JP2003148830A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003148830A
JP2003148830A JP2001351044A JP2001351044A JP2003148830A JP 2003148830 A JP2003148830 A JP 2003148830A JP 2001351044 A JP2001351044 A JP 2001351044A JP 2001351044 A JP2001351044 A JP 2001351044A JP 2003148830 A JP2003148830 A JP 2003148830A
Authority
JP
Japan
Prior art keywords
indoor heat
heat exchanger
air conditioner
dehumidifying operation
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001351044A
Other languages
Japanese (ja)
Other versions
JP3740637B2 (en
Inventor
Shigeki Onishi
茂樹 大西
Masahiro Nakayama
雅弘 中山
Toshiaki Yoshikawa
利彰 吉川
Masato Shinohara
正人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001351044A priority Critical patent/JP3740637B2/en
Publication of JP2003148830A publication Critical patent/JP2003148830A/en
Application granted granted Critical
Publication of JP3740637B2 publication Critical patent/JP3740637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem in a conventional dehumidifying method that it is difficult to select the maximum capacity and high efficiency corresponding to the load in an air conditioner wherein areas of a regenerator and an evaporator of an indoor machine are fixed, as the cooling capacity and the dehumidifying capacity can be increased by increasing the area of the evaporator, but the efficiency is lowered, on the other hand, when the area of the evaporator is decreased, the input to the equal dehumidifying amount is decreased, and the energy-saving operation can be performed, but the maximum capacity is decreased. SOLUTION: The evaporator is divided into plural evaporators, and the evaporator to allow a refrigerant to flow, is selected by switching a switch valve to make the area of the evaporator variable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルを利
用した空気調和機に関するものであり、特に除湿運転可
能な空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a refrigeration cycle, and more particularly to an air conditioner capable of dehumidifying operation.

【0002】[0002]

【従来の技術】一般に冷凍サイクルを用いた空気調和機
では、冷房運転、暖房運転、除湿運転からなる3種類の
運転モードを自由に選択できるようになっている。この
うち除湿運転は、弱冷房運転状態で実行される方法や、
室内熱交換器を二分し、第1室内熱交換器と第2室内熱
交換器の間に絞り機構を設けて、圧縮機の運転、室外・
室内ファンの運転及び絞り機構の開度を制御して室内の
温度や湿度を制御する方法がある。
2. Description of the Related Art Generally, in an air conditioner using a refrigerating cycle, it is possible to freely select three kinds of operation modes including a cooling operation, a heating operation and a dehumidifying operation. Of these, the dehumidifying operation is a method executed in the weak cooling operation state,
The indoor heat exchanger is divided into two, and a throttle mechanism is provided between the first indoor heat exchanger and the second indoor heat exchanger to operate the compressor,
There is a method of controlling the indoor temperature and humidity by controlling the operation of the indoor fan and the opening degree of the throttle mechanism.

【0003】しかしながら弱冷房運転状態で実行される
除湿運転は、基本的には冷房運転であるため、被空調室
の湿度を所望レベルまで低下させることができる反面、
室内の温度も低下させてしまい、快適な環境をつくりが
たいという問題があった。
However, since the dehumidifying operation executed in the weak cooling operation state is basically a cooling operation, the humidity of the air-conditioned room can be lowered to a desired level, but
There was also the problem that it was difficult to create a comfortable environment because the indoor temperature also dropped.

【0004】この除湿運転時の室温低下を解決するため
に、室内熱交換器を二分して絞り機構を設ける除湿運転
については、例えば特開平9−42706号公報に示さ
れる空気調和機に記載されている。この空気調和機によ
ると、室内熱交換器を室内機内の前面から背面にかけて
配置し、室内熱交換器を前面上段から背面にかけての熱
交換器部分と、前面下段熱交換器部分とに熱的にニ分割
し、その間に絞り機構を設け、除湿運転時は前面から背
面にかけての部分を再熱部とし、前面下段の部分を蒸発
器とすることで、室温低下のない除湿が可能となるとと
もに、蒸発器で生じた除湿水が再熱部にかかって再蒸発
してしまう恐れは無いとしている。
A dehumidifying operation in which the indoor heat exchanger is divided into two parts and a throttling mechanism is provided in order to solve the decrease in room temperature during the dehumidifying operation is described in, for example, the air conditioner disclosed in Japanese Patent Laid-Open No. 9-42706. ing. According to this air conditioner, the indoor heat exchanger is arranged from the front side to the back side in the indoor unit, and the indoor heat exchanger is thermally coupled to the heat exchanger part from the front upper stage to the back side and the front lower stage heat exchanger part. Divide into two, and provide a throttling mechanism between them, and during dehumidification operation, the part from the front to the back is the reheat part and the lower part of the front part is the evaporator, which enables dehumidification without lowering the room temperature, It is said that there is no risk that dehumidified water generated in the evaporator will reach the reheating part and re-evaporate.

【0005】[0005]

【発明が解決しようとする課題】特開平9−42706
号公報記載の空気調和機では、室内熱交換器の分割・配
置する位置についての記述はあるが、室内熱交換器の再
熱部と蒸発部の面積を変更することに関する記述は無
く、それぞれの面積は一定である。一般に、蒸発部を大
きくすると冷房能力や除湿能力は大きくできるが、入力
が増えてしまい、除湿量を入力で除した値である除湿効
率は低下する。一方蒸発部の面積を小さくすると、除湿
効率は高くなるので、同一除湿量に対する入力は少なく
てすむが、除湿能力も小さくなるため、素早い除湿が困
難になる。特開平9−42706号公報の空気調和機で
は再熱部と蒸発部の面積が一定であり、能力優先の運転
や効率優先の運転を負荷に応じて選択することは不可能
であるため、効率が悪かったり、能力不足が発生する場
合があるという、問題点があった。
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-42706
In the air conditioner described in the publication, there is a description about the position where the indoor heat exchanger is divided / arranged, but there is no description about changing the areas of the reheat portion and the evaporation portion of the indoor heat exchanger, The area is constant. Generally, if the evaporator is enlarged, the cooling capacity and the dehumidifying capacity can be increased, but the input increases, and the dehumidifying efficiency, which is the value obtained by dividing the dehumidifying amount by the input, decreases. On the other hand, if the area of the evaporation unit is made smaller, the dehumidification efficiency becomes higher, so that less input is required for the same dehumidification amount, but the dehumidification capacity also becomes smaller, making rapid dehumidification difficult. In the air conditioner of Japanese Unexamined Patent Publication No. 9-42706, the areas of the reheat portion and the evaporation portion are constant, and it is impossible to select the performance-priority operation or the efficiency-priority operation according to the load. There was a problem that the performance was bad and the ability was insufficient.

【0006】そこで本発明は、大きな冷房能力と除湿能
力が得られる除湿運転と、除湿効率が高くより省エネル
ギーな運転が可能な除湿運転とが、任意に選択でき、負
荷に応じて最適な除湿運転が可能な空気調和機を得るこ
とを目的とする。また、負荷への対応が容易な、確実な
除湿運転が可能な空気調和機を得ることを目的とする。
また、負荷量が冷房能力、除湿能力内で、最小能力の除
湿運転パタ−ンが選択できる空気調和機を得ることを目
的とする。また、室内熱交換器を流れる冷媒の圧力損失
を減少した効率の高い空気調和機を得ることを目的とす
る。また、絞り機構等の設置個数が減少できる空気調和
機を得ることを目的とする。また、除湿運転において、
負荷へのきめ細かな対応が可能な空気調和機を得ること
を目的とする。また、地球温暖化への影響の少ない空気
調和機を得ることを目的とする。また、異常時の検知、
対応が迅速にできる空気調和機を得ることを目的とす
る。
Therefore, in the present invention, a dehumidifying operation that provides a large cooling capacity and a high dehumidifying capacity and a dehumidifying operation that has a high dehumidifying efficiency and enables more energy-saving operation can be arbitrarily selected, and the optimum dehumidifying operation can be selected according to the load. The purpose is to obtain an air conditioner capable of Another object of the present invention is to obtain an air conditioner that can easily handle a load and can perform dehumidifying operation reliably.
Another object is to obtain an air conditioner in which the dehumidifying operation pattern having the minimum capacity can be selected within the cooling capacity and the dehumidifying capacity. Moreover, it aims at obtaining the highly efficient air conditioner which reduced the pressure loss of the refrigerant which flows through an indoor heat exchanger. Moreover, it aims at obtaining the air conditioner which can reduce the number of installed throttling mechanisms etc. In the dehumidifying operation,
The purpose is to obtain an air conditioner that can handle loads in detail. Moreover, it aims at obtaining the air conditioner with little influence on global warming. In addition, detection of abnormalities,
The purpose is to obtain an air conditioner that can respond quickly.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に関る空気調和機は、圧縮機、流路切換
弁、室外熱交換器、第1絞り機構及び室内熱交換器から
なる冷凍サイクルを備えた空気調和機において、室内熱
交換器は、第1室内熱交換器、第2絞り機構及びその他
の複数の室内熱交換器の順に配管接続され、室内熱交換
器のうち、少なくとも第1室内熱交換器は再熱熱交換器
とされ、その他の複数の室内熱交換器は、冷房負荷及び
除湿負荷の大きさに対応して、蒸発器とされる数量が選
択されるものである。
In order to achieve the above object, an air conditioner according to claim 1 is a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger. In the air conditioner including the refrigeration cycle consisting of, the indoor heat exchanger is connected in the order of the first indoor heat exchanger, the second throttling mechanism, and the other plural indoor heat exchangers, and among the indoor heat exchangers, , At least the first indoor heat exchanger is a reheat heat exchanger, and the plurality of other indoor heat exchangers are selected as evaporators in accordance with the magnitudes of the cooling load and the dehumidifying load. It is a thing.

【0008】また、請求項2に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に並列に接続され、開閉弁付き
の室内熱交換器である。
An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttle mechanism, and The indoor heat exchanger is connected in parallel to the second indoor heat exchanger and has an on-off valve.

【0009】また、請求項3に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続され、開閉弁付きの第2
室内熱交換器及び該第2室内熱交換器に並列に接続され
るとともに蒸発面積の異なる、開閉弁付きの室内熱交換
器である。
The air conditioner according to a third aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are connected to the second throttle mechanism and are provided with the second on-off valve.
An indoor heat exchanger with an on-off valve, which is connected in parallel to the indoor heat exchanger and the second indoor heat exchanger and has a different evaporation area.

【0010】また、請求項4に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に直列に接続され、開閉弁付き
のバイパス回路を備えた室内熱交換器である。
An air conditioner according to a fourth aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttling mechanism. The indoor heat exchanger is connected in series to the second indoor heat exchanger and includes a bypass circuit with an on-off valve.

【0011】また、請求項5に係る空気調和機は、請求
項4記載の空気調和機において、開閉弁に代えて、第2
室内熱交換器からバイパス回路側又は直列に接続される
室内熱交換器側のいずれかに流路を切換える三方弁を設
けたものである。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect, wherein the second valve is used instead of the opening / closing valve.
A three-way valve for switching the flow path from the indoor heat exchanger to the bypass circuit side or the indoor heat exchanger side connected in series is provided.

【0012】また、請求項6に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に直列に接続され、第2室内熱
交換器側に絞り機構を備えた室内熱交換器である。
An air conditioner according to a sixth aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttle mechanism, and The indoor heat exchanger is connected in series to the second indoor heat exchanger and has a throttle mechanism on the side of the second indoor heat exchanger.

【0013】また、請求項7に係る空気調和機は、請求
項4〜6のいずれかに記載の空気調和機において、その
他の複数の室内熱交換器は、冷媒流路を多パスとしたも
のである。
An air conditioner according to a seventh aspect is the air conditioner according to any one of the fourth to sixth aspects, in which the other plurality of indoor heat exchangers have a multi-pass refrigerant passage. Is.

【0014】また、請求項8に係る空気調和機は、圧縮
機、流路切換弁、室外熱交換器、第1絞り機構及び室内
熱交換器からなる冷凍サイクルを備えた空気調和機にお
いて、室内熱交換器は、第1室内熱交換器、第2絞り機
構、第2室内熱交換器及びその他の室内熱交換器を有
し、第1室内熱交換器及びその他の室内熱交換器の間に
配管接続された四方弁により、第1室内熱交換器、第2
絞り機構、第2室内熱交換器及びその他の室内熱交換器
の流路、又は第1室内熱交換器、第2室内熱交換器、第
2絞り機構及びその他の室内熱交換器の流路に切換え可
能とされるものである。
The air conditioner according to claim 8 is an air conditioner equipped with a refrigeration cycle including a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttling mechanism and an indoor heat exchanger. The heat exchanger has a first indoor heat exchanger, a second throttling mechanism, a second indoor heat exchanger, and other indoor heat exchangers, and between the first indoor heat exchanger and the other indoor heat exchangers. The first indoor heat exchanger, the second by the four-way valve connected by piping
In the flow path of the throttle mechanism, the second indoor heat exchanger and other indoor heat exchangers, or in the flow paths of the first indoor heat exchanger, the second indoor heat exchanger, the second throttle mechanism and other indoor heat exchangers It can be switched.

【0015】また、請求項9に係る空気調和機は、圧縮
機、流路切換弁、室外熱交換器、第1絞り機構及び室内
熱交換器からなる冷凍サイクルを備えた空気調和機にお
いて、室内熱交換器は、第1室内熱交換器、第2絞り機
構及び第2室内熱交換器の順に配管接続され、第1室内
熱交換器は再熱熱交換器、第2室内熱交換器は蒸発器と
され、第2室内熱交換器への送風量が、冷房負荷及び除
湿負荷の大きさに対応して制御されるものである。
An air conditioner according to a ninth aspect is an air conditioner equipped with a refrigeration cycle including a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger. The heat exchanger is connected to the first indoor heat exchanger, the second throttle mechanism, and the second indoor heat exchanger in this order by piping, and the first indoor heat exchanger is a reheat heat exchanger and the second indoor heat exchanger is an evaporator. The amount of air blown to the second indoor heat exchanger is controlled in accordance with the cooling load and dehumidifying load.

【0016】また、請求項10に係る空気調和機は、請
求項9記載の空気調和機において、第1室内熱交換器用
の室内ファン及び第2室内熱交換器用の室内ファンを設
け、それぞれ独立に送風量が制御されるものである。
An air conditioner according to a tenth aspect is the air conditioner according to the ninth aspect, wherein an indoor fan for the first indoor heat exchanger and an indoor fan for the second indoor heat exchanger are provided, and they are independent of each other. The amount of blown air is controlled.

