JP7374633B2 - Air conditioners and air conditioning systems - Google Patents

Air conditioners and air conditioning systems Download PDF

Info

Publication number
JP7374633B2
JP7374633B2 JP2019129593A JP2019129593A JP7374633B2 JP 7374633 B2 JP7374633 B2 JP 7374633B2 JP 2019129593 A JP2019129593 A JP 2019129593A JP 2019129593 A JP2019129593 A JP 2019129593A JP 7374633 B2 JP7374633 B2 JP 7374633B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heat
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019129593A
Other languages
Japanese (ja)
Other versions
JP2021014947A (en
Inventor
賢一郎 神
真一 宮下
拓也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pmac Co Ltd
Original Assignee
Nippon Pmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pmac Co Ltd filed Critical Nippon Pmac Co Ltd
Priority to JP2019129593A priority Critical patent/JP7374633B2/en
Publication of JP2021014947A publication Critical patent/JP2021014947A/en
Application granted granted Critical
Publication of JP7374633B2 publication Critical patent/JP7374633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和機及び空気調和システムに関する。 The present invention relates to an air conditioner and an air conditioning system.

従来、水熱源ヒートポンプ装置を有するユニットケース内に、ヒートポンプによる室内空調用の冷媒対空気熱交換器と別に室内空調用の水対空気熱交換器を並列に設けると共にこれら両熱交換器に共通する一基の送風ファンを設け、該ファンの送風路を両熱交換器のいずれか一方を選択し、又はその双方に対向させる切換えダンパーを設け、且つ熱源水を前記水対空気熱交換器とヒートポンプの水対冷媒熱交換器とに対し各別に又は双方に供給循環させる配管設備を設けて成る空気調和設備用ユニットも提案されている(例えば、特許文献1)。 Conventionally, in a unit case with a water heat source heat pump device, a refrigerant-to-air heat exchanger for indoor air conditioning using a heat pump and a water-to-air heat exchanger for indoor air conditioning are installed in parallel, and a common feature is used for both of these heat exchangers. A single ventilation fan is provided, and a switching damper is provided that allows the fan's ventilation path to select one of the heat exchangers or to face both, and the heat source water is connected to the water-to-air heat exchanger and the heat pump. An air-conditioning equipment unit has also been proposed that is provided with piping equipment for supplying and circulating the water to the water-to-refrigerant heat exchanger separately or to both of them (for example, Patent Document 1).

また、上流側に還気系と外気系が接続して下流側に給気系が接続し、還気と外気の混合空気が流れる通気路をなすハウジングと、ハウジング内に配置し、混合空気中に噴霧水を噴霧して断熱加湿および飽和加湿を行う水噴霧式加湿器と、混合空気を加湿後に集水した噴霧水の温度を、ハウジングに供給する還気風量及び外気風量を制御するための制御指標として検知する噴霧水温度センサを備えることを特徴とする空気調和機も提案されている(例えば、特許文献2)。特許文献2には、湿度が調整された混合空気に還気系から還気系バイパスを通して還気を供給し、還気系の還気温度センサで検知する還気の乾球温度を制御指標として還気系バイパスの第2還気ダンパーにより、ハウジング内に供給するバイパス還気風量を調節することにより、空気調和対象室から戻る還気の乾球温度を一定に制御することが記載されている。 In addition, there is a housing that connects the return air system and the outside air system on the upstream side and the supply air system on the downstream side, forming a ventilation path through which the mixed air of the return air and outside air flows. A water spray humidifier that performs adiabatic humidification and saturated humidification by spraying water into the air, and a water spray humidifier that controls the temperature of the spray water collected after humidifying the mixed air and the volume of return air and outside air supplied to the housing. An air conditioner characterized by being equipped with a spray water temperature sensor that is detected as a control index has also been proposed (for example, Patent Document 2). Patent Document 2 discloses that return air is supplied from a return air system to mixed air whose humidity has been adjusted through a return air system bypass, and the dry bulb temperature of the return air detected by a return air temperature sensor in the return air system is used as a control index. It is stated that the dry bulb temperature of the return air returned from the room to be air conditioned is controlled to a constant level by adjusting the amount of bypass return air supplied into the housing using the second return air damper of the return air system bypass. .

実公平6-15276号公報Publication No. 6-15276 特開2012-52722号公報JP2012-52722A

従来、空気調和機の除湿運転において、露点温度に対し設定温度が高い場合、冷却して除湿した空気を再熱して所望の温度とし、室内へ吹き出す制御が行われていた。このような制御では、エネルギー効率がよくない。また、冷却して除湿した空気に室内の空気を混合させて所望の温度とする技術も提案されていた。しかしながら、特に、温度を調整していない還気を混合させる点と、ダンパーで風量を調節する点から、温度調節の精度を高めることが難しく、ひいては快適性が損なわれるという問題があった。 Conventionally, in the dehumidifying operation of an air conditioner, if the set temperature is higher than the dew point temperature, the cooled and dehumidified air is reheated to a desired temperature and controlled to be blown into the room. Such control is not energy efficient. A technique has also been proposed in which indoor air is mixed with cooled and dehumidified air to achieve a desired temperature. However, there has been a problem in that it is difficult to improve the accuracy of temperature control, especially since return air whose temperature has not been adjusted is mixed and the air volume is controlled by a damper, which ultimately impairs comfort.

そこで、本発明は、除湿運転において、快適性と省エネルギー性とのバランスの取れた空気調和機を提供することを目的とする。 Therefore, an object of the present invention is to provide an air conditioner that has a good balance between comfort and energy saving in dehumidifying operation.

本発明に係る空気調和機は、熱源水の流路上に設けられ、熱源水と空気との間で熱交換を行うファンコイルユニットと、熱源水の流路上に一部が設けられ、熱源水と伝熱媒体との間、及び空気と伝熱媒体との間で熱交換を行うヒートポンプユニットとを備える。また、ヒートポンプユニットは、除湿運転時に空気と伝熱媒体との間で熱交換を行う第1の空気冷媒熱交換器と、除湿運転時に伝熱媒体の流入が制限される第2の空気冷媒熱交換器とを備える。 The air conditioner according to the present invention includes a fan coil unit that is provided on the flow path of heat source water and performs heat exchange between the heat source water and the air, and a fan coil unit that is partially provided on the flow path of the heat source water and that exchanges heat between the heat source water and the air. It includes a heat pump unit that exchanges heat with the heat transfer medium and between air and the heat transfer medium. The heat pump unit also includes a first air refrigerant heat exchanger that exchanges heat between air and a heat transfer medium during dehumidification operation, and a second air refrigerant heat exchanger that restricts the inflow of the heat transfer medium during dehumidification operation. and an exchanger.

