WO2010058654A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2010058654A1
WO2010058654A1 PCT/JP2009/066766 JP2009066766W WO2010058654A1 WO 2010058654 A1 WO2010058654 A1 WO 2010058654A1 JP 2009066766 W JP2009066766 W JP 2009066766W WO 2010058654 A1 WO2010058654 A1 WO 2010058654A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor heat
indoor
air conditioner
control
Prior art date
Application number
PCT/JP2009/066766
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 黒田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010058654A1 publication Critical patent/WO2010058654A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • This invention relates to an air conditioner.
  • one of the indoor heat exchangers consisting of two thermally divided heat exchangers and an outdoor heat exchanger are used as an evaporator to exchange indoor heat.
  • the dehumidifying capacity is controlled by changing the rotation speed of the outdoor fan, and the operating frequency of the compressor is changed.
  • the blow-out temperature see, for example, Japanese Patent Laid-Open No. 2003-28536 (Patent Document 1)).
  • the air conditioner uses an indoor heat exchanger divided into a condenser and an evaporator by an expansion mechanism, but the amount of heat heated by the condenser of the indoor heat exchanger is larger than the cooling capacity of the evaporator of the indoor heat exchanger. Therefore, dehumidification can be performed while heating.
  • the subject of this invention is providing the air conditioner which can adjust a dehumidification amount and a heating capability in reheat operation by a heating cycle, respectively, and can acquire sufficient heating capability efficiently, performing dehumidification operation. .
  • the air conditioner of the present invention is At least two of the compressor, the outdoor heat exchanger, the indoor heat exchanger composed of a plurality of thermally divided heat exchange units, and the plurality of heat exchange units of the indoor heat exchanger connected in series
  • a refrigerant circuit having an expansion mechanism disposed between the heat exchange units;
  • An indoor fan that blows air sucked from the room into the room through the indoor heat exchanger;
  • An outdoor fan for supplying outside air to the outdoor heat exchanger;
  • a control device that controls at least one of the evaporation capacities of the heat exchanging section that functions as an evaporator.
  • the control device in the reheat operation by the heating cycle, causes the heat exchange unit to function as a condenser among the plurality of heat exchange units of the indoor heat exchanger, or the indoor
  • the condensing capacity of the heat exchanging section that functions as a condenser is reduced and evaporated.
  • Increasing the evaporation capacity of the heat exchanger that acts as a heater increases the dehumidification amount and decreases the heating capacity.
  • the dehumidification amount decreases and the heating capacity increases.
  • the operation frequency of the compressor, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan as necessary, the dehumidification amount and the heating capacity can be adjusted, respectively, while the dehumidifying operation is sufficient. Heating capacity can be obtained efficiently.
  • the indoor heat exchanger includes three or more heat exchange units that are thermally divided.
  • At least one of the dehumidification amount and the heating capacity can be finely controlled.
  • the control device controls at least one of the condensation capacity or the evaporation capacity of the indoor heat exchanger by controlling the refrigerant flow control unit.
  • a control apparatus controls a refrigerant
  • coolant flow control part controls a refrigerant
  • the refrigerant flow control unit can switch whether at least one of the plurality of heat exchange units of the indoor heat exchanger is the condenser or the evaporator.
  • the control range of the condensation capacity and evaporation capacity of the indoor heat exchanger can be widened.
  • the refrigerant flow control unit is a plurality of expansion mechanisms including the expansion mechanism respectively disposed between the heat exchange units connected in series among the plurality of heat exchange units of the indoor heat exchanger.
  • the plurality of expansion mechanisms respectively disposed between the heat exchange units connected in series among the plurality of heat exchange units of the indoor heat exchanger can be easily used for the refrigerant flow control unit.
  • a refrigerant flow control unit can be realized with a simple configuration.
  • the refrigerant flow control unit is a refrigerant flow switching unit that switches whether to bypass a refrigerant flow that flows through at least one heat exchange unit of the plurality of heat exchange units of the indoor heat exchanger.
  • the refrigerant flow switching unit can easily switch whether or not to bypass the refrigerant flow flowing through at least one heat exchange unit among the plurality of heat exchange units of the indoor heat exchanger.
  • a refrigerant flow control unit can be realized with the configuration.
  • control device controls at least one of an operation frequency of the compressor, a rotation speed of the indoor fan, and a rotation speed of the outdoor fan, and condenses the indoor heat exchanger. Control at least one of capacity or evaporation capacity.
  • the heating capacity is increased by increasing the operating frequency of the compressor by the control device.
  • the evaporator temperature is lowered, the dehumidifying ability is also increased.
  • the low pressure increases by increasing the rotation speed of the outdoor fan, the heating capacity increases to some extent.
  • An indoor temperature sensor for detecting the temperature of indoor air; And an evaporator temperature sensor for detecting an evaporator temperature of a heat exchange part acting as an evaporator among a plurality of heat exchange parts of the indoor heat exchanger.
  • the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor, the evaporator temperature detected by the evaporator temperature sensor without using the humidity sensor. Based on the above, for example, by controlling the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity, the humidity can be controlled.
  • the control device is configured as a condenser of the plurality of heat exchange units of the indoor heat exchanger based on the temperature of the indoor air and the target humidity detected by the indoor temperature sensor.
  • the condensation capacity of the heat exchanger acting, the evaporation capacity of the heat exchange part acting as an evaporator among the plurality of heat exchange parts of the indoor heat exchanger, the operating frequency of the compressor, and the rotation of the indoor fan Heat exchange acting as an evaporator of the plurality of heat exchange portions of the indoor heat exchanger by controlling at least one of speed, rotational speed of the outdoor fan, and throttle amount of the expansion mechanism Control the temperature of the part.
  • the evaporator temperature of the heat exchanging unit acting as an evaporator is equal to or lower than the dew point temperature at the target humidity.
  • Condensation capacity of the heat exchange part that acts as a condenser among the plurality of heat exchange parts of the indoor heat exchanger, and evaporation capacity of the heat exchange part that acts as an evaporator among the plurality of heat exchange parts of the indoor heat exchanger By controlling at least one of the operating frequency of the compressor, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism, the humidity can be controlled in accordance with the target humidity. .
  • An indoor humidity sensor for detecting the humidity of the indoor air is provided.
  • the humidity control can be accurately performed by using the indoor humidity sensor for detecting the humidity of the indoor air.
  • the control device is configured to control the indoor heat exchanger based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor.
  • Condensation capacity of the heat exchange section that acts as a condenser among the plurality of heat exchange sections, evaporation capacity of the heat exchange section that acts as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger, and the compression A plurality of heat exchanges of the indoor heat exchanger by controlling at least one of a machine operating frequency, a rotation speed of the indoor fan, a rotation speed of the outdoor fan, and a throttle amount of the expansion mechanism. The temperature of the heat exchange part which acts as an evaporator among the parts is controlled.
  • the temperature of the heat exchange unit acting as an evaporator is the dew point temperature in the atmosphere.
  • the condensing capacity of the heat exchanging part that acts as a condenser among the plurality of heat exchanging parts of the indoor heat exchanger, and the evaporator of the plural heat exchanging parts of the indoor heat exchanger By controlling at least one of the evaporation capacity of the heat exchange unit, the operating frequency of the compressor, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism by the control device, the effect Dehumidification can be performed.
  • the control device In the reheating operation by the heating cycle, the control device is configured so that the evaporator temperature detected by the evaporator temperature sensor is equal to or higher than a freezing temperature (hereinafter referred to as a freezing temperature).
  • Condensation capacity of the heat exchange section that acts as a condenser among the plurality of heat exchange sections, evaporation capacity of the heat exchange section that acts as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger, and the compression At least one of the operating frequency of the machine, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism is controlled.
  • the condensation of the heat exchange unit that acts as a condenser among the plurality of heat exchange units of the indoor heat exchanger so that the evaporator temperature detected by the evaporator temperature sensor is equal to or higher than the freezing temperature.
  • the evaporator can be prevented from freezing by controlling at least one of the throttle amounts of the expansion mechanism by the control device.
  • the control device In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operation frequency of the compressor is higher than the current frequency when the evaporator temperature detected by the evaporator temperature sensor is higher than a target temperature.
  • Capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity, indoor fan control for lowering the rotation speed of the indoor fan than the current rotation speed, and rotation of the outdoor fan At least one of an outdoor fan control for reducing the speed below the current rotational speed and a throttle amount control for increasing the pressure reduction amount of the expansion mechanism is performed.
  • the compressor control is performed so that the operating frequency of the compressor is higher than the current frequency, thereby reducing the low pressure (the evaporator outlet pressure to the evaporator temperature).
  • the evaporator temperature rises and falls as the low pressure rises and falls.
  • the low pressure can be lowered and the evaporator temperature can be lowered by performing capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity.
  • the evaporator temperature when the evaporator temperature is higher than the target temperature, by performing the indoor fan control that makes the rotational speed of the indoor fan lower than the current rotational speed, the low pressure can be lowered and the evaporator temperature can be lowered. Further, when the evaporator temperature is higher than the target temperature, the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered. Further, by adjusting the throttle amount of the expansion mechanism to increase the pressure reduction amount, the low pressure can be lowered and the evaporator temperature can be lowered. Further, by combining two or more of the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion mechanism control of the expansion mechanism, the evaporator can be adjusted to the required heating capacity and dehumidification capacity. The temperature can be adjusted as appropriate.
  • the control device includes a compressor control that lowers an operating frequency of the compressor below a current frequency when the evaporator temperature detected by the evaporator temperature sensor is lower than a target temperature in the reheating operation by the heating cycle.
  • Capacity control for controlling the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity
  • indoor fan control for making the rotation speed of the indoor fan higher than the current rotation speed
  • rotation speed of the outdoor fan At least one of outdoor fan control for making the pressure higher than the current rotation speed and control of the throttle amount for reducing the pressure reduction amount of the expansion mechanism.