【0017】また、請求項11に係る空気調和機は、温
度設定手段と、湿度設定手段と、温度検知手段と、湿度
検知手段と、温度設定手段の設定温度と温度検知手段の
検知温度から冷房負荷を算出し、湿度設定手段の設定値
と湿度検知手段の検知湿度から除湿負荷を算出する負荷
算出手段と、冷房能力及び除湿能力の組合せからなる除
湿運転パタ−ンを記憶する除湿運転記憶手段と、負荷算
出手段が算出した負荷量が除湿運転記憶手段が記憶する
除湿運転パタ−ンのうち、能力内である除湿運転パタ−
ンを選択する除湿運転選択手段と、除湿運転選択手段が
選択した除湿運転パタ−ンで除湿運転を行うとともに検
出値が前記設定値に近づくように制御する制御手段とを
備えたものである。
According to the eleventh aspect of the present invention, in the air conditioner, the temperature setting means, the humidity setting means, the temperature detecting means, the humidity detecting means, the set temperature of the temperature setting means and the detected temperature of the temperature detecting means are used for cooling. A load calculating means for calculating the load and calculating a dehumidifying load from the set value of the humidity setting means and the detected humidity of the humidity detecting means, and a dehumidifying operation storing means for storing a dehumidifying operation pattern including a combination of the cooling capacity and the dehumidifying capacity. And the dehumidifying operation pattern whose load amount calculated by the load calculating means is within the capacity among the dehumidifying operation patterns stored in the dehumidifying operation storage means.
The dehumidifying operation selecting means for selecting the temperature and the dehumidifying operation pattern selected by the dehumidifying operation selecting means are provided for controlling the dehumidifying operation so that the detected value approaches the set value.

【0018】また、請求項12に係る空気調和機は、請
求項11記載の空気調和機において、除湿運転選択手段
は、算出負荷が能力内である最も能力の小さい除湿運転
パタ−ンを選択するものである。
According to a twelfth aspect of the present invention, there is provided the air conditioner according to the eleventh aspect, wherein the dehumidifying operation selecting means selects a dehumidifying operation pattern having the smallest capacity within the calculated load. It is a thing.

【0019】また、請求項13に係る空気調和機は、請
求項11又は請求項12に記載の空気調和機において、
制御手段は、検出値が設定値に近づくように、室外ファ
ンの回転数及び圧縮機の容量を制御するものである。
An air conditioner according to claim 13 is the air conditioner according to claim 11 or 12.
The control means controls the rotation speed of the outdoor fan and the capacity of the compressor so that the detected value approaches the set value.

【0020】また、請求項14に係る空気調和機は、請
求項11〜請求項13のいずれかに記載の空気調和機に
おいて、除湿運転選択手段が選択する除湿運転パタ−ン
は、請求項1〜請求項10のいずれかで決定される除湿
運転パタ−ンであるものである。
Further, an air conditioner according to a fourteenth aspect is the air conditioner according to any one of the eleventh to thirteenth aspects, wherein the dehumidifying operation pattern selected by the dehumidifying operation selecting means is the one according to the first aspect. ~ The dehumidifying operation pattern determined in any one of claims 10 to 10.

【0021】また、請求項15に係る空気調和機は、請
求項1〜請求項14のいずれかに記載の空気調和機にお
いて、冷凍サイクルの冷媒として、可燃性冷媒又は自然
系冷媒を用いたものである。
An air conditioner according to a fifteenth aspect is the air conditioner according to any one of the first to fourteenth aspects, wherein a flammable refrigerant or a natural refrigerant is used as the refrigerant of the refrigeration cycle. Is.

【0022】また、請求項16に係る空気調和機は、請
求項1〜請求項15のいずれかに記載の空気調和機にお
いて、異常検出手段及び通信手段を有し、異常検出手段
が異常を検出した場合は、検出結果がサ−ビスセンタ−
又は携帯電話へ通信されるものである。
An air conditioner according to a sixteenth aspect is the air conditioner according to any one of the first to fifteenth aspects, which has an abnormality detecting means and a communication means, and the abnormality detecting means detects an abnormality. If it does, the detection result will be the service center.
Or, it is communicated to a mobile phone.

【0023】[0023]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1である空気調和機の冷凍サイクルの冷媒
回路図である。除湿運転時及び冷房運転時は図中の矢印
で示すように、圧縮機1を出た冷媒は流路切換弁である
四方弁2を通り、室外ファン4が付設された室外熱交換
器3、第1絞り機構5を通過し、第1室内熱交換器6、
第2絞り機構7を通り、一部は第2室内熱交換器8を通
過し、残りは開閉弁9と第3室内熱交換器10を通り、
再び合流して四方弁2を通って圧縮機1に戻る。なお暖
房運転時は四方弁2が切り替わり、冷媒の流れ方向が逆
となる。ここで圧縮機1、四方弁2、室外熱交換器3、
室外ファン4、第1絞り機構5は室外機(図示せず)に
内蔵され、第1室内熱交換器6、第2絞り機構7、第2
室内熱交換器8、開閉弁9、第3室内熱交換器10及び
3つの室内熱交換器に付設された室内ファン11は室内
機(図示せず)に内蔵されている。なお、後述の複数の
室内熱交換器及びこれらに関連の開閉弁、絞り機構、三
方弁、四方弁、室内ファン等は室内機に内蔵される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a refrigerant circuit diagram of a refrigeration cycle of an air conditioner that is Embodiment 1 of the present invention. During the dehumidifying operation and the cooling operation, as shown by the arrow in the figure, the refrigerant exiting the compressor 1 passes through the four-way valve 2 which is a flow path switching valve, and the outdoor heat exchanger 3 provided with the outdoor fan 4, After passing through the first throttle mechanism 5, the first indoor heat exchanger 6,
Passing through the second throttle mechanism 7, a part passes through the second indoor heat exchanger 8, and the rest passes through the on-off valve 9 and the third indoor heat exchanger 10,
It merges again and returns to the compressor 1 through the four-way valve 2. During the heating operation, the four-way valve 2 is switched, and the flow direction of the refrigerant is reversed. Here, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3,
The outdoor fan 4 and the first throttle mechanism 5 are incorporated in an outdoor unit (not shown), and the first indoor heat exchanger 6, the second throttle mechanism 7, and the second
The indoor heat exchanger 8, the on-off valve 9, the third indoor heat exchanger 10, and the indoor fan 11 attached to the three indoor heat exchangers are incorporated in an indoor unit (not shown). It should be noted that a plurality of indoor heat exchangers, which will be described later, and on-off valves, throttle mechanisms, three-way valves, four-way valves, indoor fans and the like related thereto are built in the indoor unit.

【0024】通常の冷房運転や暖房運転では第2絞り機
構7と開閉弁9を全開にしておき、圧縮機1の周波数や
室外ファン4の回転数、第1絞り機構5の開度を制御し
て冷暖房能力を変化させ、被空調室の温度を調整する。
また除湿運転時は開閉弁9は全開のまま、第1絞り機構
5を全開にし第2絞り機構7の開度を調整することで、
第1室内熱交換器6を再熱器として機能させ、第2室内
熱交換器8と第3室内熱交換器10は蒸発器として機能
させて、室内空気を除湿しながら再熱器で加熱も行い、
室温が下がらない除湿運転を可能にしている。
In a normal cooling operation or heating operation, the second throttle mechanism 7 and the opening / closing valve 9 are fully opened to control the frequency of the compressor 1, the rotation speed of the outdoor fan 4, and the opening degree of the first throttle mechanism 5. Control the temperature of the air-conditioned room.
Further, during the dehumidifying operation, the first throttle mechanism 5 is fully opened and the opening degree of the second throttle mechanism 7 is adjusted while the open / close valve 9 remains fully open.
The first indoor heat exchanger 6 functions as a reheater, the second indoor heat exchanger 8 and the third indoor heat exchanger 10 function as an evaporator, and the indoor air is dehumidified while being heated by the reheater. Done,
It enables dehumidifying operation in which the room temperature does not drop.

【0025】次に図2を用いて冷房運転時と除湿運転時
の、冷房能力と除湿能力の範囲について述べる。このグ
ラフの縦軸は除湿能力を示し、上ほど除湿能力が大き
い、すなわち室内湿度を下げる能力が大きい事を示して
おり、例えば圧縮機1の周波数を制御することで制御可
能である。横軸は冷房能力を示し、右ほど冷房能力が大
きい、すなわち室内温度を下げる能力が大きい事を示し
ており、例えば室外ファン4の回転数を制御することで
制御可能である。なお、ここでいう冷房能力は、温度を
下げる顕熱能力のみを指し、湿度を下げる潜熱能力は含
まないとする。通常の冷房運転の能力範囲は、この図に
示すように冷房能力が高い右側に存在する。従って室温
を下げずに除湿することは困難であり、例えば弱冷房で
除湿しようとしても、除湿能力とともに冷房能力も発生
するため、室温が低下してしまう。一方除湿運転の能力
範囲は、除湿能力は高くて冷房能力が低く、このグラフ
の左側に存在するため、室温を下げずに除湿することが
可能となる。
Next, the range of the cooling capacity and the dehumidifying capacity during the cooling operation and the dehumidifying operation will be described with reference to FIG. The vertical axis of this graph shows the dehumidifying ability, and the higher the dehumidifying ability is, the more the ability to lower the indoor humidity is shown, which can be controlled by controlling the frequency of the compressor 1, for example. The horizontal axis indicates the cooling capacity, and the right side indicates that the cooling capacity is larger, that is, the capacity to lower the indoor temperature is larger, and can be controlled by controlling the rotation speed of the outdoor fan 4, for example. Note that the cooling capacity here means only the sensible heat capacity for lowering the temperature, and does not include the latent heat capacity for lowering the humidity. The capacity range of the normal cooling operation exists on the right side where the cooling capacity is high as shown in this figure. Therefore, it is difficult to dehumidify without lowering the room temperature. For example, even if an attempt is made to dehumidify in weak cooling, the cooling capacity as well as the dehumidifying capacity is generated, and the room temperature drops. On the other hand, in the capacity range of the dehumidifying operation, the dehumidifying capacity is high and the cooling capacity is low, and since it exists on the left side of this graph, it is possible to dehumidify without lowering the room temperature.

【0026】次に除湿運転時に蒸発器の能力が異なる場
合について、それぞれの特徴を図3a及び図3bを用い
て説明する。蒸発器の能力は蒸発器面積や蒸発器の風量
などで決定されるが、ここでは蒸発器面積を変更させる
ことで能力を変えるとする。なお蒸発器面積は熱交換器
の表面積とするが、例えば空気風路に対する面積すなわ
ち前面面積などとしてもよい。図3aは、大きな蒸発器
面積で除湿運転した場合の「除湿運転A」と、小さな蒸
発器面積の除湿運転した場合の「除湿運転B」の、それ
ぞれの冷房能力と除湿能力の能力範囲を示す。「除湿運
転A」では蒸発器面積が大きいので能力の制御範囲も広
く、図中「除湿運転A」に示すように冷房能力も除湿能
力も広範囲で制御できるが、「除湿運転B」では冷房能
力や除湿能力の制御範囲は狭くなる。
Next, the characteristics of the evaporators having different capacities during the dehumidifying operation will be described with reference to FIGS. 3a and 3b. The capacity of the evaporator is determined by the area of the evaporator, the air volume of the evaporator, and the like. Here, the capacity is changed by changing the area of the evaporator. Although the evaporator area is the surface area of the heat exchanger, it may be, for example, the area for the air duct, that is, the front surface area. FIG. 3a shows the respective capacity ranges of the cooling capacity and the dehumidifying capacity of the "dehumidifying operation A" when the dehumidifying operation is performed with a large evaporator area and the "dehumidifying operation B" when the dehumidifying operation is performed with a small evaporator area. . Since the evaporator area is large in the "dehumidification operation A", the control range of the capacity is wide, and the cooling capacity and the dehumidification capacity can be controlled in a wide range as shown in the "dehumidification operation A" in the figure, but in the "dehumidification operation B", the cooling capacity is And the control range of dehumidification capacity becomes narrow.

【0027】図3bは蒸発器面積の違いによる除湿効率
の差異を示す。縦軸は除湿量を入力で除した値である除
湿効率を示し、横軸は除湿能力を示している。「除湿運
転B」では能力の制御範囲が小さいので除湿能力の最大
値は「除湿運転A」より小さいが、蒸発器面積の減少に
伴う圧縮機の吸入圧力の低下によって入力が減るため、
同一除湿量に対する除湿効率は「除湿運転A」より高く
なり、従ってより省エネルギーな除湿運転が可能とな
る。従って、例えば空気調和機の運転開始時のように大
きな冷房能力や除湿能力が必要とされる場合は「除湿運
転A」を選択すれば迅速に目標環境に達することがで
き、一方、室内が要求条件となり条件を維持する時など
必要な能力が小さい場合は「除湿運転B」を選択すれ
ば、より省エネルギーな除湿運転が可能である。
FIG. 3b shows the difference in dehumidification efficiency due to the difference in evaporator area. The vertical axis represents the dehumidification efficiency, which is the value obtained by dividing the dehumidification amount by the input, and the horizontal axis represents the dehumidification capacity. Since the control range of the capacity is small in the "dehumidifying operation B", the maximum value of the dehumidifying capacity is smaller than that in the "dehumidifying operation A".
The dehumidifying efficiency for the same dehumidifying amount is higher than that of the "dehumidifying operation A", and therefore a more energy-saving dehumidifying operation can be performed. Therefore, when a large cooling capacity or dehumidifying capacity is required, for example, when the air conditioner starts operating, the target environment can be quickly reached by selecting the "dehumidifying operation A", while the indoor environment is required. When the condition is satisfied and the required capacity is small, such as when maintaining the condition, by selecting "dehumidifying operation B", more energy-saving dehumidifying operation can be performed.

【0028】蒸発器面積の変更手段について図4a及び
図4bを用いて説明する。図4a、図4bは図1に示す
冷媒回路の一部であり、第2絞り機構7と四方弁2の間
の部分のみ図示している。矢印は除湿運転時の冷媒の流
れを示し、図中で同じ番号をつけた構成部品は図1と同
一部品を示す。図4aで開閉弁9を開くと第3室内熱交
換器10にも冷媒は流れるので、第2室内熱交換器8と
第3室内熱交換器10の両方とも、蒸発器として機能す
る。これは蒸発器面積の大きい「除湿運転A」に相当す
る。一方図4bに示すように開閉弁9を閉じると、第3
室内熱交換器10には冷媒は流れず、第2室内熱交換器
8のみ蒸発器として機能する。すなわち蒸発器面積の小
さい「除湿運転B」に相当する。このように開閉弁9の
開閉によって、「除湿運転A」と「除湿運転B」は容易
に切替え可能となる。
The means for changing the area of the evaporator will be described with reference to FIGS. 4a and 4b. 4A and 4B are a part of the refrigerant circuit shown in FIG. 1, and show only a part between the second throttle mechanism 7 and the four-way valve 2. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. When the on-off valve 9 is opened in FIG. 4a, the refrigerant also flows through the third indoor heat exchanger 10, so that both the second indoor heat exchanger 8 and the third indoor heat exchanger 10 function as an evaporator. This corresponds to "dehumidifying operation A" in which the evaporator area is large. On the other hand, when the on-off valve 9 is closed as shown in FIG.
The refrigerant does not flow into the indoor heat exchanger 10, and only the second indoor heat exchanger 8 functions as an evaporator. That is, this corresponds to "dehumidifying operation B" in which the evaporator area is small. In this way, by opening / closing the opening / closing valve 9, the “dehumidifying operation A” and the “dehumidifying operation B” can be easily switched.

【0029】必要となる冷房能力及び除湿能力に合った
適切な蒸発器面積を選択する方法について、図5を用い
て説明する。これは図2aと同様、蒸発面積の大きい
「除湿運転A」と、蒸発面積の小さい「除湿運転B」の
能力範囲を示している。横軸は冷房能力で縦軸は除湿能
力を示している。
A method of selecting an appropriate evaporator area suitable for the required cooling capacity and dehumidifying capacity will be described with reference to FIG. Similar to FIG. 2a, this shows the capacity range of the "dehumidifying operation A" having a large evaporation area and the "dehumidifying operation B" having a small evaporation area. The horizontal axis represents cooling capacity and the vertical axis represents dehumidification capacity.

【0030】図中の負荷に示すように、例えば除湿運
転の立ち上がり時など、冷房負荷と除湿負荷が大きく、
大きな冷房能力と大きな除湿能力が必要な場合、「除湿
運転B」では能力の範囲外であるため、「除湿運転A」
で運転するのが適切と判断できる。従ってこの場合は開
閉弁9を開けて蒸発器面積の大きい「除湿運転A」を選
択する。
As shown by the load in the figure, the cooling load and the dehumidifying load are large, for example, at the start of the dehumidifying operation,
When a large cooling capacity and a large dehumidifying capacity are required, "Dehumidifying operation B" is outside the range of capacity, so "Dehumidifying operation A"
It can be judged that it is appropriate to drive in. Therefore, in this case, the opening / closing valve 9 is opened and the "dehumidifying operation A" having a large evaporator area is selected.

【0031】一方負荷に示すように、安定時など冷房
負荷や除湿負荷が小さく、必要な冷房能力や除湿能力が
小さい場合、「除湿運転A」でも「除湿運転B」でも能
力範囲内に入っているため、どちらでも対応することが
可能である。従ってこの場合は、除湿効率の高い、すな
わち省エネルギー運転が可能な「除湿運転B」を選択す
るのが合理的といえる。そこで負荷が発生した場合は
開閉弁9を閉じて蒸発器面積が小さい「除湿運転B」を
選択する。
On the other hand, as shown by the load, when the cooling load and dehumidifying load are small and the required cooling capacity and dehumidifying capacity are small, such as during stable operation, both "dehumidifying operation A" and "dehumidifying operation B" are within the capacity range. Therefore, it is possible to deal with either. Therefore, in this case, it can be said that it is rational to select the "dehumidifying operation B" having a high dehumidifying efficiency, that is, an energy saving operation. Therefore, when a load is generated, the on-off valve 9 is closed and the "dehumidifying operation B" in which the evaporator area is small is selected.

【0032】次に除湿運転時の空気調和機の制御方法に
ついて、図6を用いて説明する。これは空気調和機のマ
イコンなどに記憶されているフローチャートである。ま
ずステップS001で、温度設定手段及び湿度設定手段
により、それぞれ、設定温度Tsetと設定湿度Hsetが設定
され、ステップS002で室温センサーや湿度センサー
などの温度検知手段、湿度検知手段で、実際の室温Trと
湿度Hrが検知され、次にステップS003では、設定値
と検知した値を入力されたマイコン内の負荷算出手段が
冷房負荷Ltと除湿負荷Lhを算出する。
Next, a method of controlling the air conditioner during the dehumidifying operation will be described with reference to FIG. This is a flowchart stored in the microcomputer of the air conditioner. First, in step S001, the set temperature Tset and the set humidity Hset are respectively set by the temperature setting means and the humidity setting means, and in step S002, the actual room temperature Tr is detected by the temperature detecting means and the humidity detecting means such as the room temperature sensor and the humidity sensor. And the humidity Hr are detected. Then, in step S003, the load calculating means in the microcomputer, which receives the set value and the detected value, calculates the cooling load Lt and the dehumidifying load Lh.

【0033】次に、ステップS004ではステップS0
03で算出した冷房負荷Ltと除湿負荷Lhが、除湿運転B
の制御範囲内かどうか判断する。範囲内でなければステ
ップS005で除湿運転Aが選択されてそれに応じた冷
媒回路となり、範囲内であればステップS006で除湿
運転Bが選択される。除湿運転A、Bの選択は、マイコ
ン内の除湿運転選択手段が行うが、除湿運転選択手段は
除湿運転記憶手段が記憶している冷房能力及び除湿能力
の組合せからなる除湿運転A、Bの能力と前記の負荷算
出手段が算出した負荷との比較を行い選択する。次に、
ステップS007でTset=Trとなるよう冷房能力が制御
され、ステップS008ではHset=Hrとなるよう除湿能
力が制御され、再びステップS002に戻る。なお、制
御手段が、前記の除湿運転選択手段の選択結果が入力さ
れることにより、それに応じた冷媒回路とすることを指
令し、また、前記の負荷算出手段の算出結果が入力され
ることにより冷房能力の制御及び除湿能力の制御指令を
出す。なお、ステップS007ではTset=Trとしたが、
完全に一致させるのは困難であり、また室温のハンチン
グの原因ともなりうるため、目標値に幅を持たせ、例え
ば|Tset−Tr|≦2℃などとしてもよく、またステップ
S008の湿度についても同様に、例えば|Hset−Hr|
≦5%などとしてもよい。
Next, in step S004, step S0
The cooling load Lt and the dehumidification load Lh calculated in 03 are the dehumidification operation B
It is judged whether it is within the control range of. If it is not within the range, the dehumidifying operation A is selected in step S005 and the refrigerant circuit corresponding to it is selected. If it is within the range, the dehumidifying operation B is selected in step S006. The dehumidifying operations A and B are selected by the dehumidifying operation selecting means in the microcomputer. The dehumidifying operation selecting means has the ability of the dehumidifying operations A and B which is a combination of the cooling capacity and the dehumidifying capacity stored in the dehumidifying operation storage means. And the load calculated by the load calculating means are compared and selected. next,
In step S007, the cooling capacity is controlled so that Tset = Tr, and in step S008, the dehumidifying capacity is controlled so that Hset = Hr, and the process returns to step S002 again. Incidentally, the control means, by inputting the selection result of the dehumidifying operation selection means, commands the refrigerant circuit to be in accordance therewith, and also by inputting the calculation result of the load calculation means. Issues control commands for cooling capacity and dehumidifying capacity. Although Tset = Tr is set in step S007,
Since it is difficult to make a perfect match and it may cause hunting at room temperature, the target value may have a range, for example, | Tset-Tr | ≦ 2 ° C.
Similarly for the humidity of S008, for example, | Hset-Hr |
It may be ≦ 5% or the like.

【0034】次に、除湿運転が選択された後の冷房能力
と除湿能力の制御方法について述べる。除湿運転時はお
よそ室外ファン4の回転数を変化させると冷房能力が変
化し、圧縮機1の回転数を変化させると除湿能力が変化
する。従って蒸発器面積が選択・決定された後は、算出
された必要な冷房能力と除湿能力が出力されるように、
室外ファン4の回転数と圧縮機1の回転数を制御すれば
よい。
Next, a method for controlling the cooling capacity and the dehumidifying capacity after the dehumidifying operation is selected will be described. During the dehumidifying operation, when the rotation speed of the outdoor fan 4 is changed, the cooling capacity changes, and when the rotation speed of the compressor 1 is changed, the dehumidification capacity changes. Therefore, after the evaporator area is selected and determined, the calculated necessary cooling capacity and dehumidifying capacity are output.
The rotation speed of the outdoor fan 4 and the rotation speed of the compressor 1 may be controlled.

【0035】ここでの制御は必要能力から一義的に圧縮
機の回転数や室外ファンの回転数を決定しても良いし、
例えば設定値と検知した値との差から、圧縮機や室外フ
ァンの回転数を増加または低下させる変更幅を決定して
も良く、さらにこの算出は予め空気調和機の制御マイコ
ンの中のメモリーに、データテーブルとして所有しても
よい。また制御対象として室外ファン4と圧縮機1に限
定することなく、さらに第1絞り機構5、第2絞り機構
7などの各アクチュエータを制御して、より木目細かな
冷媒回路の制御をしてもよい。
In this control, the rotational speed of the compressor or the rotational speed of the outdoor fan may be uniquely determined from the required capacity.
For example, from the difference between the set value and the detected value, the change range for increasing or decreasing the rotation speed of the compressor or the outdoor fan may be determined, and this calculation is performed in advance in the memory in the control microcomputer of the air conditioner. , May be owned as a data table. Further, the objects to be controlled are not limited to the outdoor fan 4 and the compressor 1, and each actuator such as the first throttling mechanism 5 and the second throttling mechanism 7 may be controlled to control a finer refrigerant circuit. Good.

【0036】本実施の形態1では、図1に示すよう蒸発
面積を2段階に切替えたが、それに限定するものではな
く、図7に示すように蒸発器の個数を3個以上としても
よい。この図は冷媒回路の一部で、第2絞り機構7と四
方弁2の間の部分のみ示している。矢印は除湿運転時の
冷媒の流れを示し、図中で同じ番号をつけた構成部品は
図1と同一部品を示す。図7に示すように、第2室内熱
交換器8と並列に接続された開閉弁9と第3室内熱交換
器10に対し、更に並列に第2開閉弁12と第4室内熱
交換器13を接続する。開閉弁9と第2開閉弁12を両
方とも開放することで第2室内熱交換器8と第3室内熱
交換器10と第4室内熱交換器13が全て蒸発器とな
り、最大面積の除湿運転となる。また第2開閉弁12の
み閉じることで第2室内熱交換器8と第3室内熱交換器
10を蒸発器とする除湿運転となり、更に開閉弁9も閉
じることで第2室内熱交換器8のみを蒸発器とする最小
面積の除湿運転となる。これによって、図1では2種類
であった除湿運転の種類を増やし、より木目細かい蒸発
器面積の選択が可能となり、発生した負荷が制御範囲内
に入るような蒸発器面積のうち、最小の蒸発器面積を用
いた除湿運転を選択することで、必要な能力を確保した
上で、最大の除湿効率となるような省エネルギー運転が
常に実現できる。また図中の点線で示すように3回路よ
り増やしてもよい。即ち、除湿運転パタ−ンとして、前
記の除湿運転A及び除湿運転Bの二段階に対して、3段
階以上の冷房能力、除湿能力の除湿運転パタ−ンとする
ことができる。
In the first embodiment, the evaporation area is switched to two stages as shown in FIG. 1, but the invention is not limited to this, and the number of evaporators may be three or more as shown in FIG. This drawing is a part of the refrigerant circuit, and shows only a part between the second throttle mechanism 7 and the four-way valve 2. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. As shown in FIG. 7, with respect to the opening / closing valve 9 and the third indoor heat exchanger 10 which are connected in parallel with the second indoor heat exchanger 8, the second opening / closing valve 12 and the fourth indoor heat exchanger 13 are further connected in parallel. Connect. By opening both the on-off valve 9 and the second on-off valve 12, the second indoor heat exchanger 8, the third indoor heat exchanger 10, and the fourth indoor heat exchanger 13 all become evaporators, and the dehumidifying operation of the maximum area is performed. Becomes Further, by closing only the second opening / closing valve 12, the dehumidifying operation is performed using the second indoor heat exchanger 8 and the third indoor heat exchanger 10 as evaporators, and by closing the opening / closing valve 9 only, the second indoor heat exchanger 8 only. The dehumidification operation of the minimum area is performed by using as an evaporator. As a result, the number of types of dehumidifying operation, which was two in FIG. 1, can be increased, and a finer evaporator area can be selected, and the smallest evaporation area among the evaporator areas where the generated load falls within the control range. By selecting the dehumidifying operation using the unit area, it is possible to always realize the energy-saving operation that ensures the maximum dehumidifying efficiency while securing the necessary capacity. Moreover, as shown by the dotted line in the figure, the number of circuits may be increased from three. That is, as the dehumidifying operation pattern, the dehumidifying operation pattern having three or more stages of cooling capacity and dehumidifying capacity can be used as compared with the above-described two steps of the dehumidifying operation A and the dehumidifying operation B.

【0037】また本実施の形態1では、蒸発器である第
2室内熱交換器8と第3室内熱交換器10をあえて異な
る面積とすることで、室内熱交換器の分割数は図1と同
数のまま、3段階の蒸発器面積の選択が可能となる。図
8は冷媒回路の一部で、第2絞り機構7と四方弁2の間
の部分のみ示している。矢印は除湿運転時の冷媒の流れ
を示し、図中で同じ番号をつけた構成部品は図1と同一
部品を示す。例えば第2室内熱交換器8の面積を、第3
室内熱交換器10の面積より大きくしておき、両回路に
開閉弁9と第2開閉弁12を接続する。2つの開閉弁
を、両方開放、開閉弁9のみ開放、第2開閉弁12のみ
開放とすることで、蒸発器面積を3段階に変更すること
が可能となる。図7のように室内熱交換器の分割数を増
やすと、それだけ冷媒回路上で分岐や合流する個所が増
え、そのための配管部材も必要となってコストアップを
招き、スペースもとる。図8に示す構成によれば、図1
と同じ室内熱交換器の分割数で、蒸発器面積の選択数を
増やすことができる。
In the first embodiment, the second indoor heat exchanger 8 and the third indoor heat exchanger 10, which are evaporators, are designed to have different areas so that the number of divisions of the indoor heat exchanger is as shown in FIG. With the same number, it is possible to select the evaporator area in three stages. FIG. 8 shows a part of the refrigerant circuit, and shows only a part between the second throttle mechanism 7 and the four-way valve 2. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. For example, if the area of the second indoor heat exchanger 8 is
The area of the indoor heat exchanger 10 is made larger, and the open / close valve 9 and the second open / close valve 12 are connected to both circuits. By opening both of the two opening / closing valves, opening only the opening / closing valve 9, and opening only the second opening / closing valve 12, it is possible to change the evaporator area in three stages. As shown in FIG. 7, if the number of divisions of the indoor heat exchanger is increased, the number of branching or merging points on the refrigerant circuit is increased, and piping members are required for that purpose, resulting in an increase in cost and space. According to the configuration shown in FIG.
With the same number of divisions of the indoor heat exchanger as described above, the number of selected evaporator areas can be increased.

【0038】本実施の形態1では図1に示すように、除
湿運転時に蒸発器となる第2室内熱交換器8と第3室内
熱交換器10を並列に接続したが、図9に示すように直
列に接続してもよい。この図は冷媒回路の一部で、第2
絞り機構7と四方弁2の間の部分のみ示している。矢印
は除湿運転時の冷媒の流れを示し、図中で同じ番号をつ
けた構成部品は図1と同一部品を示す。但し、第2室内
熱交換器8と第3室内熱交換器10のパス数は2パスと
している。一般に蒸発器は複数の冷媒流路を並列に接続
すると、すなわち多パスにすると、冷媒の圧力損失が減
って消費エネルギーが少なくなり効率が向上するが、こ
の図9の接続方法は、蒸発器の冷媒流路が多パスである
場合に効果があるため、2パスを例に説明する。
In the first embodiment, as shown in FIG. 1, the second indoor heat exchanger 8 and the third indoor heat exchanger 10 serving as evaporators are connected in parallel as shown in FIG. May be connected in series. This figure is part of the refrigerant circuit
Only the portion between the throttle mechanism 7 and the four-way valve 2 is shown. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. However, the number of passes of the second indoor heat exchanger 8 and the third indoor heat exchanger 10 is two. Generally, in an evaporator, when a plurality of refrigerant flow paths are connected in parallel, that is, in a multi-pass manner, the pressure loss of the refrigerant is reduced, the energy consumption is reduced, and the efficiency is improved. Since there is an effect when the refrigerant flow path has multiple passes, two passes will be described as an example.

【0039】冷媒流路が2パスである第3室内熱交換器
10を、やはり冷媒流路が2パスである第2室内熱交換
器8と直列に接続し、第3室内熱交換器10に対して並
列にバイパス回路16と開閉弁9を接続する。開閉弁9
を閉じることによって冷媒は第2室内熱交換器8と第3
室内熱交換器10の双方を流れ、すなわち蒸発面積の大
きい「除湿運転A」の運転となる。一方開閉弁9を開放
することによって第2室内熱交換器8を通過した冷媒は
バイパス回路16を通り、第3室内熱交換器10は機能
しないので、蒸発器面積の小さい「除湿運転B」の運転
となる。なお第3室内熱交換器10の回路を閉鎖する手
段は持たないので、開閉弁9を開放しても第3室内熱交
換器10にも冷媒は若干流れるが、一般に熱交換器の配
管の圧力損失は大きく、バイパス回路16は第3室内熱
交換器10よりもはるかに圧損が小さくなるため、冷媒
のほとんどはバイパス回路16に流れる。
The third indoor heat exchanger 10, which has a two-pass refrigerant flow path, is connected in series with the second indoor heat exchanger 8, which also has a two-pass refrigerant flow path, and is connected to the third indoor heat exchanger 10. On the other hand, the bypass circuit 16 and the on-off valve 9 are connected in parallel. On-off valve 9
The refrigerant is closed by closing the second indoor heat exchanger 8 and the third
It flows through both the indoor heat exchangers 10, that is, the operation of "dehumidifying operation A" in which the evaporation area is large. On the other hand, the refrigerant that has passed through the second indoor heat exchanger 8 by opening the opening / closing valve 9 passes through the bypass circuit 16 and the third indoor heat exchanger 10 does not function, so that in the "dehumidifying operation B" in which the evaporator area is small. It will be driving. Since there is no means for closing the circuit of the third indoor heat exchanger 10, even if the opening / closing valve 9 is opened, some refrigerant flows into the third indoor heat exchanger 10, but generally the pressure of the piping of the heat exchanger is increased. Since the loss is large and the pressure loss of the bypass circuit 16 is much smaller than that of the third indoor heat exchanger 10, most of the refrigerant flows into the bypass circuit 16.

【0040】このように開閉弁9の開閉によって蒸発器
面積は変化するが、いずれの場合も蒸発器のパス数は2
パスであって変化しない。図1に示すように、第2室内
熱交換器8と第3室内熱交換器10を並列に接続する
と、開閉弁9の開閉による蒸発器面積変更の際、蒸発器
のパス数が変化してしまい、例えば第2室内熱交換器8
と第3室内熱交換器10をそれぞれ1パスとすると、開
閉弁9を開いた時は2パスとなるが、開閉弁9を閉じた
場合は1パスとなってパス数は減少してしまい、圧力損
失低減の効果は得られない。しかしながら2つの室内熱
交換器を直列に図9のような接続にすることで、蒸発面
積を変更した場合も蒸発器のパス数を変更することな
く、すなわちこの場合いずれもパス数を2パスに保つこ
とができる。なお第2室内熱交換器8と第3室内熱交換
器10のバス数は2パスに限定するものではなく、3パ
ス以上であってもよい。また、第2室内熱交換器と8と
第3室内熱交換器10のパス数は同数でなくてもよい。
As described above, the area of the evaporator changes depending on whether the on-off valve 9 is opened or closed. In either case, the number of passes of the evaporator is 2.
It is a pass and does not change. As shown in FIG. 1, when the second indoor heat exchanger 8 and the third indoor heat exchanger 10 are connected in parallel, the number of passes of the evaporator changes when the evaporator area is changed by opening / closing the open / close valve 9. For example, the second indoor heat exchanger 8
When each of the third indoor heat exchanger 10 and the third indoor heat exchanger 10 has one pass, when the on-off valve 9 is opened, the number of passes is two, but when the on-off valve 9 is closed, there is one pass, and the number of passes decreases. The effect of reducing pressure loss cannot be obtained. However, by connecting the two indoor heat exchangers in series as shown in FIG. 9, it is possible to change the number of passes of the evaporator without changing the number of passes of the evaporator even when the evaporation area is changed. Can be kept. The number of buses in the second indoor heat exchanger 8 and the third indoor heat exchanger 10 is not limited to two, and may be three or more. Further, the number of passes of the second indoor heat exchanger 8 and the number of passes of the third indoor heat exchanger 10 do not have to be the same.

【0041】図9では開閉弁を用いたが、三方弁を用い
ても同等の効果が得られる。図10は冷媒回路の一部
で、第2絞り機構7と四方弁2の間の部分のみ示してい
る。矢印は除湿運転時の冷媒の流れを示し、図中で同じ
番号をつけた構成部品は図1と同一部品を示す。第2室
内熱交換器8と直列に接続された第3室内熱交換器10
に対して並列にバイパス回路16を設け、第3室内熱交
換器10の出口と三方弁17を介して合流させる。この
三方弁17の切替えによって冷媒が第3室内熱交換器1
0を流れる場合と、第3室内熱交換器10に流れずにバ
イパス回路16に流れる場合の切替えができ、すなわち
「除湿運転A」と「除湿運転B」の切り替えが容易に可
能となる。図8の開閉弁9を用いた場合と比較すると、
三方弁17を用いることで、第3室内熱交換器10を使
用しない場合に、第3室内熱交換器10への冷媒の流れ
が完全に閉鎖されるので、より完全な運転の切替えが可
能となる。
Although the on-off valve is used in FIG. 9, the same effect can be obtained by using a three-way valve. FIG. 10 shows a part of the refrigerant circuit, and shows only a part between the second throttle mechanism 7 and the four-way valve 2. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. Third indoor heat exchanger 10 connected in series with second indoor heat exchanger 8
A bypass circuit 16 is provided in parallel with respect to the above, and is combined with the outlet of the third indoor heat exchanger 10 via the three-way valve 17. By switching the three-way valve 17, the refrigerant becomes the third indoor heat exchanger 1
It is possible to switch between the case of flowing 0 and the case of flowing into the bypass circuit 16 without flowing into the third indoor heat exchanger 10, that is, it is possible to easily switch between the “dehumidifying operation A” and the “dehumidifying operation B”. Compared with the case where the on-off valve 9 of FIG. 8 is used,
By using the three-way valve 17, the flow of the refrigerant to the third indoor heat exchanger 10 is completely closed when the third indoor heat exchanger 10 is not used, so that more complete operation switching is possible. Become.

【0042】なお図9と図10においていずれも除湿運
転時の冷媒の流れに対し後流側となる、第3室内熱交換
器10に対してバイパス回路16を設けたが、それに限
定するものでなく、第2室内熱交換器8と並列にバイパ
ス回路16を設けても、同様の効果を得ることができ
る。
9 and 10, the bypass circuit 16 is provided for the third indoor heat exchanger 10, which is on the downstream side with respect to the flow of the refrigerant during the dehumidifying operation, but is not limited thereto. Alternatively, even if the bypass circuit 16 is provided in parallel with the second indoor heat exchanger 8, the same effect can be obtained.

【0043】本実施の形態1の図1、図4では、除湿運
転時の蒸発器の面積を変更することで、能力範囲の広い
除湿運転Aと、除湿効率が高い除湿運転Bの切替えを実
施したが、蒸発器の風量を変更することで蒸発器の能力
を制御し、蒸発器面積の変更と同等の効果を得ることが
できる。図11は室内機の第2絞り機構7と四方弁2の
間の部分の冷媒回路構成と風路を示している。矢印は空
気の流れを示し、図中で同じ番号をつけた構成部品は図
1と同一部品を示す。
In FIGS. 1 and 4 of the first embodiment, by changing the area of the evaporator during the dehumidifying operation, the dehumidifying operation A having a wide capacity range and the dehumidifying operation B having a high dehumidifying efficiency are switched. However, the capacity of the evaporator can be controlled by changing the air volume of the evaporator, and the same effect as changing the area of the evaporator can be obtained. FIG. 11 shows the refrigerant circuit configuration and the air passage between the second throttle mechanism 7 and the four-way valve 2 of the indoor unit. The arrows indicate the flow of air, and the components with the same numbers in the figure indicate the same components as in FIG.

【0044】図11に示すように第2室内熱交換器8の
風路に風量調整ダンパ18を設け、この風量調整ダンパ
18を例えば実線で示す向きにすれば、第1室内熱交換
器6と第2室内熱交換器8に同量の風量が流れ、また風
量調整ダンパ18を点線で示す向きにすれば第2室内熱
交換器8の風量が低下し、蒸発器の能力が低下して、蒸
発器面積を減少させたのと同等の効果を得ることができ
る。なお、図11では風量調整ダンパ18と室内ファン
11の間に第2室内熱交換器8がくるような風路構成と
したが、その三者の順番を限定するものではなく、風量
調整ダンパ18による風量の調整ができればよい。この
場合は、風量により、複数段階の除湿運転パタ−ンを決
定する。
As shown in FIG. 11, if an air volume adjusting damper 18 is provided in the air passage of the second indoor heat exchanger 8 and the air volume adjusting damper 18 is oriented in the direction shown by the solid line, for example, the first indoor heat exchanger 6 will be obtained. The same amount of airflow flows through the second indoor heat exchanger 8, and if the airflow adjustment damper 18 is oriented in the direction indicated by the dotted line, the airflow of the second indoor heat exchanger 8 will decrease and the capacity of the evaporator will decrease. It is possible to obtain the same effect as reducing the evaporator area. In FIG. 11, the air passage structure is such that the second indoor heat exchanger 8 is located between the air volume adjustment damper 18 and the indoor fan 11, but the order of the three is not limited, and the air volume adjustment damper 18 is not limited. It suffices if the air volume can be adjusted by. In this case, a plurality of stages of dehumidifying operation patterns are determined according to the air volume.

【0045】なお、圧縮機の容量制御は、インバ−タに
よる回転数制御の他に公知の容量制御を行ってもよい。
For the capacity control of the compressor, known capacity control may be performed in addition to the rotation speed control by the inverter.

【0046】実施の形態2.図12aはこの発明の実施
の形態2である空気調和機の冷凍サイクルの冷媒回路の
一部であり、実施の形態1の図1の第1絞り機構5と四
方弁2の間の部分を示している。その他の部分は実施の
形態1と同じである。図12aにおいて、矢印は除湿運
転時の冷媒の流れを示し、図中で同じ番号をつけた構成
部品は図1と同一部品を示す。第1室内熱交換器6と第
2室内熱交換器8と第3室内熱交換器10を直列に接続
し、それぞれの間に第2絞り機構7と第3絞り機構19
を配置する。
Embodiment 2. FIG. 12a is a part of a refrigerant circuit of a refrigeration cycle of an air conditioner according to a second embodiment of the present invention, showing a part between the first throttle mechanism 5 and the four-way valve 2 of the first embodiment shown in FIG. ing. Other parts are the same as those in the first embodiment. In FIG. 12a, the arrow indicates the flow of the refrigerant during the dehumidifying operation, and the components with the same reference numerals in the figure indicate the same components as in FIG. The first indoor heat exchanger 6, the second indoor heat exchanger 8, and the third indoor heat exchanger 10 are connected in series, and the second throttle mechanism 7 and the third throttle mechanism 19 are provided between them.
To place.

【0047】実施の形態1では除湿運転時に蒸発器の面
積を変更することで蒸発部能力を変更させ「除湿運転
A」と「除湿運転B」を切替える例を説明したが、本実
施の形態では再熱器と蒸発器の面積比率を変更すること
で、再熱部と蒸発部の能力比率を変更して「除湿運転
A」と「除湿運転B」を切替える手段について説明す
る。なおここで再熱器や蒸発器の面積は熱交換器の表面
積とするが、例えば空気風路に対する面積すなわち前面
面積などとしてもよい。図12bに示すように第2絞り
機構7を絞って絞り機構として機能させ、第3絞り機構
19を全開とすると、第1室内熱交換器6のみ再熱器と
して機能し、第2室内熱交換器8と第3室内熱交換器1
0は蒸発器として機能する。この場合再熱器に対する蒸
発器の面積比率が大きくなり、冷房能力と除湿能力の制
御範囲が広い、図3aでの「除湿運転A」が実現する。
In the first embodiment, an example has been described in which the area of the evaporator is changed during the dehumidifying operation to change the capacity of the evaporation section to switch between the "dehumidifying operation A" and the "dehumidifying operation B". However, in the present embodiment, A means for changing the area ratio between the reheater and the evaporator to change the capacity ratio between the reheat unit and the evaporator to switch between the "dehumidifying operation A" and the "dehumidifying operation B" will be described. Although the area of the reheater or the evaporator is the surface area of the heat exchanger here, it may be, for example, the area for the air duct, that is, the front surface area. As shown in FIG. 12b, when the second throttle mechanism 7 is throttled to function as a throttle mechanism and the third throttle mechanism 19 is fully opened, only the first indoor heat exchanger 6 functions as a reheater, and the second indoor heat exchange is performed. Unit 8 and third indoor heat exchanger 1
0 functions as an evaporator. In this case, the area ratio of the evaporator to the reheater becomes large, and the “dehumidification operation A” in FIG. 3a is realized in which the control range of the cooling capacity and the dehumidifying capacity is wide.

【0048】また図12cに示すように第2絞り機構7
は全開とし、第3絞り機構19のみ絞り機構を機能させ
ると、第1室内熱交換器6と第2室内熱交換器8は再熱
器として機能し、第3室内熱交換器10のみ蒸発器とし
て機能する。すなわち再熱器と蒸発器の面積比率が変わ
り、蒸発器面積が小さくなるので、冷房能力と除湿能力
の制御範囲は狭くなるが、圧縮機の吸入圧力の低下によ
って入力が減り、除湿効率が高くなる。すなわち、より
省エネルギー運転が可能な、図3aでの「除湿運転B」
が実現できる。従って絞りとして機能させる絞り機構を
選択することで、「除湿運転A」と「除湿運転B」は容
易に切替え可能となる。
As shown in FIG. 12c, the second diaphragm mechanism 7
When the throttle mechanism is made to function only in the third throttle mechanism 19, the first indoor heat exchanger 6 and the second indoor heat exchanger 8 function as reheaters, and only the third indoor heat exchanger 10 is an evaporator. Function as. That is, since the area ratio of the reheater and the evaporator changes and the evaporator area becomes smaller, the control range of the cooling capacity and the dehumidifying capacity becomes narrower, but the input decreases due to the decrease of the suction pressure of the compressor, and the dehumidifying efficiency becomes high. Become. That is, the "dehumidifying operation B" in Fig. 3a, which enables more energy-saving operation
Can be realized. Therefore, it is possible to easily switch between the "dehumidifying operation A" and the "dehumidifying operation B" by selecting a diaphragm mechanism that functions as a diaphragm.

【0049】図12aでは3分割した室内熱交換器に2
つの絞り機構を用いたが、四方弁を用いても同様の運転
切替えが可能である。図13は室内機の第1絞り機構5
と四方弁2の間の部分の冷媒回路を示している。矢印は
除湿運転時の冷媒の流れを示し、図中で同じ番号をつけ
た構成部品は図1と同一部品を示す。第2絞り機構7と
第2室内熱交換器8と第2四方弁21を、図13に示す
ように接続する。
In FIG. 12a, the indoor heat exchanger divided into three is divided into two.
Although two throttling mechanisms were used, similar operation switching is possible using a four-way valve. FIG. 13 shows the first throttle mechanism 5 of the indoor unit.
The refrigerant circuit in the portion between the four-way valve 2 and the four-way valve 2 is shown. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. The second throttle mechanism 7, the second indoor heat exchanger 8, and the second four-way valve 21 are connected as shown in FIG.

【0050】第2四方弁21を図の実線で示す方向にす
ると、冷媒は矢印で示す方向に流れ、すなわち第1室内
熱交換器6を通った冷媒は第2四方弁21を経て第2絞
り機構7を通り、第2室内熱交換器8を通って再び第2
四方弁21を経て第3室内熱交換器10に流れる。すな
わち第1室内熱交換器6が再熱器として機能し、第2室
内熱交換器8と第3室内熱交換器10は蒸発器として機
能する。すなわち蒸発器の面積比率が大くなり、「除湿
運転A」となる。
When the second four-way valve 21 is set in the direction shown by the solid line in the figure, the refrigerant flows in the direction shown by the arrow, that is, the refrigerant that has passed through the first indoor heat exchanger 6 passes through the second four-way valve 21 and becomes the second throttle. After passing through the mechanism 7, the second indoor heat exchanger 8 is passed through to the second indoor heat exchanger 8 again.
It flows through the four-way valve 21 to the third indoor heat exchanger 10. That is, the first indoor heat exchanger 6 functions as a reheater, and the second indoor heat exchanger 8 and the third indoor heat exchanger 10 function as an evaporator. That is, the area ratio of the evaporator increases, and the "dehumidifying operation A" is performed.

【0051】一方第2四方弁21を図の破線で示す方向
にすると、第1室内熱交換器6を通った冷媒は第2四方
弁21を経て第2室内熱交換器8を通り、第2絞り機構
7を通って再び第2四方弁21を経て第3室内熱交換器
10に流れる。すなわち第1室内熱交換器6と第2室内
熱交換器8が再熱器として機能し、第3室内熱交換器1
0のみが蒸発器として機能する。すなわち蒸発器の面積
比率が小さくなり「除湿運転B」となる。以上のように
第2四方弁21の方向の切替えで、「除湿運転A」と
「除湿運転B」を容易に切りかえることができ、複数の
絞り機構を用いる必要がない。
On the other hand, when the second four-way valve 21 is moved in the direction shown by the broken line in the figure, the refrigerant passing through the first indoor heat exchanger 6 passes through the second four-way valve 21 and the second indoor heat exchanger 8 to reach the second It flows through the throttling mechanism 7 again to the third indoor heat exchanger 10 via the second four-way valve 21. That is, the first indoor heat exchanger 6 and the second indoor heat exchanger 8 function as a reheater, and the third indoor heat exchanger 1
Only 0 functions as an evaporator. That is, the area ratio of the evaporator is reduced and the "dehumidifying operation B" is performed. As described above, by switching the direction of the second four-way valve 21, it is possible to easily switch between the "dehumidifying operation A" and the "dehumidifying operation B", and it is not necessary to use a plurality of throttle mechanisms.

【0052】図12aでは室内熱交換器を3分割し、室
内機内の絞り機構を2つとしたが、その数に限定するも
のではない。図14は室内機の第1絞り機構5と四方弁
2の間の部分の冷媒回路を示している。矢印は除湿運転
時の冷媒の流れを示し、図中で同じ番号をつけた構成部
品は図1と同一部品を示す。図14に示すように室内熱
交換器を4分割し、すなわち更に第4絞り機構20と第
4室内熱交換器13を直列に接続して、機能させる絞り
機構を第2絞り機構7と第3絞り機構19と第4絞り機
構20の3つの中から選択することによって、再熱器と
蒸発器の面積比率の選択肢が3つに広がり、より木目細
かい省エネルギー運転が可能となる。更に室内熱交換器
を5分割以上した場合も、より省エネルギーの効果が高
まる。この場合も除湿運転パタ−ンが三段階以上とする
ことができる。
In FIG. 12a, the indoor heat exchanger is divided into three, and the throttle mechanism in the indoor unit is divided into two, but the number is not limited. FIG. 14 shows a refrigerant circuit in a portion between the first throttle mechanism 5 and the four-way valve 2 of the indoor unit. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. As shown in FIG. 14, the indoor heat exchanger is divided into four, that is, the fourth throttling mechanism 20 and the fourth indoor heat exchanger 13 are further connected in series, and the throttling mechanism to function is the second throttling mechanism 7 and the third throttling mechanism. By selecting from among the throttling mechanism 19 and the fourth throttling mechanism 20, the options of the area ratio of the reheater and the evaporator are expanded to three, and more fine energy-saving operation can be performed. Further, when the indoor heat exchanger is divided into five or more, the energy saving effect is further enhanced. Also in this case, the dehumidification operation pattern can be set in three or more stages.

【0053】次に本実施の形態2における、面積比率の
選択方法について説明する。面積比率を変更する場合
も、蒸発器の面積のみを変更する実施の形態1と同様
に、制御範囲の大きい「除湿運転A」と、制御範囲は狭
いが除湿効率の高い「除湿運転B」を、負荷に応じて選
択すればよい。すなわち図5で負荷が発生した場合
は、制御範囲が負荷を含んでいる「除湿運転A」を選
択し、また負荷が発生した場合は、どちらの除湿運転
でも対応可能であるため、この場合は除湿効率が高い
「除湿運転B」を選択する。これによって本実施の形態
2においても、必要な能力が常に省エネルギー運転で実
現可能となる。なお、除湿運転パタ−ンが三段階以上の
場合も同様である。
Next, a method of selecting the area ratio in the second embodiment will be described. Also when changing the area ratio, as in Embodiment 1 in which only the area of the evaporator is changed, there are a "dehumidifying operation A" with a large control range and a "dehumidifying operation B" with a narrow control range but high dehumidification efficiency. It may be selected according to the load. That is, when a load is generated in FIG. 5, “dehumidifying operation A” in which the control range includes the load is selected, and when a load is generated, either dehumidifying operation can be supported. "Dehumidifying operation B" with high dehumidification efficiency is selected. As a result, also in the second embodiment, the required capacity can always be realized by energy saving operation. The same applies when the dehumidifying operation pattern has three or more stages.

【0054】本実施の形態2では図12aに示すよう
に、除湿運転時の再熱器と蒸発器の面積比率を変更する
ことで再熱部と蒸発部の能力比率を変え、能力範囲の広
い除湿運転Aと、除湿効率が高い除湿運転Bの切替えを
実施したが、除湿運転の切替え方法をそれに限定するも
のでなく、再熱器と蒸発器の風量比率を変更すること
で、除湿運転の切替えを実施してもよい。図15は第1
絞り機構5と四方弁2の間の部分の冷媒回路と風路を示
している。矢印は空気の流れを示し、図中で同じ番号を
つけた構成部品は図1と同一部品を示す。
In the second embodiment, as shown in FIG. 12a, by changing the area ratio of the reheater and the evaporator during the dehumidifying operation, the capacity ratio of the reheat part and the evaporator part is changed so that the capacity range is wide. Although switching between the dehumidifying operation A and the dehumidifying operation B having high dehumidifying efficiency is performed, the method of switching the dehumidifying operation is not limited to that. By changing the air flow ratio of the reheater and the evaporator, Switching may be performed. FIG. 15 shows the first
The refrigerant circuit and the air passage between the throttle mechanism 5 and the four-way valve 2 are shown. The arrows indicate the flow of air, and the components with the same numbers in the figure indicate the same components as in FIG.

【0055】図15に示すように、第1室内熱交換器6
と第2室内熱交換器8にそれぞれ別に室内ファン11と
第2室内ファン22を付設する。このような構成にする
ことで除湿運転時に再熱器として機能する第1室内熱交
換器6と、蒸発器として機能する第2室内熱交換器8の
風量を独立に制御できる。例えば室内ファン11と第2
室内ファン22を同風量にすることも可能であるし、室
内ファン11の風量を増加させて第1室内熱交換器6の
再熱能力を増加させ、第2室内ファン22の風量を減少
させて第2室内熱交換器8の蒸発能力を減少させること
もできる。こうすることで再熱器の能力が上がって蒸発
器の能力が減り、結果的に熱交換器の面積比率を変更し
たのと同じ効果を得ることができる。またこの構成にす
ることで、熱交換器の面積比率の変更のための、複雑な
冷媒回路上の配管や部材が不要となり、コスト低下や省
スペース化も図ることができる。
As shown in FIG. 15, the first indoor heat exchanger 6
The indoor fan 11 and the second indoor fan 22 are separately attached to the second indoor heat exchanger 8. With such a configuration, the air volumes of the first indoor heat exchanger 6 that functions as a reheater and the second indoor heat exchanger 8 that functions as an evaporator can be independently controlled during the dehumidifying operation. For example, the indoor fan 11 and the second
It is possible to make the indoor fan 22 have the same air volume, or to increase the air volume of the indoor fan 11 to increase the reheat capacity of the first indoor heat exchanger 6 and decrease the air volume of the second indoor fan 22. It is also possible to reduce the evaporation capacity of the second indoor heat exchanger 8. By doing so, the capacity of the reheater increases and the capacity of the evaporator decreases, and as a result, the same effect as changing the area ratio of the heat exchanger can be obtained. Further, with this configuration, complicated pipes and members on the refrigerant circuit for changing the area ratio of the heat exchanger are not required, and cost reduction and space saving can be achieved.

【0056】さらに図16でも同等の効果を得ることが
できる。図16は第1絞り機構5と四方弁2の間の部分
の冷媒回路と風路を示している。矢印は空気の流れを示
し、図中で同じ番号をつけた構成部品は図1と同一部品
を示す。ダンパ23の開度を矢印に示すように左右に変
更することで、第1室内熱交換器6側の再熱側風路24
の幅と、第2室内熱交換器8側の蒸発器側風路25の幅
の比率が変更でき、すなわち再熱器と蒸発器を通過する
風量比を制御することができるのですなわち、個々の熱
交換器に室内ファンを設けたのと同等の効果を得ること
ができる。またこの場合は室内ファンは1つですむた
め、ファン駆動用のモータや回路などの数も少なくてす
み、よりコスト低下や省スペース化を図ることもでき
る。
Further, the same effect can be obtained with FIG. FIG. 16 shows the refrigerant circuit and the air passage between the first throttle mechanism 5 and the four-way valve 2. The arrows indicate the flow of air, and the components with the same numbers in the figure indicate the same components as in FIG. By changing the opening degree of the damper 23 to the left or right as shown by the arrow, the reheat side air passage 24 on the first indoor heat exchanger 6 side is changed.
And the width of the evaporator-side air passage 25 on the second indoor heat exchanger 8 side can be changed, that is, the air flow rate passing through the reheater and the evaporator can be controlled. It is possible to obtain the same effect as that of providing the indoor fan on the heat exchanger. Further, in this case, since only one indoor fan is required, the number of motors and circuits for driving the fan can be reduced, and the cost and space can be further reduced.