以上のように、ヒートポンプユニットが備える空気冷媒熱交換器のうち、第1の空気冷媒熱交換器は除湿運転に用いられ、第2の空気冷媒熱交換器は除湿運転に用いられない。このようにすれば、空気冷媒熱交換器の一部(第1の空気冷媒熱交換器)のみを除湿に用いることでヒートポンプユニットを通過する空気を過剰に冷却させることがなくなる。したがって、例えば再熱にかかる消費エネルギーを削減することができる。一方、除湿による快適性は得られるため、除湿運転において、快適性と省エネルギー性とのバランスの取れた空気調和機となる。 As described above, among the air refrigerant heat exchangers included in the heat pump unit, the first air refrigerant heat exchanger is used for dehumidifying operation, and the second air refrigerant heat exchanger is not used for dehumidifying operation. In this way, only a part of the air refrigerant heat exchanger (the first air refrigerant heat exchanger) is used for dehumidification, thereby preventing the air passing through the heat pump unit from being excessively cooled. Therefore, for example, energy consumption for reheating can be reduced. On the other hand, since comfort can be obtained through dehumidification, the air conditioner has a good balance between comfort and energy saving during dehumidification operation.

例えば、第1の空気冷媒熱交換器は、ヒートポンプユニットを通過する空気の一部と伝熱媒体との間で熱交換を行う。このようにすれば、空気に対し部分的に除湿を行うことで、空調負荷が比較的小さい場合においても空気を過剰に冷却することを避け、再熱に要するエネルギーの浪費を抑えることができるようになる。また、ヒートポンプユニットは、圧縮機を備え、設定された室内露点温度と第1の空気冷媒熱交換器の空気の出口温度との関係に基づいて圧縮機の出力を制御するようにしてもよい。例えば、このような制御により、所望の除湿性能を得ることができる。 For example, the first air refrigerant heat exchanger exchanges heat between a portion of the air passing through the heat pump unit and the heat transfer medium. In this way, by partially dehumidifying the air, it is possible to avoid excessive cooling of the air even when the air conditioning load is relatively small, and to reduce wasted energy required for reheating. become. Further, the heat pump unit may include a compressor, and the output of the compressor may be controlled based on the relationship between the set indoor dew point temperature and the outlet temperature of the air of the first air refrigerant heat exchanger. For example, desired dehumidification performance can be obtained through such control.

また、ファンコイルユニットは、熱源水の流量を制御する比例弁を備え、設定温度と室温との関係に基づいて比例弁の開度を制御するようにしてもよい。このようにすれば、ヒートポンプユニットとは別に備えるファンコイルユニットにより、温度を精密に制御できる。 Further, the fan coil unit may include a proportional valve that controls the flow rate of the heat source water, and the opening degree of the proportional valve may be controlled based on the relationship between the set temperature and the room temperature. In this way, the temperature can be precisely controlled by the fan coil unit provided separately from the heat pump unit.

また、第1の空気冷媒熱交換器及び第2の空気冷媒熱交換器は、冷房運転時において空気と伝熱媒体との間で熱交換を行うようにしてもよい。このように、第1の空気冷媒熱交換器及び第2の空気冷媒熱交換器は冷房運転時に用いられ、上述の通りその一部である第1の空気冷媒熱交換器のみが除湿運転時に用いられるものである。 Further, the first air refrigerant heat exchanger and the second air refrigerant heat exchanger may exchange heat between air and a heat transfer medium during cooling operation. In this way, the first air refrigerant heat exchanger and the second air refrigerant heat exchanger are used during the cooling operation, and as mentioned above, only the first air refrigerant heat exchanger, which is a part of the first air refrigerant heat exchanger, is used during the dehumidification operation. It is something that can be done.

本発明の他の側面に係る空気調和システムは、複数の上述の空気調和機と外調機とを備え、外調機は熱源水を用いて除湿を行うようにしてもよい。外調機によっても除湿を行い、必要に応じてヒートポンプユニットの第1の空気冷媒熱交換器でさらに除湿を行えば、エネルギー消費効率が向上する。よって、消費電力を低減させ、ZEB(Zero Energy Building)化を実現し得るシステムとなる。 An air conditioning system according to another aspect of the present invention may include a plurality of the above-described air conditioners and an outdoor conditioner, and the outdoor conditioner may perform dehumidification using heat source water. Energy consumption efficiency can be improved by dehumidifying the air by using the external air conditioner and further dehumidifying by using the first air refrigerant heat exchanger of the heat pump unit as needed. Therefore, the system can reduce power consumption and realize ZEB (Zero Energy Building).

なお、上記課題を解決するための手段の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。 Note that the contents of the means for solving the above problems can be combined as much as possible without departing from the problems and technical idea of the present invention.

本発明によれば、除湿運転において、快適性と省エネルギー性とのバランスの取れた空気調和ユニットを提供することができる。 According to the present invention, it is possible to provide an air conditioning unit that provides a good balance between comfort and energy saving during dehumidification operation.

図1は、本実施形態に係る空気調和機の一例を示す系統図である。FIG. 1 is a system diagram showing an example of an air conditioner according to this embodiment. 図2は、除湿運転時の冷媒及び熱源水の流路の一例を示す図である。FIG. 2 is a diagram showing an example of flow paths of refrigerant and heat source water during dehumidification operation. 図3は、空気調和機1の除湿運転時の処理の一例を示す処理フロー図である。FIG. 3 is a process flow diagram showing an example of a process during dehumidification operation of the air conditioner 1. 図4は、空気調和機1の除湿運転時の処理の一例を示す処理フロー図である。FIG. 4 is a process flow diagram showing an example of a process during dehumidification operation of the air conditioner 1. 図5は、除湿側空気冷媒熱交換器125の出口温度T1と圧縮機121のインバータの回転数との関係を示す図である。FIG. 5 is a diagram showing the relationship between the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 and the rotation speed of the inverter of the compressor 121. 図6は、吸気温度T2が、二方弁111の開度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the intake air temperature T2 and the opening degree of the two-way valve 111. 図7は、複数の空気調和機を含む空気調和システムの一例を示す図である。FIG. 7 is a diagram showing an example of an air conditioning system including a plurality of air conditioners.

以下、ファンコイルユニット及びヒートポンプユニットを備える空気調和機の実施の形態について、図面に基づいて説明する。 Hereinafter, embodiments of an air conditioner including a fan coil unit and a heat pump unit will be described based on the drawings.

図1は、本実施形態に係る空気調和機の一例を示す系統図である。空気調和機1は、ファンコイルユニット11と、ヒートポンプユニット12と、これらのユニットに共通の機器とを1つの筐体に備える。ファンコイルユニット11は、チラー等から供給される熱源水と空気との間で熱交換を行い、送風ファン14によって所望の温度の空気を対象の空間に供給する。ヒートポンプユニット12は、凝縮器、膨張弁、蒸発器及び圧縮機によって形成される冷凍サイクルを含み、冷熱媒(「冷媒」又は「伝熱媒体」とも呼ぶ)と空気との間で熱交換を行い、送風ファン14によって所望の温度の空気を対象の空間に供給する。すなわち、空気調和機1の内部には、熱源水の流路15と、冷媒の流路16と、空気の流路17とが設けられる。また、空気調和機1は、ユーザがコントローラ2を用いて行う設定に基づいて動作する。 FIG. 1 is a system diagram showing an example of an air conditioner according to this embodiment. The air conditioner 1 includes a fan coil unit 11, a heat pump unit 12, and equipment common to these units in one housing. The fan coil unit 11 exchanges heat between heat source water supplied from a chiller or the like and air, and supplies air at a desired temperature to the target space using the blower fan 14. The heat pump unit 12 includes a refrigeration cycle formed by a condenser, an expansion valve, an evaporator, and a compressor, and exchanges heat between a cooling medium (also referred to as a "refrigerant" or a "heat transfer medium") and air. , the blower fan 14 supplies air at a desired temperature to the target space. That is, inside the air conditioner 1, a heat source water flow path 15, a refrigerant flow path 16, and an air flow path 17 are provided. Further, the air conditioner 1 operates based on settings made by the user using the controller 2.

