusts the diversion ratio between the refrigerant r that passes through the heating condenser C1 and the refrigerant r that passes through the heat dissipation condenser C2 Although an example in which the valves Mv1 and Mv2 are configured has been described, the condensing side diversion ratio adjusting means may be configured by using other types of valve devices such as a three-way valve for adjusting the diversion ratio.
前述の実施形態では、圧縮機Cmpからの吐出冷媒rを2流に分流して、一方の分流冷媒rを加熱用凝縮器C1に通過させ、そして、他方の分流冷媒rと加熱用凝縮器C1からの送出冷媒rとを、合流させて放熱用凝縮器C2に通過させるようにしたが、圧縮機Cmpからの吐出冷媒rを2流に分流した後、一方の分流冷媒rを加熱用凝縮器C1に通過させるとともに、他方の分流冷媒rを放熱用凝縮器C2に通過させ、そして、それら2流の分流冷媒rを各凝縮器C1,C2からの送出後に合流させるようにしてもよい。 In the above-described embodiment, the refrigerant r discharged from the compressor Cmp is divided into two flows, one of the divided refrigerants r is passed through the heating condenser C1, and the other divided refrigerant r and the heating condenser C1. The refrigerant r sent out from the refrigerant is merged and passed through the heat radiation condenser C2. After the refrigerant r discharged from the compressor Cmp is divided into two streams, one refrigerant refrigerant r is heated to the condenser for heating. While passing through C1, the other shunt refrigerant r may be passed through the heat dissipation condenser C2, and the two shunt refrigerants r may be merged after being sent out from the condensers C1 and C2.
前述の実施形態では、冷却用蒸発器E1と加熱用凝縮器C1とを各別に設ける例を示したが、場合によっては、冷却用蒸発器E1と加熱用凝縮器C1とを兼ねる兼用器を設け、
冷却運転では、この兼用器を冷却用除湿器E1として機能させ、そして、加熱運転では、この兼用器を加熱用凝縮器C1として機能させる構成にしてもよい。
In the above-described embodiment, an example in which the cooling evaporator E1 and the heating condenser C1 are separately provided has been described. However, in some cases, a dual-purpose apparatus that serves as both the cooling evaporator E1 and the heating condenser C1 is provided. ,
In the cooling operation, the dual function device may function as the cooling dehumidifier E1, and in the heating operation, the dual function device may function as the heating condenser C1.
本発明よるヒートポンプ式温調装置は、空調機に限らず、各種分野において種々の用途に利用することができる。 The heat pump type temperature control device according to the present invention is not limited to an air conditioner and can be used for various applications in various fields.
Cmp 圧縮機
r 冷媒
RC 冷媒回路
OA 外気(流体)
E1 冷却用蒸発器
Ab 吸熱用空気(吸熱源)
E2 吸熱用蒸発器
C1 加熱用凝縮器
Aa 放熱用空気(放熱源)
C2 放熱用凝縮器
Ex1 冷却用膨張弁(蒸発側の分流比調整手段)
Ex2 吸熱用膨張弁(蒸発側の分流比調整手段)
Mv1 加熱用流量調整弁(凝縮側の分流比調整手段)
Mv2 放熱用流量調整弁(凝縮側の分流比調整手段)
G 圧縮機出力
Cmp Compressor r Refrigerant RC Refrigerant circuit OA Outside air (fluid)
E1 Cooling evaporator Ab Absorption air (endothermic source)
E2 Evaporator for heat absorption C1 Condenser for heating Aa Heat release air (heat release source)
C2 Heat radiation condenser Ex1 Cooling expansion valve (Evaporation side diversion ratio adjustment means)
Ex2 endothermic expansion valve (evaporation side diversion ratio adjusting means)
Mv1 Heating flow rate adjustment valve (Condensation-side diversion ratio adjustment means)
Mv2 Heat dissipation flow adjustment valve (Condensation-side diversion ratio adjustment means)
G Compressor output
Claims (5)
流体の冷却負荷を処理する冷却運転と前記流体の加熱負荷を処理する加熱運転との切り換え実施を可能にしたヒートポンプ式温調装置であって、
前記冷媒回路における蒸発器として、冷媒を前記流体と熱交換させる流体冷却器としての冷却用蒸発器と、冷媒を吸熱源と熱交換させる吸熱用蒸発器とを各別に設け、
前記冷媒回路における凝縮器として、冷媒を前記流体と熱交換させる流体加熱器としての加熱用凝縮器と、冷媒を放熱源と熱交換させる放熱用凝縮器とを各別に設け、
前記冷却用蒸発器に通過させる冷媒と前記吸熱用蒸発器に通過させる冷媒との分流比を調整する蒸発側の分流比調整手段を設けるとともに、
この蒸発側の分流比調整手段による分流比調整とは独立して、前記加熱用凝縮器に通過させる冷媒と前記放熱用凝縮器に通過させる冷媒との分流比を調整する凝縮側の分流比調整手段を設けてあるヒートポンプ式温調装置。 Provided with a vapor compression refrigerant circuit that circulates refrigerant with a compressor,
A heat pump temperature control device that enables switching between a cooling operation for processing a cooling load of a fluid and a heating operation for processing a heating load of the fluid,
As an evaporator in the refrigerant circuit, a cooling evaporator as a fluid cooler for exchanging heat between the refrigerant and the fluid, and an endothermic evaporator for exchanging heat between the refrigerant and an endothermic source are provided separately.