  • the low pressure when the evaporator temperature is lower than the target temperature, by performing the compressor control that makes the operation frequency of the compressor lower than the current frequency, the low pressure can be increased and the evaporator temperature can be raised. Further, when the evaporator temperature is lower than the target temperature, the low pressure can be increased and the evaporator temperature can be increased by performing the capacity control for controlling the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity. . Further, when the evaporator temperature is lower than the target temperature, by performing the indoor fan control that makes the rotation speed of the indoor fan higher than the current rotation speed, the low pressure can be increased and the evaporator temperature can be raised.
  • the evaporator temperature when the evaporator temperature is lower than the target temperature, by performing the outdoor fan control that makes the rotational speed of the outdoor fan higher than the current rotational speed, the low pressure can be increased and the evaporator temperature can be raised. Further, by adjusting the throttle amount of the expansion mechanism to reduce the pressure reduction amount, the low pressure can be lowered and the evaporator temperature can be lowered. Further, by combining two or more of the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion mechanism control of the expansion mechanism, the evaporator can be adjusted to the required heating capacity and dehumidification capacity. The temperature can be adjusted as appropriate.
  • the control device In the reheating operation by the heating cycle, the control device, when the current heating capacity of the indoor heat exchanger is smaller than the required heating capacity, the compressor control to make the operating frequency of the compressor higher than the current frequency, Capacity control for controlling the condensation capacity of the indoor heat exchanger to be greater than the current condensation capacity, capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity, and the outdoor At least one of outdoor fan control for increasing the rotational speed of the fan to be higher than the current rotational speed and indoor fan control for reducing the rotational speed of the indoor fan to be lower than the current rotational speed is performed.
  • the evaporation capacity of the indoor heat exchanger is made larger than the current evaporation capacity.
  • the capacity control (control for increasing the heating capacity) for controlling the condensation capacity of the indoor heat exchanger to be larger than the current condensation capacity may be used in combination.
  • Compressor control is performed so that the operating frequency of the compressor is higher than the current frequency.
  • the outdoor fan is controlled so that the rotational speed of the outdoor fan is higher than the current rotational speed (evaporation temperature rises and high pressure (condenser temperature increases and decreases with increasing and decreasing condenser inlet pressure). Will also increase the heating capacity).
  • (V) Indoor fan control is performed so that the rotational speed of the indoor fan is lower than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger decreases, resulting in an increase in heating capacity).
  • the order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination with the above (I) to (V) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
  • the control device In the reheat operation by the heating cycle, the control device, when the current heating capacity of the indoor heat exchanger is larger than the required heating capacity, the compressor control to lower the operating frequency of the compressor below the current frequency, Capability control for controlling the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity, outdoor fan control for lowering the rotation speed of the outdoor fan, and rotation speed of the indoor fan. At least one of indoor fan control to make it higher than the current rotation speed is performed.
  • the evaporation capacity of the indoor heat exchanger is made larger than the current evaporation capacity.
  • the capacity control (control for reducing the heating capacity) for controlling the condensation capacity of the indoor heat exchanger so as to be smaller than the current condensation capacity may be used in combination.
  • Compressor control is performed so that the operating frequency of the compressor is lower than the current frequency.
  • Capability control is performed to control the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
  • (C) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan is lower than the current rotation speed (the evaporation temperature is lowered and the high pressure is also lowered, so the condensation temperature is lowered and the heating capacity is also lowered).
  • the indoor fan is controlled so that the rotation speed of the indoor fan is higher than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger increases, resulting in a decrease in the heating capacity).
  • the order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination of the above (A) to (E) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
  • the refrigerant circuit has a four-way switching valve that switches between a heating cycle and a cooling cycle
  • the control device controls the four-way switching valve so that a part of the plurality of heat exchange units of the indoor heat exchanger is a condenser, and among the plurality of heat exchange units of the indoor heat exchanger And performing reheating operation by a heating cycle using the outdoor heat exchanger as an evaporator and the outdoor heat exchanger as a condenser, and a plurality of heat exchange units of the indoor heat exchanger.
  • Is used as a condenser and at least another part of the plurality of heat exchange parts of the indoor heat exchanger is used as an evaporator to perform reheating operation by a cooling cycle.
  • dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle.
  • the refrigerant circuit includes a refrigerant flow direction regulating unit that allows the refrigerant to flow in the same direction through the plurality of heat exchange units of the indoor heat exchanger in both the heating cycle and the cooling cycle.
  • the refrigerant flow direction regulating unit causes the refrigerant to flow in the same direction through the plurality of heat exchange units of the indoor heat exchanger. Even if the cooling cycle or the cooling cycle is switched to the heating cycle, the positions of the indoor evaporator and the condenser are not always changed during the reheating operation. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
  • the air conditioner of this invention is A compressor, an outdoor heat exchanger, a first indoor heat exchanger and a second indoor heat exchanger, and an expansion mechanism connected between the first indoor heat exchanger and the second indoor heat exchanger.
  • a refrigerant circuit having An indoor fan that blows air sucked from the room into the room through the first and second indoor heat exchangers; An outdoor fan for supplying outside air to the outdoor heat exchanger; An air flow rate ratio control unit that changes a ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger;
  • a controller that controls the compressor, the expansion mechanism, the indoor fan, the outdoor fan, and the ventilation rate control unit;
  • the control device is configured to set the ventilation rate ratio control unit to And controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger.
  • the ratio control unit controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, for example, the ventilation rate of the second indoor heat exchanger (evaporator)
  • the ratio control unit controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, for example, the ventilation rate of the second indoor heat exchanger (evaporator)
  • the air flow rate of the first indoor heat exchanger (condenser) is relatively reduced and the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is increased, the dehumidification amount Increases and heating capacity decreases.
  • the air flow rate of the first indoor heat exchanger is relatively increased with respect to the air flow rate of the second indoor heat exchanger (evaporator), and the air flow rate of the first indoor heat exchanger is increased. If the ratio of the ventilation rate of the two indoor heat exchangers is reduced, the dehumidification amount is reduced and the heating capacity is increased. At this time, by controlling the operation frequency of the compressor, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan as necessary, the dehumidification amount and the heating capacity can be adjusted, respectively, while the dehumidifying operation is sufficient. Heating capacity can be obtained efficiently.
  • the control device controls the ventilation rate ratio control unit to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger.
  • the control device controls the ventilation rate ratio control unit to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger.
  • the air volume of the indoor fan, the condensation temperature of the first indoor heat exchanger, and the evaporation temperature of the second indoor heat exchanger are made constant so that the operation of the air flow ratio control can be easily understood.
  • the controller controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, thereby increasing the dehumidifying capacity, By reducing the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the 1 indoor heat exchanger, the dehumidifying capacity is reduced.
  • the heating capacity is reduced, By reducing the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger, the heating capacity is increased.
  • control device controls at least one of an operating frequency of the compressor, a rotation speed of the indoor fan, a rotation speed of the outdoor fan, and a throttle amount of the expansion mechanism, Control at least one of heating capacity and dehumidification capacity.
  • the control device increases the operating frequency of the compressor, thereby increasing the heating capacity and lowering the evaporation temperature. Function goes up. Further, by increasing the rotational speed of the outdoor fan, the low pressure (corresponding to the refrigerant evaporation temperature with the refrigerant pressure on the evaporator side) increases, so that the heating capacity increases to some extent. In addition, by adjusting the expansion amount of the expansion mechanism to increase the amount of decompression, the evaporator temperature is lowered and the dehumidifying ability is also raised. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
  • An indoor temperature sensor for detecting the temperature of indoor air
  • a second indoor heat exchanger temperature sensor for detecting the temperature of the second indoor heat exchanger.
  • the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor, it is detected by the second indoor heat exchanger temperature sensor without using the humidity sensor.
  • the humidity can be controlled by setting the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity.
  • control device In the reheating operation by the heating cycle, the control device is configured to control the compressor, the air flow rate ratio control unit, the indoor fan, and the outdoor unit based on the indoor air temperature and the target humidity detected by the indoor temperature sensor.
  • the temperature of the second indoor heat exchanger is controlled by controlling at least one of the throttle amount of the fan and the expansion mechanism.
  • the compressor and the ventilation are configured so that the temperature of the second indoor heat exchanger is equal to or lower than the dew point temperature at the target humidity based on the temperature of the indoor air detected by the indoor temperature sensor and the target humidity.
  • An indoor humidity sensor for detecting the humidity of the indoor air is provided.
  • the humidity control can be accurately performed by using the indoor humidity sensor for detecting the humidity of the indoor air.
  • the control device In the reheating operation by the heating cycle, the control device is configured so that the compressor and the ventilation are based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor.
  • the temperature of the second indoor heat exchanger is controlled by controlling at least one of the amount ratio control unit, the indoor fan, the outdoor fan, and the expansion amount of the expansion mechanism.
  • the temperature of the second indoor heat exchanger is equal to or lower than the dew point temperature in the atmosphere.
  • effective dehumidification can be performed by controlling at least one of the throttle amount of the compressor, the air flow rate ratio control unit, the indoor fan, the outdoor fan, and the expansion mechanism by the control device.
  • the control device In the reheating operation by the heating cycle, the control device is configured so that the temperature of the second indoor heat exchanger detected by the second indoor heat exchanger temperature sensor is equal to or higher than a freezing temperature. It controls at least one of the throttle amount of the air flow rate ratio control unit, the indoor fan, the outdoor fan, and the expansion mechanism.
  • the compressor the air flow rate ratio control unit, the indoor fan, and the outdoor fan so that the temperature of the second indoor heat exchanger detected by the second indoor heat exchanger temperature sensor is equal to or higher than the freezing temperature.