【0057】熱交換器の分割方法として蒸発器面積の変
更と、再熱器と蒸発器の面積比率の変更を、両方取り入
れた回路としてもよい。図17は室内機の第1絞り機構
5と四方弁2の間の部分の冷媒回路を示している。矢印
は除湿運転時の冷媒の流れを示し、図中で同じ番号をつ
けた構成部品は図1と同一部品を示す。図17に示すよ
うに第1室内熱交換器6や第2室内熱交換器8と直列に
第3絞り機構19と第3室内熱交換器10を接続し、更
に第3室内熱交換器10と並列に、開閉弁9と第4室内
熱交換器13を接続し、更に第4室内熱交換器13と並
列に、第2開閉弁12と第5室内熱交換器26を接続す
る。
As a method of dividing the heat exchanger, a circuit may be adopted in which both the change of the evaporator area and the change of the area ratio of the reheater and the evaporator are incorporated. FIG. 17 shows a refrigerant circuit in a portion between the first throttle mechanism 5 and the four-way valve 2 of the indoor unit. The arrows indicate the flow of the refrigerant during the dehumidifying operation, and the components with the same numbers in the figure indicate the same components as in FIG. As shown in FIG. 17, the third indoor heat exchanger 6 is connected in series with the first indoor heat exchanger 6 and the second indoor heat exchanger 8, and the third indoor heat exchanger 10 is further connected. The on-off valve 9 and the fourth indoor heat exchanger 13 are connected in parallel, and the second on-off valve 12 and the fifth indoor heat exchanger 26 are connected in parallel with the fourth indoor heat exchanger 13.

【0058】第2絞り機構7と第3絞り機構19の選択
によって、再熱器と蒸発器の面積比率の変更が可能とな
り、更に開閉弁9や第2開閉弁12の開閉による、蒸発
器面積の変更が可能となる。更に両者の組み合わせでよ
り木目細かな選択ができ、より省エネルギー効果の大き
い除湿運転が可能となる。
The area ratio between the reheater and the evaporator can be changed by selecting the second throttle mechanism 7 and the third throttle mechanism 19, and the evaporator area can be changed by opening and closing the on-off valve 9 and the second on-off valve 12. Can be changed. Furthermore, a more detailed selection can be made by a combination of both, and dehumidifying operation with a greater energy saving effect becomes possible.

【0059】前記の実施の形態1から実施の形態2にお
いて、冷媒としては、例えばR410aが用いられる。
また、燃焼性のある冷媒であるR600a、R290、
R32、及び自然系冷媒である二酸化炭素、アンモニウ
ムなどを用いることで、地球温暖化への影響が少ない除
湿運転可能な空気調和機を得ることができる。
In the above-described first to second embodiments, for example, R410a is used as the refrigerant.
Further, R600a, R290, which are flammable refrigerants,
By using R32 and natural refrigerants such as carbon dioxide and ammonium, it is possible to obtain an air conditioner capable of dehumidifying operation with less influence on global warming.

【0060】また、前記の実施の形態1から実施の形態
2において、空気調和機は、異常検知手段及び通信手段
を有し、異常検知手段によって異常を検知した場合は、
電話回線、電灯線または無線などによって、空気調和機
外の所定のサービスセンタや所定の携帯電話へ通報する
ようにすれば、冷媒漏れなどの異常時の迅速な連絡、対
応が安価な設備で可能になる。
In the first to second embodiments, the air conditioner has an abnormality detecting means and a communication means, and when the abnormality detecting means detects an abnormality,
By reporting to a designated service center outside the air conditioner or a designated mobile phone via a telephone line, power line, or wireless, you can quickly contact and respond to abnormalities such as refrigerant leaks with inexpensive equipment. become.

【0061】[0061]

【発明の効果】以上説明したとおり、請求項1に関る空
気調和機は、圧縮機、流路切換弁、室外熱交換器、第1
絞り機構及び室内熱交換器からなる冷凍サイクルを備え
た空気調和機において、室内熱交換器は、第1室内熱交
換器、第2絞り機構及びその他の複数の室内熱交換器の
順に配管接続され、室内熱交換器のうち、少なくとも第
1室内熱交換器は再熱熱交換器とされ、その他の複数の
室内熱交換器は、冷房負荷及び除湿負荷の大きさに対応
して、蒸発器とされる数量が選択されるものである。そ
こで、負荷に応じて蒸発器の蒸発面積が可変にでき、大
きな冷房能力と除湿能力が得られる除湿運転と、除湿効
率が高く、より省エネルギ−な除湿運転とが任意に選択
でき、負荷に応じた最適な除湿運転が可能な空気調和機
を得ることができる。
As described above, the air conditioner according to claim 1 includes the compressor, the flow path switching valve, the outdoor heat exchanger, and the first heat exchanger.
In an air conditioner equipped with a refrigeration cycle including a throttle mechanism and an indoor heat exchanger, the indoor heat exchanger is pipe-connected to a first indoor heat exchanger, a second throttle mechanism, and a plurality of other indoor heat exchangers in this order. Among the indoor heat exchangers, at least the first indoor heat exchanger is a reheat heat exchanger, and the other plurality of indoor heat exchangers correspond to the evaporator load and the dehumidification load, respectively. The quantity to be selected is what is selected. Therefore, the evaporation area of the evaporator can be varied according to the load, and a dehumidifying operation that provides a large cooling capacity and dehumidifying capacity and a dehumidifying operation that has high dehumidifying efficiency and is more energy-saving can be arbitrarily selected to reduce the load. Accordingly, it is possible to obtain an air conditioner capable of optimal dehumidifying operation.

【0062】また、請求項2に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に並列に接続され、開閉弁付き
の室内熱交換器である。そこで、開閉弁の開閉により蒸
発器の蒸発面積を可変にでき、負荷に対応した除湿運転
が可能となる。
The air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttle mechanism, and The indoor heat exchanger is connected in parallel to the second indoor heat exchanger and has an on-off valve. Therefore, the evaporation area of the evaporator can be changed by opening / closing the on-off valve, and the dehumidifying operation corresponding to the load can be performed.

【0063】また、請求項3に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続され、開閉弁付きの第2
室内熱交換器及び該第2室内熱交換器に並列に接続され
るとともに蒸発面積の異なる、開閉弁付きの室内熱交換
器である。そこで、蒸発面積の異なる室内熱交換器によ
り、蒸発器の数量に対する蒸発器の蒸発面積の変化数の
割合が多くなり、除湿運転において負荷への対応が容易
となる。
The air conditioner according to a third aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are connected to the second throttle mechanism and are provided with a second valve having an opening / closing valve.
An indoor heat exchanger with an on-off valve, which is connected in parallel to the indoor heat exchanger and the second indoor heat exchanger and has a different evaporation area. Therefore, by the indoor heat exchangers having different evaporation areas, the ratio of the number of changes in the evaporation area of the evaporator to the number of evaporators increases, and it becomes easy to cope with the load in the dehumidifying operation.

【0064】また、請求項4に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に直列に接続され、開閉弁付き
のバイパス回路を備えた室内熱交換器である。そこで、
開閉弁を開閉することにより、蒸発器の蒸発面積を可変
にでき、負荷に対応できる除湿運転が可能となる。
An air conditioner according to a fourth aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttle mechanism and The indoor heat exchanger is connected in series to the second indoor heat exchanger and includes a bypass circuit with an on-off valve. Therefore,
By opening and closing the on-off valve, the evaporation area of the evaporator can be made variable, and dehumidification operation that can handle the load becomes possible.

【0065】また、請求項5に係る空気調和機は、請求
項4記載の空気調和機において、開閉弁に代えて、第2
室内熱交換器からバイパス回路側又は直列に接続される
室内熱交換器側のいずれかに流路を切換える三方弁を設
けたものである。そこで、三方弁の切換えにより蒸発器
の蒸発面積を可変とでき、また、バイパス回路側に冷媒
を流す場合は、バイパスされる室内熱交換器には冷媒が
流れないので、蒸発面積がより完全に可変とされ、負荷
への対応がより確実な除湿運転が可能となる。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect, wherein the second valve is used instead of the opening / closing valve.
A three-way valve for switching the flow path from the indoor heat exchanger to the bypass circuit side or the indoor heat exchanger side connected in series is provided. Therefore, the evaporation area of the evaporator can be changed by switching the three-way valve, and when the refrigerant flows to the bypass circuit side, the refrigerant does not flow to the indoor heat exchanger that is bypassed, so that the evaporation area is more completely It is variable, and dehumidification operation with more reliable response to the load becomes possible.

【0066】また、請求項6に係る空気調和機は、請求
項1記載の空気調和機において、その他の複数の室内熱
交換器は、第2絞り機構に接続される第2室内熱交換器
及び該第2室内熱交換器に直列に接続され、第2室内熱
交換器側に絞り機構を備えた室内熱交換器である。そこ
で、第2絞り機又は第2室内機側に備えた絞り機構を絞
って絞り機構として機能させることにより、再熱器と蒸
発器の面積比率を変更することができ、負荷に対応した
除湿運転が可能となる。
An air conditioner according to a sixth aspect is the air conditioner according to the first aspect, wherein the other plurality of indoor heat exchangers are a second indoor heat exchanger connected to the second throttle mechanism, and The indoor heat exchanger is connected in series to the second indoor heat exchanger and has a throttle mechanism on the side of the second indoor heat exchanger. Therefore, the area ratio between the reheater and the evaporator can be changed by throttling the throttling mechanism provided on the side of the second throttling machine or the second indoor unit to function as the throttling mechanism, and the dehumidifying operation corresponding to the load. Is possible.

【0067】また、請求項7に係る空気調和機は、請求
項4〜6のいずれかに記載の空気調和機において、その
他の複数の室内熱交換器は、冷媒流路を多パスとしたも
のである。そこで、室内熱交換器を通過する冷媒の圧力
損失が減って、消費エネルギ−が少なくなり、除湿運転
において効率が向上する。
Further, the air conditioner according to claim 7 is the air conditioner according to any one of claims 4 to 6, in which the other plurality of indoor heat exchangers have a multi-pass refrigerant passage. Is. Therefore, the pressure loss of the refrigerant passing through the indoor heat exchanger is reduced, the energy consumption is reduced, and the efficiency in the dehumidifying operation is improved.

【0068】また、請求項8に係る空気調和機は、圧縮
機、流路切換弁、室外熱交換器、第1絞り機構及び室内
熱交換器からなる冷凍サイクルを備えた空気調和機にお
いて、室内熱交換器は、第1室内熱交換器、第2絞り機
構、第2室内熱交換器及びその他の室内熱交換器を有
し、第1室内熱交換器及びその他の室内熱交換器の間に
配管接続された四方弁により、第1室内熱交換器、第2
絞り機構、第2室内熱交換器及びその他の室内熱交換器
の流路、又は第1室内熱交換器、第2室内熱交換器、第
2絞り機構及びその他の室内熱交換器の流路に切換え可
能とされるものである。そこで、除湿運転において、蒸
発器の蒸発面積の変更を四方弁による流路切換えで行え
るので、絞り機構の数量が減少できる。
The air conditioner according to claim 8 is an air conditioner provided with a refrigeration cycle including a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger, The heat exchanger has a first indoor heat exchanger, a second throttling mechanism, a second indoor heat exchanger, and other indoor heat exchangers, and between the first indoor heat exchanger and the other indoor heat exchangers. The first indoor heat exchanger, the second by the four-way valve connected by piping
In the flow path of the throttle mechanism, the second indoor heat exchanger and other indoor heat exchangers, or in the flow paths of the first indoor heat exchanger, the second indoor heat exchanger, the second throttle mechanism and other indoor heat exchangers It can be switched. Therefore, in the dehumidifying operation, since the evaporation area of the evaporator can be changed by switching the flow path by the four-way valve, the number of throttle mechanisms can be reduced.

【0069】また、請求項9に係る空気調和機は、圧縮
機、流路切換弁、室外熱交換器、第1絞り機構及び室内
熱交換器からなる冷凍サイクルを備えた空気調和機にお
いて、室内熱交換器は、第1室内熱交換器、第2絞り機
構及び第2室内熱交換器の順に配管接続され、第1室内
熱交換器は再熱熱交換器、第2室内熱交換器は蒸発器と
され、第2室内熱交換器への送風量が、冷房負荷及び除
湿負荷の大きさに対応して制御されるものである。そこ
で、蒸発器の蒸発能力が送風量で可変にでき、除湿運転
において、負荷に適正に対応できる。
An air conditioner according to a ninth aspect is an air conditioner provided with a refrigeration cycle including a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger. The heat exchanger is connected to the first indoor heat exchanger, the second throttle mechanism, and the second indoor heat exchanger in this order by piping, and the first indoor heat exchanger is a reheat heat exchanger and the second indoor heat exchanger is an evaporator. The amount of air blown to the second indoor heat exchanger is controlled in accordance with the cooling load and dehumidifying load. Therefore, the evaporation capacity of the evaporator can be changed by the amount of blown air, and the load can be appropriately handled in the dehumidifying operation.

【0070】また、請求項10に係る空気調和機は、請
求項9記載の空気調和機において、第1室内熱交換器用
の室内ファン及び第2室内熱交換器用の室内ファンを設
け、それぞれ独立に送風量が制御されるものである。そ
こで、再熱熱交換器と蒸発器の風量を独立に制御でき、
蒸発器の蒸発能力が送風量で可変にでき、除湿運転にお
いて、負荷に容易に対応できる。
An air conditioner according to a tenth aspect is the air conditioner according to the ninth aspect, wherein an indoor fan for the first indoor heat exchanger and an indoor fan for the second indoor heat exchanger are provided, and they are independently provided. The amount of blown air is controlled. Therefore, the air volume of the reheat heat exchanger and the evaporator can be controlled independently,
The evaporation capacity of the evaporator can be changed by the amount of blown air, and the load can be easily accommodated in the dehumidifying operation.

【0071】また、請求項11に係る空気調和機は、温
度設定手段と、湿度設定手段と、温度検知手段と、湿度
検知手段と、温度設定手段の設定温度と温度検知手段の
検知温度から冷房負荷を算出し、湿度設定手段の設定値
と湿度検知手段の検知湿度から除湿負荷を算出する負荷
算出手段と、冷房能力及び除湿能力の組合せからなる除
湿運転パタ−ンを記憶する除湿運転記憶手段と、負荷算
出手段が算出した負荷量が除湿運転記憶手段が記憶する
除湿運転パタ−ンのうち、能力内である除湿運転パタ−
ンを選択する除湿運転選択手段と、除湿運転選択手段が
選択した除湿運転パタ−ンで除湿運転を行うとともに検
出値が前記設定値に近づくように制御する制御手段とを
備えたものである。そこで、除湿運転選択手段が選択し
た除湿運転パタ−ンにより除湿運転を行うことにより、
負荷に対応できる除湿運転が可能となる。
Further, in the air conditioner according to claim 11, the temperature setting means, the humidity setting means, the temperature detecting means, the humidity detecting means, the set temperature of the temperature setting means and the detected temperature of the temperature detecting means are used for cooling. A load calculating means for calculating the load and calculating a dehumidifying load from the set value of the humidity setting means and the detected humidity of the humidity detecting means, and a dehumidifying operation storing means for storing a dehumidifying operation pattern including a combination of the cooling capacity and the dehumidifying capacity. And the dehumidifying operation pattern whose load amount calculated by the load calculating means is within the capacity among the dehumidifying operation patterns stored in the dehumidifying operation storage means.
The dehumidifying operation selecting means for selecting the temperature and the dehumidifying operation pattern selected by the dehumidifying operation selecting means are provided for controlling the dehumidifying operation so that the detected value approaches the set value. Therefore, by performing the dehumidifying operation by the dehumidifying operation pattern selected by the dehumidifying operation selecting means,
Dehumidification operation that can handle the load becomes possible.