As the condenser in the refrigerant circuit, a heating condenser as a fluid heater for exchanging heat between the refrigerant and the fluid, and a heat dissipating condenser for exchanging heat between the refrigerant and a heat radiation source are provided separately.
Providing an evaporation-side diversion ratio adjusting means for adjusting a diversion ratio between the refrigerant that passes through the cooling evaporator and the refrigerant that passes through the endothermic evaporator;
Independently of the diversion ratio adjustment by the diversion ratio adjustment means on the evaporation side, the diversion ratio adjustment on the condensation side that adjusts the diversion ratio between the refrigerant that passes through the heating condenser and the refrigerant that passes through the heat dissipation condenser A heat pump type temperature control device provided with means.
前記圧縮機の出力を最小化した状態で、前記冷却用蒸発器に通過させる冷媒と前記吸熱用蒸発器に通過させる冷媒との分流比を前記流体の冷却負荷に応じて前記蒸発側の分流比調整手段により調整する低負荷冷却運転とを、選択的に実施し、
前記加熱運転として、前記凝縮側の分流比調整手段による分流比調整において前記加熱用凝縮器に通過させる側の冷媒の流量比率を最大化した状態で、前記圧縮機の出力を前記流体の加熱負荷に応じて調整する通常加熱運転と、
前記圧縮機の出力を最小化した状態で、前記加熱用凝縮器に通過させる冷媒と前記放熱用凝縮器に通過させる冷媒との分流比を前記流体の加熱負荷に応じて前記凝縮側の分流比調整手段により調整する低負荷加熱運転とを、選択的に実施する構成にしてある請求項1記載のヒートポンプ式温調装置。 As the cooling operation, in the state where the flow rate ratio of the refrigerant passing through the cooling evaporator is maximized in the diversion ratio adjustment by the diversion ratio adjustment means on the evaporation side, the output of the compressor is set to the cooling load of the fluid. Normal cooling operation to adjust according to,
With the output of the compressor minimized, the diversion ratio between the refrigerant passing through the cooling evaporator and the refrigerant passing through the endothermic evaporator is determined according to the cooling load of the fluid. Selectively performing the low-load cooling operation adjusted by the adjusting means,
As the heating operation, in the state where the flow rate ratio of the refrigerant passing through the heating condenser in the diversion ratio adjustment by the condensing side diversion ratio adjusting means is maximized, the output of the compressor is set to the heating load of the fluid. Normal heating operation to adjust according to,
In the state where the output of the compressor is minimized, the diversion ratio between the refrigerant that passes through the heating condenser and the refrigerant that passes through the heat dissipation condenser depends on the heating load of the fluid. The heat pump type temperature control device according to claim 1, wherein the low load heating operation adjusted by the adjusting means is selectively performed.