  • freezing of the second indoor heat exchanger evaporator
  • the control device includes a compressor control for setting the operating frequency of the compressor to be higher than a current frequency when the temperature of the second indoor heat exchanger is higher than a target temperature, A ventilation rate ratio control for controlling a ratio of a ventilation rate of the second indoor heat exchanger to a ventilation rate of the first indoor heat exchanger so that a ventilation rate of the two indoor heat exchangers is smaller than a current ventilation rate; , Indoor fan control for lowering the rotational speed of the indoor fan lower than the current rotational speed, outdoor fan control for lowering the rotational speed of the outdoor fan lower than the current rotational speed, and adjusting the throttle amount of the expansion mechanism to reduce the pressure At least one of the control of the diaphragm amount to increase the amount is performed.
  • the second indoor heat exchanger when the temperature of the second indoor heat exchanger is higher than the target temperature, by performing the compressor control that makes the operation frequency of the compressor higher than the current frequency, the low pressure is lowered, and the evaporator temperature is reduced. Can be lowered.
  • the second indoor with respect to the air flow rate of the first indoor heat exchanger is set so that the air flow rate of the second indoor heat exchanger is smaller than the current air flow rate.
  • the indoor fan control is performed so that the rotational speed of the indoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered.
  • the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered.
  • the expansion amount of the expansion mechanism to increase the amount of decompression, the low pressure can be lowered and the evaporator temperature can be lowered.
  • the evaporator temperature can be adjusted as appropriate.
  • the control device includes a compressor control that lowers an operating frequency of the compressor below a current frequency when the temperature of the second indoor heat exchanger is lower than a target temperature, A ventilation rate ratio control for controlling a ratio of a ventilation rate of the second indoor heat exchanger to a ventilation rate of the first indoor heat exchanger so that a ventilation rate of the two indoor heat exchangers is larger than a current ventilation rate; , Indoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed, outdoor fan control for making the rotational speed of the outdoor fan higher than the current rotational speed, and adjusting the throttle amount of the expansion mechanism to reduce the pressure At least one of the control of the aperture amount to reduce the amount is performed.
  • the second indoor heat exchanger when the temperature of the second indoor heat exchanger is lower than the target temperature, by performing the compressor control to lower the operating frequency of the compressor than the current frequency, the low pressure is increased, and the evaporator temperature is increased. Can be raised.
  • the second indoor with respect to the ventilation rate of the first indoor heat exchanger is set so that the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate.
  • the low pressure can be increased and the evaporator temperature can be raised.
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan is higher than the current rotation speed, thereby increasing the low pressure and increasing the evaporator temperature.
  • the expansion amount of the expansion mechanism to reduce the pressure reduction amount, the low pressure can be increased and the evaporator temperature can be increased.
  • the evaporator temperature can be adjusted as appropriate.
  • the control device In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operating frequency of the compressor is higher than the current frequency when the current heating capacity is smaller than the required heating capacity, and the second indoor heat exchange.
  • a flow rate ratio control for controlling a ratio of a flow rate of the second indoor heat exchanger to a flow rate of the first indoor heat exchanger so that a flow rate of the cooler is smaller than a current flow rate; and the outdoor fan At least one of the outdoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed and the indoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed.
  • the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate.
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is performed.
  • the second indoor heat exchanger has an air flow rate that is smaller than the current air flow rate. Ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger.
  • Compressor control is performed so that the operating frequency of the compressor is higher than the current frequency.
  • Ventilation ratio that controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger so that the ventilation rate of the second indoor heat exchanger is smaller than the current ventilation rate. Control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
  • Outdoor fan control that increases the rotational speed of the outdoor fan higher than the current rotational speed (evaporation temperature rises and high pressure (corresponding to the refrigerant pressure on the condenser side and the refrigerant condensing temperature) also increases to increase the heating capacity. Rises).
  • the indoor fan control is performed so that the rotation speed of the indoor fan is lower than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger is reduced, resulting in an increase in the heating capacity).
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger and the capacity control when combined with the above (i) to (iv) The order is not limited to the above, but may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
  • the control device In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operating frequency of the compressor is lower than the current frequency when the current heating capacity is larger than the required heating capacity, and the second indoor heat exchange.
  • a flow rate ratio control for controlling a ratio of a flow rate of the second indoor heat exchanger to a flow rate of the first indoor heat exchanger so that a flow rate of the cooler is larger than a current flow rate; and the outdoor fan At least one of the outdoor fan control for lowering the rotational speed of the indoor fan and the indoor fan control for increasing the rotational speed of the indoor fan higher than the current rotational speed.
  • the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate.
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is performed.
  • the second indoor heat exchanger has an air flow rate that is smaller than the current air flow rate. Ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger.
  • either one of the following (a) to (d) is performed so as to reduce the heating capacity, or (a) to (d) By performing a combination of two or more of them, the heating capacity can be lowered under the optimum conditions according to the operating conditions.
  • Compressor control is performed so that the operating frequency of the compressor is lower than the current frequency.
  • Ventilation ratio that controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger so that the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate. Control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
  • the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed (the lowering of the evaporation temperature increases the amount of heat exchange in the evaporator of the indoor heat exchanger, resulting in an increase in heating capacity. Down).
  • the indoor fan control is performed so that the rotation speed of the indoor fan is higher than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger is increased, resulting in a decrease in the heating capacity).
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger and the capacity control when combined with the above (a) to (d).
  • the order is not limited to the above, but may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
  • the refrigerant circuit has a four-way switching valve that switches between a heating cycle and a cooling cycle
  • the control device controls the four-way switching valve so that the first indoor heat exchanger serves as a condenser and the second indoor heat exchanger and the outdoor heat exchanger serve as an evaporator.
  • the outdoor heat exchanger is a condenser
  • one of the first indoor heat exchanger or the second indoor heat exchanger is a condenser
  • the first indoor heat exchanger or the second indoor heat exchanger is used.
  • Reheating operation is performed by a cooling cycle in which the other side of the heat exchanger is an evaporator.
  • dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle.
  • the refrigerant circuit includes a refrigerant flow direction regulating unit that allows the refrigerant to flow from the first indoor heat exchanger to the second indoor heat exchanger via the expansion mechanism in both the heating cycle and the cooling cycle.
  • the refrigerant flows in the second indoor heat exchanger from the first indoor heat exchanger via the expansion mechanism by the refrigerant flow direction restricting portion.
  • the dehumidification amount and the heating capacity can be adjusted in the reheating operation by the heating cycle, respectively, and sufficient heating capacity can be efficiently obtained while performing the dehumidifying operation.
  • An air conditioner can be realized.
  • FIG. 1 is a circuit diagram showing the refrigerant flow during the heating cycle of the air conditioner according to the first embodiment of the present invention.
  • FIG. 2A is a Mollier diagram of the air conditioner.
  • FIG. 2B is a Mollier diagram of the air conditioner.
  • FIG. 3A is a Mollier diagram of the air conditioner.
  • FIG. 3B is a Mollier diagram of the air conditioner.
  • FIG. 3C is a Mollier diagram of the air conditioner.
  • FIG. 4 is a circuit diagram showing the flow of refrigerant during the cooling cycle of the air conditioner.
  • FIG. 5 is another circuit diagram of the air conditioner.
  • FIG. 6A is a schematic diagram showing an air flow rate ratio control unit that changes a ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger of the air conditioner.
  • FIG. 6B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 7A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 7B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 8A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 8B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 9A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 9B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 10A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 10B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 10C is a schematic diagram illustrating the ventilation rate ratio control unit.
  • FIG. 10D is a schematic diagram illustrating the ventilation rate ratio control unit.
  • FIG. 11A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 11B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 12A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 12B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 13A is a schematic diagram illustrating an example of another ventilation rate ratio control unit.
  • FIG. 13B is a schematic diagram showing the ventilation rate ratio control unit.
  • FIG. 14 is a circuit diagram showing a refrigerant flow during the heating cycle of the air conditioner according to the second embodiment of the present invention.
  • FIG. 15A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is.
  • FIG. 15B is a schematic diagram for explaining the refrigerant flow control unit.
  • FIG. 15C is a schematic diagram for explaining the refrigerant flow control unit.
  • FIG. 15D is a schematic diagram for explaining the refrigerant flow control unit.
  • FIG. 15A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an
  • FIG. 16 is a circuit diagram which shows the flow of the refrigerant
  • FIG. 17A is a schematic diagram for explaining control by the refrigerant flow control unit of the condensation capacity of the heat exchange unit that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporation capacity of the heat exchange unit that functions as an evaporator. It is.
  • FIG. 17B is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 17C is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 17D is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 17A is a schematic diagram for explaining control by the refrigerant flow control unit of the condensation capacity of the heat exchange unit that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporation capacity of the heat exchange unit
  • FIG. 17E is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 18 is a circuit diagram showing a refrigerant flow during a heating cycle using an example of another indoor heat exchanger of the air conditioner.
  • FIG. 19A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section acting as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section acting as an evaporator. It is.
  • FIG. 19B is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 19C is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 20 is a circuit diagram showing the refrigerant flow during the heating cycle of the air conditioner according to the fourth embodiment of the present invention.
  • FIG. 21A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is.
  • FIG. 21B is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 21C is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 22 is a circuit diagram showing a refrigerant flow during a heating cycle using an example of another indoor heat exchanger of the air conditioner.
  • FIG. 21A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air
  • FIG. 23A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is.
  • FIG. 23B is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 23C is a schematic diagram for explaining control by the refrigerant flow control unit.
  • FIG. 1 shows a circuit diagram of an air conditioner according to a first embodiment of the present invention.
  • this air conditioner has a compressor 1, a four-way switching valve 2 having one end connected to the discharge side of the compressor 1, and one end at the other end of the four-way switching valve 2.
  • the refrigerant flow direction restricting unit 3 connected, the first indoor heat exchanger 4 having one end connected to the other end of the refrigerant flow direction restricting unit 3, and the other end of the first indoor heat exchanger 4 having one end.
  • the connected expansion mechanism 5, the second indoor heat exchanger 6 having one end connected to the other end of the expansion mechanism 5, and the other end of the second indoor heat exchanger 6 via the refrigerant flow direction regulating unit 3.
  • the expansion mechanism 5 uses an on-off valve with a built-in throttling mechanism, a variable throttle valve (a valve whose pressure reduction amount can be adjusted, such as an electric expansion valve), an on-off valve and a throttling mechanism arranged in parallel therewith. Yes.
  • the expansion amount at the time of depressurization of the expansion mechanism 5 may be a constant value such as a capillary or an orifice.
  • the depressurization amount is increased.
  • the low pressure is lowered, while the low pressure is raised by reducing the amount of decompression, so that finer control can be performed on the heating capacity and the dehumidifying capacity.
  • check valves 3a, 3b, 3c and 3d which allow refrigerant flow only in one direction are formed in a bridge shape, and two input / output ports, one input port and one output port are provided.
  • the four-way switching valve 2 is connected to one input / output port of the refrigerant flow direction restricting section 3, and the electric expansion valve 7 is connected to the other input / output port.
  • the other end of the second indoor heat exchanger 6 is connected to the input port of the refrigerant flow direction regulating unit 3, and one end of the first indoor heat exchanger 4 is connected to the output port of the refrigerant flow direction regulating unit 3. .
  • the refrigerant flow direction regulating unit 3 is desirably provided in the vicinity of the indoor heat exchangers (4, 6) (specifically, on the indoor side).
  • the reason is as follows.
  • an indoor heat exchanger and an outdoor heat exchanger have two pipes, a gas pipe through which a gas refrigerant flows (large cross-sectional area) and a liquid pipe through which liquid refrigerant flows (small cross-sectional area) when there is no refrigerant flow direction regulating portion. They are connected by a refrigerant pipe.
  • the gas refrigerant flows through the gas pipe and the liquid refrigerant flows through the liquid pipe between the outdoor heat exchanger 8 and the refrigerant flow direction restriction unit 3.
  • the indoor heat exchanger (4, 6) and the refrigerant flow direction restricting portion 3 the gas refrigerant / liquid refrigerant flows into both the upstream side pipe and the downstream side pipe.
  • the cross-sectional area of both pipes must be increased so that there is no excessive high pressure loss even if That is, since the space of the connection pipe between the indoor heat exchanger (4, 6) and the refrigerant flow direction restricting portion 3 is increased and the amount of necessary refrigerant is increased, the indoor heat exchanger (4, 6) and the refrigerant are increased. It is desirable that the distance of the pipe between the flow direction restricting unit 3 is short.
  • the air conditioner blows the air sucked from the room through the first indoor heat exchanger 4 and the second indoor heat exchanger 6 into the room through the outdoor fan 11 that supplies the outdoor air to the outdoor heat exchanger 8.
  • the indoor fan 12 is provided.
  • the indoor fan 12 is a cross flow fan.
  • the air conditioner also detects the temperature of the indoor air, the indoor temperature sensor 13 for detecting the temperature of the indoor air, the second indoor heat exchanger temperature sensor 14 for detecting the temperature of the second indoor heat exchanger 6, and the humidity of the indoor air.
  • a control device 10 including a microcomputer and an input / output circuit.
  • the control device 10 detects the temperature of the indoor air detected by the indoor temperature sensor 13, the temperature of the second indoor heat exchanger 6 detected by the second indoor heat exchanger temperature sensor 14, and the indoor humidity sensor 15.
  • the compressor 1, the four-way switching valve 2, the refrigerant flow direction regulating unit 3, the first indoor heat exchanger 4, the expansion mechanism 5, the second indoor heat exchanger 6, and the electric expansion valve 7 are used.
  • the outdoor fan 11 and the indoor fan 12 are controlled.
  • the above air conditioner switches the four-way switching valve 2 to the position of the solid line, opens the electric expansion valve 7, sets the expansion mechanism 5 to the throttle state, and starts the compressor 1 To do.
  • the high-pressure gas refrigerant discharged from the compressor 1 flows into the first indoor heat exchanger 4 through the gas pipe and the refrigerant flow direction regulating unit 3 and condenses, and then is decompressed and decompressed by the expansion mechanism 5.
  • the low-pressure refrigerant evaporated in the second indoor heat exchanger 6 and the outdoor heat exchanger 8 is sucked into the compressor 1.
  • the room air is warmed by the first indoor heat exchanger 4 as a condenser, the room air is dehumidified by being cooled by the second indoor heat exchanger 6 as an evaporator, and thus is heated. Reheating operation is performed.
  • This air conditioner includes a ventilation rate ratio control unit (not shown) that changes the ratio of the ventilation rate of the second indoor heat exchanger 6 as an evaporator to the ventilation rate of the first indoor heat exchanger 4 as a condenser. I have.
  • the control device 10 controls the operation frequency of the compressor 1, the rotation speed of the outdoor fan 11 and the indoor fan 12, and controls the air flow rate ratio control unit (not shown).
  • the heating capacity in the reheating operation by the heating cycle is the same as the operation frequency of the compressor 1 as in the normal heating operation except that the ventilation rate ratio control unit is appropriately adjusted according to the required dehumidifying capacity.
  • Control is performed by the rotational speeds of the outdoor fan 11 and the indoor fan 12.
  • the dehumidifying capacity is mainly adjusted by adjusting the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the first indoor heat exchanger 4 by the ventilation rate control unit (not shown). Control by. Thereby, the control which has arbitrary heating capability and dehumidification capability is attained.
  • FIGS. 2A and 2B show Mollier diagrams of the air conditioner when the evaporator temperature is sufficiently lower than the dew point temperature of the atmosphere.
  • the vertical axis represents pressure
  • the horizontal axis represents It represents enthalpy.
  • “when the evaporator temperature is sufficiently lower than the dew point temperature of the atmosphere” refers to a case where the evaporator temperature is approximately 5 degrees or more lower than the dew point temperature of the atmosphere.
  • point A to point B are the evaporation process by the second indoor heat exchanger 6 (evaporator) and the outdoor heat exchanger 8
  • point B to point C are the compression stroke by the compressor 1
  • point C to point D is a condensation step by the first indoor heat exchanger 4 (condenser)
  • points D to A are expansion strokes by the expansion mechanism 5.
  • the control device 10 controls the ventilation rate ratio control unit (not shown) to increase the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 2A), and thereby the first indoor heat exchange.
  • An example is shown in which the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the condenser 4 (condenser in FIG. 2A) is increased. If the amount of air passing through the second indoor heat exchanger 6 (evaporator) is increased, the amount of dehumidification increases while the heating capacity decreases. The heating capacity by the first indoor heat exchanger 4 (condenser) is reduced by the heating loss by the second indoor heat exchanger 6 (evaporator).
  • the control device 10 controls the ventilation rate ratio control unit (not shown) to reduce the ventilation rate of the second indoor heat exchanger 6 (evaporator), and the first indoor heat exchanger 4 (
  • An example is shown in which the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the condenser is reduced.
  • the heating capacity of the first indoor heat exchanger 4 (condenser) is smaller than that of the second indoor heat exchanger 6 (evaporator), so that the heating capacity is higher than that of FIG. 2A.
  • FIG. 3A shows a Mollier diagram of the air conditioner when the evaporator temperature is not sufficiently lower than the dew point temperature of the atmosphere.
  • the vertical axis represents pressure and the horizontal axis represents enthalpy. Represents.
  • the control device 10 controls the ventilation rate ratio control unit (not shown) to increase the ventilation rate of the outdoor heat exchanger 8 (evaporator).
  • the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3A) to the ventilation rate of the first indoor heat exchanger 4 (condenser in FIG. 3A) is reduced.
  • the outdoor fan 11 is controlled by the control device 10 to reduce the air flow rate of the outdoor heat exchanger 8 (evaporator), and the first indoor heat exchanger 4 (condenser in FIG. 3B).
  • the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3B) to the ventilation rate of is increased.
  • the amount of air passing through the outdoor heat exchanger 8 (evaporator) is reduced, the low pressure is lowered and the evaporator temperature is lowered as compared with FIG. 3A.
  • the heating loss by the second indoor heat exchanger 6 (evaporator) increases and the heating capacity decreases.
  • the controller 10 controls the ventilation rate ratio control unit (not shown) from the state of FIG. 3B to reduce the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C).
  • the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C) to the ventilation rate of the first indoor heat exchanger 4 (condenser in FIG. 3C) is reduced.
  • the amount of air passing through the outdoor heat exchanger 8 (evaporator) is reduced, the low pressure is further lowered than in the case of FIG. 3B, and the evaporator temperature is lowered.
  • the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C) decreases, the dehumidifying capacity tends to decrease, but the evaporator temperature can be easily kept lower than the dew point temperature of the atmosphere. It is possible to reliably dehumidify and suppress a decrease in heating capacity.
  • the heating capacity can be brought close to the required heating capacity by increasing the operating frequency of the compressor 1.
  • FIG. 4 shows a circuit diagram showing the flow of the refrigerant during the cooling cycle of the air conditioner.
  • the air conditioner switches the four-way switching valve 2 to the dotted line position, opens the electric expansion valve 7, sets the expansion mechanism 5 to the throttle state, and starts the compressor 1.
  • the high-pressure gas refrigerant discharged from the compressor 1 flows into the first indoor heat exchanger 4 through the gas pipe and the refrigerant flow direction regulating unit 3 and condenses, and then is decompressed and decompressed by the expansion mechanism 5.
  • the low-pressure refrigerant evaporated in the second indoor heat exchanger 6 and the outdoor heat exchanger 8 is sucked into the compressor 1.
  • the room air is warmed by the first indoor heat exchanger 4 as a condenser, the room air is dehumidified by being cooled by the second indoor heat exchanger 6 as an evaporator, and the cooling cycle is performed. Reheating operation is performed.
  • the refrigerant flow direction regulating unit 3 causes the refrigerant to flow from the first indoor heat exchanger 4 to the second indoor heat exchanger 6 via the expansion mechanism 5.
  • the position of the evaporator and the condenser on the indoor side does not always change during the reheating operation.
  • the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified.
  • the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
  • FIG. 5 shows another circuit diagram of the air conditioner.
  • this air conditioner has the same configuration as that of the air conditioner shown in FIG. 1 except that there are two indoor units. It is attached.
  • the reheat operation by the heating cycle and the reheat operation by the cooling cycle can be performed in the same manner as the air conditioner shown in FIG.
  • the present invention is not limited to this embodiment, and may be applied to an air conditioner having three or more indoor units.
  • 6A and 6B are schematic views showing an air flow rate ratio control unit that changes the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 of the air conditioner.
  • the heat exchangers 4a and 4b which are the first indoor heat exchanger 4 (condenser), and the second indoor heat exchanger 6 (evaporator) have a cross section.
  • a heat exchanger bent into a letter shape is formed.
  • An indoor fan 12 is disposed on the leeward side of the heat exchanger.
  • an open / close panel 20 as an example of an air flow rate ratio control unit is arranged on the front side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 so as to be movable in the front-rear direction. ing.
  • the panel 20 moves forward as shown in FIG. 6A to open the opening 21, thereby increasing the air flow rate of the second indoor heat exchanger 6 (evaporator), while rearward as shown in FIG. 6B.
  • the ventilation rate of the second indoor heat exchanger 6 is reduced.
  • the opening of the panel 20 at an intermediate position between FIG. 6A and FIG. 6B, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
  • FIGS. 7A and 7B are schematic diagrams showing examples of other ventilation rate ratio control units.
  • a shutter 30 as an example of an air flow rate ratio control unit that opens and closes the opening 31 on the front side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 is disposed.
  • the shutter 30 is movable in the vertical direction. As shown in FIG. 7A, the shutter 30 moves upward to open the opening 31, thereby increasing the air flow rate of the second indoor heat exchanger 6 (evaporator). By moving downward as shown in FIG. 7B and closing the opening 31, the air flow rate of the second indoor heat exchanger 6 is reduced. Further, by adjusting the opening degree of the shutter 30 at an intermediate position between FIG. 7A and FIG. 7B, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
  • FIGS. 8A and 8B are schematic diagrams showing examples of other ventilation rate ratio control units.
  • the filter 40 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 so as to be movable in the vertical direction by the upper and lower rotary shafts 41 and 42. .
  • the filter 40 and the rotary shafts 41 and 42 constitute a ventilation amount ratio control unit.
  • the air flow rate of the second indoor heat exchanger 6 increases.
  • the air flow rate of the second indoor heat exchanger 6 is reduced by moving downward and the filter 40 overlapping in front of the second indoor heat exchanger 6. Further, by adjusting the area and position of the portion where the filter 40 overlaps twice, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
  • FIGS. 9A and 9B are schematic diagrams showing examples of other ventilation rate ratio control units.
  • a filter 50 wound around upper and lower rotary shafts 51 and 52 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6.
  • the filter 50 is provided with a high-pressure loss part 50a, and the high-pressure loss part 50a moves in the vertical direction by the rotation of the rotary shafts 51 and 52.
  • the filter 50, the high-pressure loss part 50a, and the rotary shafts 51 and 52 constitute an air flow rate ratio control part.
  • FIG. 9A When the high pressure loss part 50a of the filter 50 is moved upward as shown in FIG. 9A, the air flow rate of the second indoor heat exchanger 6 (evaporator) is increased, while it is lowered as shown in FIG. 9B. In a state where the second indoor heat exchanger 6 has moved and moved to a position in front of the second indoor heat exchanger 6, the air flow rate of the second indoor heat exchanger 6 becomes small.
  • FIG. 8B, FIG. 9A, and FIG. 9B exemplify a method for controlling the air flow rate ratio by operating the filter.
  • the present invention is not limited to this method, and filters of other movement methods and forms are used. Needless to say, the present invention can also be applied to the case of using (for example, a filter operation found in a filter cleaning mechanism that has been filed for many times in recent years).
  • FIG. 10A and FIG. 10B are schematic views showing examples of other ventilation rate ratio control units.
  • a filter 60 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6.
  • a cleaning unit 61 (functioning as a pressure loss member that is difficult for air to pass) as an example of an air flow rate ratio control unit is arranged to be movable in the vertical direction.
  • the cleaning unit 61 has the smallest ventilation rate of the second indoor heat exchanger 6 (evaporator) in a state where it is located in the first indoor heat exchanger 4.
  • FIGS. 10A to 10D when the cleaning unit 61 gradually moves upward, the air flow rate of the second indoor heat exchanger 6 gradually increases.
  • FIG. 11A and FIG. 11B are schematic views showing an example of the air flow rate ratio control unit of another air conditioner.
  • a first front heat exchanger 71, a second front heat exchanger 72, and a rear heat exchanger 73 are used to form an indoor heat exchanger having a U-shaped cross section.
  • the air flow rate ratio control unit is formed.
  • the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6)
  • the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased.
  • FIG. 11A the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased.
  • FIG. 11A the first front heat exchanger 71 and the second front heat
  • the first front heat exchanger 71 is an evaporator (corresponding to the second indoor heat exchanger 6), and the second front heat exchanger 72 and the rear heat exchanger 73 are condensers (first indoor heat exchanger). Equivalent to the exchanger 4) and the ventilation rate of the evaporator is reduced.
  • FIGS. 12A and 12B are schematic views showing examples of the air flow rate ratio control unit of another air conditioner.
  • a first front heat exchanger 71, a second front heat exchanger 72, and a rear heat exchanger 73 constitute an indoor heat exchanger having a U-shaped cross section. is doing.
  • the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6)
  • the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased.
  • FIG. 12A the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased.
  • FIG. 12A the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor
  • the first front heat exchanger 71 is an evaporator (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (corresponding to the first indoor heat exchanger 4).
  • the ventilation rate of the evaporator is reduced.
  • FIG. 13A and FIG. 13B are schematic diagrams showing examples of other ventilation rate ratio control units.
  • the heat exchangers 4a and 4b which are the first indoor heat exchanger 4 (condenser), and the second indoor heat exchanger 6 (evaporator) have a cross section.
  • a heat exchanger bent into a letter shape is formed.
  • An indoor fan 12 is disposed on the leeward side of the heat exchanger.
  • first and second horizontal flaps 81 and 82 as an example of the air flow rate ratio control unit are disposed at the air outlet 80, and further upstream than the first and second horizontal flaps 81 and 82.
  • First and second vertical flaps 83 and 84 having an upper and lower two-stage structure are arranged. And the cool air cooled by the 2nd indoor heat exchanger 6 flows through the upper side in the blowing passage 90, and the warm air heated by the 1st indoor heat exchanger 4 flows in the lower side in the blowing passage 90.
  • the air conditioner having the above configuration, in the reheating operation by the heating cycle in which the first indoor heat exchanger 4 is a condenser and the second indoor heat exchanger 6 and the outdoor heat exchanger are evaporators,
  • the ventilation rate ratio control unit By controlling the ventilation rate of the second indoor heat exchanger 6 with respect to the ventilation rate of the first indoor heat exchanger 4, for example, the second indoor heat exchanger 6 (evaporation)
  • the air flow rate of the first indoor heat exchanger 4 (condenser) is relatively reduced with respect to the air flow rate of the second indoor heat exchanger 6 with respect to the air flow rate of the first indoor heat exchanger 4.
  • Increasing the ratio of the amount increases the amount of dehumidification and decreases the heating capacity.
  • the ventilation rate of the first indoor heat exchanger 4 is increased by relatively increasing the ventilation rate of the first indoor heat exchanger 4 (condenser) with respect to the ventilation rate of the second indoor heat exchanger 6 (evaporator).
  • the controller 10 controls the operating frequency of the compressor 1, the rotational speed of the indoor fan 12, the rotational speed of the outdoor fan 11, and the throttle amount of the expansion mechanism 5, as necessary. And sufficient heating capacity can be efficiently obtained while performing dehumidifying operation.
  • the controller 10 controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4, thereby increasing the dehumidification capability.
  • the control device 10 controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4, thereby reducing the heating capacity.
  • the heating capacity is increased.
  • the controller 10 increases the operating frequency of the compressor 1 to increase the heating capacity and the evaporation temperature to decrease the dehumidifying capacity. Also goes up. Moreover, since the low pressure increases by increasing the rotational speed of the outdoor fan 11, the heating capacity increases to some extent. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
  • the temperature of the second indoor heat exchanger 6 is set to be equal to or lower than the dew point temperature at the target humidity based on the temperature of the indoor air detected by the indoor temperature sensor 13 and the target humidity.
  • Compressor 1 air flow rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82), indoor fan 12, outdoor fan 11, and expansion mechanism By controlling at least one of 5, humidity control can be easily performed.
  • the humidity control can be accurately performed by using the indoor humidity sensor 15 for detecting the humidity of the indoor air.
  • the temperature of the second indoor heat exchanger 6 is based on the temperature of the indoor air detected by the indoor temperature sensor 13 and the humidity of the indoor air detected by the indoor humidity sensor 15.
  • the low pressure is lowered by performing the compressor control that makes the operation frequency of the compressor 1 higher than the current frequency.
  • the evaporator temperature can be lowered.
  • the air flow rate of the first indoor heat exchanger 4 is set so that the air flow rate of the second indoor heat exchanger 6 becomes smaller than the current air flow rate.
  • the indoor fan control is performed so that the rotational speed of the indoor fan 12 is lower than the current rotational speed, thereby lowering the low pressure and lowering the evaporator temperature. Can do.
  • the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, thereby lowering the low pressure and lowering the evaporator temperature. it can.
  • the low pressure is lowered and the evaporator temperature is lowered by adjusting the throttle amount of the expansion mechanism 5 to increase the pressure reduction amount. be able to.
  • the evaporator temperature can be adjusted under the optimum conditions according to the operating conditions. Can be lowered.
  • the low pressure is increased by performing the compressor control that makes the operation frequency of the compressor 1 lower than the current frequency.
  • the evaporator temperature can be raised.
  • the amount of ventilation of the first indoor heat exchanger 4 is increased so that the amount of ventilation of the second indoor heat exchanger 6 is larger than the current amount of ventilation.
  • the indoor fan control is performed so that the rotational speed of the indoor fan 12 is higher than the current rotational speed, thereby increasing the low pressure and raising the evaporator temperature.
  • the outdoor fan control is performed so that the rotational speed of the outdoor fan 11 is higher than the current rotational speed, thereby increasing the low pressure and raising the evaporator temperature.
  • the temperature of the second indoor heat exchanger 6 is lower than the target temperature, by controlling the amount of expansion by adjusting the amount of expansion of the expansion mechanism to reduce the amount of pressure reduction, the low pressure increases and the evaporator temperature increases. Can do.
  • the evaporator temperature can be adjusted under the optimum conditions according to the operating conditions. Can be lowered.
  • the ventilation of the second indoor heat exchanger 6 (evaporator) is performed.
  • the ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 so that the amount becomes larger than the current ventilation rate.
  • the ventilation rate of the second indoor heat exchanger 6 (evaporator) is smaller than the current ventilation rate.
  • the air flow rate ratio control is performed to control the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4.
  • Compressor control is performed so that the operating frequency of the compressor 1 is higher than the current frequency.
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan 11 is higher than the current rotation speed (the evaporation temperature increases, the high pressure increases, the condensation temperature also increases, and the heating capacity increases).
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 and the ability when combined with the above (i) to (iv)
  • the order of control is not limited to the above, and may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
  • the ventilation of the second indoor heat exchanger 6 (evaporator) is performed.
  • the ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 so that the amount becomes larger than the current ventilation rate.
  • the ventilation rate of the second indoor heat exchanger 6 (evaporator) is smaller than the current ventilation rate.
  • the air flow rate ratio control is performed to control the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4.
  • Compressor control is performed so that the operating frequency of the compressor 1 is lower than the current frequency.
  • the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 and the performance when combined with the above (a) to (d)
  • the order of control is not limited to the above, and may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
  • dehumidification can be performed under almost all operating conditions of the heating operation and the cooling operation.
  • the refrigerant flow direction restricting unit 3 even when switching from the heating cycle to the cooling cycle or from the cooling cycle to the heating cycle, the room during the reheating operation is always used regardless of the heating cycle and the cooling cycle. Since the positions of the evaporator and condenser of the heat exchanger do not change, the distribution of cold air and warm air coming out from the outlet can be made the same.
  • the refrigerant flow direction regulating unit 3 causes the refrigerant to flow from the first indoor heat exchanger 4 to the second indoor heat exchanger 6 via the expansion mechanism 5.
  • the position of the evaporator and the condenser on the indoor side does not always change during the reheating operation.
  • the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified.
  • the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
  • the ventilation rate ratio control unit having the configuration shown in FIGS. 6A to 13B has been described.
  • the ventilation rate ratio control unit is not limited to this, and the second indoor volume with respect to the ventilation rate of the first indoor heat exchanger is not limited thereto. Any device that changes the ratio of the air flow rate of the heat exchanger may be used.
  • FIG. 14 shows a circuit diagram of an air conditioner according to a second embodiment of the present invention.
  • the air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102.
  • An electric expansion valve 107 having one end connected to the other end of the third indoor heat exchanger 106B, one end connected to the other end of the electric expansion valve 107, and the other end connected to the compressor via the four-way switching valve 102 Outdoor heat exchanger 1 connected to the suction side of 101 And a 8.
  • the first indoor heat exchanger 104, the second indoor heat exchanger 106 ⁇ / b> A, and the third indoor heat exchanger 106 ⁇ / b> B are a plurality of thermally divided heat exchanging units, and the indoor heat It constitutes an exchange.
  • the exchanger 108 constitutes a refrigerant circuit.
  • the expansion mechanisms 105A and 105B use an on-off valve with a built-in throttle mechanism, a variable throttle valve, an on-off valve and a throttle mechanism arranged in parallel therewith.
  • the refrigerant flow direction regulating unit 3 of the air conditioner shown in FIG. 1 of the first embodiment may be used.
  • the air conditioner includes an outdoor fan 111 that supplies outdoor air to the outdoor heat exchanger 108, and an indoor fan that blows out air sucked from the room into the room through the indoor heat exchanger (104, 106A, 106B). 112. As the indoor fan 112, a cross flow fan is used.
  • the air conditioner includes an indoor temperature sensor 113 that detects the temperature of indoor air, and an indoor heat exchanger that is an example of an evaporator temperature sensor that detects the temperature of refrigerant upstream of the third indoor heat exchanger 106B.
  • a temperature sensor 114, an indoor humidity sensor 115 for detecting the humidity of room air, and a control device 110 including a microcomputer and an input / output circuit are provided.
  • the control device 110 includes the indoor air temperature detected by the indoor temperature sensor 113, the refrigerant temperature upstream of the third indoor heat exchanger 106B detected by the indoor heat exchanger temperature sensor 114, and the indoor humidity sensor 115.
  • the compressor 101, the four-way switching valve 102, the expansion mechanism 105A, the expansion mechanism 105B, the electric expansion valve 107, the outdoor fan 111, and the indoor fan 112 are controlled based on the humidity of the indoor air detected by the above.
  • the air conditioner switches the four-way switching valve 102 to the position of the solid line, opens the electric expansion valve 107, and opens the expansion mechanism 105A, while the expansion mechanism 105B is in the throttle state.
  • the compressor 101 is started.
  • the high-pressure gas refrigerant discharged from the compressor 101 flows into the first indoor heat exchanger 104 through the gas pipe, condenses, and further flows into the second indoor heat exchanger 106A through the expansion mechanism 105A.
  • the pressure is reduced by the expansion mechanism 105B, and the reduced low-pressure refrigerant evaporates in the third indoor heat exchanger 106B and the outdoor heat exchanger 8, and is sucked into the compressor 101.
  • the indoor air is warmed by the first indoor heat exchanger 104 and the second indoor heat exchanger 106A as the condenser, while the indoor air is cooled by the third indoor heat exchanger 106B as the evaporator. Is dehumidified by the reheating operation by the heating cycle.
  • the state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 15A.
  • the first indoor heat exchanger 104 (condenser) and the second indoor heat exchanger 106A (condenser) and the third indoor heat exchanger 104a and 104b.
  • An indoor heat exchanger bent in a cross-sectional shape is formed by the vessel 106B (evaporator).
  • the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided.
  • An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and a panel 120 is provided on the front side of the heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B. Is arranged.
  • the expansion mechanism 105A and the expansion mechanism 105B constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B). ing.
  • the configuration of the indoor heat exchanger and the expansion mechanism is changed as appropriate to configure a refrigerant flow control unit that increases or decreases the number of heat exchange units that act as condensers among the plurality of heat exchange units of the indoor heat exchanger.
  • a refrigerant flow control unit that increases or decreases both the number of heat exchange units that act as condensers and the number of heat exchange units that act as evaporators. May be configured.
  • the control device 110 controls the operation frequency of the compressor 101 and the rotational speed of the outdoor fan 111 and the indoor fan 112 to control the expansion mechanism (105A, 105B).
  • the heating capacity in the reheating operation by the heating cycle is the same as that in the normal heating operation except that the refrigerant flow control unit is appropriately adjusted in accordance with the required dehumidifying capacity. Control is based on the rotational speed of the fan 111 and the indoor fan 112.
  • the control device 110 causes the condensing capacity and evaporation of the heat exchanging portion acting as a condenser of the indoor heat exchangers (104, 106A, 106B).
  • the amount of dehumidification can be reduced by controlling the evaporation capacity of the heat exchanger acting as a condenser, for example, reducing the condensation capacity of the heat exchanger acting as a condenser, and increasing the evaporation capacity of the heat exchanger acting as an evaporator. Increases and heating capacity decreases.
  • the dehumidification amount decreases and the heating capacity increases.
  • the control device 110 controls the operation frequency of the compressor 101, the rotation speed of the indoor fan 112, and the rotation speed of the outdoor fan 111 by the control device 110 as necessary, the dehumidification amount and the heating capacity can be adjusted respectively. However, sufficient heating capacity can be obtained efficiently.
  • At least one of the dehumidifying amount and the heating capacity can be finely controlled.
  • control device 110 controls the expansion mechanism (105A, 105B) to increase / decrease the number of heat exchange units acting as condensers and the number of heat exchange units acting as evaporators, thereby increasing the number of heat exchange units.
  • the condensing capacity and evaporating capacity of (104, 106A, 106B) can be easily controlled.
  • the condensation capacity of the indoor heat exchanger or the number of heat exchangers acting as a condenser or the number of heat exchangers acting as an evaporator is increased or decreased.
  • the evaporation capacity may be controlled.
  • the expansion mechanism (105A, 105B) can switch whether the second indoor heat exchanger 106A of the indoor heat exchangers (104, 106A, 106B) is a condenser or an evaporator. By doing so, the control range of the condensation capacity and evaporation capacity of the indoor heat exchanger can be widened. In the configuration in which the indoor heat exchanger is composed of four or more heat exchange units, it is possible to switch between two or more heat exchange units as a condenser or an evaporator.
  • the refrigerant flow control unit can be realized with a simple configuration.
  • the number of heat exchanging portions acting as condensers and the number of heat exchanging portions acting as evaporators of the indoor heat exchangers is made constant and the rotation speed of the indoor fan 112 is made constant.
  • the controller 110 increases the operating frequency of the compressor 1 to increase the heating capacity.
  • the evaporator temperature is lowered, the dehumidifying ability is also increased.
  • the low pressure increases by increasing the rotational speed of the outdoor fan 111, the heating capacity increases to some extent. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
  • the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor 113, the evaporator temperature detected by the indoor heat exchanger temperature sensor 114 without using the humidity sensor. Based on (the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B), for example, the humidity can be controlled by setting the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity.
  • the temperature of the refrigerant upstream of the third indoor heat exchanger 106B is the dew point temperature at the target humidity.
  • the number of heat exchange units acting as a condenser, the number of heat exchange parts acting as an evaporator, the number of heat exchange parts acting as an evaporator By controlling at least one of the throttle amounts of the fan 112, outdoor fan 111, and expansion mechanism (105A, 105B), humidity control can be facilitated.
  • the humidity control can be accurately performed by using the indoor humidity sensor 115 for detecting the humidity of the indoor air.
  • the third indoor heat exchanger as an evaporator is based on the temperature of the indoor air detected by the indoor temperature sensor 113 and the humidity of the indoor air detected by the indoor humidity sensor 115.
  • the control device 110 controls at least one of the throttle amounts of the compressor 101, the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B) so that the temperature of the refrigerant upstream of 106B is equal to or lower than the dew point temperature in the atmosphere. By controlling, effective dehumidification can be performed.
  • the temperature of the indoor air detected by the indoor temperature sensor 113 and the indoor humidity sensor Based on the humidity of the indoor air detected by 115, the compressor 101 and the compressor 101 so that the temperature of the refrigerant on the upstream side of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B is equal to or lower than the dew point temperature in the atmosphere.
  • the controller 110 controls at least one of the throttle amounts of the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B).
  • the number of heat exchange units acting as a condenser of the indoor heat exchanger and evaporation so that the temperature of the refrigerant upstream of the third indoor heat exchanger 106B is equal to or higher than the freezing temperature.
  • the control unit 110 controls at least one of the number of heat exchangers acting as an evaporator and the throttle amount of the compressor 101, the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B), thereby freezing the evaporator. Can be prevented.
  • the compressor control is performed so that the operation frequency of the compressor 1 is higher than the current frequency. Can lower the low pressure and lower the evaporator temperature. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the low pressure is lowered by performing capacity control for controlling the evaporation capacity to be smaller than the current evaporation capacity, and the evaporator The temperature can be lowered.
  • the indoor fan control is performed so that the rotational speed of the indoor fan 112 is lower than the current rotational speed, thereby lowering the low pressure and evaporating.
  • the vessel temperature can be lowered.
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan 1111 is lower than the current rotation speed, thereby lowering the low pressure and evaporating.
  • the vessel temperature can be lowered.
  • the low pressure is lowered by adjusting the throttle amount of the expansion mechanism 105B to increase the pressure reduction amount,
  • the evaporator temperature can be lowered.
  • the compressor control, capacity control, indoor fan control, and expansion amount control of the expansion mechanism 5 the evaporator temperature can be lowered under the optimum conditions according to the operating conditions.
  • the compressor control is performed so that the operation frequency of the compressor 101 is lower than the current frequency. Can increase the low pressure and raise the evaporator temperature.
  • the low pressure is increased by performing capacity control for controlling the evaporation capacity to be smaller than the current evaporation capacity, and the evaporator The temperature can be raised.
  • the indoor fan control is performed so that the rotational speed of the indoor fan 112 is higher than the current rotational speed, thereby increasing the low pressure and evaporating.
  • the vessel temperature can be raised.
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan 111 is higher than the current rotation speed.
  • the vessel temperature can be raised.
  • the low pressure is increased by adjusting the throttle amount of the expansion mechanism 105B to reduce the pressure reduction amount,
  • the evaporator temperature can be raised.
  • the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion amount control of the expansion mechanism 5 the evaporator temperature is lowered under the optimum conditions according to the operating conditions. Can do.
  • the evaporation capacity of the indoor heat exchanger is set to be lower than the current evaporating capacity.
  • Ability control is performed to increase the control.
  • Compressor control is performed so that the operating frequency of the compressor 101 is higher than the current frequency.
  • the outdoor fan control is performed so that the rotational speed of the outdoor fan 111 is higher than the current rotational speed (the evaporation temperature rises, and the high pressure (the condenser inlet pressure, the condenser temperature rises and falls as the high pressure rises and falls). ) Also rises and heating capacity increases).
  • (V) Indoor fan control is performed so that the rotational speed of the indoor fan 112 is lower than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger is reduced, resulting in an increase in heating capacity).
  • the order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination with the above (I) to (V) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
  • the evaporation capacity of the indoor heat exchanger is set higher than the current evaporating capacity.
  • Ability control is performed to increase the control.
  • either one of the following (A) to (E) is performed so as to reduce the heating capacity, or (A) to (E) By performing a combination of two or more of them, the heating capacity can be lowered under the optimum conditions according to the operating conditions.
  • Compressor control is performed so that the operating frequency of the compressor 101 is lower than the current frequency.
  • Capability control is performed to control the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
  • (C) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
  • the outdoor fan control is performed so that the rotation speed of the outdoor fan 111 is lower than the current rotation speed (the evaporation temperature is lowered and the high pressure is also lowered, so the condensation temperature is lowered and the heating capacity is also lowered).
  • the order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination of the above (A) to (E) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
  • dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle.
  • the expansion mechanism 105A and the expansion mechanism 105B when a valve weak against a reverse pressure is used for the expansion mechanism 105A and the expansion mechanism 105B, if the reheating operation is performed by the cooling cycle without using the refrigerant flow direction regulating unit 3 illustrated in FIG. 105A and the expansion mechanism 105B may open. In this case, the reheating operation by the cooling cycle may not be performed, and the cooling operation in which the cooling capacity is weakened may be substituted. Thereby, warm air dehumidification is performed by a heating cycle, and cold flavor dehumidification can cover most operation areas by performing a weak cooling operation by a refrigerating cycle.
  • the air conditioner of the second embodiment may be provided with the refrigerant flow direction regulating unit 3 shown in FIG.
  • the evaporator and condenser of the indoor heat exchanger during the reheating operation are not always used during the reheating operation, regardless of the heating cycle and the cooling cycle. Since the position does not change, the distribution of cold air and warm air from the outlet can be made the same.
  • the expansion mechanism 105A, the second indoor heat exchanger 106A, and the expansion mechanism 105B are transferred from the first indoor heat exchanger 104 in both the heating cycle and the cooling cycle.
  • the refrigerant By allowing the refrigerant to flow in the order of the third indoor heat exchanger 106B, even when switching from the heating cycle to the cooling cycle or from the cooling cycle to the heating cycle, the indoor evaporator and condenser are always in the reheat operation. The position does not change. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified.
  • the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
  • the air conditioner using the expansion mechanism (105A, 105B) having the configuration shown in FIG. 14 has been described.
  • the refrigerant flow control unit is not limited to this, and a plurality of thermally divided heats are used.
  • the indoor heat exchanger composed of the exchange unit it is sufficient that at least one of the number of heat exchange units acting as a condenser or the number of heat exchange units acting as an evaporator is increased or decreased.
  • FIG. 16 shows a circuit diagram of an air conditioner according to a third embodiment of the present invention.
  • the air conditioner of the third embodiment has the same configuration as the air conditioner shown in FIG. 14 of the second embodiment except for the on-off valve 130, and the same components are denoted by the same reference numerals. .
  • the air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102.
  • the first indoor heat exchanger 104 connected, the expansion mechanism 105 having one end connected to the other end of the first indoor heat exchanger 104, and the second room having one end connected to the other end of the expansion mechanism 105
  • the outdoor heat exchanger 1 connected to the suction side of the compressor 101 And a 8.
  • the expansion mechanism 105 and the on-off valve 130 constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units (104, 106A, 106B) of the indoor heat exchanger. ing.
  • the on-off valve 130 is a refrigerant flow switching unit that switches whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 106A.
  • the number of heat exchanging parts acting as a condenser among the plurality of heat exchanging parts of the indoor heat exchanger is not limited to the above embodiment, and the configurations of the indoor heat exchanger, the expansion mechanism, and the on-off valve are appropriately changed.
  • the refrigerant flow control unit may be configured to increase or decrease the number of heat exchange units that function as a condenser, and the heat exchange unit that functions as an evaporator among the plurality of heat exchange units of the indoor heat exchanger. You may comprise the refrigerant
  • the air conditioner switches the four-way switching valve 102 to the position shown by the solid line, opens the electric expansion valve 107, brings the expansion mechanism 105 into the throttle state, and opens the on-off valve 130.
  • the compressor 101 is started.
  • the high-pressure gas refrigerant discharged from the compressor 101 flows into the first indoor heat exchanger 104 through the gas pipe and condenses, and then is decompressed by the expansion mechanism 105.
  • the decompressed low-pressure refrigerant is the expansion mechanism 105.
  • the low-pressure refrigerant from the expansion mechanism 105 flows through the open on-off valve 130 without flowing through the second indoor heat exchanger 106A.
  • the room air is warmed by the first indoor heat exchanger 104 as a condenser, while the room air is dehumidified by being cooled by the third indoor heat exchanger 106B as an evaporator, and thus is heated by the heating cycle. Reheating operation is performed.
  • the state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 17A.
  • the heat exchangers 104a and 104b which are the first indoor heat exchanger 104 (condenser), the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B (evaporation)
  • the indoor heat exchanger bent in a cross-sectional shape is formed.
  • the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided.
  • An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and the front side of the first indoor heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B.
  • a panel 120 is disposed on the panel.
  • warm air warmed by the first indoor heat exchanger 104 as a condenser is blown out from the lower side of the outlet, and cold air cooled by the third indoor heat exchanger 106B is blown out above the warm air.
  • the bypass air that has passed through the second indoor heat exchanger 106A without heat exchange blows out between the warm air and the cool air, the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
  • FIG. 17B the same refrigerant circuit as the refrigerant circuit shown in FIG. 16 is used, and the upper and lower arrangements of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B are interchanged. Good.