空気調和機1は、ファンコイルユニット11及びヒートポンプユニット12に共通する機器として、制御装置13と、吸気温湿度センサ131と、除湿側コイル出口温度センサ132と、送風ファン14と、コントローラ2とを備える。 The air conditioner 1 includes a control device 13, an intake temperature/humidity sensor 131, a dehumidifying coil outlet temperature sensor 132, a blower fan 14, and a controller 2 as devices common to the fan coil unit 11 and the heat pump unit 12. Be prepared.

ファンコイルユニット11は、二方弁111と、三方弁112と、ファンコイル側熱交換器113とを備える。二方弁111は、一般的なバルブであり、本実施形態では比例二方弁である。二方弁111は、例えば熱源水の流路15の入口付近に設けられ、その開度を変更することにより熱源水の流路15を流れる熱源水の流量を制御する。三方弁112は、一般的なバルブであり、本実施形態では切替三方弁である。三方弁112は、空気調和機1に流入した熱源水を、ファンコイルユニット11側又はヒートポンプユニット12側に流す。ファンコイル側熱交換器113は、熱源水の流路15上に設けられ、熱源水と空気との間で熱交換を行う熱交換器である。空気は、例えば、温度を制御する対象となる室内の空気である。 The fan coil unit 11 includes a two-way valve 111, a three-way valve 112, and a fan coil side heat exchanger 113. The two-way valve 111 is a general valve, and in this embodiment is a proportional two-way valve. The two-way valve 111 is provided, for example, near the entrance of the heat source water flow path 15, and controls the flow rate of the heat source water flowing through the heat source water flow path 15 by changing its opening degree. The three-way valve 112 is a general valve, and in this embodiment is a switching three-way valve. The three-way valve 112 allows the heat source water that has entered the air conditioner 1 to flow toward the fan coil unit 11 side or the heat pump unit 12 side. The fan coil side heat exchanger 113 is a heat exchanger that is provided on the heat source water flow path 15 and exchanges heat between the heat source water and air. The air is, for example, indoor air whose temperature is to be controlled.

ヒートポンプユニット12は、冷媒の流路16上に、圧縮機121と、四方弁122と、水冷媒熱交換器123と、膨張弁124と、除湿側空気冷媒熱交換器125と、バイパス側空気冷媒熱交換器126と、二方弁127とを備え、冷凍サイクルを形成する。圧縮機121は、例えば低圧の気体である冷媒を高圧且つ高温の気体に圧縮する。四方弁122は、冷房時と暖房時とで冷媒の流れる流路を切り替える。水冷媒熱交換器123は、熱源水の流路15上且つ冷媒の流路上16に設けられる。そして、水冷媒熱交換器123には、熱源水が、ファンコイル側熱交換器113を介して又は介さずに導入される。同時に水冷媒熱交換器123には、冷房時においては圧縮機121によって圧縮された冷媒が四方弁122を介して導入される。このとき、水冷媒熱交換器123は凝縮器として働き、例えば高圧の気体である冷媒を高圧の液体に凝縮させる。なお、暖房時においては膨張弁124によって膨張させられた冷媒が導入される。このとき、水冷媒熱交換器123は蒸発器として働き、例えば低圧の液体である冷媒を低圧の気体に蒸発させる。膨張弁124は、例えば電子膨張弁である。また、膨張弁124は、例えば高圧の液体である冷媒を低圧の液体に減圧する。除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126は、冷媒の流路16上に並列に、且つそれぞれ送風ファン14によって送風される空気の流路17上に設けられる。また、除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126には、冷房時においては膨張弁124によって減圧された冷媒が導入される。このとき、除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126は、蒸発器として働き、例えば低圧の液体である冷媒を低圧の気体に蒸発させる。なお
、暖房時においては、圧縮機121によって圧縮された冷媒が四方弁122を介して導入される。このとき、除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126は凝縮器として働き、例えば高圧の気体である冷媒を高圧の液体に凝縮させる。二方弁127は、一般的なバルブであり、例えば電磁弁である。二方弁127は、冷媒の流路16上に並列に設けられた除湿側空気冷媒熱交換器125とバイパス側空気冷媒熱交換器126とのうち、バイパス側空気冷媒熱交換器126の周辺に、バイパス側空気冷媒熱交換器126と直列に設けられ、冷媒をバイパス側空気冷媒熱交換器126に流すか否か切り替える。換言すれば、二方弁127は、冷媒を除湿側空気冷媒熱交換器125のみに流すか否かを切り替える。なお、除湿側空気冷媒熱交換器125は、本発明に係る「第1の空気冷媒熱交換器」に相当し、バイパス側空気冷媒熱交換器126は、本発明に係る「第2の空気冷媒熱交換器」に相当する。除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126の両者に冷媒を通過させ、圧縮機121のインバータを100%の回転数で運転させることにより、空気調和機1は定格の出力で動作する。すなわち、本実施形態に係る除湿側空気冷媒熱交換器125は、ヒートポンプユニット12の空気冷媒熱交換器の一部を構成するものであり、除湿側空気冷媒熱交換器125によれば、空気冷媒熱交換器を部分的に動作させることができる。よって、除湿側空気冷媒熱交換器125によれば、空気の流路17を流れる空気に対し部分的に除湿を行うことができると共に、空気の流路17を流れる空気を過剰に冷却することを避けることができ、空調負荷が比較的小さい場合において再熱に要するエネルギーの浪費を抑えることができる。
The heat pump unit 12 includes a compressor 121, a four-way valve 122, a water refrigerant heat exchanger 123, an expansion valve 124, a dehumidification side air refrigerant heat exchanger 125, and a bypass side air refrigerant heat exchanger 125 on a refrigerant flow path 16. It includes a heat exchanger 126 and a two-way valve 127 to form a refrigeration cycle. The compressor 121 compresses, for example, a refrigerant that is a low-pressure gas into a high-pressure and high-temperature gas. The four-way valve 122 switches the flow path of the refrigerant between cooling and heating. The water-refrigerant heat exchanger 123 is provided on the flow path 15 of the heat source water and on the flow path 16 of the refrigerant. The heat source water is introduced into the water-refrigerant heat exchanger 123 with or without the fan coil side heat exchanger 113 . At the same time, refrigerant compressed by the compressor 121 is introduced into the water/refrigerant heat exchanger 123 via the four-way valve 122 during cooling. At this time, the water-refrigerant heat exchanger 123 functions as a condenser, and condenses, for example, a high-pressure gaseous refrigerant into a high-pressure liquid. Note that during heating, refrigerant expanded by the expansion valve 124 is introduced. At this time, the water-refrigerant heat exchanger 123 functions as an evaporator, and evaporates, for example, a low-pressure liquid refrigerant into a low-pressure gas. The expansion valve 124 is, for example, an electronic expansion valve. Further, the expansion valve 124 reduces the pressure of the refrigerant, which is a high-pressure liquid, to a low-pressure liquid, for example. The dehumidification side air refrigerant heat exchanger 125 and the bypass side air refrigerant heat exchanger 126 are provided in parallel on the refrigerant flow path 16 and on the air flow path 17 blown by the ventilation fan 14, respectively. Furthermore, during cooling, refrigerant whose pressure has been reduced by the expansion valve 124 is introduced into the dehumidifying side air refrigerant heat exchanger 125 and the bypass side air refrigerant heat exchanger 126. At this time, the dehumidifying side air refrigerant heat exchanger 125 and the bypass side air refrigerant heat exchanger 126 function as an evaporator, and evaporate, for example, a low-pressure liquid refrigerant into a low-pressure gas. Note that during heating, refrigerant compressed by the compressor 121 is introduced via the four-way valve 122. At this time, the dehumidifying side air refrigerant heat exchanger 125 and the bypass side air refrigerant heat exchanger 126 function as a condenser, and condense, for example, a high-pressure gas refrigerant into a high-pressure liquid. The two-way valve 127 is a general valve, for example, a solenoid valve. The two-way valve 127 is located in the vicinity of the bypass air refrigerant heat exchanger 126 between the dehumidifying air refrigerant heat exchanger 125 and the bypass air refrigerant heat exchanger 126 that are provided in parallel on the refrigerant flow path 16. , is provided in series with the bypass side air refrigerant heat exchanger 126, and switches whether or not to flow the refrigerant to the bypass side air refrigerant heat exchanger 126. In other words, the two-way valve 127 switches whether or not to allow the refrigerant to flow only through the dehumidifying side air refrigerant heat exchanger 125. Note that the dehumidification side air refrigerant heat exchanger 125 corresponds to the "first air refrigerant heat exchanger" according to the present invention, and the bypass side air refrigerant heat exchanger 126 corresponds to the "second air refrigerant heat exchanger" according to the present invention. This corresponds to a heat exchanger. By passing the refrigerant through both the dehumidifying side air refrigerant heat exchanger 125 and the bypass side air refrigerant heat exchanger 126 and operating the inverter of the compressor 121 at 100% rotation speed, the air conditioner 1 has the rated output. It works. That is, the dehumidification side air refrigerant heat exchanger 125 according to the present embodiment constitutes a part of the air refrigerant heat exchanger of the heat pump unit 12, and according to the dehumidification side air refrigerant heat exchanger 125, the air refrigerant The heat exchanger can be partially operated. Therefore, according to the dehumidifying side air refrigerant heat exchanger 125, it is possible to partially dehumidify the air flowing through the air flow path 17, and at the same time, it is possible to prevent the air flowing through the air flow path 17 from being excessively cooled. energy consumption required for reheating can be suppressed when the air conditioning load is relatively small.

吸気温湿度センサ131、除湿側コイル出口温度センサ132は、既存の温度センサ、又は温湿度センサである。吸気温湿度センサ131は、空気調和機1の吸気口に設けられ、吸気の温度を測定する。除湿側コイル出口温度センサ132は、除湿側空気冷媒熱交換器125を通過する空気の出口に設けられ、通過する空気の温度を測定する。なお、吸気温湿度センサ131及び除湿側コイル出口温度センサ132は、測定した温度に応じた信号を後述する制御装置13に出力する。 The intake temperature/humidity sensor 131 and the dehumidifying coil outlet temperature sensor 132 are existing temperature sensors or temperature/humidity sensors. The intake temperature/humidity sensor 131 is provided at the intake port of the air conditioner 1 and measures the temperature of intake air. The dehumidifying coil outlet temperature sensor 132 is provided at the outlet of the air passing through the dehumidifying air refrigerant heat exchanger 125, and measures the temperature of the air passing through. Note that the intake temperature/humidity sensor 131 and the dehumidification side coil outlet temperature sensor 132 output signals corresponding to the measured temperatures to the control device 13, which will be described later.

また、制御装置13は、マイクロコントローラやプロセッサ等の処理装置を含み、空気調和機1が備える温度センサ、バルブ等と信号線又は無線で接続されている。また、制御装置13は、温度センサから温度を示す信号等を取得したり、バルブの開閉やその開度を制御したりする。 Further, the control device 13 includes a processing device such as a microcontroller and a processor, and is connected to a temperature sensor, a valve, etc. provided in the air conditioner 1 by a signal line or wirelessly. Further, the control device 13 acquires a signal indicating temperature from a temperature sensor, and controls opening/closing of a valve and its opening degree.

送風ファン14は、ファンコイルユニット11及びヒートポンプユニット12に共通に用いられる。すなわち、送風ファン14は、例えば温度を制御する対象となる室内の空気を取り込み、ファンコイルユニット11及びヒートポンプユニット12によって所定の温度に調節された空気を室内に送出する。 The blower fan 14 is commonly used by the fan coil unit 11 and the heat pump unit 12. That is, the ventilation fan 14 takes in, for example, indoor air whose temperature is to be controlled, and sends the air, which has been adjusted to a predetermined temperature by the fan coil unit 11 and the heat pump unit 12, into the room.

図2は、除湿運転時の冷媒及び熱源水の流路15の一例を示す図である。空気調和機1は、二方弁127を閉じてバイパス側空気冷媒熱交換器126への冷媒の流入を停止させ、除湿側空気冷媒熱交換器125のみを用いて除湿を行う。このとき、ユーザがコントローラ2を用いて設定する温度及び湿度の目標値(それぞれ「室内温度設定値」及び「室内相対湿度設定値」とも呼ぶ)から求められる室内露点温度設定値と、除湿側コイル出口温度センサ132が測定する温度との関係に基づいて、圧縮機121のインバータの回転数を制御する。除湿運転において複数の空気冷媒熱交換器である除湿側空気冷媒熱交換器125及びバイパス側空気冷媒熱交換器126のうち一部を用いることにより、除湿運転により空気の温度を吹出し空気の設定温度よりも下げ過ぎてしまうことを抑制できる。したがって、所望の温度を得るための再熱処理が不要になり、省エネルギー性が向上する。なお、仮に1つの空気冷媒熱交換器の大きさを小さくするだけでは、例えば冷房時において負荷が大きい場合に所望の定格出力を得ることができない。そこで、冷媒の流入が除湿時にバイパスされるバイパス側空気冷媒熱交換器126を設け、複数の空気冷媒熱交換器を
備えるようにしている。すなわち、空気調和機1は、冷房時においてはバイパス側空気冷媒熱交換器126にも冷媒を流し、負荷の大きさに応じて圧縮機121を制御する。
FIG. 2 is a diagram showing an example of the flow path 15 of refrigerant and heat source water during dehumidification operation. The air conditioner 1 closes the two-way valve 127 to stop the refrigerant from flowing into the bypass air refrigerant heat exchanger 126, and performs dehumidification using only the dehumidification air refrigerant heat exchanger 125. At this time, the indoor dew point temperature set value obtained from the temperature and humidity target values (also referred to as "indoor temperature set value" and "indoor relative humidity set value, respectively") set by the user using the controller 2, and the dehumidifying side coil The rotation speed of the inverter of the compressor 121 is controlled based on the relationship with the temperature measured by the outlet temperature sensor 132. By using some of the plurality of air refrigerant heat exchangers, the dehumidification-side air refrigerant heat exchanger 125 and the bypass-side air refrigerant heat exchanger 126 in the dehumidification operation, the temperature of the air is blown out during the dehumidification operation and the set temperature of the air is adjusted. You can prevent it from dropping too low. Therefore, there is no need for reheating to obtain a desired temperature, resulting in improved energy savings. Note that even if the size of one air refrigerant heat exchanger is reduced, a desired rated output cannot be obtained, for example, when the load is large during cooling. Therefore, a bypass side air refrigerant heat exchanger 126 is provided in which the inflow of refrigerant is bypassed during dehumidification, and a plurality of air refrigerant heat exchangers are provided. That is, during cooling, the air conditioner 1 also causes the refrigerant to flow through the bypass air refrigerant heat exchanger 126, and controls the compressor 121 according to the magnitude of the load.