前記低負荷冷却運転の実施中では、前記蒸発側の分流比調整手段による分流比調整において前記冷却用蒸発器に通過させる側の冷媒の流量比率が最大化したとき、前記通常冷却運転への切り換えを実行し、
前記通常加熱運転の実施中では、前記圧縮機の出力が最小化したとき、前記低負荷加熱運転への切り換えを実行し、
前記低負荷加熱運転の実施中では、前記凝縮側の分流比調整手段による分流比調整において前記加熱用凝縮器に通過させる側の冷媒の流量比率が最大化したとき、前記通常加熱運転への切り換えを実行する構成にしてある請求項2記載のヒートポンプ式温調装置。 During the implementation of the normal cooling operation, when the output of the compressor is minimized, switching to the low-load cooling operation is performed,
During the execution of the low load cooling operation, when the flow rate ratio of the refrigerant passing through the cooling evaporator is maximized in the diversion ratio adjustment by the evaporation diversion ratio adjustment means, the switching to the normal cooling operation is performed. Run
During the implementation of the normal heating operation, when the output of the compressor is minimized, switching to the low load heating operation is performed,
During the execution of the low load heating operation, when the flow rate ratio of the refrigerant passing through the heating condenser is maximized in the diversion ratio adjustment by the condensing side diversion ratio adjusting means, switching to the normal heating operation is performed. The heat pump type temperature control device according to claim 2, wherein
前記冷却運転では、前記空気を前記冷却用蒸発器において冷却除湿し、それに続いて、冷却除湿した前記空気を前記加熱用凝縮器において所要温度まで再熱する構成にしてある請求項1〜4のいずれか1項に記載のヒートポンプ式温調装置。 The fluid is air;
In the cooling operation, the air is cooled and dehumidified in the cooling evaporator, and subsequently, the cooled and dehumidified air is reheated to a required temperature in the heating condenser. The heat pump type temperature control apparatus according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016249213A JP6660873B2 (en) | 2016-12-22 | 2016-12-22 | Heat pump type temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016249213A JP6660873B2 (en) | 2016-12-22 | 2016-12-22 | Heat pump type temperature controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018105514A true JP2018105514A (en) | 2018-07-05 |
JP6660873B2 JP6660873B2 (en) | 2020-03-11 |
Family
ID=62786983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016249213A Active JP6660873B2 (en) | 2016-12-22 | 2016-12-22 | Heat pump type temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660873B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113776128A (en) * | 2021-08-24 | 2021-12-10 | 宁波富达智能科技有限公司 | Heat radiation structure of condenser of mobile air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243671A (en) * | 1987-03-30 | 1988-10-11 | 三洋電機株式会社 | Refrigerator |
JP2010007962A (en) * | 2008-06-26 | 2010-01-14 | Orion Mach Co Ltd | Temperature controller |
JP2014016055A (en) * | 2012-07-06 | 2014-01-30 | Orion Mach Co Ltd | Precise temperature adjustment apparatus |
JP2015169404A (en) * | 2014-03-10 | 2015-09-28 | 株式会社アマダホールディングス | cooling system |
-
2016
- 2016-12-22 JP JP2016249213A patent/JP6660873B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243671A (en) * | 1987-03-30 | 1988-10-11 | 三洋電機株式会社 | Refrigerator |
JP2010007962A (en) * | 2008-06-26 | 2010-01-14 | Orion Mach Co Ltd | Temperature controller |
JP2014016055A (en) * | 2012-07-06 | 2014-01-30 | Orion Mach Co Ltd | Precise temperature adjustment apparatus |
JP2015169404A (en) * | 2014-03-10 | 2015-09-28 | 株式会社アマダホールディングス | cooling system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113776128A (en) * | 2021-08-24 | 2021-12-10 | 宁波富达智能科技有限公司 | Heat radiation structure of condenser of mobile air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP6660873B2 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7175985B2 (en) | air conditioner system | |
RU2743727C1 (en) | Air conditioning unit | |
JP6119141B2 (en) | Air conditioning system | |
US20130227985A1 (en) | Air conditioner | |
CN108518736A (en) | Constant-temperature and constant-humidity inner machine, constant-temperature and constant-humidity system and control method thereof | |
JP6401015B2 (en) | Air conditioner | |
KR20180076397A (en) | Automotive air conditioning system | |
WO2013157403A1 (en) | Air conditioner | |
WO2013157402A1 (en) | Air conditioner | |
KR20180019041A (en) | Multi heat pump Refrigeration system | |
KR20070074301A (en) | Air-conditioner | |
KR20120071018A (en) | Heat pump type cooling and heating system for vehicle | |
AU2019201541A1 (en) | An air conditioning system and a method of operating an air conditioning system | |
JP4187008B2 (en) | Air conditioner | |
JP7374633B2 (en) | Air conditioners and air conditioning systems | |
JP6660873B2 (en) | Heat pump type temperature controller | |
CN112577101B (en) | Air conditioner and control method thereof | |
JP6982692B2 (en) | Air conditioner system | |
JP2005291553A (en) | Multiple air conditioner | |
KR20170138703A (en) | Air conditioner system and its control method | |
JP2013212768A (en) | Air conditioning device for vehicle | |
JP6805693B2 (en) | Air conditioner | |
JP4743223B2 (en) | Air conditioner | |
JP4074422B2 (en) | Air conditioner and its control method | |
JP2010139164A (en) | Air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |