WO2019193680A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2019193680A1
WO2019193680A1 PCT/JP2018/014415 JP2018014415W WO2019193680A1 WO 2019193680 A1 WO2019193680 A1 WO 2019193680A1 JP 2018014415 W JP2018014415 W JP 2018014415W WO 2019193680 A1 WO2019193680 A1 WO 2019193680A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor heat
air
outside air
temperature
Prior art date
Application number
PCT/JP2018/014415
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 橋川
守 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020512156A priority Critical patent/JP7026781B2/en
Priority to PCT/JP2018/014415 priority patent/WO2019193680A1/en
Publication of WO2019193680A1 publication Critical patent/WO2019193680A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present invention relates to an air conditioning system including an outside air supply unit that supplies outside air to a space to be air-conditioned.
  • an air conditioning system that includes an outside air supply unit that supplies outside air to an air-conditioning target space and enables ventilation of the air-conditioning target space.
  • a conventional air conditioning system including an outside air supply unit includes an indoor unit that cools or heats air in a space to be air-conditioned by an indoor heat exchanger housed inside.
  • an air conditioning system that dehumidifies outside air taken into the outside air supply unit and supplies it to the air-conditioning target space has also been proposed.
  • the air conditioning system described in Patent Document 1 includes a refrigerant circuit having an evaporator and a condenser.
  • the evaporator and the condenser of the refrigerant circuit are accommodated in the outside air supply unit.
  • the air conditioning system of patent document 1 cools and dehumidifies the external air taken into the external air supply unit with the evaporator, and heats the external air dehumidified with the condenser. That is, the air conditioning system described in Patent Document 1 performs dehumidification and heating of outside air by using an evaporator and a condenser of one refrigerant circuit.
  • the degree of dehumidification of the outside air depends on how much the outside air is cooled. That is, in order to bring the outside air to a desired humidity, it is necessary to adjust the evaporation temperature of the refrigerant flowing through the evaporator. Further, in order to heat the dehumidified outside air to a desired temperature, it is necessary to adjust the condensation temperature of the refrigerant flowing through the condenser. However, in one refrigerant circuit, it is very difficult to independently adjust the evaporation temperature of the refrigerant flowing through the evaporator and the condensation temperature of the refrigerant flowing through the condenser.
  • the air conditioning system described in Patent Literature 1 cannot heat the dehumidified outside air to a desired temperature when the outside air supply unit performs the reheat dehumidifying operation. For this reason, when the outside air supply unit performs the reheat dehumidifying operation, the air conditioning system described in Patent Document 1 cannot control the temperature of the air blown from the outside air supply unit, and maintains the comfort of the air-conditioning target space. There was a problem that there was a case that could not be.
  • the conventional air conditioning system in which the outdoor air supply unit performs the reheat dehumidification operation includes a refrigerant circuit having an indoor heat exchanger housed in an indoor unit that heats or cools air in an air-conditioning target space, and an outdoor air supply unit. And a refrigerant circuit having an indoor heat exchanger housed in the housing.
  • the present invention has been made to solve the above-described problems, and can control the temperature of the air blown from the outside air supply unit during the reheat dehumidification operation, thereby suppressing an increase in cost.
  • the purpose is to propose a possible air conditioning system.
  • the air conditioning system includes a first indoor heat exchanger, a first refrigerant circuit having a second indoor heat exchanger that functions as an evaporator, and a third indoor heat exchanger that functions as a condenser.
  • An indoor unit having a first housing having a first refrigerant housing, a first air inlet and a first air outlet, in which the first indoor heat exchanger is housed, and a second air inlet and a second air outlet.
  • an outside air supply unit having a second housing in which the second indoor heat exchanger and the third indoor heat exchanger are housed, and in the indoor unit, the first housing is connected to the first housing.
  • Heat exchange is performed between the air in the air-conditioned space sucked into the body and the refrigerant flowing through the first indoor heat exchanger, and the air after the heat exchange is blown out from the first air outlet, and the outside air supply unit Then, the outside air sucked into the second housing from the second suction port is
  • the second indoor heat exchanger is disposed on the upstream side of the third indoor heat exchanger in the flow direction of the outside air that is blown out from the second air outlet and extends from the second suction port to the second air outlet.
  • the dehumidified external air is a 2nd refrigerant circuit different from the 1st refrigerant circuit which has a 2nd indoor heat exchanger. Heated by the third indoor heat exchanger.
  • movement can be controlled.
  • the outdoor air supply unit of the air conditioning system which concerns on this invention has the 1st refrigerant circuit which has the 1st indoor heat exchanger accommodated in the indoor unit, and the 3rd indoor heat exchanger accommodated in the outdoor air supply unit.
  • the reheat dehumidifying operation can be performed using the second refrigerant circuit.
  • the air conditioning system when the outside air supply unit performs the reheat dehumidifying operation, a new heat source such as a heater is not required other than the first refrigerant circuit and the second refrigerant circuit. For this reason, the air conditioning system which concerns on this invention can also suppress a raise of cost.
  • FIG. 1 is a diagram showing a schematic configuration of an air-conditioning system according to Embodiment 1 of the present invention.
  • FIG. 2 is a refrigerant circuit diagram illustrating a first refrigerant circuit of the air-conditioning system according to Embodiment 1 of the present invention.
  • FIG. 3 is a refrigerant circuit diagram illustrating a second refrigerant circuit of the air-conditioning system according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a schematic configuration of an outside air supply unit of the air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes a first outdoor unit 3, an indoor unit 4, a second outdoor unit 8, and an outdoor air supply unit 30.
  • the first outdoor unit 3 and the second outdoor unit 8 are disposed outdoors.
  • the indoor unit 4 is provided in the ceiling 102 of the room 101 whose inside is an air-conditioning target space.
  • the indoor unit 4 sucks air in the room 101 and cools or heats it, and blows out the cooled or heated air into the room 101.
  • the air conditioning system 100 which concerns on this Embodiment 1 is provided with the three indoor units 4, the number of the indoor units 4 is arbitrary.
  • the outside air supply unit 30 takes in outside air and supplies the outside air into the room 101.
  • the outside air supply unit 30 is provided on the ceiling 102 of the room 101.
  • the air conditioning system 100 includes a first refrigerant circuit 1 and a second refrigerant circuit 2.
  • Each configuration of the first refrigerant circuit 1 and the second refrigerant circuit 2 is accommodated in any of the first outdoor unit 3, the indoor unit 4, the second outdoor unit 8, and the outdoor air supply unit 30.
  • the first refrigerant circuit 1 includes a compressor 10, an outdoor heat exchanger 11, an expansion valve 12, an expansion valve 13, a first indoor heat exchanger 14, and a second indoor heat exchanger. 15 is provided.
  • the compressor 10 compresses the refrigerant.
  • the outdoor heat exchanger 11 is a heat exchanger that functions as a condenser.
  • the outdoor heat exchanger 11 is connected to the discharge port of the compressor 10.
  • the outdoor heat exchanger 11 is also connected to the first indoor heat exchanger 14 via the expansion valve 12.
  • the compressor 10 and the outdoor heat exchanger 11 are accommodated in the first outdoor unit 3.
  • the first outdoor unit 3 also stores an outdoor unit fan 17.
  • the outdoor unit fan 17 supplies the outdoor heat exchanger 11 with outside air that is a heat exchange target of the refrigerant flowing through the outdoor heat exchanger 11.
  • the expansion valve 12 expands the refrigerant and depressurizes it.
  • the first indoor heat exchanger 14 is a heat exchanger that functions as an evaporator.
  • the first indoor heat exchanger 14 is connected to the outdoor heat exchanger 11 via the expansion valve 12 as described above.
  • the first indoor heat exchanger 14 is connected to the suction port of the compressor 10.
  • the expansion valve 12 and the first indoor heat exchanger 14 are accommodated in the first housing 5 of the indoor unit 4.
  • An indoor unit fan 18 is also housed in the first housing 5 of the indoor unit 4.
  • the air conditioning system 100 includes the three indoor units 4.
  • the first refrigerant circuit 1 is provided with three sets of the expansion valve 12 and the first indoor heat exchanger 14.
  • Each set of the expansion valve 12 and the first indoor heat exchanger 14 is connected in parallel between the outdoor heat exchanger 11 and the suction port of the compressor 10.
  • the indoor unit 4 will be further described with reference to FIG. 1.
  • the first housing 5 includes a first inlet 6 and a first outlet 7 that communicate with the interior of the room 101.
  • the indoor unit fan 18 rotates in the first housing 5
  • the air in the room 101 is sucked into the first housing 5 from the first suction port 6.
  • the air sucked into the first housing 5 exchanges heat with the refrigerant flowing through the first indoor heat exchanger 14.
  • the air after the heat exchange is blown into the room 101 from the first blower outlet 7.
  • the first indoor heat exchanger 14 functions as an evaporator.
  • the indoor unit 4 performs a cooling operation. That is, the air sucked into the first housing 5 is cooled by the refrigerant flowing through the first indoor heat exchanger 14.
  • the first refrigerant circuit 1 includes a four-way valve 16 that switches the connection destination of the discharge port of the compressor 10.
  • the first indoor heat exchanger 14 functions as a condenser.
  • the indoor unit 4 performs a heating operation. That is, the air sucked into the first housing 5 is heated by the refrigerant flowing through the first indoor heat exchanger 14.
  • the expansion valve 13 expands and depressurizes the refrigerant.
  • the second indoor heat exchanger 15 is a heat exchanger that functions as an evaporator.
  • the second indoor heat exchanger 15 is connected to the outdoor heat exchanger 11 via the expansion valve 13.
  • the second indoor heat exchanger 15 is connected to the suction port of the compressor 10. That is, the expansion valve 13 and the second indoor heat exchanger 15 are connected in parallel with the expansion valve 12 and the first indoor heat exchanger 14 between the outdoor heat exchanger 11 and the suction port of the compressor 10. .
  • the expansion valve 13 and the second indoor heat exchanger 15 are accommodated in the second housing 31 of the outside air supply unit 30. Details of the outside air supply unit 30 will be described later.
  • the first refrigerant circuit 1 according to Embodiment 1 is provided on the discharge side of the compressor 10 in order to enable both the cooling operation and the heating operation in the indoor unit 4.
  • a four-way valve 16 is provided.
  • the four-way valve 16 switches the connection destination of the discharge port of the compressor 10. Specifically, when the flow path of the four-way valve 16 is in a state where the discharge port of the compressor 10 is connected to the outdoor heat exchanger 11, the suction port of the compressor 10 is connected to the first indoor heat exchanger 14 and the first heat exchanger 14. Two indoor heat exchangers 15 are connected.
  • the outdoor heat exchanger 11 functions as a condenser
  • the first indoor heat exchanger 14 and the second indoor heat exchanger 15 function as an evaporator.
  • the suction port of the compressor 10 is It is connected to the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 functions as an evaporator
  • the first indoor heat exchanger 14 and the second indoor heat exchanger 15 function as a condenser.
  • the four-way valve 16 is accommodated in the first outdoor unit 3.
  • it is not necessary to make the 1st indoor heat exchanger 14 function as a condenser it is not necessary to provide the four-way valve 16.
  • the second refrigerant circuit 2 includes a compressor 20, a third indoor heat exchanger 21, an expansion valve 22, and an outdoor heat exchanger 23.
  • the compressor 20 compresses the refrigerant.
  • the third indoor heat exchanger 21 is a heat exchanger that functions as a condenser.
  • the third indoor heat exchanger 21 is connected to the discharge port of the compressor 20.
  • the third indoor heat exchanger 21 is also connected to the outdoor heat exchanger 23 via the expansion valve 22.
  • the expansion valve 22 expands and depressurizes the refrigerant.
  • the expansion valve 22 adjusts the amount of refrigerant flowing to the third indoor heat exchanger 21.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as an evaporator.
  • the outdoor heat exchanger 23 is connected to the third indoor heat exchanger 21 via the expansion valve 22 as described above.
  • the outdoor heat exchanger 23 is connected to the suction port of the compressor 20.
  • the second refrigerant circuit 2 includes a four-way valve 24 provided on the discharge side of the compressor 20.
  • the four-way valve 24 switches the connection destination of the discharge port of the compressor 20. Specifically, when the flow path of the four-way valve 24 is in a state where the discharge port of the compressor 20 is connected to the third indoor heat exchanger 21, the suction port of the compressor 10 is connected to the outdoor heat exchanger 23.
  • the third indoor heat exchanger 21 functions as a condenser
  • the outdoor heat exchanger 23 functions as an evaporator.
  • the suction port of the compressor 20 is connected to the third indoor heat exchanger 21.
  • the third indoor heat exchanger 21 functions as an evaporator
  • the outdoor heat exchanger 23 functions as a condenser.
  • it is not necessary to make the 3rd indoor heat exchanger 21 function as an evaporator it is not necessary to provide the four-way valve 24.
  • the compressor 20, the outdoor heat exchanger 23, and the four-way valve 24 are accommodated in the second outdoor unit 8.
  • the second outdoor unit 8 also stores an outdoor unit fan 25.
  • the outdoor unit fan 25 supplies the outdoor heat exchanger 23 with outside air that is a heat exchange target of the refrigerant flowing through the outdoor heat exchanger 23.
  • the third indoor heat exchanger 21 and the expansion valve 22 are accommodated in the second casing 31 of the outside air supply unit 30.
  • the second housing 31 of the outside air supply unit 30 includes a second suction port 32 and a second air outlet 33.
  • the second suction port 32 is a suction port for taking outside air into the second housing 31.
  • the second suction port 32 communicates with the outdoors via, for example, a duct.
  • the second air outlet 33 is an air outlet for blowing outside air taken into the second housing 31 out of the second housing 31.
  • the 2nd blower outlet 33 is connected with the inside of the room 101 via a duct etc., for example.
  • the second casing 31 houses an air supply fan 36. As the air supply fan 36 rotates, outside air is sucked into the second housing 31 from the second suction port 32, and the outside air sucked into the second housing 31 blows out into the room 101 from the second air outlet 33. Is done.
  • the second casing 31 houses the second indoor heat exchanger 15 of the first refrigerant circuit 1 and the third indoor heat exchanger 21 of the second refrigerant circuit 2.
  • the second indoor heat exchanger 15 is disposed upstream of the third indoor heat exchanger 21 in the flow direction of the outside air from the second suction port 32 to the second blower outlet 33. That is, when the outside air supply unit 30 performs the reheat dehumidifying operation described later, the outside air sucked into the second casing 31 is cooled and dehumidified by the refrigerant flowing through the second indoor heat exchanger 15 functioning as an evaporator.
  • the dehumidified outside air is heated by the refrigerant flowing through the third indoor heat exchanger 21 functioning as a condenser and blown out into the room 101.
  • the second casing 31 also includes a third suction port 34 and a third outlet 35.
  • the third suction port 34 is a suction port for taking air in the room 101 into the second housing 31.
  • the third suction port 34 communicates with the inside of the room 101 through, for example, a duct.
  • the third outlet 35 is an outlet for blowing out the air in the room 101 taken into the second casing 31 to the outside of the second casing 31.
  • the 3rd blower outlet 35 is connected with the outdoors through the duct etc., for example.
  • the second housing 31 houses an exhaust fan 37.
  • the exhaust fan 37 rotates, the air in the room 101 is sucked into the second housing 31 from the third suction port 34, and the air in the room 101 sucked into the second housing 31 becomes the third air outlet. 35 is blown out outdoors. Further, in the second casing 31 according to the first embodiment, total heat exchange in which heat is exchanged between outside air sucked from the second suction port 32 and air in the room 101 sucked from the third suction port 34. A vessel 38 is also provided.
  • the air conditioning system 100 includes a plurality of sensors and a control device 50 that controls each component of the air conditioning system 100 based on detection values of these sensors.
  • the air conditioning system 100 includes a temperature sensor 41 that detects the dry bulb temperature of the air in the room 101, that is, the dry bulb temperature of the air in the air-conditioning target space.
  • the temperature sensor 41 is provided around the first suction port 6 of the indoor unit 4. Note that the position of the temperature sensor 41 is arbitrary as long as the dry bulb temperature of the air in the air-conditioning target space can be detected.
  • the air conditioning system 100 also includes a humidity sensor 42 that detects the absolute humidity of the air in the room 101, that is, the absolute humidity of the air in the air-conditioning target space.
  • the humidity sensor 42 is provided around the third suction port 34 of the outside air supply unit 30.
  • the position of the humidity sensor 42 is arbitrary as long as the absolute humidity of the air in the air-conditioning target space can be detected.
  • the air conditioning system 100 includes a temperature sensor 43 that detects the dry bulb temperature of the air blown from the second outlet 33 of the outside air supply unit 30.
  • the temperature sensor 43 is provided around the second outlet 33 of the outside air supply unit 30.
  • the position of the temperature sensor 43 is arbitrary as long as the dry bulb temperature of the air blown from the second outlet 33 of the outside air supply unit 30 can be detected.
  • the dry bulb temperature is indicated.
  • absolute humidity is indicated when simply expressed as humidity.
  • FIG. 5 is a block diagram showing the control device of the air-conditioning system according to Embodiment 1 of the present invention.
  • the control device 50 is configured with dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
  • control device 50 When the control device 50 is dedicated hardware, the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. Applicable. Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a memory.
  • the CPU implements each function of the control device 50 by reading and executing a program stored in the memory.
  • the memory is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • a part of the function of the control device 50 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the control device 50 includes an input unit 51, a calculation unit 52, a control unit 53, and a storage unit 54 as functional units.
  • the input unit 51 is a functional unit to which detection values of the temperature sensor 41, the humidity sensor 42, and the temperature sensor 43 are input. Operation modes of the indoor unit 4 and the outside air supply unit 30 are also input to the input unit 51 from a remote controller (not shown).
  • the calculation unit 52 is a functional unit that calculates control target values and the like of each component of the air conditioning system 100 based on information input to the input unit 51 and information stored in the storage unit 54.
  • the control unit 53 is a functional unit that controls each component of the air conditioning system 100 based on the control target value and the like calculated by the calculation unit 52.
  • the storage unit 54 is a functional unit that stores information input to the input unit 51, setting values used by the control unit 53, control target values, and the like.
  • the reheat dehumidifying operation is an operation of the outside air supply unit 30 that heats the dehumidified outside air and supplies the heated outside air into the room 101 that is the air-conditioning target space.
  • the outside air supply unit 30 performs the reheat dehumidification operation.
  • the sensible heat load and the latent heat load in the room 101 are determined as follows, for example. Note that the user may instruct the control device 50 of the air conditioning system 100 to cause the outside air supply unit 30 to perform the reheat dehumidification operation using a remote controller (not shown).
  • the calculation unit 52 of the control device 50 calculates ⁇ T, which is a difference obtained by subtracting the indoor target temperature from the temperature detected by the temperature sensor 41.
  • the indoor target temperature is stored in the storage unit 54 in advance.
  • (DELTA) T is in the prescription
  • ⁇ T is calculated not only when the first refrigerant circuit 1 is operating, but also when the first refrigerant circuit 1 is stopped.
  • the calculation unit 52 of the control device 50 calculates ⁇ X, which is a difference obtained by subtracting the indoor target humidity from the detected humidity of the humidity sensor 42.
  • the indoor target humidity is stored in advance in the storage unit 54.
  • (DELTA) X is larger than the threshold value previously memorize
  • control unit 53 of the control device 50 reheats the outside air supply unit 30. Start dehumidifying operation.
  • the calculation unit 52 uses the detected temperatures of all the temperature sensors 41. , ⁇ T is calculated. And in this Embodiment 1, when all (DELTA) T is in the prescription
  • the control unit 53 switches the flow path of the four-way valve 16 of the first refrigerant circuit 1 so that the second indoor heat exchanger 15 functions as an evaporator. Then, the control unit 53 activates the first refrigerant circuit 1. In addition, when the 2nd indoor heat exchanger 15 functions as an evaporator, the 1st indoor heat exchanger 14 of the 1st refrigerant circuit 1 also functions as an evaporator. For this reason, when there is an indoor unit 4 that is not performing the cooling operation, the control unit 53 performs the cooling operation so that the refrigerant does not flow to the first indoor heat exchanger 14 of the indoor unit 4 that is not performing the cooling operation.
  • the expansion valve 12 of the indoor unit 4 that is not performing is closed. Moreover, the control part 53 switches the flow path of the four-way valve 24 of the 2nd refrigerant circuit 2 so that the 3rd indoor heat exchanger 21 may function as a condenser. Then, the control unit 53 activates the second refrigerant circuit 2. Thereby, the outside air sucked into the second casing 31 of the outside air supply unit 30 is cooled and dehumidified by the refrigerant flowing through the second indoor heat exchanger 15 functioning as an evaporator. The dehumidified outside air is heated by the refrigerant flowing through the third indoor heat exchanger 21 functioning as a condenser and blown out into the room 101.
  • FIG. 6 is an air diagram showing a change in the state of the outside air passing through the outside air supply unit when the outside air supply unit is performing the reheat dehumidification operation in the air conditioning system according to Embodiment 1 of the present invention.
  • shaft of FIG. 6 has shown absolute temperature
  • shaft of FIG. 6 has shown dry-bulb temperature.
  • the state of the outside air sucked into the second housing 31 from the second suction port 32 is defined as a point OA.
  • the outside air in the state of the point OA sucked into the second housing 31 exchanges heat with the air in the room 101 sucked into the second housing 31 from the third suction port 34 when passing through the total heat exchanger 38. And it will cool and will be in the state of point T1.
  • the outside air that has passed through the total heat exchanger 38 and has reached the point T1 is cooled by the refrigerant flowing through the second indoor heat exchanger 15 when passing through the second indoor heat exchanger 15 that functions as an evaporator. It is dehumidified and enters the state of point T2.
  • the outside air in the state of point T2 flowing out from the second indoor heat exchanger 15 is heated by the refrigerant flowing through the third indoor heat exchanger 21 when passing through the third indoor heat exchanger 21 functioning as a condenser. It will be in the state of point SA. Then, the outside air in the state of the point SA flowing out from the third indoor heat exchanger 21 is blown out from the second air outlet 33 of the second housing 31 and supplied into the room 101.
  • the outdoor air supply unit 30 includes the first refrigerant circuit 1 having the first indoor heat exchanger 14 housed in the indoor unit 4 and the third indoor heat housed in the outdoor air supply unit 30.
  • the reheat dehumidification operation can be performed using the second refrigerant circuit 2 having the exchanger 21. That is, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, a new heat source such as a heater is provided in addition to the first refrigerant circuit 1 and the second refrigerant circuit 2. do not need. For this reason, the air conditioning system 100 which concerns on this Embodiment 1 can also suppress a raise of cost.
  • the second indoor heat exchange is increased as the humidity of the air in the room 101, that is, the air-conditioning target space is larger.
  • the evaporation temperature of the refrigerant flowing through the vessel 15 is lowered.
  • a state where the humidity of the air in the room 101 is the first absolute humidity is defined as a first humidity state.
  • the state where the humidity of the air in the room 101 is the second absolute humidity lower than the first absolute humidity be the second humidity state.
  • the air conditioning system 100 when the outside air supply unit 30 performs the reheat dehumidifying operation, the refrigerant flowing through the second indoor heat exchanger 15 in the first humidity state The evaporation temperature is lower than the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 in the second humidity state.
  • the calculation unit 52 of the control device 50 determines the target evaporation temperature TEI that is the control target value of the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 as follows. is doing. And the control part 53 is the rotation speed and expansion
  • the calculation unit 52 decreases the target evaporation temperature TEI when ⁇ X is large, and increases the target evaporation temperature TEI when ⁇ X is small. For example, the calculation unit 52 determines the target evaporation temperature TEI as shown in FIG.
  • FIG. 7 is a diagram for explaining an example of a method for determining the target evaporation temperature of the second indoor heat exchanger in the air-conditioning system according to Embodiment 1 of the present invention.
  • the storage unit 54 stores in advance an upper limit value TEImax and a lower limit value TEImin of the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15.
  • the calculation unit 52 sets the target evaporation temperature TEI as the upper limit value TEImax when ⁇ X ⁇ 0. Further, the calculation unit 52 sets the target evaporation temperature TEI as the lower limit value TEImin when ⁇ X> ⁇ X1.
  • the calculation unit 52 assumes that ⁇ X and the target evaporation temperature TEI are in a proportional relationship, and based on a calculation formula or a map stored in the storage unit 54, the upper limit value TEImax and the lower limit value A target evaporation temperature TEI is determined between the value TEImin.
  • ⁇ X1 is an allowable increase in indoor space humidity from the indoor target humidity, and is stored in the storage unit 54. ⁇ X1 may be set in advance or may be arbitrarily changed by the user or the like.
  • the control unit 53 In addition, in the state where the evaporation temperature of the second indoor heat exchanger 15 is the upper limit value TEImax, ⁇ X decreases, and when ⁇ X falls below the threshold value ⁇ Xmin stored in the storage unit 54 in advance, the control unit 53 Then, the compressor 10 is stopped. Further, after the compressor 10 is stopped, when ⁇ X exceeds the threshold value ⁇ Xmin stored in the storage unit 54 in advance, the control unit 53 starts the compressor 10 again.
  • the outside air supply unit 30 when the outside air supply unit 30 performs the reheat dehumidifying operation, based on the temperature of the air blown from the second outlet 33 of the outside air supply unit 30, The condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 is changed.
  • the state where the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30 is the first temperature is defined as a first blown state.
  • a state where the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30 is the second temperature lower than the first temperature is defined as a second blowout state.
  • the refrigerant flowing through the third indoor heat exchanger 21 in the first blowing state The condensation temperature is lower than the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 in the second blowing state.
  • the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 based on the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30, the blower is blown from the second blower outlet 33. It is possible to prevent the temperature of the air to rise excessively.
  • the calculation unit 52 of the control device 50 calculates ⁇ TSA, which is a difference obtained by subtracting the detected temperature of the temperature sensor 43 from the target blowing temperature stored in advance in the storage unit 54. . Then, when ⁇ TSA is large, the calculation unit 52 decreases the target condensation temperature TCO that is the control target value of the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21. Further, the calculation unit 52 increases the target condensation temperature TCO when ⁇ TSA is small. Then, the controller 53 adjusts the rotational speed of the compressor 20 of the second refrigerant circuit 2 so that the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 becomes the target condensation temperature TCO during the reheat dehumidification operation. Control. In the first embodiment, the opening degree of the expansion valve 22 is fixed to the specified opening degree during the reheat dehumidifying operation. For example, the calculation unit 52 determines the target condensation temperature TCO as shown in FIG.
  • FIG. 8 is a diagram for explaining an example of a method for determining the target condensation temperature of the third indoor heat exchanger in the air-conditioning system according to Embodiment 1 of the present invention.
  • the storage unit 54 stores in advance an upper limit value TCOmax and a lower limit value TCOmin of the target condensation temperature TCO of the refrigerant flowing through the third indoor heat exchanger 21.
  • the calculation unit 52 sets the target condensation temperature TCO as the lower limit value TCOmin when ⁇ TSA ⁇ 0. Further, the calculation unit 52 sets the target condensation temperature TCO as the upper limit value TCOmax when ⁇ TSA> ⁇ TSA1.
  • the calculation unit 52 assumes that ⁇ TSA and the target condensation temperature TCO are in a proportional relationship, and based on a calculation formula or a map stored in the storage unit 54, the upper limit value TCOmax and the lower limit value The target condensation temperature TCO is determined between the value TCOmin.
  • ⁇ TSA1 is a permissible decrease width from the target blowing temperature of the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30, and is stored in the storage unit 54.
  • ⁇ TSA1 may be set in advance or may be arbitrarily changed by the user or the like.
  • the control unit 53 In the state where the condensation temperature of the third indoor heat exchanger 21 is at the lower limit value TCOmin, ⁇ TSA decreases, and when ⁇ TSA is lower than the threshold value ⁇ TSAmin stored in the storage unit 54 in advance, the control unit 53 Then, the compressor 20 is stopped. When ⁇ TSA exceeds the threshold value ⁇ TSAmin stored in the storage unit 54 in advance, the control unit 53 starts the compressor 20 again. Alternatively, when ⁇ TSA decreases while the condensation temperature of the third indoor heat exchanger 21 is the lower limit value TCOmin, and ⁇ TSA falls below the threshold value ⁇ TSAmin, the controller 53 determines the opening of the expansion valve 22 as a predetermined value. It may be smaller than the value.
  • the amount of refrigerant flowing through the third indoor heat exchanger 21 may be reduced.
  • the expansion valve 22 In other words, in the state where the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 is constant, when the temperature of the air blown out from the second outlet 33 of the outside air supply unit 30 decreases, the expansion valve 22 The opening of becomes smaller. Thereby, it can further prevent that the temperature of the air blown out from the second outlet 33 of the outside air supply unit 30 rises excessively.
  • FIG. 9 is a diagram illustrating an example of a control flow when the outside air supply unit performs the reheat dehumidifying operation in the air-conditioning system according to Embodiment 1 of the present invention.
  • the calculation unit 52 calculates ⁇ X, which is a difference obtained by subtracting the indoor target humidity from the detected humidity of the humidity sensor 42, and the temperature sensor 43 from the target blowing temperature.
  • ⁇ TSA which is a difference obtained by subtracting the detected temperature is calculated.
  • the calculation unit 52 calculates a target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15, for example, as described with reference to FIG.
  • the calculation unit 52 calculates the target condensation temperature TCO of the refrigerant flowing through the third indoor heat exchanger 21, for example, as described with reference to FIG.
  • step S3 the calculation unit 52 compares whether ⁇ X is smaller than the threshold value ⁇ Xmin.
  • the control unit 53 stops the compressor 10 of the first refrigerant circuit 1 in step S4.
  • the control unit 53 drives the compressor 10 in step S5.
  • step S6 the calculation unit 52 compares whether ⁇ TSA is smaller than the threshold value ⁇ TSAmin.
  • the control unit 53 stops the compressor 20 of the second refrigerant circuit 2 in step S7.
  • the control unit 53 makes the opening degree of the expansion valve 22 of the second refrigerant circuit 2 smaller than a specified value in step S7.
  • the control unit 53 drives the compressor 10 and sets the opening of the expansion valve 22 to a specified value.
  • Step S9 after step S7 or step S8 is a step of determining whether or not the reheat dehumidifying operation is complete.
  • ⁇ X or ⁇ T is a start condition for the reheat dehumidifying operation. When it deviates from, it will be in the state where a reheat dehumidification operation is complete
  • the reheat dehumidification operation ends.
  • step S9 If the reheat dehumidification operation is in a state to end in step S9, the reheat dehumidification operation ends. On the other hand, when the reheat dehumidifying operation is not completed in step S9, the process returns to step S1 described above.
  • the air conditioning system 100 includes the first refrigerant circuit 1, the second refrigerant circuit 2, the indoor unit 4, and the outside air supply unit 30.
  • the first refrigerant circuit 1 includes a first indoor heat exchanger 14 and a second indoor heat exchanger 15 that functions as an evaporator.
  • the second refrigerant circuit 2 has a third indoor heat exchanger 21 that functions as a condenser.
  • the indoor unit 4 includes a first suction port 6 and a first air outlet 7 and includes a first housing 5 in which the first indoor heat exchanger 14 is accommodated.
  • the outside air supply unit 30 includes a second suction port 32 and a second outlet 33, and includes a second casing 31 in which the second indoor heat exchanger 15 and the third indoor heat exchanger 21 are accommodated. .
  • the indoor unit 4 heat exchange is performed between the air in the air-conditioning target space sucked into the first housing 5 from the first suction port 6 and the refrigerant flowing through the first indoor heat exchanger 14. Air is blown out from the first air outlet 7.
  • outside air sucked into the second housing 31 from the second suction port 32 is blown out from the second air outlet 33.
  • the second indoor heat exchanger 15 is arranged upstream of the third indoor heat exchanger 21 in the flow direction of the outside air from the second suction port 32 to the second blower outlet 33.
  • the air conditioning system 100 can control the temperature of the air blown from the outside air supply unit 30 during the reheat dehumidification operation. Further, in the outside air supply unit 30 of the air conditioning system 100 according to Embodiment 1, it is not necessary to provide a new heat source such as a heater in the outside air supply unit 30. For this reason, the air conditioning system 100 which concerns on this Embodiment 1 can also suppress a raise of cost.
  • FIG. The target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 may be determined as in the second embodiment.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations as those in Embodiment 1 are described using the same reference numerals.
  • the calculation unit 52 of the control device 50 of the air-conditioning system 100 according to Embodiment 2 determines the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 according to the estimated value of the latent heat load.
  • the estimation method of the estimated value of a latent heat load is not specifically limited, It can obtain
  • the estimated value of the latent heat load can be estimated based on the humidity of the outside air temperature, the number of people present in the room 101, and the like. That is, the air conditioning system according to the second embodiment is added to the air conditioning system 100 shown in the first embodiment by adding a detection device that detects information necessary for estimating the estimated value of the latent heat load. System 100 is obtained.
  • the estimated latent heat load is determined for a specified time. It is possible to calculate the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 necessary for processing inside. This calculation is performed by the calculation unit 52. At this time, when the calculated evaporation temperature is equal to or lower than the upper limit value TEImax of the target evaporation temperature TEI and equal to or higher than the lower limit value TEImin, the calculation unit 52 uses the calculated evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15.
  • a target evaporation temperature TEI is set. Further, when the calculated evaporation temperature exceeds the upper limit value TEImax, the calculation unit 52 sets the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 as the upper limit value TEImax. Further, when the calculated evaporation temperature is lower than the lower limit value TEImin, the calculation unit 52 sets the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 as the lower limit value TEImin.
  • the air conditioning system 100 can determine the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 according to the air conditioning load, so that the comfort in the room 101 is maintained. The power consumption can be suppressed by improving the efficiency of the air conditioning system 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning system is provided with a first refrigerant circuit including a first indoor heat exchanger and a second indoor heat exchanger functioning as an evaporator, a second refrigerant circuit including a third indoor heat exchanger functioning as a condenser, an indoor machine including a first enclosure accommodating the first indoor heat exchanger, and an outside air supplying unit which includes a second enclosure accommodating the second indoor heat exchanger and the third indoor heat exchanger, wherein: in the indoor machine, heat is exchanged between air in a space to be air conditioned, drawn into the first enclosure, and a refrigerant flowing through the first indoor heat exchanger, and the air after heat has been exchanged is blown out to the space to be air conditioned; in the outside air supplying unit, outside air drawn into the second enclosure is blown out to the space to be air conditioned; and the second indoor heat exchanger is disposed upstream of the third indoor heat exchanger in the direction of flow of the outside air in the second enclosure.

Description

空気調和システムAir conditioning system
 本発明は、空調対象空間に外気を供給する外気供給ユニットを備えた空気調和システムに関する。 The present invention relates to an air conditioning system including an outside air supply unit that supplies outside air to a space to be air-conditioned.
 従来、空調対象空間に外気を供給する外気供給ユニットを備え、空調対象空間の換気を可能にした空気調和システムが知られている。外気供給ユニットを備えた従来の空気調和システムは、内部に収納された室内熱交換器によって空調対象空間の空気を冷却又は加熱する室内機を備えている。また、外気供給ユニットを備えた従来の空気調和システムには、外気供給ユニットに取り込んだ外気を除湿して空調対象空間に供給する空気調和システムも提案されている。 Conventionally, an air conditioning system that includes an outside air supply unit that supplies outside air to an air-conditioning target space and enables ventilation of the air-conditioning target space is known. A conventional air conditioning system including an outside air supply unit includes an indoor unit that cools or heats air in a space to be air-conditioned by an indoor heat exchanger housed inside. As a conventional air conditioning system including an outside air supply unit, an air conditioning system that dehumidifies outside air taken into the outside air supply unit and supplies it to the air-conditioning target space has also been proposed.
 上述のように除湿された外気を空調対象空間に供給する空気調和システムの場合、外気を冷却することによって除湿する。このため、空調対象空間に除湿された外気が供給された際、空調対象空間に存在する人が冷風感を感じてしまう。このため、除湿された外気を空調対象空間に供給する従来の空気調和システムには、除湿された外気を外気供給ユニット内で加熱し、空調対象空間に供給する空気調和システムも提案されている(特許文献1参照)。除湿された外気を適切な温度に加熱して空調対象空間に供給することができれば、空調対象空間の快適性を損なうことなく、外気の除湿を行うことができる。以下、除湿された外気を加熱して空調対象空間に供給する外気供給ユニットの動作を、再熱除湿動作と称する。 In the case of an air conditioning system that supplies the outside air dehumidified as described above to the air conditioning target space, the outside air is dehumidified by cooling. For this reason, when the dehumidified outside air is supplied to the air-conditioning target space, a person existing in the air-conditioning target space feels a cold wind. For this reason, an air conditioning system that heats the dehumidified outside air in the outside air supply unit and supplies the dehumidified outside air to the air conditioning target space has also been proposed. Patent Document 1). If the dehumidified outside air can be heated to an appropriate temperature and supplied to the air conditioning target space, the outside air can be dehumidified without impairing the comfort of the air conditioning target space. Hereinafter, the operation of the outside air supply unit that heats the dehumidified outside air and supplies it to the air-conditioning target space is referred to as a reheat dehumidifying operation.
特開2006-313027号公報JP 2006-313027 A
 特許文献1に記載の空気調和システムは、蒸発器及び凝縮器を有する冷媒回路を備えている。当該冷媒回路の蒸発器及び凝縮器は、外気供給ユニットに収納されている。そして、特許文献1に記載の空気調和システムは、蒸発器によって外気供給ユニットに取り込まれた外気を冷却して除湿し、凝縮器によって除湿された外気の加熱を行っている。すなわち、特許文献1に記載の空気調和システムは、1つの冷媒回路の蒸発器及び凝縮器によって、外気の除湿及び加熱を行っている。 The air conditioning system described in Patent Document 1 includes a refrigerant circuit having an evaporator and a condenser. The evaporator and the condenser of the refrigerant circuit are accommodated in the outside air supply unit. And the air conditioning system of patent document 1 cools and dehumidifies the external air taken into the external air supply unit with the evaporator, and heats the external air dehumidified with the condenser. That is, the air conditioning system described in Patent Document 1 performs dehumidification and heating of outside air by using an evaporator and a condenser of one refrigerant circuit.
 外気をどの程度除湿するかは、外気をどの程度冷却するのかによって決まる。すなわち、外気を所望の湿度にするためには、蒸発器を流れる冷媒の蒸発温度を調節する必要がある。また、除湿後の外気を所望の温度に加熱するためには、凝縮器を流れる冷媒の凝縮温度を調節する必要がある。しかしながら、1つの冷媒回路において、蒸発器を流れる冷媒の蒸発温度と凝縮器を流れる冷媒の凝縮温度とを独立して調節することは非常に困難である。したがって、特許文献1に記載の空気調和システムは、外気供給ユニットが再熱除湿動作を行う際、除湿後の外気を所望の温度に加熱することができない。このため、特許文献1に記載の空気調和システムは、外気供給ユニットが再熱除湿動作を行う際、外気供給ユニットから吹き出される空気の温度を制御できず、空調対象空間の快適性を保つことができない場合があるという課題があった。 The degree of dehumidification of the outside air depends on how much the outside air is cooled. That is, in order to bring the outside air to a desired humidity, it is necessary to adjust the evaporation temperature of the refrigerant flowing through the evaporator. Further, in order to heat the dehumidified outside air to a desired temperature, it is necessary to adjust the condensation temperature of the refrigerant flowing through the condenser. However, in one refrigerant circuit, it is very difficult to independently adjust the evaporation temperature of the refrigerant flowing through the evaporator and the condensation temperature of the refrigerant flowing through the condenser. Therefore, the air conditioning system described in Patent Literature 1 cannot heat the dehumidified outside air to a desired temperature when the outside air supply unit performs the reheat dehumidifying operation. For this reason, when the outside air supply unit performs the reheat dehumidifying operation, the air conditioning system described in Patent Document 1 cannot control the temperature of the air blown from the outside air supply unit, and maintains the comfort of the air-conditioning target space. There was a problem that there was a case that could not be.
 ここで、再熱除湿動作の際に外気供給ユニットから吹き出される空気の温度を制御するために、外気供給ユニットに、除湿後の外気を加熱するヒータ等の新たな熱源機を設けることが考えられる。ここで、外気供給ユニットが再熱除湿動作を行う従来の空気調和システムは、空調対象空間の空気の加熱又は冷却を行う室内機に収納された室内熱交換器を有する冷媒回路と、外気供給ユニットに収納された室内熱交換器を有する冷媒回路とを備えている。このため、除湿後の外気を加熱するヒータ等の新たな熱源機を設ける場合、空気調和システムは、上述の2つの冷媒回路に加え、さらにヒータ等の新たな熱源機を備える必要がある。したがって、外気供給ユニットにヒータ等の新たな熱源機を設けた場合、空気調和システムのコストが上昇してしまうという課題が発生する。 Here, in order to control the temperature of the air blown from the outside air supply unit during the reheat dehumidification operation, it is considered to provide a new heat source device such as a heater for heating the outside air after dehumidification in the outside air supply unit. It is done. Here, the conventional air conditioning system in which the outdoor air supply unit performs the reheat dehumidification operation includes a refrigerant circuit having an indoor heat exchanger housed in an indoor unit that heats or cools air in an air-conditioning target space, and an outdoor air supply unit. And a refrigerant circuit having an indoor heat exchanger housed in the housing. For this reason, when providing new heat source machines, such as a heater which heats the external air after dehumidification, in addition to the above-mentioned two refrigerant circuits, it is necessary to provide new heat source machines, such as a heater. Therefore, when a new heat source device such as a heater is provided in the outside air supply unit, there arises a problem that the cost of the air conditioning system increases.
 本発明は、上述の課題を解決するためになされたものであり、再熱除湿動作の際に外気供給ユニットから吹き出される空気の温度を制御することができ、コストの上昇を抑制することもできる空気調和システムを提案することを目的とする。 The present invention has been made to solve the above-described problems, and can control the temperature of the air blown from the outside air supply unit during the reheat dehumidification operation, thereby suppressing an increase in cost. The purpose is to propose a possible air conditioning system.
 本発明に係る空気調和システムは、第1室内熱交換器、及び蒸発器として機能する第2室内熱交換器を有する第1冷媒回路と、凝縮器として機能する第3室内熱交換器を有する第2冷媒回路と、第1吸込口及び第1吹出口を備えており前記第1室内熱交換器が収納された第1筐体を有する室内機と、第2吸込口及び第2吹出口を備えており前記第2室内熱交換器及び前記第3室内熱交換器が収納された第2筐体を有する外気供給ユニットと、を備え、前記室内機では、前記第1吸込口から前記第1筐体に吸い込まれた空調対象空間の空気と前記第1室内熱交換器を流れる冷媒との間で熱交換が行われ、熱交換後の空気が前記第1吹出口から吹き出され、前記外気供給ユニットでは、前記第2吸込口から前記第2筐体に吸い込まれた外気が前記第2吹出口から吹き出され、前記第2吸込口から前記第2吹出口へ至る外気の流れ方向において、前記第2室内熱交換器が前記第3室内熱交換器の上流側に配置されている。 The air conditioning system according to the present invention includes a first indoor heat exchanger, a first refrigerant circuit having a second indoor heat exchanger that functions as an evaporator, and a third indoor heat exchanger that functions as a condenser. An indoor unit having a first housing having a first refrigerant housing, a first air inlet and a first air outlet, in which the first indoor heat exchanger is housed, and a second air inlet and a second air outlet. And an outside air supply unit having a second housing in which the second indoor heat exchanger and the third indoor heat exchanger are housed, and in the indoor unit, the first housing is connected to the first housing. Heat exchange is performed between the air in the air-conditioned space sucked into the body and the refrigerant flowing through the first indoor heat exchanger, and the air after the heat exchange is blown out from the first air outlet, and the outside air supply unit Then, the outside air sucked into the second housing from the second suction port is The second indoor heat exchanger is disposed on the upstream side of the third indoor heat exchanger in the flow direction of the outside air that is blown out from the second air outlet and extends from the second suction port to the second air outlet. .
 本発明に係る空気調和システムにおいては、外気供給ユニットが再熱除湿動作を行う際、外気供給ユニットの第2筐体に吸い込まれた外気は、第1冷媒回路の第2室内熱交換器で冷却されて除湿される。また、本発明に係る空気調和システムにおいては、外気供給ユニットが再熱除湿動作を行う際、除湿された外気は、第2室内熱交換器を有する第1冷媒回路とは異なる第2冷媒回路の第3室内熱交換器で加熱される。このため、本発明に係る空気調和システムにおいては、再熱除湿動作の際に外気供給ユニットから吹き出される空気の温度を制御することができる。また、本発明に係る空気調和システムの外気供給ユニットは、室内機に収納された第1室内熱交換器を有する第1冷媒回路と、外気供給ユニットに収納された第3室内熱交換器を有する第2冷媒回路とを用いて、再熱除湿動作を行うことができる。すなわち、本発明に係る空気調和システムにおいては、外気供給ユニットが再熱除湿動作を行う際、第1冷媒回路及び第2冷媒回路以外に、ヒータ等の新たな熱源を必要としない。このため、本発明に係る空気調和システムは、コストの上昇を抑制することもできる。 In the air conditioning system according to the present invention, when the outside air supply unit performs the reheat dehumidifying operation, the outside air sucked into the second housing of the outside air supply unit is cooled by the second indoor heat exchanger of the first refrigerant circuit. And dehumidified. Moreover, in the air conditioning system which concerns on this invention, when an external air supply unit performs reheat dehumidification operation | movement, the dehumidified external air is a 2nd refrigerant circuit different from the 1st refrigerant circuit which has a 2nd indoor heat exchanger. Heated by the third indoor heat exchanger. For this reason, in the air conditioning system which concerns on this invention, the temperature of the air which blows off from an external air supply unit in the case of reheat dehumidification operation | movement can be controlled. Moreover, the outdoor air supply unit of the air conditioning system which concerns on this invention has the 1st refrigerant circuit which has the 1st indoor heat exchanger accommodated in the indoor unit, and the 3rd indoor heat exchanger accommodated in the outdoor air supply unit. The reheat dehumidifying operation can be performed using the second refrigerant circuit. That is, in the air conditioning system according to the present invention, when the outside air supply unit performs the reheat dehumidifying operation, a new heat source such as a heater is not required other than the first refrigerant circuit and the second refrigerant circuit. For this reason, the air conditioning system which concerns on this invention can also suppress a raise of cost.
本発明の実施の形態1に係る空気調和システムの概略構成を示す図である。It is a figure which shows schematic structure of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの第1冷媒回路を示す冷媒回路図である。It is a refrigerant circuit figure which shows the 1st refrigerant circuit of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの第2冷媒回路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the 2nd refrigerant circuit of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの外気供給ユニットの概略構成を示す図である。It is a figure which shows schematic structure of the external air supply unit of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムにおいて外気供給ユニットが再熱除湿動作を行っている際の、外気供給ユニットを通過する外気の状態変化を示した空気線図である。It is the air line figure which showed the state change of the external air which passes an external air supply unit when the external air supply unit is performing the reheat dehumidification operation | movement in the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムにおける第2室内熱交換器の目標蒸発温度の決定方法の一例を説明するための図である。It is a figure for demonstrating an example of the determination method of the target evaporation temperature of the 2nd indoor heat exchanger in the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムにおける第3室内熱交換器の目標凝縮温度の決定方法の一例を説明するための図である。It is a figure for demonstrating an example of the determination method of the target condensation temperature of the 3rd indoor heat exchanger in the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムにおいて外気供給ユニットが再熱除湿動作を行う際の制御フローの一例を示す図である。It is a figure which shows an example of the control flow at the time of an external air supply unit performing reheat dehumidification operation | movement in the air conditioning system which concerns on Embodiment 1 of this invention.
 以下、各実施の形態において、本発明に係る空気調和システムの一例を紹介する。なお、本発明に係る空気調和システムの具体的な構成は、以下の各実施の形態で示す構成に限定されるものではなく、発明の要旨を逸脱しない範囲で適宜変更可能である。 Hereinafter, in each embodiment, an example of an air conditioning system according to the present invention will be introduced. In addition, the specific structure of the air conditioning system which concerns on this invention is not limited to the structure shown by the following each embodiment, In the range which does not deviate from the summary of invention, it can change suitably.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和システムの概略構成を示す図である。図2は、本発明の実施の形態1に係る空気調和システムの第1冷媒回路を示す冷媒回路図である。図3は、本発明の実施の形態1に係る空気調和システムの第2冷媒回路を示す冷媒回路図である。図4は、本発明の実施の形態1に係る空気調和システムの外気供給ユニットの概略構成を示す図である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of an air-conditioning system according to Embodiment 1 of the present invention. FIG. 2 is a refrigerant circuit diagram illustrating a first refrigerant circuit of the air-conditioning system according to Embodiment 1 of the present invention. FIG. 3 is a refrigerant circuit diagram illustrating a second refrigerant circuit of the air-conditioning system according to Embodiment 1 of the present invention. FIG. 4 is a diagram illustrating a schematic configuration of an outside air supply unit of the air-conditioning system according to Embodiment 1 of the present invention.
 図1に示すように、本実施の形態1に係る空気調和システム100は、第1室外機3、室内機4、第2室外機8及び外気供給ユニット30を備えている。第1室外機3及び第2室外機8は、屋外に配置されている。室内機4は、内部が空調対象空間となる部屋101の天井裏102に設けられている。室内機4は、部屋101内の空気を吸い込んで冷却又は加熱し、冷却又は加熱された空気を部屋101内へ吹き出すものである。なお、本実施の形態1に係る空気調和システム100は3つの室内機4を備えているが、室内機4の数は任意である。外気供給ユニット30は、外気を取り込み、該外気を部屋101内に供給するものである。外気供給ユニット30は、部屋101の天井裏102に設けられている。また、図2及び図3に示すように、空気調和システム100は、第1冷媒回路1及び第2冷媒回路2を備えている。第1冷媒回路1及び第2冷媒回路2の各構成は、第1室外機3、室内機4、第2室外機8及び外気供給ユニット30のいずれかに収納されている。 As shown in FIG. 1, the air conditioning system 100 according to Embodiment 1 includes a first outdoor unit 3, an indoor unit 4, a second outdoor unit 8, and an outdoor air supply unit 30. The first outdoor unit 3 and the second outdoor unit 8 are disposed outdoors. The indoor unit 4 is provided in the ceiling 102 of the room 101 whose inside is an air-conditioning target space. The indoor unit 4 sucks air in the room 101 and cools or heats it, and blows out the cooled or heated air into the room 101. In addition, although the air conditioning system 100 which concerns on this Embodiment 1 is provided with the three indoor units 4, the number of the indoor units 4 is arbitrary. The outside air supply unit 30 takes in outside air and supplies the outside air into the room 101. The outside air supply unit 30 is provided on the ceiling 102 of the room 101. As shown in FIGS. 2 and 3, the air conditioning system 100 includes a first refrigerant circuit 1 and a second refrigerant circuit 2. Each configuration of the first refrigerant circuit 1 and the second refrigerant circuit 2 is accommodated in any of the first outdoor unit 3, the indoor unit 4, the second outdoor unit 8, and the outdoor air supply unit 30.
 詳しくは、図2に示すように、第1冷媒回路1は、圧縮機10、室外熱交換器11、膨張弁12、膨張弁13、第1室内熱交換器14、及び第2室内熱交換器15を備えている。圧縮機10は、冷媒を圧縮するものである。室外熱交換器11は、凝縮器として機能する熱交換器である。室外熱交換器11は、圧縮機10の吐出口と接続されている。また、室外熱交換器11は、膨張弁12を介して第1室内熱交換器14とも接続されている。圧縮機10及び室外熱交換器11は、第1室外機3に収納されている。また、第1室外機3には、室外機ファン17も収納されている。室外機ファン17は、室外熱交換器11に、該室外熱交換器11を流れる冷媒の熱交換対象である外気を供給するものである。 Specifically, as shown in FIG. 2, the first refrigerant circuit 1 includes a compressor 10, an outdoor heat exchanger 11, an expansion valve 12, an expansion valve 13, a first indoor heat exchanger 14, and a second indoor heat exchanger. 15 is provided. The compressor 10 compresses the refrigerant. The outdoor heat exchanger 11 is a heat exchanger that functions as a condenser. The outdoor heat exchanger 11 is connected to the discharge port of the compressor 10. The outdoor heat exchanger 11 is also connected to the first indoor heat exchanger 14 via the expansion valve 12. The compressor 10 and the outdoor heat exchanger 11 are accommodated in the first outdoor unit 3. The first outdoor unit 3 also stores an outdoor unit fan 17. The outdoor unit fan 17 supplies the outdoor heat exchanger 11 with outside air that is a heat exchange target of the refrigerant flowing through the outdoor heat exchanger 11.
 膨張弁12は、冷媒を膨張させて減圧させるものである。第1室内熱交換器14は、蒸発器として機能する熱交換器である。第1室内熱交換器14は、上述のように、膨張弁12を介して室外熱交換器11に接続されている。また、第1室内熱交換器14は、圧縮機10の吸入口と接続されている。膨張弁12及び第1室内熱交換器14は、室内機4の第1筐体5に収納されている。また、室内機4の第1筐体5には、室内機ファン18も収納されている。なお、上述のように、本実施の形態1では、空気調和システム100は、3つの室内機4を備えている。このため、第1冷媒回路1には、膨張弁12及び第1室内熱交換器14の組が3つ設けられている。そして、膨張弁12及び第1室内熱交換器14の組のそれぞれは、室外熱交換器11と圧縮機10の吸入口との間に、並列に接続されている。 The expansion valve 12 expands the refrigerant and depressurizes it. The first indoor heat exchanger 14 is a heat exchanger that functions as an evaporator. The first indoor heat exchanger 14 is connected to the outdoor heat exchanger 11 via the expansion valve 12 as described above. The first indoor heat exchanger 14 is connected to the suction port of the compressor 10. The expansion valve 12 and the first indoor heat exchanger 14 are accommodated in the first housing 5 of the indoor unit 4. An indoor unit fan 18 is also housed in the first housing 5 of the indoor unit 4. As described above, in the first embodiment, the air conditioning system 100 includes the three indoor units 4. For this reason, the first refrigerant circuit 1 is provided with three sets of the expansion valve 12 and the first indoor heat exchanger 14. Each set of the expansion valve 12 and the first indoor heat exchanger 14 is connected in parallel between the outdoor heat exchanger 11 and the suction port of the compressor 10.
 図1を用いて室内機4について更に説明すると、第1筐体5は、部屋101内と連通する第1吸込口6及び第1吹出口7を備えている。第1筐体5内で室内機ファン18が回転すると、第1吸込口6から第1筐体5に、部屋101内の空気が吸い込まれる。そして、第1筐体5に吸い込まれた空気は、第1室内熱交換器14を流れる冷媒と熱交換する。そして、熱交換後の空気は、第1吹出口7から部屋101内へ吹き出される。なお、上述のように第1室内熱交換器14は、蒸発器として機能する。この場合、室内機4は冷房運転を行うこととなる。すなわち、第1筐体5に吸い込まれた空気は、第1室内熱交換器14を流れる冷媒によって冷却される。ここで、後述のように、本実施の形態1に係る第1冷媒回路1は、圧縮機10の吐出口の接続先を切り替える四方弁16を備えている。この四方弁16によって圧縮機10の吐出口の接続先を切り替えることにより、第1室内熱交換器14は、凝縮器として機能することとなる。この場合、室内機4は暖房運転を行うこととなる。すなわち、第1筐体5に吸い込まれた空気は、第1室内熱交換器14を流れる冷媒によって加熱される。 The indoor unit 4 will be further described with reference to FIG. 1. The first housing 5 includes a first inlet 6 and a first outlet 7 that communicate with the interior of the room 101. When the indoor unit fan 18 rotates in the first housing 5, the air in the room 101 is sucked into the first housing 5 from the first suction port 6. The air sucked into the first housing 5 exchanges heat with the refrigerant flowing through the first indoor heat exchanger 14. Then, the air after the heat exchange is blown into the room 101 from the first blower outlet 7. As described above, the first indoor heat exchanger 14 functions as an evaporator. In this case, the indoor unit 4 performs a cooling operation. That is, the air sucked into the first housing 5 is cooled by the refrigerant flowing through the first indoor heat exchanger 14. Here, as will be described later, the first refrigerant circuit 1 according to the first embodiment includes a four-way valve 16 that switches the connection destination of the discharge port of the compressor 10. By switching the connection destination of the discharge port of the compressor 10 by the four-way valve 16, the first indoor heat exchanger 14 functions as a condenser. In this case, the indoor unit 4 performs a heating operation. That is, the air sucked into the first housing 5 is heated by the refrigerant flowing through the first indoor heat exchanger 14.
 再び、図2に着目する。膨張弁13は、冷媒を膨張させて減圧させるものである。第2室内熱交換器15は、蒸発器として機能する熱交換器である。第2室内熱交換器15は、膨張弁13を介して室外熱交換器11に接続されている。また、第2室内熱交換器15は、圧縮機10の吸入口と接続されている。すなわち、膨張弁13及び第2室内熱交換器15は、室外熱交換器11と圧縮機10の吸入口との間に、膨張弁12及び第1室内熱交換器14と並列に接続されている。膨張弁13及び第2室内熱交換器15は、外気供給ユニット30の第2筐体31に収納されている。外気供給ユニット30の詳細については、後述する。 Again, pay attention to FIG. The expansion valve 13 expands and depressurizes the refrigerant. The second indoor heat exchanger 15 is a heat exchanger that functions as an evaporator. The second indoor heat exchanger 15 is connected to the outdoor heat exchanger 11 via the expansion valve 13. The second indoor heat exchanger 15 is connected to the suction port of the compressor 10. That is, the expansion valve 13 and the second indoor heat exchanger 15 are connected in parallel with the expansion valve 12 and the first indoor heat exchanger 14 between the outdoor heat exchanger 11 and the suction port of the compressor 10. . The expansion valve 13 and the second indoor heat exchanger 15 are accommodated in the second housing 31 of the outside air supply unit 30. Details of the outside air supply unit 30 will be described later.
 なお、図2に示すように、本実施の形態1に係る第1冷媒回路1は、室内機4において冷房運転及び暖房運転の双方を可能とするため、圧縮機10の吐出側に設けられた四方弁16を備えている。この四方弁16は、圧縮機10の吐出口の接続先を、切り替えるものである。詳しくは、圧縮機10の吐出口が室外熱交換器11と接続される状態に四方弁16の流路がなっている場合、圧縮機10の吸入口は、第1室内熱交換器14及び第2室内熱交換器15と接続される。この場合、室外熱交換器11は凝縮器として機能し、第1室内熱交換器14及び第2室内熱交換器15は蒸発器として機能する。また、圧縮機10の吐出口が第1室内熱交換器14及び第2室内熱交換器15と接続される状態に四方弁16の流路がなっている場合、圧縮機10の吸入口は、室外熱交換器11と接続される。この場合、室外熱交換器11は蒸発器として機能し、第1室内熱交換器14及び第2室内熱交換器15は凝縮器として機能する。四方弁16は、第1室外機3に収納されている。なお、第1室内熱交換器14を凝縮器として機能させる必要が無い場合、四方弁16を設ける必要はない。 As shown in FIG. 2, the first refrigerant circuit 1 according to Embodiment 1 is provided on the discharge side of the compressor 10 in order to enable both the cooling operation and the heating operation in the indoor unit 4. A four-way valve 16 is provided. The four-way valve 16 switches the connection destination of the discharge port of the compressor 10. Specifically, when the flow path of the four-way valve 16 is in a state where the discharge port of the compressor 10 is connected to the outdoor heat exchanger 11, the suction port of the compressor 10 is connected to the first indoor heat exchanger 14 and the first heat exchanger 14. Two indoor heat exchangers 15 are connected. In this case, the outdoor heat exchanger 11 functions as a condenser, and the first indoor heat exchanger 14 and the second indoor heat exchanger 15 function as an evaporator. Further, when the flow path of the four-way valve 16 is in a state where the discharge port of the compressor 10 is connected to the first indoor heat exchanger 14 and the second indoor heat exchanger 15, the suction port of the compressor 10 is It is connected to the outdoor heat exchanger 11. In this case, the outdoor heat exchanger 11 functions as an evaporator, and the first indoor heat exchanger 14 and the second indoor heat exchanger 15 function as a condenser. The four-way valve 16 is accommodated in the first outdoor unit 3. In addition, when it is not necessary to make the 1st indoor heat exchanger 14 function as a condenser, it is not necessary to provide the four-way valve 16.
 図3に示すように、第2冷媒回路2は、圧縮機20、第3室内熱交換器21、膨張弁22、及び室外熱交換器23を備えている。圧縮機20は、冷媒を圧縮するものである。第3室内熱交換器21は、凝縮器として機能する熱交換器である。第3室内熱交換器21は、圧縮機20の吐出口と接続されている。また、第3室内熱交換器21は、膨張弁22を介して室外熱交換器23とも接続されている。膨張弁22は、冷媒を膨張させて減圧させるものである。また、膨張弁22は、第3室内熱交換器21に流れる冷媒の量を調節するものである。室外熱交換器23は、蒸発器として機能する熱交換器である。室外熱交換器23は、上述のように、膨張弁22を介して第3室内熱交換器21に接続されている。また、室外熱交換器23は、圧縮機20の吸入口と接続されている。 As shown in FIG. 3, the second refrigerant circuit 2 includes a compressor 20, a third indoor heat exchanger 21, an expansion valve 22, and an outdoor heat exchanger 23. The compressor 20 compresses the refrigerant. The third indoor heat exchanger 21 is a heat exchanger that functions as a condenser. The third indoor heat exchanger 21 is connected to the discharge port of the compressor 20. The third indoor heat exchanger 21 is also connected to the outdoor heat exchanger 23 via the expansion valve 22. The expansion valve 22 expands and depressurizes the refrigerant. The expansion valve 22 adjusts the amount of refrigerant flowing to the third indoor heat exchanger 21. The outdoor heat exchanger 23 is a heat exchanger that functions as an evaporator. The outdoor heat exchanger 23 is connected to the third indoor heat exchanger 21 via the expansion valve 22 as described above. The outdoor heat exchanger 23 is connected to the suction port of the compressor 20.
 また、本実施の形態1に係る第2冷媒回路2は、圧縮機20の吐出側に設けられた四方弁24を備えている。この四方弁24は、圧縮機20の吐出口の接続先を、切り替えるものである。詳しくは、圧縮機20の吐出口が第3室内熱交換器21と接続される状態に四方弁24の流路がなっている場合、圧縮機10の吸入口は室外熱交換器23と接続される。この場合、第3室内熱交換器21は凝縮器として機能し、室外熱交換器23は蒸発器として機能する。また、圧縮機20の吐出口が室外熱交換器23と接続される状態に四方弁24の流路がなっている場合、圧縮機20の吸入口は、第3室内熱交換器21と接続される。この場合、第3室内熱交換器21は蒸発器として機能し、室外熱交換器23は凝縮器として機能する。なお、第3室内熱交換器21を蒸発器として機能させる必要が無い場合、四方弁24を設ける必要はない。 Further, the second refrigerant circuit 2 according to the first embodiment includes a four-way valve 24 provided on the discharge side of the compressor 20. The four-way valve 24 switches the connection destination of the discharge port of the compressor 20. Specifically, when the flow path of the four-way valve 24 is in a state where the discharge port of the compressor 20 is connected to the third indoor heat exchanger 21, the suction port of the compressor 10 is connected to the outdoor heat exchanger 23. The In this case, the third indoor heat exchanger 21 functions as a condenser, and the outdoor heat exchanger 23 functions as an evaporator. When the flow path of the four-way valve 24 is in a state where the discharge port of the compressor 20 is connected to the outdoor heat exchanger 23, the suction port of the compressor 20 is connected to the third indoor heat exchanger 21. The In this case, the third indoor heat exchanger 21 functions as an evaporator, and the outdoor heat exchanger 23 functions as a condenser. In addition, when it is not necessary to make the 3rd indoor heat exchanger 21 function as an evaporator, it is not necessary to provide the four-way valve 24. FIG.
 第2冷媒回路2の構成のうち、圧縮機20、室外熱交換器23及び四方弁24は、第2室外機8に収納されている。また、第2室外機8には、室外機ファン25も収納されている。室外機ファン25は、室外熱交換器23に、該室外熱交換器23を流れる冷媒の熱交換対象である外気を供給するものである。 Among the configurations of the second refrigerant circuit 2, the compressor 20, the outdoor heat exchanger 23, and the four-way valve 24 are accommodated in the second outdoor unit 8. The second outdoor unit 8 also stores an outdoor unit fan 25. The outdoor unit fan 25 supplies the outdoor heat exchanger 23 with outside air that is a heat exchange target of the refrigerant flowing through the outdoor heat exchanger 23.
 第2冷媒回路2の構成のうち、第3室内熱交換器21及び膨張弁22は、外気供給ユニット30の第2筐体31に収納されている。 Among the configurations of the second refrigerant circuit 2, the third indoor heat exchanger 21 and the expansion valve 22 are accommodated in the second casing 31 of the outside air supply unit 30.
 図1及び図4を用いて外気供給ユニット30の詳細について説明する。外気供給ユニット30の第2筐体31は、第2吸込口32及び第2吹出口33を備えている。第2吸込口32は、第2筐体31に外気を取り込むための吸込口である。第2吸込口32は、例えばダクト等を介して、屋外と連通している。第2吹出口33は、第2筐体31に取り込まれた外気を第2筐体31外へ吹き出すための吹出口である。第2吹出口33は、例えばダクト等を介して、部屋101内と連通している。また、第2筐体31には、給気用ファン36が収納されている。給気用ファン36が回転することにより、第2吸込口32から第2筐体31に外気が吸い込まれ、第2筐体31に吸い込まれた外気が第2吹出口33から部屋101内へ吹き出される。 Details of the outside air supply unit 30 will be described with reference to FIGS. 1 and 4. The second housing 31 of the outside air supply unit 30 includes a second suction port 32 and a second air outlet 33. The second suction port 32 is a suction port for taking outside air into the second housing 31. The second suction port 32 communicates with the outdoors via, for example, a duct. The second air outlet 33 is an air outlet for blowing outside air taken into the second housing 31 out of the second housing 31. The 2nd blower outlet 33 is connected with the inside of the room 101 via a duct etc., for example. The second casing 31 houses an air supply fan 36. As the air supply fan 36 rotates, outside air is sucked into the second housing 31 from the second suction port 32, and the outside air sucked into the second housing 31 blows out into the room 101 from the second air outlet 33. Is done.
 ここで、上述のように、第2筐体31には、第1冷媒回路1の第2室内熱交換器15及び第2冷媒回路2の第3室内熱交換器21が収納されている。そして、第2吸込口32から第2吹出口33へ至る外気の流れ方向において、第2室内熱交換器15は第3室内熱交換器21の上流側に配置されている。すなわち、外気供給ユニット30が後述の再熱除湿動作を行う場合、第2筐体31に吸い込まれた外気は、蒸発器として機能する第2室内熱交換器15を流れる冷媒によって冷却されて除湿される。そして、除湿された外気は、凝縮器として機能する第3室内熱交換器21を流れる冷媒によって加熱されて部屋101内に吹き出される。 Here, as described above, the second casing 31 houses the second indoor heat exchanger 15 of the first refrigerant circuit 1 and the third indoor heat exchanger 21 of the second refrigerant circuit 2. The second indoor heat exchanger 15 is disposed upstream of the third indoor heat exchanger 21 in the flow direction of the outside air from the second suction port 32 to the second blower outlet 33. That is, when the outside air supply unit 30 performs the reheat dehumidifying operation described later, the outside air sucked into the second casing 31 is cooled and dehumidified by the refrigerant flowing through the second indoor heat exchanger 15 functioning as an evaporator. The The dehumidified outside air is heated by the refrigerant flowing through the third indoor heat exchanger 21 functioning as a condenser and blown out into the room 101.
 なお、本実施の形態1に係る第2筐体31は、第3吸込口34及び第3吹出口35も備えている。第3吸込口34は、第2筐体31に部屋101内の空気を取り込むための吸込口である。第3吸込口34は、例えばダクト等を介して、部屋101内と連通している。第3吹出口35は、第2筐体31に取り込まれた部屋101内の空気を第2筐体31外へ吹き出すための吹出口である。第3吹出口35は、例えばダクト等を介して、屋外と連通している。また、第2筐体31には、排気用ファン37が収納されている。排気用ファン37が回転することにより、第3吸込口34から第2筐体31に部屋101内の空気が吸い込まれ、第2筐体31に吸い込まれた部屋101内の空気が第3吹出口35から屋外へ吹き出される。また、本実施の形態1に係る第2筐体31には、第2吸込口32から吸い込まれた外気と第3吸込口34から吸い込まれた部屋101内の空気とが熱交換する全熱交換器38も設けられている。 Note that the second casing 31 according to the first embodiment also includes a third suction port 34 and a third outlet 35. The third suction port 34 is a suction port for taking air in the room 101 into the second housing 31. The third suction port 34 communicates with the inside of the room 101 through, for example, a duct. The third outlet 35 is an outlet for blowing out the air in the room 101 taken into the second casing 31 to the outside of the second casing 31. The 3rd blower outlet 35 is connected with the outdoors through the duct etc., for example. Further, the second housing 31 houses an exhaust fan 37. As the exhaust fan 37 rotates, the air in the room 101 is sucked into the second housing 31 from the third suction port 34, and the air in the room 101 sucked into the second housing 31 becomes the third air outlet. 35 is blown out outdoors. Further, in the second casing 31 according to the first embodiment, total heat exchange in which heat is exchanged between outside air sucked from the second suction port 32 and air in the room 101 sucked from the third suction port 34. A vessel 38 is also provided.
 また、空気調和システム100は、複数のセンサー、及び、これらのセンサーの検出値に基づいて空気調和システム100の各構成を制御する制御装置50を備えている。 Further, the air conditioning system 100 includes a plurality of sensors and a control device 50 that controls each component of the air conditioning system 100 based on detection values of these sensors.
 具体的には、空気調和システム100は、部屋101内の空気の乾球温度つまり空調対象空間の空気の乾球温度を検出する温度センサー41を備えている。温度センサー41は、室内機4の第1吸込口6周辺に設けられている。なお、空調対象空間の空気の乾球温度を検出できれば、温度センサー41の位置は任意である。また、空気調和システム100は、部屋101内の空気の絶対湿度つまり空調対象空間の空気の絶対湿度を検出する湿度センサー42を備えている。湿度センサー42は、外気供給ユニット30の第3吸込口34周辺に設けられている。なお、空調対象空間の空気の絶対湿度を検出できれば、湿度センサー42の位置は任意である。また、空気調和システム100は、外気供給ユニット30の第2吹出口33から吹き出される空気の乾球温度を検出する温度センサー43を備えている。温度センサー43は、外気供給ユニット30の第2吹出口33周辺に設けられている。なお、外気供給ユニット30の第2吹出口33から吹き出される空気の乾球温度を検出できれば、温度センサー43の位置は任意である。また、以下では、単に温度と表現している場合、乾球温度を示すこととする。また、以下では、単に湿度と表現している場合、絶対湿度を示すこととする。 Specifically, the air conditioning system 100 includes a temperature sensor 41 that detects the dry bulb temperature of the air in the room 101, that is, the dry bulb temperature of the air in the air-conditioning target space. The temperature sensor 41 is provided around the first suction port 6 of the indoor unit 4. Note that the position of the temperature sensor 41 is arbitrary as long as the dry bulb temperature of the air in the air-conditioning target space can be detected. The air conditioning system 100 also includes a humidity sensor 42 that detects the absolute humidity of the air in the room 101, that is, the absolute humidity of the air in the air-conditioning target space. The humidity sensor 42 is provided around the third suction port 34 of the outside air supply unit 30. Note that the position of the humidity sensor 42 is arbitrary as long as the absolute humidity of the air in the air-conditioning target space can be detected. In addition, the air conditioning system 100 includes a temperature sensor 43 that detects the dry bulb temperature of the air blown from the second outlet 33 of the outside air supply unit 30. The temperature sensor 43 is provided around the second outlet 33 of the outside air supply unit 30. Note that the position of the temperature sensor 43 is arbitrary as long as the dry bulb temperature of the air blown from the second outlet 33 of the outside air supply unit 30 can be detected. In the following, when simply expressed as temperature, the dry bulb temperature is indicated. In the following, absolute humidity is indicated when simply expressed as humidity.
 図5は、本発明の実施の形態1に係る空気調和システムの制御装置を示すブロック図である。
 制御装置50は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。
FIG. 5 is a block diagram showing the control device of the air-conditioning system according to Embodiment 1 of the present invention.
The control device 50 is configured with dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory. Note that the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
 制御装置50が専用のハードウェアである場合、制御装置50は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置50が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 50 is dedicated hardware, the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. Applicable. Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
 制御装置50がCPUの場合、制御装置50が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置50の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the control device 50 is a CPU, each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The CPU implements each function of the control device 50 by reading and executing a program stored in the memory. Here, the memory is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 制御装置50の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 A part of the function of the control device 50 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 本実施の形態1に係る制御装置50は、機能部として、入力部51、演算部52、制御部53及び記憶部54備えている。入力部51は、温度センサー41、湿度センサー42及び温度センサー43の検出値等が入力される機能部である。入力部51には、図示せぬリモートコントローラ等から、室内機4及び外気供給ユニット30の動作モード等も入力される。演算部52は、入力部51に入力された情報及び記憶部54に記憶されている情報に基づいて、空気調和システム100の各構成の制御目標値等を演算する機能部である。制御部53は、演算部52が演算した制御目標値等に基づいて、空気調和システム100の各構成を制御する機能部である。記憶部54は、入力部51に入力された情報、制御部53が用いる設定値及び制御目標値等を記憶する機能部である。 The control device 50 according to the first embodiment includes an input unit 51, a calculation unit 52, a control unit 53, and a storage unit 54 as functional units. The input unit 51 is a functional unit to which detection values of the temperature sensor 41, the humidity sensor 42, and the temperature sensor 43 are input. Operation modes of the indoor unit 4 and the outside air supply unit 30 are also input to the input unit 51 from a remote controller (not shown). The calculation unit 52 is a functional unit that calculates control target values and the like of each component of the air conditioning system 100 based on information input to the input unit 51 and information stored in the storage unit 54. The control unit 53 is a functional unit that controls each component of the air conditioning system 100 based on the control target value and the like calculated by the calculation unit 52. The storage unit 54 is a functional unit that stores information input to the input unit 51, setting values used by the control unit 53, control target values, and the like.
 続いて、外気供給ユニット30の再熱除湿動作について説明する。なお、再熱除湿動作とは、除湿された外気を加熱して、加熱された外気を空調対象空間である部屋101内に供給する外気供給ユニット30の動作である。
 本実施の形態1に係る空気調和システム100では、顕熱負荷が小さくて潜熱負荷が大きい環境に部屋101内がなっている場合、外気供給ユニット30が再熱除湿動作を行う。また、本実施の形態1に係る空気調和システム100では、部屋101内の顕熱負荷及び潜熱負荷は、例えば以下のように判断している。なお、ユーザが図示せぬリモートコントローラを用いて、外気供給ユニット30に再熱除湿動作を行わせるよう、空気調和システム100の制御装置50に指示してもよい。
Then, the reheat dehumidification operation | movement of the external air supply unit 30 is demonstrated. The reheat dehumidifying operation is an operation of the outside air supply unit 30 that heats the dehumidified outside air and supplies the heated outside air into the room 101 that is the air-conditioning target space.
In the air conditioning system 100 according to the first embodiment, when the room 101 is in an environment where the sensible heat load is small and the latent heat load is large, the outside air supply unit 30 performs the reheat dehumidification operation. In the air conditioning system 100 according to Embodiment 1, the sensible heat load and the latent heat load in the room 101 are determined as follows, for example. Note that the user may instruct the control device 50 of the air conditioning system 100 to cause the outside air supply unit 30 to perform the reheat dehumidification operation using a remote controller (not shown).
 本実施の形態1では、部屋101内の顕熱負荷を判断する際、制御装置50の演算部52は、温度センサー41の検出温度から室内目標温度を減算した差であるΔTを算出する。なお、室内目標温度は、記憶部54に予め記憶されている。そして、本実施の形態1では、ΔTが予め記憶部54に記憶された規定範囲内であるとき、部屋101内の顕熱負荷が小さいとしている。ΔTの算出は、第1冷媒回路1が動作しているときだけでなく、第1冷媒回路1が停止しているときにも行われる。 In the first embodiment, when determining the sensible heat load in the room 101, the calculation unit 52 of the control device 50 calculates ΔT, which is a difference obtained by subtracting the indoor target temperature from the temperature detected by the temperature sensor 41. The indoor target temperature is stored in the storage unit 54 in advance. And in this Embodiment 1, when (DELTA) T is in the prescription | regulation range memorize | stored in the memory | storage part 54 previously, it is supposed that the sensible heat load in the room 101 is small. ΔT is calculated not only when the first refrigerant circuit 1 is operating, but also when the first refrigerant circuit 1 is stopped.
 本実施の形態1では、部屋101内の潜熱負荷を判断する際、制御装置50の演算部52は、湿度センサー42の検出湿度から室内目標湿度を減算した差であるΔXを算出する。なお、室内目標湿度は、記憶部54に予め記憶されている。そして、本実施の形態1では、ΔXが予め記憶部54に記憶された閾値よりも大きいとき、部屋101内の潜熱負荷が大きいとしている。 In the first embodiment, when determining the latent heat load in the room 101, the calculation unit 52 of the control device 50 calculates ΔX, which is a difference obtained by subtracting the indoor target humidity from the detected humidity of the humidity sensor 42. The indoor target humidity is stored in advance in the storage unit 54. And in this Embodiment 1, when (DELTA) X is larger than the threshold value previously memorize | stored in the memory | storage part 54, it assumes that the latent heat load in the room 101 is large.
 そして、ΔTが予め記憶部54に記憶された規定範囲内であり、ΔXが予め記憶部54に記憶された閾値よりも大きいとき、制御装置50の制御部53は、外気供給ユニット30の再熱除湿動作を開始する。 When ΔT is within the specified range stored in advance in the storage unit 54 and ΔX is larger than the threshold value stored in the storage unit 54 in advance, the control unit 53 of the control device 50 reheats the outside air supply unit 30. Start dehumidifying operation.
 なお、室内機4毎に温度センサー41が設けられている場合等、空気調和システム100が複数の温度センサー41を備えている場合、演算部52は、全ての温度センサー41の検出温度を用いて、ΔTを算出する。そして、本実施の形態1では、全てのΔTが予め記憶部54に記憶された規定範囲内であるとき、部屋101内の顕熱負荷が小さいとしている。 When the air conditioning system 100 includes a plurality of temperature sensors 41, such as when a temperature sensor 41 is provided for each indoor unit 4, the calculation unit 52 uses the detected temperatures of all the temperature sensors 41. , ΔT is calculated. And in this Embodiment 1, when all (DELTA) T is in the prescription | regulation range memorize | stored in the memory | storage part 54 previously, it is supposed that the sensible heat load in the room 101 is small.
 外気供給ユニット30が再熱除湿動作を行う場合、制御部53は、第2室内熱交換器15が蒸発器として機能するように、第1冷媒回路1の四方弁16の流路を切り替える。そして、制御部53は、第1冷媒回路1を起動する。なお、第2室内熱交換器15が蒸発器として機能する際、第1冷媒回路1の第1室内熱交換器14も蒸発器として機能する。このため、冷房運転を行っていない室内機4がある場合、制御部53は、冷房運転をおこなっていない室内機4の第1室内熱交換器14に冷媒が流れないようにするため、冷房運転をおこなっていない室内機4の膨張弁12を閉じる。また、制御部53は、第3室内熱交換器21が凝縮器として機能するように、第2冷媒回路2の四方弁24の流路を切り替える。そして、制御部53は、第2冷媒回路2を起動する。これにより、外気供給ユニット30の第2筐体31に吸い込まれた外気は、蒸発器として機能する第2室内熱交換器15を流れる冷媒によって冷却されて除湿される。そして、除湿された外気は、凝縮器として機能する第3室内熱交換器21を流れる冷媒によって加熱されて部屋101内に吹き出される。 When the outside air supply unit 30 performs the reheat dehumidifying operation, the control unit 53 switches the flow path of the four-way valve 16 of the first refrigerant circuit 1 so that the second indoor heat exchanger 15 functions as an evaporator. Then, the control unit 53 activates the first refrigerant circuit 1. In addition, when the 2nd indoor heat exchanger 15 functions as an evaporator, the 1st indoor heat exchanger 14 of the 1st refrigerant circuit 1 also functions as an evaporator. For this reason, when there is an indoor unit 4 that is not performing the cooling operation, the control unit 53 performs the cooling operation so that the refrigerant does not flow to the first indoor heat exchanger 14 of the indoor unit 4 that is not performing the cooling operation. The expansion valve 12 of the indoor unit 4 that is not performing is closed. Moreover, the control part 53 switches the flow path of the four-way valve 24 of the 2nd refrigerant circuit 2 so that the 3rd indoor heat exchanger 21 may function as a condenser. Then, the control unit 53 activates the second refrigerant circuit 2. Thereby, the outside air sucked into the second casing 31 of the outside air supply unit 30 is cooled and dehumidified by the refrigerant flowing through the second indoor heat exchanger 15 functioning as an evaporator. The dehumidified outside air is heated by the refrigerant flowing through the third indoor heat exchanger 21 functioning as a condenser and blown out into the room 101.
 図6は、本発明の実施の形態1に係る空気調和システムにおいて外気供給ユニットが再熱除湿動作を行っている際の、外気供給ユニットを通過する外気の状態変化を示した空気線図である。なお、図6の縦軸が絶対温度を示しており、図6の横軸が乾球温度を示している。 FIG. 6 is an air diagram showing a change in the state of the outside air passing through the outside air supply unit when the outside air supply unit is performing the reheat dehumidification operation in the air conditioning system according to Embodiment 1 of the present invention. . In addition, the vertical axis | shaft of FIG. 6 has shown absolute temperature, and the horizontal axis | shaft of FIG. 6 has shown dry-bulb temperature.
 外気供給ユニット30が再熱除湿動作を行っている際、第2吸込口32から第2筐体31に吸い込まれた外気の状態を点OAとする。第2筐体31に吸い込まれた点OAの状態の外気は、全熱交換器38を通過する際、第3吸込口34から第2筐体31に吸い込まれた部屋101内の空気と熱交換して冷却され、点T1の状態となる。全熱交換器38を通過して点T1の状態となった外気は、蒸発器として機能する第2室内熱交換器15を通過する際、第2室内熱交換器15を流れる冷媒によって冷却されて除湿され、点T2の状態となる。第2室内熱交換器15から流出した点T2の状態の外気は、凝縮器として機能する第3室内熱交換器21を通過する際、第3室内熱交換器21を流れる冷媒によって加熱されて、点SAの状態となる。そして、第3室内熱交換器21から流出した点SAの状態の外気が、第2筐体31の第2吹出口33から吹き出され、部屋101内に供給される。 When the outside air supply unit 30 is performing the reheat dehumidifying operation, the state of the outside air sucked into the second housing 31 from the second suction port 32 is defined as a point OA. The outside air in the state of the point OA sucked into the second housing 31 exchanges heat with the air in the room 101 sucked into the second housing 31 from the third suction port 34 when passing through the total heat exchanger 38. And it will cool and will be in the state of point T1. The outside air that has passed through the total heat exchanger 38 and has reached the point T1 is cooled by the refrigerant flowing through the second indoor heat exchanger 15 when passing through the second indoor heat exchanger 15 that functions as an evaporator. It is dehumidified and enters the state of point T2. The outside air in the state of point T2 flowing out from the second indoor heat exchanger 15 is heated by the refrigerant flowing through the third indoor heat exchanger 21 when passing through the third indoor heat exchanger 21 functioning as a condenser. It will be in the state of point SA. Then, the outside air in the state of the point SA flowing out from the third indoor heat exchanger 21 is blown out from the second air outlet 33 of the second housing 31 and supplied into the room 101.
 このように本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、第1冷媒回路1の第2室内熱交換器15で除湿された外気は、第1冷媒回路1とは異なる第2冷媒回路2の第3室内熱交換器21で加熱される。このため、本実施の形態1に係る空気調和システム100は、再熱除湿動作の際に外気供給ユニット30から吹き出される空気の温度を制御することができる。また、本実施の形態1に係る外気供給ユニット30は、室内機4に収納された第1室内熱交換器14を有する第1冷媒回路1と、外気供給ユニット30に収納された第3室内熱交換器21を有する第2冷媒回路2とを用いて、再熱除湿動作を行うことができる。すなわち、本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、第1冷媒回路1及び第2冷媒回路2以外に、ヒータ等の新たな熱源を必要としない。このため、本実施の形態1に係る空気調和システム100は、コストの上昇を抑制することもできる。 As described above, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, the outside air dehumidified by the second indoor heat exchanger 15 of the first refrigerant circuit 1 is Heated by the third indoor heat exchanger 21 of the second refrigerant circuit 2 different from the first refrigerant circuit 1. For this reason, the air conditioning system 100 which concerns on this Embodiment 1 can control the temperature of the air which blows off from the external air supply unit 30 in the case of reheat dehumidification operation | movement. The outdoor air supply unit 30 according to the first embodiment includes the first refrigerant circuit 1 having the first indoor heat exchanger 14 housed in the indoor unit 4 and the third indoor heat housed in the outdoor air supply unit 30. The reheat dehumidification operation can be performed using the second refrigerant circuit 2 having the exchanger 21. That is, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, a new heat source such as a heater is provided in addition to the first refrigerant circuit 1 and the second refrigerant circuit 2. do not need. For this reason, the air conditioning system 100 which concerns on this Embodiment 1 can also suppress a raise of cost.
 ここで、本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、部屋101内つまり空調対象空間の空気の湿度が大きいほど、第2室内熱交換器15を流れる冷媒の蒸発温度を低くしている。換言すると、部屋101内の空気の湿度が第1絶対湿度となっている状態を第1湿度状態とする。また、部屋101内の空気の湿度が第1絶対湿度よりも低い第2絶対湿度となっている状態を第2湿度状態とする。このように定義した場合、本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、第1湿度状態において第2室内熱交換器15を流れる冷媒の蒸発温度は、第2湿度状態において第2室内熱交換器15を流れる冷媒の蒸発温度よりも低い。 Here, in the air conditioning system 100 according to the first embodiment, when the outside air supply unit 30 performs the reheat dehumidification operation, the second indoor heat exchange is increased as the humidity of the air in the room 101, that is, the air-conditioning target space is larger. The evaporation temperature of the refrigerant flowing through the vessel 15 is lowered. In other words, a state where the humidity of the air in the room 101 is the first absolute humidity is defined as a first humidity state. Moreover, let the state where the humidity of the air in the room 101 is the second absolute humidity lower than the first absolute humidity be the second humidity state. When defined in this way, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, the refrigerant flowing through the second indoor heat exchanger 15 in the first humidity state The evaporation temperature is lower than the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 in the second humidity state.
 再熱除湿動作時、第2室内熱交換器15を流れる冷媒の蒸発温度を低くした方が、外気から多くの水分を除去することができる。このため、上述のように部屋101内の空気の湿度に応じて第2室内熱交換器15を流れる冷媒の蒸発温度を異ならせることにより、部屋101内の顕熱負荷をより早期に処理することができる。すなわち、部屋101内の空気の湿度をより早期に室内目標湿度に近づけることができる。 During the reheat dehumidifying operation, the lower the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15, the more water can be removed from the outside air. For this reason, the sensible heat load in the room 101 is processed earlier by changing the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 according to the humidity of the air in the room 101 as described above. Can do. That is, the humidity of the air in the room 101 can be brought closer to the indoor target humidity earlier.
 具体的には、本実施の形態1では、制御装置50の演算部52は、第2室内熱交換器15を流れる冷媒の蒸発温度の制御目標値である目標蒸発温度TEIを次のように決定している。そして、制御部53は、再熱除湿動作時、第2室内熱交換器15を流れる冷媒の蒸発温度が目標蒸発温度TEIとなるように、第1冷媒回路1の圧縮機10の回転数及び膨張弁13の開度等を制御している。演算部52は、湿度センサー42の検出湿度から室内目標湿度を減算した差であるΔXを算出する。演算部52は、ΔXが大きいときには目標蒸発温度TEIを下げ、ΔXが小さいときには目標蒸発温度TEIを上げる。例えば、演算部52は、図7に示すように、目標蒸発温度TEIを決定する。 Specifically, in the first embodiment, the calculation unit 52 of the control device 50 determines the target evaporation temperature TEI that is the control target value of the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 as follows. is doing. And the control part 53 is the rotation speed and expansion | swelling of the compressor 10 of the 1st refrigerant circuit 1 so that the evaporation temperature of the refrigerant | coolant which flows through the 2nd indoor heat exchanger 15 may turn into target evaporation temperature TEI at the time of reheat dehumidification operation. The opening degree of the valve 13 is controlled. The calculation unit 52 calculates ΔX, which is a difference obtained by subtracting the indoor target humidity from the humidity detected by the humidity sensor 42. The calculation unit 52 decreases the target evaporation temperature TEI when ΔX is large, and increases the target evaporation temperature TEI when ΔX is small. For example, the calculation unit 52 determines the target evaporation temperature TEI as shown in FIG.
 図7は、本発明の実施の形態1に係る空気調和システムにおける第2室内熱交換器の目標蒸発温度の決定方法の一例を説明するための図である。 FIG. 7 is a diagram for explaining an example of a method for determining the target evaporation temperature of the second indoor heat exchanger in the air-conditioning system according to Embodiment 1 of the present invention.
 記憶部54には、予め、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIの上限値TEImax及び下限値TEIminが記憶されている。演算部52は、ΔX<0のとき、目標蒸発温度TEIを上限値TEImaxとする。また、演算部52は、ΔX>ΔX1のとき、目標蒸発温度TEIを下限値TEIminとする。また、0≦ΔX≦ΔX1のとき、演算部52は、ΔXと目標蒸発温度TEIとが比例関係にあるとして、記憶部54に記憶されている計算式又はマップ等に基づき、上限値TEImaxと下限値TEIminとの間で目標蒸発温度TEIを決定する。ここで、ΔX1は、室内目標湿度からの室内空間湿度の許容される上昇幅であり、記憶部54に記憶されている。ΔX1は、予め設定しておいてもよいし、ユーザ等により任意に変更できるようにしてもよい。 The storage unit 54 stores in advance an upper limit value TEImax and a lower limit value TEImin of the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15. The calculation unit 52 sets the target evaporation temperature TEI as the upper limit value TEImax when ΔX <0. Further, the calculation unit 52 sets the target evaporation temperature TEI as the lower limit value TEImin when ΔX> ΔX1. Further, when 0 ≦ ΔX ≦ ΔX1, the calculation unit 52 assumes that ΔX and the target evaporation temperature TEI are in a proportional relationship, and based on a calculation formula or a map stored in the storage unit 54, the upper limit value TEImax and the lower limit value A target evaporation temperature TEI is determined between the value TEImin. Here, ΔX1 is an allowable increase in indoor space humidity from the indoor target humidity, and is stored in the storage unit 54. ΔX1 may be set in advance or may be arbitrarily changed by the user or the like.
 なお、第2室内熱交換器15の蒸発温度が上限値TEImaxとなっている状態においてΔXが低下していき、ΔXが予め記憶部54に記憶されている閾値ΔXminを下回る場合、制御部53は、圧縮機10を停止する。また、圧縮機10の停止後、ΔXが予め記憶部54に記憶されている閾値ΔXminを上回った場合、制御部53は、圧縮機10を再度起動する。 In addition, in the state where the evaporation temperature of the second indoor heat exchanger 15 is the upper limit value TEImax, ΔX decreases, and when ΔX falls below the threshold value ΔXmin stored in the storage unit 54 in advance, the control unit 53 Then, the compressor 10 is stopped. Further, after the compressor 10 is stopped, when ΔX exceeds the threshold value ΔXmin stored in the storage unit 54 in advance, the control unit 53 starts the compressor 10 again.
 また、本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、外気供給ユニット30の第2吹出口33から吹き出される空気の温度に基づいて、第3室内熱交換器21を流れる冷媒の凝縮温度を変更している。詳しくは、外気供給ユニット30の第2吹出口33から吹き出される空気の温度が第1温度となっている状態を第1吹出状態とする。また、外気供給ユニット30の第2吹出口33から吹き出される空気の温度が第1温度よりも低い第2温度となっている状態を第2吹出状態とする。このように定義した場合、本実施の形態1に係る空気調和システム100においては、外気供給ユニット30が再熱除湿動作を行う際、第1吹出状態において第3室内熱交換器21を流れる冷媒の凝縮温度は、第2吹出状態において第3室内熱交換器21を流れる冷媒の凝縮温度よりも低い。このように外気供給ユニット30の第2吹出口33から吹き出される空気の温度に基づいて第3室内熱交換器21を流れる冷媒の凝縮温度を変更することにより、第2吹出口33から吹き出される空気の温度が過剰に上昇することを防止することができる。 Further, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, based on the temperature of the air blown from the second outlet 33 of the outside air supply unit 30, The condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 is changed. Specifically, the state where the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30 is the first temperature is defined as a first blown state. In addition, a state where the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30 is the second temperature lower than the first temperature is defined as a second blowout state. When defined in this manner, in the air conditioning system 100 according to Embodiment 1, when the outside air supply unit 30 performs the reheat dehumidifying operation, the refrigerant flowing through the third indoor heat exchanger 21 in the first blowing state The condensation temperature is lower than the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 in the second blowing state. Thus, by changing the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 based on the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30, the blower is blown from the second blower outlet 33. It is possible to prevent the temperature of the air to rise excessively.
 具体的には、本実施の形態1では、制御装置50の演算部52は、予め記憶部54に記憶されている目標吹出温度から温度センサー43の検出温度を減算した差であるΔTSAを算出する。そして、演算部52は、ΔTSAが大きいときには、第3室内熱交換器21を流れる冷媒の凝縮温度の制御目標値である目標凝縮温度TCOを下げる。また、演算部52は、ΔTSAが小さいときには、目標凝縮温度TCOを上げる。そして、制御部53は、再熱除湿動作時、第3室内熱交換器21を流れる冷媒の凝縮温度が目標凝縮温度TCOとなるように、第2冷媒回路2の圧縮機20の回転数等を制御する。なお、本実施の形態1では、再熱除湿動作時、膨張弁22の開度は規定開度に固定されている。例えば、演算部52は、図8に示すように、目標凝縮温度TCOを決定する。 Specifically, in the first embodiment, the calculation unit 52 of the control device 50 calculates ΔTSA, which is a difference obtained by subtracting the detected temperature of the temperature sensor 43 from the target blowing temperature stored in advance in the storage unit 54. . Then, when ΔTSA is large, the calculation unit 52 decreases the target condensation temperature TCO that is the control target value of the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21. Further, the calculation unit 52 increases the target condensation temperature TCO when ΔTSA is small. Then, the controller 53 adjusts the rotational speed of the compressor 20 of the second refrigerant circuit 2 so that the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 becomes the target condensation temperature TCO during the reheat dehumidification operation. Control. In the first embodiment, the opening degree of the expansion valve 22 is fixed to the specified opening degree during the reheat dehumidifying operation. For example, the calculation unit 52 determines the target condensation temperature TCO as shown in FIG.
 図8は、本発明の実施の形態1に係る空気調和システムにおける第3室内熱交換器の目標凝縮温度の決定方法の一例を説明するための図である。 FIG. 8 is a diagram for explaining an example of a method for determining the target condensation temperature of the third indoor heat exchanger in the air-conditioning system according to Embodiment 1 of the present invention.
 記憶部54には、予め、第3室内熱交換器21を流れる冷媒の目標凝縮温度TCOの上限値TCOmax及び下限値TCOminが記憶されている。演算部52は、ΔTSA<0のとき、目標凝縮温度TCOを下限値TCOminとする。また、演算部52は、ΔTSA>ΔTSA1のとき、目標凝縮温度TCOを上限値TCOmaxとする。また、0≦ΔTSA≦ΔTSA1のとき、演算部52は、ΔTSAと目標凝縮温度TCOとが比例関係にあるとして、記憶部54に記憶されている計算式又はマップ等に基づき、上限値TCOmaxと下限値TCOminとの間で目標凝縮温度TCOを決定する。ここで、ΔTSA1は、外気供給ユニット30の第2吹出口33から吹き出される空気の温度の目標吹出温度からの許容される低下幅であり、記憶部54に記憶されている。ΔTSA1は、予め設定しておいてもよいし、ユーザ等により任意に変更できるようにしてもよい。 The storage unit 54 stores in advance an upper limit value TCOmax and a lower limit value TCOmin of the target condensation temperature TCO of the refrigerant flowing through the third indoor heat exchanger 21. The calculation unit 52 sets the target condensation temperature TCO as the lower limit value TCOmin when ΔTSA <0. Further, the calculation unit 52 sets the target condensation temperature TCO as the upper limit value TCOmax when ΔTSA> ΔTSA1. Further, when 0 ≦ ΔTSA ≦ ΔTSA1, the calculation unit 52 assumes that ΔTSA and the target condensation temperature TCO are in a proportional relationship, and based on a calculation formula or a map stored in the storage unit 54, the upper limit value TCOmax and the lower limit value The target condensation temperature TCO is determined between the value TCOmin. Here, ΔTSA1 is a permissible decrease width from the target blowing temperature of the temperature of the air blown from the second blower outlet 33 of the outside air supply unit 30, and is stored in the storage unit 54. ΔTSA1 may be set in advance or may be arbitrarily changed by the user or the like.
 なお、第3室内熱交換器21の凝縮温度が下限値TCOminとなっている状態においてΔTSAが低下していき、ΔTSAが予め記憶部54に記憶されている閾値ΔTSAminを下回る場合、制御部53は、圧縮機20を停止する。なお、ΔTSAが予め記憶部54に記憶されている閾値ΔTSAminを上回った場合、制御部53は、圧縮機20を再度起動する。あるいは、第3室内熱交換器21の凝縮温度が下限値TCOminとなっている状態においてΔTSAが低下していき、ΔTSAが閾値ΔTSAminを下回る場合、制御部53は、膨張弁22の開度を既定値よりも小さくしてもよい。すなわち、第3室内熱交換器21を流れる冷媒量を減少させてもよい。換言すると、第3室内熱交換器21を流れる冷媒の凝縮温度が一定になっている状態において、外気供給ユニット30の第2吹出口33から吹き出される空気の温度が低下する場合、膨張弁22の開度が小さくなる。これにより、外気供給ユニット30の第2吹出口33から吹き出される空気の温度が過剰に上昇することをさらに防止することができる。 In the state where the condensation temperature of the third indoor heat exchanger 21 is at the lower limit value TCOmin, ΔTSA decreases, and when ΔTSA is lower than the threshold value ΔTSAmin stored in the storage unit 54 in advance, the control unit 53 Then, the compressor 20 is stopped. When ΔTSA exceeds the threshold value ΔTSAmin stored in the storage unit 54 in advance, the control unit 53 starts the compressor 20 again. Alternatively, when ΔTSA decreases while the condensation temperature of the third indoor heat exchanger 21 is the lower limit value TCOmin, and ΔTSA falls below the threshold value ΔTSAmin, the controller 53 determines the opening of the expansion valve 22 as a predetermined value. It may be smaller than the value. That is, the amount of refrigerant flowing through the third indoor heat exchanger 21 may be reduced. In other words, in the state where the condensation temperature of the refrigerant flowing through the third indoor heat exchanger 21 is constant, when the temperature of the air blown out from the second outlet 33 of the outside air supply unit 30 decreases, the expansion valve 22 The opening of becomes smaller. Thereby, it can further prevent that the temperature of the air blown out from the second outlet 33 of the outside air supply unit 30 rises excessively.
 本実施の形態1の最後に、外気供給ユニット30が再熱除湿動作を行う際の制御フローの一例を紹介する。 At the end of the first embodiment, an example of a control flow when the outside air supply unit 30 performs the reheat dehumidification operation is introduced.
 図9は、本発明の実施の形態1に係る空気調和システムにおいて外気供給ユニットが再熱除湿動作を行う際の制御フローの一例を示す図である。
 外気供給ユニット30の再熱除湿動作が開始されると、ステップS1において演算部52は、湿度センサー42の検出湿度から室内目標湿度を減算した差であるΔXと、目標吹出温度から温度センサー43の検出温度を減算した差であるΔTSAとを算出する。そして、ステップS2において演算部52は、例えば図7で説明したように、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを算出する。また、ステップS2において演算部52は、例えば図8で説明したように、第3室内熱交換器21を流れる冷媒の目標凝縮温度TCOを算出する。
FIG. 9 is a diagram illustrating an example of a control flow when the outside air supply unit performs the reheat dehumidifying operation in the air-conditioning system according to Embodiment 1 of the present invention.
When the reheat dehumidifying operation of the outside air supply unit 30 is started, in step S1, the calculation unit 52 calculates ΔX, which is a difference obtained by subtracting the indoor target humidity from the detected humidity of the humidity sensor 42, and the temperature sensor 43 from the target blowing temperature. ΔTSA which is a difference obtained by subtracting the detected temperature is calculated. In step S2, the calculation unit 52 calculates a target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15, for example, as described with reference to FIG. In step S2, the calculation unit 52 calculates the target condensation temperature TCO of the refrigerant flowing through the third indoor heat exchanger 21, for example, as described with reference to FIG.
 ステップS2の後、ステップS3において演算部52は、ΔXが閾値ΔXminよりも小さいか否かを比較する。ΔXが閾値ΔXminよりも小さい場合、ステップS4において制御部53は、第1冷媒回路1の圧縮機10を停止する。一方、ΔXが閾値ΔXmin以上の場合、ステップS5において制御部53は、圧縮機10を駆動する。 After step S2, in step S3, the calculation unit 52 compares whether ΔX is smaller than the threshold value ΔXmin. When ΔX is smaller than the threshold value ΔXmin, the control unit 53 stops the compressor 10 of the first refrigerant circuit 1 in step S4. On the other hand, when ΔX is equal to or larger than the threshold value ΔXmin, the control unit 53 drives the compressor 10 in step S5.
 ステップS4又はステップS5の後、ステップS6において演算部52は、ΔTSAが閾値ΔTSAminよりも小さいか否かを比較する。ΔTSAが閾値ΔTSAminよりも小さい場合、ステップS7において制御部53は、第2冷媒回路2の圧縮機20を停止する。あるいは、ΔTSAが閾値ΔTSAminよりも小さい場合、ステップS7において制御部53は、第2冷媒回路2の膨張弁22の開度を規定値よりも小さくする。一方、ΔTSAが閾値ΔTSAmin以上の場合、ステップS8において制御部53は、圧縮機10を駆動し、膨張弁22の開度を規定値とする。 After step S4 or step S5, in step S6, the calculation unit 52 compares whether ΔTSA is smaller than the threshold value ΔTSAmin. When ΔTSA is smaller than the threshold value ΔTSAmin, the control unit 53 stops the compressor 20 of the second refrigerant circuit 2 in step S7. Alternatively, when ΔTSA is smaller than the threshold value ΔTSAmin, the control unit 53 makes the opening degree of the expansion valve 22 of the second refrigerant circuit 2 smaller than a specified value in step S7. On the other hand, when ΔTSA is equal to or larger than the threshold value ΔTSAmin, in step S8, the control unit 53 drives the compressor 10 and sets the opening of the expansion valve 22 to a specified value.
 ステップS7又はステップS8の後のステップS9は、再熱除湿動作が終了する状態か否かを判定するステップである。例えば、上述のようにΔXと、温度センサー41の検出温度から室内目標温度を減算した差であるΔTとに基づき、再熱除湿動作を開始する場合、ΔX又はΔTが再熱除湿動作の開始条件から外れた場合、再熱除湿動作が終了する状態となる。また例えば、ユーザが図示せぬリモートコントローラを用いて再熱除湿動作の終了指示をした場合、再熱除湿動作が終了する状態となる。ステップS9において再熱除湿動作が終了する状態となっている場合、再熱除湿動作は終了する。一方、ステップS9において再熱除湿動作が終了する状態となっていない場合、上述のステップS1に戻る。 Step S9 after step S7 or step S8 is a step of determining whether or not the reheat dehumidifying operation is complete. For example, when the reheat dehumidifying operation is started based on ΔX and ΔT that is a difference obtained by subtracting the indoor target temperature from the temperature detected by the temperature sensor 41 as described above, ΔX or ΔT is a start condition for the reheat dehumidifying operation. When it deviates from, it will be in the state where a reheat dehumidification operation is complete | finished. Further, for example, when the user gives an instruction to end the reheat dehumidification operation using a remote controller (not shown), the reheat dehumidification operation ends. If the reheat dehumidification operation is in a state to end in step S9, the reheat dehumidification operation ends. On the other hand, when the reheat dehumidifying operation is not completed in step S9, the process returns to step S1 described above.
 以上、本実施の形態1に係る空気調和システム100は、第1冷媒回路1と、第2冷媒回路2と、室内機4と、外気供給ユニット30とを備えている。第1冷媒回路1は、第1室内熱交換器14、及び蒸発器として機能する第2室内熱交換器15を有している。第2冷媒回路2は、凝縮器として機能する第3室内熱交換器21を有している。室内機4は、第1吸込口6及び第1吹出口7を備えており第1室内熱交換器14が収納された第1筐体5を有している。外気供給ユニット30は、第2吸込口32及び第2吹出口33を備えており第2室内熱交換器15及び第3室内熱交換器21が収納された第2筐体31を有している。室内機4では、第1吸込口6から第1筐体5に吸い込まれた空調対象空間の空気と第1室内熱交換器14を流れる冷媒との間で熱交換が行われ、熱交換後の空気が第1吹出口7から吹き出される。外気供給ユニット30では、第2吸込口32から第2筐体31に吸い込まれた外気が第2吹出口33から吹き出される。そして、第2吸込口32から第2吹出口33へ至る外気の流れ方向において、第2室内熱交換器15が第3室内熱交換器21の上流側に配置されている。 As described above, the air conditioning system 100 according to Embodiment 1 includes the first refrigerant circuit 1, the second refrigerant circuit 2, the indoor unit 4, and the outside air supply unit 30. The first refrigerant circuit 1 includes a first indoor heat exchanger 14 and a second indoor heat exchanger 15 that functions as an evaporator. The second refrigerant circuit 2 has a third indoor heat exchanger 21 that functions as a condenser. The indoor unit 4 includes a first suction port 6 and a first air outlet 7 and includes a first housing 5 in which the first indoor heat exchanger 14 is accommodated. The outside air supply unit 30 includes a second suction port 32 and a second outlet 33, and includes a second casing 31 in which the second indoor heat exchanger 15 and the third indoor heat exchanger 21 are accommodated. . In the indoor unit 4, heat exchange is performed between the air in the air-conditioning target space sucked into the first housing 5 from the first suction port 6 and the refrigerant flowing through the first indoor heat exchanger 14. Air is blown out from the first air outlet 7. In the outside air supply unit 30, outside air sucked into the second housing 31 from the second suction port 32 is blown out from the second air outlet 33. The second indoor heat exchanger 15 is arranged upstream of the third indoor heat exchanger 21 in the flow direction of the outside air from the second suction port 32 to the second blower outlet 33.
 このように構成された本実施の形態1に係る空気調和システム100は、上述のように、再熱除湿動作の際に外気供給ユニット30から吹き出される空気の温度を制御することができる。また、本実施の形態1に係る空気調和システム100の外気供給ユニット30では、ヒータ等の新たな熱源を外気供給ユニット30に設ける必要がない。このため、本実施の形態1に係る空気調和システム100は、コストの上昇を抑制することもできる。 As described above, the air conditioning system 100 according to the first embodiment configured as described above can control the temperature of the air blown from the outside air supply unit 30 during the reheat dehumidification operation. Further, in the outside air supply unit 30 of the air conditioning system 100 according to Embodiment 1, it is not necessary to provide a new heat source such as a heater in the outside air supply unit 30. For this reason, the air conditioning system 100 which concerns on this Embodiment 1 can also suppress a raise of cost.