また、空気調和機1は、除湿運転時において、二方弁111の開度を調整することにより温度の制御ができる。すなわち、ユーザがコントローラ2を用いて設定する室温の設定値と、吸気温湿度センサ131が測定する吸込み温度(室温)との関係に基づいて、二方弁111の開度を制御し、熱源水の流量を変更する。このように、空気調和機1は、ファンコイルユニット11とヒートポンプユニット12とを備えているため、湿度の制御とは独立して温度の制御を行うことができる。また、ファンコイルユニット11における熱源水の流量の比例制御であれば、例えばダンパーの開度により混合させる空気の量を調整して所望の温度を得るような場合よりも温度調節の精度を高めることができ、快適性が向上する。 Furthermore, the air conditioner 1 can control the temperature by adjusting the opening degree of the two-way valve 111 during dehumidification operation. That is, the opening degree of the two-way valve 111 is controlled based on the relationship between the room temperature setting value set by the user using the controller 2 and the intake temperature (room temperature) measured by the intake temperature/humidity sensor 131, and the opening degree of the two-way valve 111 is controlled. change the flow rate. In this way, since the air conditioner 1 includes the fan coil unit 11 and the heat pump unit 12, the temperature can be controlled independently of the humidity control. Furthermore, if the flow rate of the heat source water in the fan coil unit 11 is proportionally controlled, the accuracy of temperature control can be improved compared to the case where the desired temperature is obtained by adjusting the amount of air to be mixed by adjusting the opening degree of a damper, for example. This improves comfort.

<除湿制御>
図3及び図4は、空気調和機1の除湿運転時の処理の一例を示す処理フロー図である。空気調和機1の制御装置13は、コントローラ2によって除湿運転が選択された場合に、図3に示すような処理が開始される。なお、室内の温度、湿度の目標値である室内温度設定値をTs(℃)、室内相対湿度設定値をHs(%)が除湿運転の選択時に設定されるものとする。
<Dehumidification control>
3 and 4 are process flow diagrams showing an example of the process during dehumidification operation of the air conditioner 1. The control device 13 of the air conditioner 1 starts processing as shown in FIG. 3 when the controller 2 selects the dehumidifying operation. It is assumed that the indoor temperature set value Ts (° C.) and the indoor relative humidity set value Hs (%), which are target values for the indoor temperature and humidity, are set when the dehumidifying operation is selected.

制御装置13は、三方弁112をファンコイル側熱交換器113側へ開放させ、ファンコイル側熱交換器113へ熱源水を導入する。また、制御装置13は、二方弁127を閉止させ、バイパス側空気冷媒熱交換器126への冷媒の流入を停止し、除湿側空気冷媒熱交換器125のみに冷媒を導入する(図3:S1)。本ステップでは、図2に示したように熱源水と冷媒の流路が形成される。 The control device 13 opens the three-way valve 112 to the fan coil side heat exchanger 113 side, and introduces the heat source water to the fan coil side heat exchanger 113. Further, the control device 13 closes the two-way valve 127, stops the flow of refrigerant into the bypass side air refrigerant heat exchanger 126, and introduces the refrigerant only into the dehumidification side air refrigerant heat exchanger 125 (FIG. 3: S1). In this step, flow paths for heat source water and refrigerant are formed as shown in FIG. 2.

また、制御装置13は、除湿側コイル出口温度センサ132から除湿側空気冷媒熱交換器125の出口温度T1を取得すると共に、吸気温湿度センサ131から吸気温度T2及び吸気湿度H2を取得する(図3:S2)。本実施形態では、吸気は室内からの還気であり、吸気温度は室内温度であるものとする。 Further, the control device 13 acquires the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 from the dehumidifying coil outlet temperature sensor 132, and acquires the intake air temperature T2 and the intake air humidity H2 from the intake air temperature/humidity sensor 131 (Fig. 3:S2). In this embodiment, it is assumed that the intake air is return air from the room, and the intake air temperature is the room temperature.

また、制御装置13は、除湿側空気冷媒熱交換器125の出口温度T1と室内露点温度設定値Tdpspとの関係に基づいて処理を分岐させる(図3:S3)。なお、室内露点温度設定値Tdpspは、予め設定された室内温度設定値Ts(℃)、及び室内相対湿度設定値Hs(%)に基づいて算出される。すなわち、室内温度設定値Ts(℃)において室内相対湿度設定値Hs(%)となる量の水蒸気を含む空気が、結露し始める温度を室内露点温度設定値Tdpspとする。本ステップでは、制御装置13は、除湿側空気冷媒熱交換器125の出口温度T1の目標を、除湿がなされる室内露点温度設定値Tdpsp-1(℃)に設定して、所定の許容範囲に収まるよう、圧縮機121のインバータ出力を制御する。例えば、除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1-α(℃)よりも小さい場合に、圧縮機121のインバータの回転数を減少させる(図3:S4)。なお、αは、露点温度の許容幅を表す所定の値である。また、除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1-α(℃)以上であり、且つ室内露点温度設定値Tdpsp-1+α(℃)以下である場合、圧縮機121のインバータの回転数を維持させる(図3:S5)。また、除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1+α(℃)より大きい場合、圧縮機121のインバータの回転数を増加させる(図3:S6)。S4~S6の後、接続子Aを介して図4の処理に遷移する。 Furthermore, the control device 13 branches the process based on the relationship between the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 and the indoor dew point temperature set value Tdpsp (FIG. 3: S3). Note that the indoor dew point temperature setting value Tdpsp is calculated based on a preset indoor temperature setting value Ts (° C.) and an indoor relative humidity setting value Hs (%). That is, the temperature at which air containing water vapor in an amount equal to the indoor relative humidity setting value Hs (%) at the indoor temperature setting value Ts (° C.) starts to condense is set as the indoor dew point temperature setting value Tdpsp. In this step, the control device 13 sets the target outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 to the indoor dew point temperature set value Tdpsp-1 (°C) at which dehumidification is performed, and brings it within a predetermined allowable range. The inverter output of the compressor 121 is controlled so that the For example, when the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 is smaller than the indoor dew point temperature set value Tdpsp-1-α (°C), the rotation speed of the inverter of the compressor 121 is decreased (see FIG. 3). S4). Note that α is a predetermined value representing the allowable range of dew point temperature. Further, when the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 is equal to or higher than the indoor dew point temperature set value Tdpsp-1-α (°C) and is equal to or lower than the indoor dew point temperature set value Tdpsp-1+α (°C), The rotation speed of the inverter of the compressor 121 is maintained (FIG. 3: S5). Further, when the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 is higher than the indoor dew point temperature setting value Tdpsp-1+α (° C.), the rotation speed of the inverter of the compressor 121 is increased (FIG. 3: S6). After S4 to S6, the process transitions to the process shown in FIG. 4 via connector A.

図5は、除湿側空気冷媒熱交換器125の出口温度T1と圧縮機121のインバータの
回転数との関係を示す図である。除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1-α(℃)よりも小さい場合に、図3のS4において、圧縮機121のインバータの回転数が比例制御され、減少する。また、除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1-α(℃)以上であり、且つ室内露点温度設定値Tdpsp-1+α(℃)以下である場合、図3のS5において、圧縮機121のインバータの回転数が維持され、一定となる。また、除湿側空気冷媒熱交換器125の出口温度T1が、室内露点温度設定値Tdpsp-1+α(℃)より大きい場合、図3のS6において、圧縮機121のインバータの回転数が比例制御され、100%を上限として増加する。
FIG. 5 is a diagram showing the relationship between the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 and the rotation speed of the inverter of the compressor 121. When the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 is smaller than the indoor dew point temperature set value Tdpsp-1-α (°C), in S4 of FIG. 3, the rotation speed of the inverter of the compressor 121 is proportionally controlled. and decrease. Further, when the outlet temperature T1 of the dehumidifying side air refrigerant heat exchanger 125 is equal to or higher than the indoor dew point temperature set value Tdpsp-1-α (°C) and is equal to or lower than the indoor dew point temperature set value Tdpsp-1+α (°C), In S5 of FIG. 3, the rotation speed of the inverter of the compressor 121 is maintained and becomes constant. Further, when the outlet temperature T1 of the dehumidification side air refrigerant heat exchanger 125 is higher than the indoor dew point temperature setting value Tdpsp-1+α (° C.), the rotation speed of the inverter of the compressor 121 is proportionally controlled in S6 of FIG. Increase up to 100%.

除湿側空気冷媒熱交換器125の出口温度T1(℃)が、室内露点温度設定値Tdpsp(℃)より小さくなると、除湿側空気冷媒熱交換器125において空気中の水分が結露し、除湿される。上記の例では室内露点温度設定値Tdpsp-1(℃)を目標として上下にαだけ許容幅を設けたが、目標は室内露点温度設定値Tdpspよりも低い温度であればよく、室内露点温度設定値Tdpsp-2(℃)等でもよい。 When the outlet temperature T1 (°C) of the dehumidifying side air refrigerant heat exchanger 125 becomes smaller than the indoor dew point temperature setting value Tdpsp (°C), moisture in the air condenses in the dehumidifying side air refrigerant heat exchanger 125, and dehumidification is performed. . In the above example, the indoor dew point temperature set value Tdpsp-1 (°C) is set as the target, and a tolerance range of α is set above and below, but the target need only be a temperature lower than the indoor dew point temperature set value Tdpsp, and the indoor dew point temperature The value may be Tdpsp-2 (°C) or the like.

そして、図4のS7においては、制御装置13は、吸気温度T2と室温設定値T2spとの関係に基づいて処理を分岐させる(図4:S7)。吸気温度T2が、室温設定値T2sp-βよりも小さい場合に、二方弁111の開度を減少させる(図4:S8)。なお、βは、室温の許容幅を表す所定の値である。また、吸気温度T2が、室温設定値T2sp-β(℃)以上であり、且つ室温設定値T2sp+β(℃)以下である場合、二方弁111の開度を維持させる(図4:S9)。また、吸気温度T2が、室温設定値T2sp+β(℃)より大きい場合、二方弁111の開度を増大させる(図4:S10)。S8~S10の後、接続子Bを介して図3のS2に戻る。 Then, in S7 of FIG. 4, the control device 13 branches the process based on the relationship between the intake air temperature T2 and the room temperature set value T2sp (FIG. 4: S7). When the intake air temperature T2 is smaller than the room temperature set value T2sp-β, the opening degree of the two-way valve 111 is decreased (FIG. 4: S8). Note that β is a predetermined value representing an allowable range of room temperature. Further, when the intake air temperature T2 is equal to or higher than the room temperature set value T2sp-β (°C) and lower than the room temperature set value T2sp+β (°C), the opening degree of the two-way valve 111 is maintained (FIG. 4: S9). Further, when the intake air temperature T2 is higher than the room temperature set value T2sp+β (° C.), the opening degree of the two-way valve 111 is increased (FIG. 4: S10). After S8 to S10, the process returns to S2 in FIG. 3 via connector B.

図6は、吸気温度T2と、二方弁111の開度との関係を示す図である。吸気温度T2が、室温設定値T2sp+β(℃)よりも小さい場合に、図4のS8において二方弁111の開度が比例制御され、低下する。また、吸気温度T2が、室温設定値T2sp-β(℃)以上であり、且つ室温設定値T2sp+β(℃)以下である場合、図4のS9において二方弁111の開度を維持させる。また、吸気温度T2が、室温設定値T2sp+β(℃)より大きい場合、図4のS10において二方弁111の開度が比例制御され、100%を上限として増大する。 FIG. 6 is a diagram showing the relationship between the intake air temperature T2 and the opening degree of the two-way valve 111. When the intake air temperature T2 is smaller than the room temperature set value T2sp+β (° C.), the opening degree of the two-way valve 111 is proportionally controlled and lowered in S8 of FIG. Further, when the intake air temperature T2 is equal to or higher than the room temperature set value T2sp-β (°C) and equal to or lower than the room temperature set value T2sp+β (°C), the opening degree of the two-way valve 111 is maintained in S9 of FIG. Further, when the intake air temperature T2 is higher than the room temperature set value T2sp+β (° C.), the opening degree of the two-way valve 111 is proportionally controlled in S10 of FIG. 4, and increases with an upper limit of 100%.