【0072】また、請求項12に係る空気調和機は、請
求項11記載の空気調和機において、除湿運転選択手段
は、算出負荷が能力内である最も能力の小さい除湿運転
パタ−ンを選択するものである。そこで、負荷に対応で
きる能力を確保するとともに、最小の消費電力で除湿運
転が可能となる。即ち、必要な能力を確保したうえで、
最大の除湿効率となる省エネルギ−運転が可能となる。
The air conditioner according to a twelfth aspect of the present invention is the air conditioner according to the eleventh aspect, wherein the dehumidifying operation selecting means selects the dehumidifying operation pattern having the smallest capacity within the calculated load. It is a thing. Therefore, the dehumidifying operation can be performed with the minimum power consumption while ensuring the ability to handle the load. That is, after securing the necessary ability,
Energy-saving operation with maximum dehumidification efficiency is possible.

【0073】また、請求項13に係る空気調和機は、請
求項11又は請求項12に記載の空気調和機において、
制御手段は、検出値が設定値に近づくように、室外ファ
ンの回転数及び圧縮機の容量を制御するものである。そ
こで、室外ファンの回転数を制御することにより冷房能
力を制御し、圧縮機の容量を制御することにより除湿能
力を制御でき、負荷に対応したきめ細かな除湿運転が可
能となる。
An air conditioner according to claim 13 is the air conditioner according to claim 11 or claim 12,
The control means controls the rotation speed of the outdoor fan and the capacity of the compressor so that the detected value approaches the set value. Therefore, the cooling capacity can be controlled by controlling the rotation speed of the outdoor fan, and the dehumidifying capacity can be controlled by controlling the capacity of the compressor, and fine dehumidifying operation corresponding to the load can be performed.

【0074】また、請求項14に係る空気調和機は、請
求項11〜請求項13のいずれかに記載の空気調和機に
おいて、除湿運転選択手段が選択する除湿運転パタ−ン
は、請求項1〜請求項10のいずれかで決定される除湿
運転パタ−ンであるものである。そこで、除湿運転選択
手段が請求項1〜請求項10のいずれかで決定される除
湿運転パタ−ンを選択することにより、それぞれ、負荷
に対応した除湿運転が可能となる。
The air conditioner according to a fourteenth aspect is the air conditioner according to any one of the eleventh to thirteenth aspects, wherein the dehumidifying operation pattern selected by the dehumidifying operation selecting means is the one according to the first aspect. ~ The dehumidifying operation pattern determined in any one of claims 10 to 10. Therefore, the dehumidifying operation selecting means selects the dehumidifying operation pattern determined in any one of claims 1 to 10, whereby the dehumidifying operation corresponding to each load can be performed.

【0075】また、請求項15に係る空気調和機は、請
求項1〜請求項14のいずれかに記載の空気調和機にお
いて、冷凍サイクルの冷媒として、可燃性冷媒又は自然
系冷媒を用いたものである。そこで、負荷に対応した除
湿運転が可能であるとともに、さらに、地球温暖化への
影響の少ない空気調和機が得られる。
An air conditioner according to a fifteenth aspect is the air conditioner according to any one of the first to fourteenth aspects, wherein a flammable refrigerant or a natural refrigerant is used as the refrigerant of the refrigeration cycle. Is. Therefore, an air conditioner capable of dehumidifying operation corresponding to the load and having less influence on global warming can be obtained.

【0076】また、請求項16に係る空気調和機は、請
求項1〜請求項15のいずれかに記載の空気調和機にお
いて、異常検出手段及び通信手段を有し、異常検出手段
が異常を検出した場合は、検出結果がサ−ビスセンタ−
又は携帯電話へ通信されるものである。そこで、負荷に
対応した除湿運転が可能であるとともに、さらに、冷媒
漏れなどの異常時の迅速な対応ができる空気調和機が得
られる。
An air conditioner according to a sixteenth aspect is the air conditioner according to any one of the first to fifteenth aspects, which has abnormality detecting means and communication means, and the abnormality detecting means detects an abnormality. If it does, the detection result will be the service center.
Or, it is communicated to a mobile phone. Therefore, it is possible to obtain an air conditioner that can perform dehumidification operation corresponding to the load and can quickly respond to an abnormality such as refrigerant leakage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施の形態1による空気調和機の冷凍サイク
ルの冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle of an air conditioner according to a first embodiment.

【図2】 実施の形態1に係わり、冷房運転時と除湿運
転時の冷房能力と除湿能力の能力範囲を示す図である。
FIG. 2 is a diagram relating to the first embodiment and showing capacity ranges of a cooling capacity and a dehumidifying capacity during a cooling operation and a dehumidifying operation.

【図3】 実施の形態1に係わり、除湿運転と冷房能
力、除湿能力の能力範囲の差異及び除湿運転と除湿能
力、除湿効率の違いを示す図である。
FIG. 3 is a diagram related to the first embodiment and showing differences in dehumidifying operation and cooling capacity, capacity range of dehumidifying capacity, and dehumidifying operation, dehumidifying capacity, and dehumidifying efficiency.

【図4】 実施の形態1に係わり、能力の大きい除湿運
転及び効率の高い除湿運転の冷媒回路構成を示す要部冷
媒回路図である。
FIG. 4 is a main part refrigerant circuit diagram showing a refrigerant circuit configuration of a dehumidifying operation having a large capacity and a dehumidifying operation having a high efficiency according to the first embodiment.

【図5】 実施の形態1に係わり、負荷と除湿運転の選
択の関係を示す説明図である。
FIG. 5 is an explanatory diagram related to the first embodiment and showing a relationship between load and selection of dehumidifying operation.

【図6】 実施の形態1に係わり、除湿運転時の空気調
和機の制御内容を示すフローチャートである。
FIG. 6 is a flowchart showing the control contents of the air conditioner during the dehumidifying operation according to the first embodiment.

【図7】 実施の形態1に係わり、第2絞り機構と四方
弁の間の蒸発器の蒸発面積の変化を説明する要部冷媒回
路図である。
FIG. 7 is a main part refrigerant circuit diagram for explaining a change in the evaporation area of the evaporator between the second throttle mechanism and the four-way valve according to the first embodiment.

【図8】 実施の形態1に係わり、第2絞り機構と四方
弁の間の蒸発器の蒸発面積の変化を説明する別の要部冷
媒回路図である。
FIG. 8 is another essential part refrigerant circuit diagram for explaining a change in the evaporation area of the evaporator between the second throttle mechanism and the four-way valve according to the first embodiment.

【図9】 実施の形態1に係わり、第2絞り機構と四方
弁の間の蒸発器の蒸発面積の変化を説明するさらに別の
要部冷媒回路図である。
FIG. 9 is yet another essential part refrigerant circuit diagram for explaining a change in the evaporation area of the evaporator between the second throttle mechanism and the four-way valve according to the first embodiment.

【図10】 実施の形態1に係わり、第2絞り機構と四
方弁の間の蒸発器の蒸発面積の変化を説明するさらに別
の要部冷媒回路図である。
FIG. 10 is yet another essential part refrigerant circuit diagram for explaining a change in the evaporation area of the evaporator between the second throttle mechanism and the four-way valve according to the first embodiment.

【図11】 実施の形態1に係わり、第2絞り機構と四
方弁の間の室内熱交換器への風量を制御する説明図であ
る。
FIG. 11 is an explanatory diagram relating to the first embodiment and controlling the air volume to the indoor heat exchanger between the second throttle mechanism and the four-way valve.

【図12】 実施の形態2による空気調和機の、第1絞
り機構と四方弁の間の再熱器と蒸発器の関係を説明する
要部冷媒回路図である。
FIG. 12 is a main part refrigerant circuit diagram illustrating a relationship between a reheater and an evaporator between a first throttle mechanism and a four-way valve of an air conditioner according to a second embodiment.

【図13】 実施の形態2に係わり、第1絞り機構と四
方弁の間の再熱器と蒸発器の関係を説明する別の要部冷
媒回路図である。
FIG. 13 is another essential part refrigerant circuit diagram for explaining the relationship between the reheater and the evaporator between the first throttle mechanism and the four-way valve according to the second embodiment.

【図14】 実施の形態2に係わり、第1絞り機構と四
方弁の間の再熱器と蒸発器の関係を説明するさらに別の
要部冷媒回路図である。
FIG. 14 is still another essential part refrigerant circuit diagram for explaining the relationship between the reheater and the evaporator between the first throttle mechanism and the four-way valve according to the second embodiment.

【図15】 実施の形態2に係わり、第2絞り機構と四
方弁の間の再熱器と蒸発器への送風状態を説明する要部
冷媒回路図である。
FIG. 15 is a principal part refrigerant circuit diagram for explaining a blown state to the reheater and the evaporator between the second throttle mechanism and the four-way valve according to the second embodiment.

【図16】 実施の形態2に係わり、第2絞り機構と四
方弁の間の再熱器と蒸発器への送風状態を説明する別の
要部冷媒回路図である。
FIG. 16 is another essential part refrigerant circuit diagram for explaining the state of air blowing to the reheater and the evaporator between the second throttle mechanism and the four-way valve according to the second embodiment.

【図17】 実施の形態2に係わり、第1絞り機構と四
方弁の間の再熱器と蒸発器を示す要部冷媒回路図であ
る。
FIG. 17 is a main part refrigerant circuit diagram showing a reheater and an evaporator between the first throttle mechanism and the four-way valve according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 流路切換弁(四方弁)、3 室外熱交
換器、5 第1絞り機構、6、8、10、・・・ 室内
熱交換器、6 第1室内熱交換器、7 第2絞り機構、
8 第2室内熱交換器、9、・・・ 開閉弁、16 バ
イパス回路、17 三方弁、21 第2四方弁。
DESCRIPTION OF SYMBOLS 1 compressor, 2 flow-path switching valve (four-way valve), 3 outdoor heat exchanger, 5 first throttle mechanism, 6, 8, 10, ... Indoor heat exchanger, 6 1st indoor heat exchanger, 7th 2 diaphragm mechanism,
8 2nd indoor heat exchanger, 9, ... Open / close valve, 16 Bypass circuit, 17 3-way valve, 21 2nd 4-way valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 5/00 F25B 5/00 Z (72)発明者 吉川 利彰 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 篠原 正人 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L060 AA07 CC02 CC07 DD03 DD06 EE05 EE09 EE10 3L061 BA03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 5/00 F25B 5/00 Z (72) Inventor Toshiaki Yoshikawa 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Inventor Masato Shinohara 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. F-term (reference) 3L060 AA07 CC02 CC07 DD03 DD06 EE05 EE09 EE10 3L061 BA03