実施の形態2.
 第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを、本実施の形態2のように決定してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
The target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 may be determined as in the second embodiment. In Embodiment 2, items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations as those in Embodiment 1 are described using the same reference numerals.
 本実施の形態2に係る空気調和システム100の制御装置50の演算部52は、潜熱負荷の推定値に応じて、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを決定する。なお、潜熱負荷の推定値の推算方法は、特に限定されず、種々の公知の推算方法で求めることができる。例えば、潜熱負荷の推定値は、外気温度の湿度、及び部屋101内に存在する人の数等に基づいて推算することができる。すなわち、実施の形態1に示した空気調和システム100に対して、潜熱負荷の推定値を推算する際に必要な情報を検出する検出装置を追加することにより、本実施の形態2に係る空気調和システム100となる。 The calculation unit 52 of the control device 50 of the air-conditioning system 100 according to Embodiment 2 determines the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 according to the estimated value of the latent heat load. In addition, the estimation method of the estimated value of a latent heat load is not specifically limited, It can obtain | require with various well-known estimation methods. For example, the estimated value of the latent heat load can be estimated based on the humidity of the outside air temperature, the number of people present in the room 101, and the like. That is, the air conditioning system according to the second embodiment is added to the air conditioning system 100 shown in the first embodiment by adding a detection device that detects information necessary for estimating the estimated value of the latent heat load. System 100 is obtained.
 部屋101内の空気の湿度を検出する湿度センサー42の検出値、及び外気供給ユニット30の第2吹出口33から部屋101内に吹き出される外気の流量に基づき、推算された潜熱負荷を規定時間内に処理するために必要な第2室内熱交換器15を流れる冷媒の蒸発温度を算出することができる。なお、この算出は、演算部52が行う。この際、算出された蒸発温度が目標蒸発温度TEIの上限値TEImax以下であり下限値TEImin以上の場合、演算部52は、算出された蒸発温度を、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIとする。また、演算部52は、算出された蒸発温度が上限値TEImaxを上回る場合、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを上限値TEImaxとする。また、演算部52は、算出された蒸発温度が下限値TEIminを下回る場合、第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを下限値TEIminとする。 Based on the detected value of the humidity sensor 42 that detects the humidity of the air in the room 101 and the flow rate of the outside air blown into the room 101 from the second air outlet 33 of the outside air supply unit 30, the estimated latent heat load is determined for a specified time. It is possible to calculate the evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15 necessary for processing inside. This calculation is performed by the calculation unit 52. At this time, when the calculated evaporation temperature is equal to or lower than the upper limit value TEImax of the target evaporation temperature TEI and equal to or higher than the lower limit value TEImin, the calculation unit 52 uses the calculated evaporation temperature of the refrigerant flowing through the second indoor heat exchanger 15. A target evaporation temperature TEI is set. Further, when the calculated evaporation temperature exceeds the upper limit value TEImax, the calculation unit 52 sets the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 as the upper limit value TEImax. Further, when the calculated evaporation temperature is lower than the lower limit value TEImin, the calculation unit 52 sets the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 as the lower limit value TEImin.
 また、潜熱負荷の推算値が0の場合には、第1冷媒回路1の圧縮機10を停止する。そして、潜熱負荷の推算値が0を上回った場合には、第1冷媒回路1の圧縮機10を再度起動する。なお、本実施の形態2に係る再熱除湿動作において、目標蒸発温度TEIの決定方法以外の動作は、実施の形態1と同様である。 Further, when the estimated value of the latent heat load is 0, the compressor 10 of the first refrigerant circuit 1 is stopped. And when the estimated value of latent heat load exceeds 0, the compressor 10 of the 1st refrigerant circuit 1 is started again. In the reheat dehumidifying operation according to the second embodiment, operations other than the method for determining the target evaporation temperature TEI are the same as those in the first embodiment.
 以上、本実施の形態2のように空気調和システム100を構成しても、実施の形態1と同様に、再熱除湿動作の際に外気供給ユニット30から吹き出される空気の温度を制御することができ、空気調和システム100のコストの上昇を抑制することもできる。また、本実施の形態2に係る空気調和システム100は、空調負荷に応じて第2室内熱交換器15を流れる冷媒の目標蒸発温度TEIを決定できるため、部屋101内の快適性を維持しながら、空気調和システム100の効率向上によって消費電力を抑えることができる。 As described above, even if the air conditioning system 100 is configured as in the second embodiment, similarly to the first embodiment, the temperature of the air blown from the outside air supply unit 30 during the reheat dehumidifying operation is controlled. And an increase in the cost of the air conditioning system 100 can be suppressed. In addition, the air conditioning system 100 according to Embodiment 2 can determine the target evaporation temperature TEI of the refrigerant flowing through the second indoor heat exchanger 15 according to the air conditioning load, so that the comfort in the room 101 is maintained. The power consumption can be suppressed by improving the efficiency of the air conditioning system 100.
 1 第1冷媒回路、2 第2冷媒回路、3 第1室外機、4 室内機、5 第1筐体、6 第1吸込口、7 第1吹出口、8 第2室外機、10 圧縮機、11 室外熱交換器、12 膨張弁、13 膨張弁、14 第1室内熱交換器、15 第2室内熱交換器、16 四方弁、17 室外機ファン、18 室内機ファン、20 圧縮機、21 第3室内熱交換器、22 膨張弁、23 室外熱交換器、24 四方弁、25 室外機ファン、30 外気供給ユニット、31 第2筐体、32 第2吸込口、33 第2吹出口、34 第3吸込口、35 第3吹出口、36 給気用ファン、37 排気用ファン、38 全熱交換器、41 温度センサー、42 湿度センサー、43 温度センサー、50 制御装置、51 入力部、52 演算部、53 制御部、54 記憶部、100 空気調和システム、101 部屋、102 天井裏。 1 1st refrigerant circuit 2, 2nd refrigerant circuit 3, 1st outdoor unit, 4 indoor unit, 5 1st housing, 6 1st inlet, 7 1st outlet, 8 2nd outdoor unit, 10 compressor, 11 outdoor heat exchanger, 12 expansion valve, 13 expansion valve, 14 1st indoor heat exchanger, 15 2nd indoor heat exchanger, 16 4-way valve, 17 outdoor unit fan, 18 indoor unit fan, 20 compressor, 21st 3 indoor heat exchanger, 22 expansion valve, 23 outdoor heat exchanger, 24 four-way valve, 25 outdoor unit fan, 30 outdoor air supply unit, 31 second housing, 32 second inlet, 33 second outlet, 34 second 3 inlets, 35 third outlet, 36 air supply fan, 37 exhaust fan, 38 total heat exchanger, 41 temperature sensor, 42 humidity sensor, 43 temperature sensor, 50 control device, 51 input unit, 52 performance Parts, 53 control unit, 54 storage unit, 100 air conditioning system, 101 rooms, 102 ceiling.

Claims (4)

  1.  第1室内熱交換器、及び蒸発器として機能する第2室内熱交換器を有する第1冷媒回路と、
     凝縮器として機能する第3室内熱交換器を有する第2冷媒回路と、
     第1吸込口及び第1吹出口を備えており前記第1室内熱交換器が収納された第1筐体を有する室内機と、
     第2吸込口及び第2吹出口を備えており前記第2室内熱交換器及び前記第3室内熱交換器が収納された第2筐体を有する外気供給ユニットと、
     を備え、
     前記室内機では、前記第1吸込口から前記第1筐体に吸い込まれた空調対象空間の空気と前記第1室内熱交換器を流れる冷媒との間で熱交換が行われ、熱交換後の空気が前記第1吹出口から吹き出され、
     前記外気供給ユニットでは、前記第2吸込口から前記第2筐体に吸い込まれた外気が前記第2吹出口から吹き出され、
     前記第2吸込口から前記第2吹出口へ至る外気の流れ方向において、
     前記第2室内熱交換器が前記第3室内熱交換器の上流側に配置されている空気調和システム。
    A first refrigerant circuit having a first indoor heat exchanger and a second indoor heat exchanger functioning as an evaporator;
    A second refrigerant circuit having a third indoor heat exchanger that functions as a condenser;
    An indoor unit comprising a first housing having a first inlet and a first outlet and housing the first indoor heat exchanger;
    An outside air supply unit having a second housing having a second suction port and a second outlet and housing the second indoor heat exchanger and the third indoor heat exchanger;
    With
    In the indoor unit, heat exchange is performed between the air in the air-conditioning target space sucked into the first housing from the first suction port and the refrigerant flowing through the first indoor heat exchanger. Air is blown out of the first air outlet,
    In the outside air supply unit, outside air sucked into the second housing from the second suction port is blown out from the second air outlet,
    In the flow direction of the outside air from the second inlet to the second outlet,
    An air conditioning system in which the second indoor heat exchanger is disposed upstream of the third indoor heat exchanger.
  2.  前記空調対象空間の空気の絶対湿度が第1絶対湿度となっている状態を第1湿度状態とし、
     前記空調対象空間の空気の絶対湿度が第1絶対湿度よりも低い第2絶対湿度となっている状態を第2湿度状態とした場合、
     前記第1湿度状態において前記第2室内熱交換器を流れる冷媒の蒸発温度は、前記第2湿度状態において前記第2室内熱交換器を流れる冷媒の蒸発温度よりも低い請求項1に記載の空気調和システム。
    A state where the absolute humidity of the air in the air-conditioning target space is the first absolute humidity is a first humidity state,
    When the state where the absolute humidity of the air in the air-conditioning target space is the second absolute humidity lower than the first absolute humidity is the second humidity state,
    The air according to claim 1, wherein an evaporation temperature of the refrigerant flowing through the second indoor heat exchanger in the first humidity state is lower than an evaporation temperature of the refrigerant flowing through the second indoor heat exchanger in the second humidity state. Harmony system.
  3.  前記外気供給ユニットの前記第2吹出口から吹き出される空気の温度が第1温度となっている状態を第1吹出状態とし、
     前記外気供給ユニットの前記第2吹出口から吹き出される空気の温度が前記第1温度よりも低い第2温度となっている状態を第2吹出状態とした場合、
     前記第1吹出状態において前記第3室内熱交換器を流れる冷媒の凝縮温度は、前記第2吹出状態において前記第3室内熱交換器を流れる冷媒の凝縮温度よりも低い請求項1又は請求項2に記載の空気調和システム。
    A state in which the temperature of the air blown from the second outlet of the outside air supply unit is the first temperature is a first outlet state,
    When the state where the temperature of the air blown out from the second blowout port of the outside air supply unit is the second temperature lower than the first temperature is set as the second blowout state,
    The condensation temperature of the refrigerant flowing through the third indoor heat exchanger in the first blowing state is lower than the condensation temperature of the refrigerant flowing through the third indoor heat exchanger in the second blowing state. Air conditioning system as described in.
  4.  前記第2冷媒回路は、前記第3室内熱交換器に流れる冷媒の量を調節する膨張弁を備え、
     前記第3室内熱交換器を流れる冷媒の凝縮温度が一定になっている状態において、前記外気供給ユニットの前記第2吹出口から吹き出される空気の温度が低下する場合、前記膨張弁の開度が小さくなる請求項1~請求項3のいずれか一項に記載の空気調和システム。
    The second refrigerant circuit includes an expansion valve that adjusts an amount of refrigerant flowing to the third indoor heat exchanger,
    In the state where the condensation temperature of the refrigerant flowing through the third indoor heat exchanger is constant, when the temperature of the air blown from the second outlet of the outside air supply unit decreases, the opening of the expansion valve The air conditioning system according to any one of claims 1 to 3, wherein becomes smaller.
PCT/JP2018/014415 2018-04-04 2018-04-04 Air conditioning system WO2019193680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020512156A JP7026781B2 (en) 2018-04-04 2018-04-04 Air conditioning system
PCT/JP2018/014415 WO2019193680A1 (en) 2018-04-04 2018-04-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014415 WO2019193680A1 (en) 2018-04-04 2018-04-04 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2019193680A1 true WO2019193680A1 (en) 2019-10-10

Family

ID=68100188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014415 WO2019193680A1 (en) 2018-04-04 2018-04-04 Air conditioning system

Country Status (2)

Country Link
JP (1) JP7026781B2 (en)
WO (1) WO2019193680A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375270A (en) * 2021-06-21 2021-09-10 海信(广东)空调有限公司 Air conditioner and control method thereof
CN113375271A (en) * 2021-06-21 2021-09-10 海信(广东)空调有限公司 Air conditioner and control method thereof
WO2023079709A1 (en) * 2021-11-05 2023-05-11 三菱電機株式会社 Air treatment system
JP7277839B1 (en) 2022-01-31 2023-05-19 ダイキン工業株式会社 ventilator
WO2023206849A1 (en) * 2022-04-29 2023-11-02 邯郸美的制冷设备有限公司 Control method and apparatus, and air-conditioning device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049059A (en) * 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system
JP2005226922A (en) * 2004-02-13 2005-08-25 Kimura Kohki Co Ltd Heat pump type air conditioner
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049059A (en) * 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system
JP2005226922A (en) * 2004-02-13 2005-08-25 Kimura Kohki Co Ltd Heat pump type air conditioner
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375270A (en) * 2021-06-21 2021-09-10 海信(广东)空调有限公司 Air conditioner and control method thereof
CN113375271A (en) * 2021-06-21 2021-09-10 海信(广东)空调有限公司 Air conditioner and control method thereof
WO2023079709A1 (en) * 2021-11-05 2023-05-11 三菱電機株式会社 Air treatment system
JP7277839B1 (en) 2022-01-31 2023-05-19 ダイキン工業株式会社 ventilator
WO2023145162A1 (en) * 2022-01-31 2023-08-03 ダイキン工業株式会社 Ventilation device
JP2023111129A (en) * 2022-01-31 2023-08-10 ダイキン工業株式会社 Ventilation device
WO2023206849A1 (en) * 2022-04-29 2023-11-02 邯郸美的制冷设备有限公司 Control method and apparatus, and air-conditioning device and storage medium

Also Published As

Publication number Publication date
JPWO2019193680A1 (en) 2021-01-07
JP7026781B2 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
WO2019193680A1 (en) Air conditioning system
JP5975937B2 (en) Air conditioner
JP6300921B2 (en) Air conditioning ventilator
JP5328951B2 (en) Air conditioning system
JP6567183B2 (en) Air conditioning system
JP5404777B2 (en) Air conditioner
JP6800333B2 (en) Air conditioner and air conditioner system
JP4360855B2 (en) Air conditioning system
JP6835141B2 (en) Air conditioning system
WO2020003446A1 (en) Air conditioning device
JP5391785B2 (en) Air conditioning system
JP6156245B2 (en) Ventilation device and ventilation air conditioning system
JP6897848B2 (en) Air conditioning system
JP6250148B2 (en) Air conditioning system
JP2007139212A (en) Air-conditioning control system
JP2017155953A (en) Air conditioner
WO2021214930A1 (en) Air-conditioning system and control method
EP3967944B1 (en) Outside air treatment device and air conditioning system
JP7161329B2 (en) Control device, air conditioning system and control method
JP7374633B2 (en) Air conditioners and air conditioning systems
JP7209485B2 (en) air conditioning system
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP3480870B2 (en) Air conditioner
JP3103583B2 (en) Air conditioner
WO2020255907A1 (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913248

Country of ref document: EP

Kind code of ref document: A1