本実施形態では、ファンコイルユニット11に15℃程度の中温冷水が熱源水として供給される。吸気温度T2(℃)が、室温設定値T2sp(℃)より所定の許容幅βを超えて低い場合、これ以上空気調和機1の吹出し空気を冷却する必要がないため、二方弁111の開度を低下させる。一方、吸気温度T2(℃)が、室温設定値T2sp(℃)より所定の許容幅βを超えて高い場合、ファンコイルユニット11においては二方弁111の開度を増大させ、空気調和機1の吹出し空気を冷却する。 In this embodiment, medium-temperature cold water of about 15° C. is supplied to the fan coil unit 11 as heat source water. When the intake air temperature T2 (°C) is lower than the room temperature set value T2sp (°C) by more than a predetermined tolerance range β, the two-way valve 111 is opened because there is no need to cool the air blown from the air conditioner 1 any further. reduce the degree of On the other hand, when the intake air temperature T2 (°C) is higher than the room temperature set value T2sp (°C) by more than the predetermined allowable width β, the fan coil unit 11 increases the opening degree of the two-way valve 111, and the air conditioner cooling the blown air.

<効果>
図5の制御と図6の制御とがそれぞれヒートポンプユニット12とファンコイルユニット11とで独立して実行される。したがって、空気調和機1は、特にファンコイルユニット11の二方弁111の開度を制御することにより設定温度に対する精密な制御が可能になる。また、ヒートポンプユニット12が備える空気冷媒熱交換器のうちの一部であるバイパス側空気冷媒熱交換器126は、除湿運転時にバイパスさせ、他の部分である除湿側空気冷媒熱交換器125によって除湿を行う。すなわち、バイパス側空気冷媒熱交換器126を通過する空気は冷却されず、除湿側空気冷媒熱交換器125によって除湿された空気と混合されて空気調和機1が吹出すため、ヒートポンプユニット12は除湿運転時に過剰に空気を冷却させることを避け、再熱に要するエネルギーの浪費を抑えることができる
<Effect>
The control in FIG. 5 and the control in FIG. 6 are independently executed by the heat pump unit 12 and the fan coil unit 11, respectively. Therefore, the air conditioner 1 can precisely control the set temperature by particularly controlling the opening degree of the two-way valve 111 of the fan coil unit 11. In addition, the bypass side air refrigerant heat exchanger 126, which is a part of the air refrigerant heat exchanger included in the heat pump unit 12, is bypassed during dehumidification operation, and the other part, the dehumidification side air refrigerant heat exchanger 125, dehumidifies the air. I do. That is, the air passing through the bypass side air refrigerant heat exchanger 126 is not cooled, but is mixed with the air dehumidified by the dehumidification side air refrigerant heat exchanger 125 and blown out by the air conditioner 1, so that the heat pump unit 12 dehumidifies the air. Excessive cooling of the air during operation can be avoided, and energy waste required for reheating can be suppressed.

<空気調和システム>
図7は、複数の空気調和機を含む空気調和システムの一例を示す図である。図7の例では、各階又は居室内に複数の空気調和機1を備えている。空気調和機1は、例えば図1に示した装置である。また、システムは、外調機3と、空冷チラー4と、可変流量ポンプ5とを備える。外調機3は、清浄な空気をシステム内に取り入れる。空冷チラー4は、熱源水として、例えば15℃程度の中温冷水を製造する。また、ポンプ5は、複数の空気調和機1の各々へ熱源水を送水する。また、外調機3及び空気調和機1の各々は比例二方弁111を備え、導入される熱源水の量は可変になっている。
<Air conditioning system>
FIG. 7 is a diagram showing an example of an air conditioning system including a plurality of air conditioners. In the example of FIG. 7, a plurality of air conditioners 1 are provided on each floor or in a living room. The air conditioner 1 is, for example, the device shown in FIG. The system also includes an outside conditioner 3, an air-cooled chiller 4, and a variable flow rate pump 5. The outside air conditioner 3 takes in clean air into the system. The air-cooled chiller 4 produces, for example, medium-temperature cold water of about 15° C. as heat source water. Further, the pump 5 supplies heat source water to each of the plurality of air conditioners 1. Moreover, each of the outdoor conditioner 3 and the air conditioner 1 is equipped with a proportional two-way valve 111, and the amount of heat source water introduced is variable.

熱源水を可変流量とすることにより、定流量を流し続ける場合よりもポンプによる送水にかかるエネルギーを削減することができる。また、空冷チラー4が製造する中温冷水の熱源水を用いて、外調機3でも除湿を行う。そして、外調機3では除湿しきれない残りの潜熱をヒートポンプユニット12の除湿側空気冷媒熱交換器125で処理する。このようにすれば、消費エネルギーを低減させ、ZEB(Zero Energy Building)化を実現し得るシステムとなる。 By making the flow rate of the heat source water variable, the energy required for pumping water can be reduced compared to when a constant flow rate continues to flow. Further, the outside air conditioner 3 also performs dehumidification using the heat source water of medium temperature cold water produced by the air-cooled chiller 4. The remaining latent heat that cannot be dehumidified by the external conditioner 3 is processed by the dehumidifying side air refrigerant heat exchanger 125 of the heat pump unit 12. In this way, the system can reduce energy consumption and realize ZEB (Zero Energy Building).

<その他>
実施形態及び変形例は一例であり、本発明は上述した構成には限定されない。実施形態及び変形例の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。
<Others>
The embodiments and modified examples are merely examples, and the present invention is not limited to the configurations described above. The contents of the embodiments and modifications can be combined as much as possible without departing from the problems and technical ideas of the present invention.

空気調和機1は、その吸込み温度及び吸込み湿度に基づいて室内露点温度を算出し、その吹出し温度が露点温度以下にならないように設定値を変更するロードリセット制御をさらに行うようにしてもよい。このようにすれば、空気調和機1の吹出し口における結露を防止することができる。 The air conditioner 1 may further perform load reset control that calculates the indoor dew point temperature based on the suction temperature and suction humidity, and changes the set value so that the outlet temperature does not fall below the dew point temperature. In this way, dew condensation at the air outlet of the air conditioner 1 can be prevented.

ファンコイルユニット11における温度制御は、二方弁111の比例制御、送風ファン14のVAV(Variable Air Volume)制御を直列にして1つのフィードバックループを
形成し、空気調和機1の吹出し温度に基づくカスケード制御を行うようにしてもよい。
Temperature control in the fan coil unit 11 is performed by connecting proportional control of the two-way valve 111 and VAV (Variable Air Volume) control of the blower fan 14 in series to form one feedback loop, and performing cascade control based on the outlet temperature of the air conditioner 1. Control may also be performed.

ヒートポンプユニット12は、3つ以上の空気冷媒熱交換器を備えていてもよい。この場合も、一部の空気冷媒熱交換器を用いて除湿運転が行われる。 Heat pump unit 12 may include three or more air refrigerant heat exchangers. In this case as well, dehumidification operation is performed using some air refrigerant heat exchangers.

また、上述のシステムは、放射空調や蓄熱槽、その他の装置をさらに組み合わせて用いることもできる。 Moreover, the above-mentioned system can also be used in further combination with radiant air conditioning, heat storage tanks, and other devices.