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、流路切換弁、室外熱交換器、第
1絞り機構及び室内熱交換器からなる冷凍サイクルを備
えた空気調和機において、 前記室内熱交換器は、第1室内熱交換器、第2絞り機構
及びその他の複数の室内熱交換器の順に配管接続され、 前記室内熱交換器のうち、少なくとも前記第1室内熱交
換器は再熱熱交換器とされ、その他の複数の室内熱交換
器は、冷房負荷及び除湿負荷の大きさに対応して、蒸発
器とされる数量が選択されることを特徴とする空気調和
機。
1. An air conditioner having a refrigeration cycle including a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger, wherein the indoor heat exchanger is the first indoor heat exchanger. An exchanger, a second throttle mechanism, and a plurality of other indoor heat exchangers are pipe-connected in this order, and at least the first indoor heat exchanger among the indoor heat exchangers is a reheat heat exchanger, and a plurality of other indoor heat exchangers are connected. The indoor heat exchanger is an air conditioner in which the number of evaporators is selected according to the magnitudes of the cooling load and the dehumidifying load.
【請求項2】 前記その他の複数の室内熱交換器は、前
記第2絞り機構に接続される第2室内熱交換器及び該第
2室内熱交換器に並列に接続され、開閉弁付きの室内熱
交換器であることを特徴とする請求項1記載の空気調和
機。
2. The other plurality of indoor heat exchangers are connected in parallel to the second indoor heat exchanger connected to the second throttle mechanism and the second indoor heat exchanger, and have an opening / closing valve. The air conditioner according to claim 1, wherein the air conditioner is a heat exchanger.
【請求項3】 前記その他の複数の室内熱交換器は、前
記第2絞り機構に接続され、開閉弁付きの第2室内熱交
換器及び該第2室内熱交換器に並列に接続されるととも
に蒸発面積の異なる、開閉弁付きの室内熱交換器である
ことを特徴とする請求項1記載の空気調和機。
3. The other plurality of indoor heat exchangers are connected to the second throttle mechanism, and are connected in parallel to the second indoor heat exchanger with an opening / closing valve and the second indoor heat exchanger. The air conditioner according to claim 1, which is an indoor heat exchanger with an opening / closing valve having different evaporation areas.
【請求項4】 前記その他の複数の室内熱交換器は、前
記第2絞り機構に接続される第2室内熱交換器及び該第
2室内熱交換器に直列に接続され、開閉弁付きのバイパ
ス回路を備えた室内熱交換器であることを特徴とする請
求項1記載の空気調和機。
4. The other plurality of indoor heat exchangers are connected in series to a second indoor heat exchanger connected to the second throttle mechanism and the second indoor heat exchanger, and have a bypass with an on-off valve. The air conditioner according to claim 1, which is an indoor heat exchanger provided with a circuit.
【請求項5】 前記開閉弁に代えて、前記第2室内熱交
換器から前記バイパス回路側又は前記直列に接続される
室内熱交換器側のいずれかに流路を切換える三方弁を設
けたことを特徴とする請求項4記載の空気調和機。
5. A three-way valve for switching the flow path from the second indoor heat exchanger to either the bypass circuit side or the indoor heat exchanger side connected in series is provided in place of the on-off valve. The air conditioner according to claim 4, wherein
【請求項6】 前記その他の複数の室内熱交換器は、前
記第2絞り機構に接続される第2室内熱交換器及び該第
2室内熱交換器に直列に接続され、前記第2室内熱交換
器側に絞り機構を備えた室内熱交換器であることを特徴
とする請求項1記載の空気調和機。
6. The other plurality of indoor heat exchangers are connected in series to a second indoor heat exchanger connected to the second throttle mechanism and the second indoor heat exchanger, and the second indoor heat exchanger is connected. The air conditioner according to claim 1, wherein the indoor heat exchanger is provided with a throttle mechanism on the exchanger side.
【請求項7】 前記その他の複数の室内熱交換器は、冷
媒流路を多パスとしたことを特徴とする請求項4〜6の
いずれかに記載の空気調和機。
7. The air conditioner according to claim 4, wherein the plurality of other indoor heat exchangers have a multi-pass refrigerant passage.
【請求項8】 圧縮機、流路切換弁、室外熱交換器、第
1絞り機構及び室内熱交換器からなる冷凍サイクルを備
えた空気調和機において、 前記室内熱交換器は、第1室内熱交換器、第2絞り機
構、第2室内熱交換器及びその他の室内熱交換器を有
し、 前記第1室内熱交換器及びその他の室内熱交換器の間に
配管接続された四方弁により、第1室内熱交換器、第2
絞り機構、第2室内熱交換器及びその他の室内熱交換器
の流路、又は第1室内熱交換器、第2室内熱交換器、第
2絞り機構及びその他の室内熱交換器の流路に切換え可
能とされることを特徴とする空気調和機。
8. An air conditioner provided with a refrigeration cycle comprising a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger, wherein the indoor heat exchanger is the first indoor heat exchanger. A four-way valve piped between the first indoor heat exchanger and the other indoor heat exchangers, which has an exchanger, a second throttle mechanism, a second indoor heat exchanger and other indoor heat exchangers, First indoor heat exchanger, second
In the flow path of the throttle mechanism, the second indoor heat exchanger and other indoor heat exchangers, or in the flow paths of the first indoor heat exchanger, the second indoor heat exchanger, the second throttle mechanism and other indoor heat exchangers An air conditioner characterized by being switchable.
【請求項9】 圧縮機、流路切換弁、室外熱交換器、第
1絞り機構及び室内熱交換器からなる冷凍サイクルを備
えた空気調和機において、 前記室内熱交換器は、第1室内熱交換器、第2絞り機構
及び第2室内熱交換器の順に配管接続され、 前記第1室内熱交換器は再熱熱交換器、第2室内熱交換
器は蒸発器とされ、前記第2室内熱交換器への送風量
が、冷房負荷及び除湿負荷の大きさに対応して制御され
ることを特徴とする空気調和機。
9. An air conditioner provided with a refrigeration cycle comprising a compressor, a flow path switching valve, an outdoor heat exchanger, a first throttle mechanism and an indoor heat exchanger, wherein the indoor heat exchanger is the first indoor heat exchanger. An exchanger, a second throttling mechanism, and a second indoor heat exchanger are pipe-connected in this order, the first indoor heat exchanger is a reheat heat exchanger, the second indoor heat exchanger is an evaporator, and the second indoor An air conditioner in which the amount of air blown to a heat exchanger is controlled in accordance with the magnitudes of a cooling load and a dehumidifying load.
【請求項10】 前記第1室内熱交換器用の室内ファン
及び前記第2室内熱交換器用の室内ファンを設け、それ
ぞれ独立に送風量が制御されることを特徴とする請求項
9記載の空気調和機。
10. The air conditioner according to claim 9, wherein an indoor fan for the first indoor heat exchanger and an indoor fan for the second indoor heat exchanger are provided, and the amount of air blown is controlled independently of each other. Machine.
【請求項11】 温度設定手段と、湿度設定手段と、温
度検知手段と、湿度検知手段と、前記温度設定手段の設
定温度と前記温度検知手段の検知温度から冷房負荷を算
出し、前記湿度設定手段の設定値と前記湿度検知手段の
検知湿度から除湿負荷を算出する負荷算出手段と、冷房
能力及び除湿能力の組合せからなる除湿運転パタ−ンを
記憶する除湿運転記憶手段と、前記負荷算出手段が算出
した負荷量が前記除湿運転記憶手段が記憶する除湿運転
パタ−ンのうち、能力内である除湿運転パタ−ンを選択
する除湿運転選択手段と、前記除湿運転選択手段が選択
した除湿運転パタ−ンで除湿運転を行うとともに前記検
出値が前記設定値に近づくように制御する制御手段とを
備えたことを特徴とする空気調和機。
11. A temperature setting unit, a humidity setting unit, a temperature detecting unit, a humidity detecting unit, a set temperature of the temperature setting unit, and a cooling load calculated from the detected temperature of the temperature detecting unit to set the humidity. Load calculation means for calculating a dehumidification load from the set value of the means and the humidity detected by the humidity detection means, dehumidification operation storage means for storing a dehumidification operation pattern composed of a combination of cooling capacity and dehumidification capacity, and the load calculation means Of the dehumidifying operation pattern stored in the dehumidifying operation storage means, the dehumidifying operation selecting means for selecting a dehumidifying operation pattern within the capacity, and the dehumidifying operation selected by the dehumidifying operation selecting means. An air conditioner comprising: a dehumidifying operation in a pattern and a control means for controlling the detected value to approach the set value.
【請求項12】 前記除湿運転選択手段は、前記算出負
荷が能力内である最も能力の小さい除湿運転パタ−ンを
選択することを特徴とする請求項11記載の空気調和
機。
12. The air conditioner according to claim 11, wherein the dehumidifying operation selecting means selects a dehumidifying operation pattern having the smallest capacity within the capacity of the calculated load.
【請求項13】 前記制御手段は、前記検出値が前記設
定値に近づくように、室外ファンの回転数及び圧縮機の
容量を制御することを特徴とする請求項11又は請求項
12に記載の空気調和機。
13. The control unit controls the rotation speed of the outdoor fan and the capacity of the compressor so that the detected value approaches the set value. Air conditioner.
【請求項14】 前記除湿運転選択手段が選択する除湿
運転パタ−ンは、請求項1〜請求項10のいずれかで決
定される除湿運転パタ−ンであることを特徴とする請求
項11〜請求項13のいずれかに記載の空気調和機。
14. The dehumidifying operation pattern selected by the dehumidifying operation selecting means is the dehumidifying operation pattern determined in any one of claims 1 to 10. The air conditioner according to claim 13.
【請求項15】 冷凍サイクルの冷媒として、可燃性冷
媒又は自然系冷媒を用いたことを特徴とする請求項1〜
請求項14のいずれかに記載の空気調和機。
15. A flammable refrigerant or a natural refrigerant is used as the refrigerant of the refrigeration cycle.
The air conditioner according to claim 14.
【請求項16】 異常検出手段及び通信手段を有し、前
記異常検出手段が異常を検出した場合は、検出結果がサ
−ビスセンタ−又は携帯電話へ通信されることを特徴と
する請求項1〜請求項15のいずれかに記載の空気調和
機。
16. An abnormality detecting means and a communication means are provided, and when the abnormality detecting means detects an abnormality, the detection result is communicated to a service center or a mobile phone. The air conditioner according to claim 15.
JP2001351044A 2001-11-16 2001-11-16 Air conditioner Expired - Lifetime JP3740637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351044A JP3740637B2 (en) 2001-11-16 2001-11-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351044A JP3740637B2 (en) 2001-11-16 2001-11-16 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003148830A true JP2003148830A (en) 2003-05-21
JP3740637B2 JP3740637B2 (en) 2006-02-01

Family

ID=19163424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351044A Expired - Lifetime JP3740637B2 (en) 2001-11-16 2001-11-16 Air conditioner

Country Status (1)

Country Link
JP (1) JP3740637B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080896A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus and operating method thereof
KR100692894B1 (en) 2005-02-04 2007-03-12 엘지전자 주식회사 Air conditioner and IN DOOR UINT in use with it and method for dehumidifying
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP2008014605A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
WO2010058654A1 (en) * 2008-11-20 2010-05-27 ダイキン工業株式会社 Air conditioner
KR101116209B1 (en) * 2004-05-25 2012-06-12 삼성전자주식회사 An air conditioner for multi-step driving
WO2013157406A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
WO2013157405A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
JP2014088977A (en) * 2012-10-29 2014-05-15 Daikin Ind Ltd Air conditioning device
WO2015166541A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
CN109595840A (en) * 2017-09-30 2019-04-09 深圳市英维克科技股份有限公司 Air-conditioning system and its control method
KR20190097393A (en) * 2018-02-12 2019-08-21 엘지전자 주식회사 Air conditioner, network system, and controlling method of the network system
JP2020026945A (en) * 2019-06-17 2020-02-20 三菱電機株式会社 Air conditioning device
JP2020026944A (en) * 2019-06-17 2020-02-20 三菱電機株式会社 Air conditioning device
EP3627064A1 (en) * 2018-09-24 2020-03-25 Lennox Industries Inc. Hvac system and method of improving latent capacity
JP2020204460A (en) * 2020-09-24 2020-12-24 三菱電機株式会社 Air conditioning device
JPWO2020035909A1 (en) * 2018-08-15 2021-01-07 三菱電機株式会社 Air conditioners, controls, air conditioners and programs
JP2021014947A (en) * 2019-07-11 2021-02-12 日本ピーマック株式会社 Air conditioner and air conditioning system
CN112902475A (en) * 2021-03-25 2021-06-04 珠海格力电器股份有限公司 Air conditioner heat exchange structure, air conditioner indoor unit, air conditioner system and air conditioner system control method
CN114517969A (en) * 2022-04-02 2022-05-20 珠海市金品创业共享平台科技有限公司 Control system and method for constant temperature of air conditioner, related equipment and air conditioner
WO2023000678A1 (en) * 2021-07-20 2023-01-26 青岛海尔空调器有限总公司 Indoor air conditioner unit and control method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965682B2 (en) 2020-12-16 2024-04-23 Samsung Electronics Co., Ltd. Air conditioner

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080896A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus and operating method thereof
US7975502B2 (en) 2004-02-19 2011-07-12 Panasonic Corporation Heat pump apparatus and operating method thereof
KR101116209B1 (en) * 2004-05-25 2012-06-12 삼성전자주식회사 An air conditioner for multi-step driving
KR100692894B1 (en) 2005-02-04 2007-03-12 엘지전자 주식회사 Air conditioner and IN DOOR UINT in use with it and method for dehumidifying
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP4647512B2 (en) * 2006-02-13 2011-03-09 東芝キヤリア株式会社 Air conditioner
JP2008014605A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
WO2010058654A1 (en) * 2008-11-20 2010-05-27 ダイキン工業株式会社 Air conditioner
US9513041B2 (en) 2012-04-16 2016-12-06 Daikin Industries, Ltd. Air conditioner
WO2013157405A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
JP2013221669A (en) * 2012-04-16 2013-10-28 Daikin Industries Ltd Air conditioner
JP2013221671A (en) * 2012-04-16 2013-10-28 Daikin Industries Ltd Air conditioner
AU2013250425B2 (en) * 2012-04-16 2015-09-03 Daikin Industries, Ltd. Air conditioner
WO2013157406A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
JP2014088977A (en) * 2012-10-29 2014-05-15 Daikin Ind Ltd Air conditioning device
WO2015166541A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
JP5868552B1 (en) * 2014-04-28 2016-02-24 三菱電機株式会社 External air conditioner
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
JP2018059702A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Air conditioner
CN109595840A (en) * 2017-09-30 2019-04-09 深圳市英维克科技股份有限公司 Air-conditioning system and its control method
KR102049031B1 (en) 2018-02-12 2019-11-26 엘지전자 주식회사 Air conditioner, network system, and controlling method of the network system
KR20190097393A (en) * 2018-02-12 2019-08-21 엘지전자 주식회사 Air conditioner, network system, and controlling method of the network system
JP7016601B2 (en) 2018-08-15 2022-02-07 三菱電機株式会社 Air conditioners, controls, air conditioners and programs
JPWO2020035909A1 (en) * 2018-08-15 2021-01-07 三菱電機株式会社 Air conditioners, controls, air conditioners and programs
EP3627064A1 (en) * 2018-09-24 2020-03-25 Lennox Industries Inc. Hvac system and method of improving latent capacity
JP2020026944A (en) * 2019-06-17 2020-02-20 三菱電機株式会社 Air conditioning device
JP2020026945A (en) * 2019-06-17 2020-02-20 三菱電機株式会社 Air conditioning device
JP2021014947A (en) * 2019-07-11 2021-02-12 日本ピーマック株式会社 Air conditioner and air conditioning system
JP7374633B2 (en) 2019-07-11 2023-11-07 日本ピーマック株式会社 Air conditioners and air conditioning systems
JP2020204460A (en) * 2020-09-24 2020-12-24 三菱電機株式会社 Air conditioning device
JP7011012B2 (en) 2020-09-24 2022-01-26 三菱電機株式会社 Air conditioner
JP2022046780A (en) * 2020-09-24 2022-03-23 三菱電機株式会社 Air conditioner
CN112902475A (en) * 2021-03-25 2021-06-04 珠海格力电器股份有限公司 Air conditioner heat exchange structure, air conditioner indoor unit, air conditioner system and air conditioner system control method
WO2023000678A1 (en) * 2021-07-20 2023-01-26 青岛海尔空调器有限总公司 Indoor air conditioner unit and control method therefor
CN114517969A (en) * 2022-04-02 2022-05-20 珠海市金品创业共享平台科技有限公司 Control system and method for constant temperature of air conditioner, related equipment and air conditioner

Also Published As

Publication number Publication date
JP3740637B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3740637B2 (en) Air conditioner
KR920008504B1 (en) Air conditioner
JP2008511813A (en) Heat pump with reheat circuit
JP6305525B2 (en) Air conditioning system
JP2004218853A (en) Air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
WO2006025354A1 (en) Heat pump
JP6880204B2 (en) Air conditioner
JP2974179B2 (en) Multi-room air conditioner
WO2018062316A1 (en) Air conditioner
JP3884591B2 (en) Air conditioner
JP4389430B2 (en) Air conditioner
KR100575682B1 (en) Air conditioner with equalization pipe between out door units
JP4274886B2 (en) Heat pump air conditioner
JP4063465B2 (en) Air conditioner and multi-type air conditioner
JP4752145B2 (en) Air conditioner
JP4752146B2 (en) Air conditioner
JPH08128748A (en) Multi-room type air conditioner
JP4608828B2 (en) Air conditioner, dehumidifier, and throttle mechanism
JP2705045B2 (en) Multi-room air conditioner
WO2023228243A1 (en) Air conditioner
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
CN110715423B (en) Air conditioner, control method and device thereof, electronic equipment and storage medium
WO2022168305A1 (en) Air-conditioning device
KR101344461B1 (en) Air-conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Ref document number: 3740637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term