1 空気調和機
11 ファンコイルユニット
111 二方弁(比例二方弁)
112 三方弁(切替三方弁)
113 ファンコイル側熱交換器
12 ヒートポンプユニット
121 圧縮機
122 四方弁
123 水冷媒熱交換器
124 膨張弁
125 除湿側空気冷媒熱交換器
126 バイパス側空気冷媒熱交換器
127 二方弁
13 制御装置
131 吸気温湿度センサ
132 除湿側コイル出口温度センサ
14 送風ファン
15 熱源水の流路
16 冷媒の流路
17 空気の流路
2 コントローラ
3 外調機
4 空冷チラー
5 ポンプ
1 Air conditioner 11 Fan coil unit 111 Two-way valve (proportional two-way valve)
112 Three-way valve (switching three-way valve)
113 Fan coil side heat exchanger 12 Heat pump unit 121 Compressor 122 Four-way valve 123 Water-refrigerant heat exchanger 124 Expansion valve 125 Dehumidification-side air-refrigerant heat exchanger 126 Bypass-side air-refrigerant heat exchanger 127 Two-way valve 13 Control device 131 Suction Temperature and humidity sensor 132 Dehumidification side coil outlet temperature sensor 14 Blow fan 15 Heat source water flow path 16 Refrigerant flow path 17 Air flow path 2 Controller 3 Outdoor conditioner 4 Air-cooled chiller 5 Pump

Claims (4)

熱源水の流路上に設けられ、前記熱源水と空気との間で熱交換を行うと共に、前記熱源水の流量を制御するための比例弁を備えるファンコイルユニットと、
前記熱源水の流路上に一部が設けられ、前記熱源水と伝熱媒体との間、及び前記空気と前記伝熱媒体との間で熱交換を行うヒートポンプユニットと、
を備え、
前記ヒートポンプユニットは、除湿運転時に前記空気と前記伝熱媒体との間で熱交換を行う第1の空気冷媒熱交換器と、除湿運転時に前記伝熱媒体の流入が制限される第2の空気冷媒熱交換器と、圧縮機とを備え
前記ヒートポンプユニットが、設定された室内露点温度と前記第1の空気冷媒熱交換器の空気の出口温度との関係に基づいて前記圧縮機の出力を制御する処理と、前記ファンコイルユニットが、設定温度と室温との関係に基づいて前記比例弁の開度を制御す処理とを、除湿運転時に独立に実行する
空気調和機。
a fan coil unit provided on a flow path of heat source water and including a proportional valve for exchanging heat between the heat source water and air and controlling the flow rate of the heat source water ;
a heat pump unit that is partially provided on a flow path of the heat source water and performs heat exchange between the heat source water and the heat transfer medium and between the air and the heat transfer medium;
Equipped with
The heat pump unit includes a first air refrigerant heat exchanger that exchanges heat between the air and the heat transfer medium during dehumidification operation, and a second air refrigerant heat exchanger that restricts the inflow of the heat transfer medium during dehumidification operation. Equipped with a refrigerant heat exchanger and a compressor ,
The heat pump unit controls the output of the compressor based on the relationship between the set indoor dew point temperature and the air outlet temperature of the first air refrigerant heat exchanger, and the fan coil unit controls the A process of controlling the opening degree of the proportional valve based on the relationship between temperature and room temperature is independently executed during dehumidification operation.
Air conditioner.
前記第1の空気冷媒熱交換器は、前記ヒートポンプユニットを通過する前記空気の一部と前記伝熱媒体との間で熱交換を行う
請求項1に記載の空気調和機。
The air conditioner according to claim 1, wherein the first air refrigerant heat exchanger exchanges heat between a portion of the air passing through the heat pump unit and the heat transfer medium.
前記第1の空気冷媒熱交換器及び前記第2の空気冷媒熱交換器は、冷房運転時において前記空気と前記伝熱媒体との間で熱交換を行う
請求項1又は2に記載の空気調和機。
The air conditioner according to claim 1 or 2 , wherein the first air refrigerant heat exchanger and the second air refrigerant heat exchanger exchange heat between the air and the heat transfer medium during cooling operation. Machine.
請求項1からのいずれか一項に記載の、複数の空気調和機と、
外調機と、
を備え、
前記外調機は、前記熱源水を用いて除湿を行う
空気調和システム。
A plurality of air conditioners according to any one of claims 1 to 3 ,
An outside conditioning machine,
Equipped with
The outdoor conditioner dehumidifies using the heat source water. The air conditioning system.
JP2019129593A 2019-07-11 2019-07-11 Air conditioners and air conditioning systems Active JP7374633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019129593A JP7374633B2 (en) 2019-07-11 2019-07-11 Air conditioners and air conditioning systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019129593A JP7374633B2 (en) 2019-07-11 2019-07-11 Air conditioners and air conditioning systems

Publications (2)

Publication Number Publication Date
JP2021014947A JP2021014947A (en) 2021-02-12
JP7374633B2 true JP7374633B2 (en) 2023-11-07

Family

ID=74531985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019129593A Active JP7374633B2 (en) 2019-07-11 2019-07-11 Air conditioners and air conditioning systems

Country Status (1)

Country Link
JP (1) JP7374633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294720A (en) * 2021-12-28 2022-04-08 中山市爱美泰电器有限公司 Water source dehumidifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148830A (en) 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner
JP2017155953A (en) 2016-02-29 2017-09-07 株式会社富士通ゼネラル Air conditioner
JP2018096594A (en) 2016-12-12 2018-06-21 株式会社竹中工務店 Air conditioning system
JP2019105397A (en) 2017-12-12 2019-06-27 日本ピーマック株式会社 Air conditioning equipment and air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148830A (en) 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner
JP2017155953A (en) 2016-02-29 2017-09-07 株式会社富士通ゼネラル Air conditioner
JP2018096594A (en) 2016-12-12 2018-06-21 株式会社竹中工務店 Air conditioning system
JP2019105397A (en) 2017-12-12 2019-06-27 日本ピーマック株式会社 Air conditioning equipment and air conditioning system

Also Published As

Publication number Publication date
JP2021014947A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5328951B2 (en) Air conditioning system
CN109196287B (en) Air conditioning system
JP4207166B2 (en) Dehumidifying air conditioner
JP6494765B2 (en) Air conditioning system
JP5487857B2 (en) Air conditioning system
JP2019178805A (en) Air conditioner, air conditioning system and air conditioning facility
EP3396264B1 (en) Air-source heat pump air conditioner
JP2006313027A (en) Ventilation air conditioner
WO2019193680A1 (en) Air conditioning system
JP6250148B2 (en) Air conditioning system
CN209744650U (en) Fresh air-capillary network air combined adjusting system
JP6221198B2 (en) External control device
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP4647399B2 (en) Ventilation air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
JP6024726B2 (en) External control device
JP4376285B2 (en) Mixed air conditioner
JP2005291553A (en) Multiple air conditioner
JP2018112356A (en) Air Conditioning System
JP2000018766A (en) Air conditioner
JP6938950B2 (en) Air conditioning system
JP6660873B2 (en) Heat pump type temperature controller
JP2014145588A (en) Fan coil type air conditioner for radiation panel with heat pump
JP7209485B2 (en) air conditioning system
KR102126903B1 (en) Outdoor unit integrated precision air conditioner with function to discharge smoke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7374633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150