  • the four-way switching valve 102 When the four-way switching valve 102 is in the position of the solid line, when the electric expansion valve 107 is opened, the expansion mechanism 105 is in the throttle state, and the on-off valve 130 is closed, as shown in FIG. While the indoor air is warmed by the first indoor heat exchanger 104 as the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as the evaporator, the indoor air is dehumidified by being cooled, Reheating operation is performed by the heating cycle.
  • the low-pressure refrigerant from the expansion mechanism 105 flows through the second indoor heat exchanger 106A without flowing through the closed on-off valve 130 (see the lower right dotted frame in FIG. 16).
  • the electric expansion valve 107 is throttled and the expansion mechanism 105 is opened, while the on-off valve 130 is closed.
  • the indoor air is warmed by the first indoor heat exchanger 104, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B as condensers.
  • the second indoor heat exchanger 106A is on the upper side and the third indoor heat exchanger 106B is on the lower side, and the upper and lower arrangements are interchanged.
  • FIG. 18 shows the flow of the refrigerant during the heating cycle using another example of the indoor heat exchanger of the air conditioner.
  • This air conditioner has the same configuration as that of the air conditioner shown in FIG. 16 except for the on-off valve 130, and the same components are denoted by the same reference numerals.
  • this air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102.
  • the first indoor heat exchanger 104 connected, the expansion mechanism 105 having one end connected to the other end of the first indoor heat exchanger 104, and the second room having one end connected to the other end of the expansion mechanism 105
  • a heat exchanger 106A, a third indoor heat exchanger 106B having one end connected to the other end of the second indoor heat exchanger 106A, and an on-off valve connected in parallel to both ends of the third indoor heat exchanger 106B 130, an electric expansion valve 107 having one end connected to the other end of the third indoor heat exchanger 106B, one end connected to the other end of the electric expansion valve 107, and the other end via the four-way switching valve 102.
  • the outdoor heat exchanger 1 connected to the suction side of the compressor 101 And a 8.
  • the expansion mechanism 105 and the on-off valve 130 constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B). ing.
  • the on-off valve 130 is a refrigerant flow switching unit that switches whether to bypass the refrigerant flow flowing through the third indoor heat exchanger 106B.
  • the configuration of the indoor heat exchanger and the expansion mechanism is changed as appropriate to configure a refrigerant flow control unit that increases or decreases the number of heat exchange units that act as condensers among the plurality of heat exchange units of the indoor heat exchanger.
  • a refrigerant flow control unit that increases or decreases both the number of heat exchange units that act as condensers and the number of heat exchange units that act as evaporators. May be configured.
  • the state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 19A.
  • the heat exchangers 104a and 104b which are the first indoor heat exchanger 104 (condenser), the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B (evaporation)
  • the indoor heat exchanger bent in a cross-sectional shape is formed.
  • the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided.
  • An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and the front side of the first indoor heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B.
  • a panel 120 is disposed on the panel.
  • FIG. 19B the same refrigerant circuit as that shown in FIG. 18 is used, and the upper and lower arrangements of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B are interchanged. Good.
  • the four-way switching valve 102 When the four-way switching valve 102 is in the position of the solid line, when the electric expansion valve 107 is opened, the expansion mechanism 105 is in the throttle state, and the on-off valve 130 is closed, as shown in FIG. While the indoor air is warmed by the first indoor heat exchanger 104 as the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as the evaporator, the indoor air is dehumidified by being cooled, Reheating operation is performed by the heating cycle.
  • the low-pressure refrigerant from the expansion mechanism 105 flows through the second indoor heat exchanger 106A without flowing through the closed on-off valve 130 (see the lower right dotted line frame in FIG. 18).
  • the air conditioner of the third embodiment has the same effect as the air conditioner of the second embodiment.
  • the control of the control device 110 performs the same control as the air conditioner of the second embodiment.
  • the refrigerant flow control unit can be realized with a simple configuration by switching whether or not the refrigerant flow flowing through the third indoor heat exchanger 106B is bypassed by the on-off valve 130 which is the refrigerant flow switching unit.
  • the air conditioner using the refrigerant flow control unit (105, 130) having the configuration shown in FIGS. 16 and 18 has been described.
  • the refrigerant flow control unit is not limited to this and is thermally divided. What is necessary is just to increase / decrease the number of the heat exchange parts which act as an evaporator and the number of the heat exchange parts which act as an evaporator in the indoor heat exchanger which consists of a plurality of heat exchange parts.
  • FIG. 20 shows a circuit diagram of an air conditioner according to a fourth embodiment of the present invention.
  • the air conditioner has a compressor 201, a four-way switching valve 202 having one end connected to the discharge side of the compressor 201, and one end at the other end of the four-way switching valve 202.
  • the connected first indoor heat exchanger 204, the expansion mechanism 205 having one end connected to the other end of the first indoor heat exchanger 204, and the second indoor having one end connected to the other end of the expansion mechanism 205 A heat exchanger 206A, an on-off valve 230A connected in parallel to both ends of the second indoor heat exchanger 206A, and a third indoor heat exchanger whose one end is connected to the other end of the second indoor heat exchanger 206A 206B, an on-off valve 230B connected in parallel to both ends of the third indoor heat exchanger 206B, a fourth indoor heat exchanger 206C having one end connected to the other end of the third indoor heat exchanger 206B, One end at the other end of the fourth indoor heat exchanger 206C A connected electric expansion valve 207, and an outdoor heat exchange
  • Refrigerant that increases or decreases the number of heat exchange parts acting as an evaporator among a plurality of heat exchange parts of the indoor heat exchanger (204, 206A, 206B, 206C) by the expansion mechanism 205, the on-off valve 230A, and the on-off valve 230B.
  • the flow control unit is configured.
  • the on-off valve 230A and the on-off valve 230B are refrigerant flow path switching units that switch whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B.
  • the refrigerant flow control unit may be configured, and among the plurality of heat exchange units of the indoor heat exchanger, both the number of heat exchange units acting as a condenser and the number of heat exchange units acting as an evaporator You may comprise the refrigerant
  • the air conditioner includes an indoor temperature sensor 213 that detects the temperature of indoor air, an indoor heat exchanger temperature sensor 214 that is an example of an evaporator temperature sensor that detects the temperature of the fourth indoor heat exchanger 206C, An indoor humidity sensor 215 that detects the humidity of the indoor air, and a control device 210 including a microcomputer and an input / output circuit are provided.
  • the controller 210 detects the indoor air temperature detected by the indoor temperature sensor 213, the temperature of the fourth indoor heat exchanger 206 ⁇ / b> C detected by the indoor heat exchanger temperature sensor 214, and the indoor humidity sensor 215.
  • the compressor 201 Based on the humidity of the air, the compressor 201, the four-way switching valve 202, the expansion mechanism 205, the on-off valves 230A and 230B, the electric expansion valve 207, the outdoor fan 211, and the indoor fan 212 are controlled.
  • the air conditioner switches the four-way switching valve 202 to the position shown by the solid line, opens the electric expansion valve 207, brings the expansion mechanism 205 into the throttle state, and opens the on-off valve 230A and the on-off valve 230B. Is closed and the compressor 201 is started.
  • the high-pressure gas refrigerant discharged from the compressor 201 flows into the first indoor heat exchanger 204 through the gas pipe and condenses, and then is decompressed by the expansion mechanism 205, and the decompressed low-pressure refrigerant is the expansion mechanism 205.
  • the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, the fourth indoor heat exchanger 206C, and the outdoor heat exchanger 208 are evaporated and sucked into the compressor 201.
  • the indoor air is warmed by the first indoor heat exchanger 204 as a condenser, the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, and the fourth indoor heat exchanger 206C as evaporators.
  • the room air is dehumidified by being cooled, and reheating operation is performed by the heating cycle.
  • the state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 21A.
  • the heat exchangers 204a and 204b and the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, the first indoor heat exchanger 204 (condenser), A four-room heat exchanger 206C (evaporator) forms an indoor heat exchanger bent in a cross-sectional shape.
  • the heat exchange parts 204a and 204b of the first indoor heat exchanger 204 are not thermally divided.
  • An indoor fan 212 is disposed on the leeward side of the indoor heat exchangers (204, 206A, 206B, 206C), and the first indoor heat exchanger 204a, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B
  • a panel 220 is arranged on the front side of the fourth indoor heat exchanger 206C.
  • the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A is closed and the on-off valve 230B is opened.
  • the indoor air is warmed by the first indoor heat exchanger 204 as a condenser, while the indoor air is heated by the third indoor heat exchanger 206B and the fourth indoor heat exchanger 206C as evaporators. Dehumidification is achieved by cooling, and reheating operation is performed by a heating cycle.
  • the low-pressure refrigerant from the expansion mechanism 205 flows through the open on-off valve 230A without flowing through the second indoor heat exchanger 206A (see the inside of the lower left dotted line frame in FIG. 20). Then, between the warm air and the cool air, bypass air that has passed through the second indoor heat exchanger 206A without being subjected to heat exchange blows out, so that the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
  • the electric expansion valve 207 is opened to bring the expansion mechanism 205 into the throttle state, while the on-off valve 230A and the on-off valve 230B are opened, as shown in FIG. 21C.
  • the room air is warmed by the first indoor heat exchanger 204 as a condenser
  • the room air is dehumidified by being cooled by the fourth indoor heat exchanger 206C as an evaporator, and is regenerated by the heating cycle. Thermal operation is performed.
  • the low-pressure refrigerant from the expansion mechanism 205 does not flow through the second indoor heat exchanger 206A but flows through the open on-off valve 230A, and the refrigerant from the on-off valve 230A does not flow through the third indoor heat exchanger 206B.
  • Flows through the open on-off valve 230B (refer to the inside of the lower right dotted line frame in FIG. 20). Then, between the warm air and the cool air, the bypass air that has passed through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B without being exchanged is blown out, so that the warm air and the cool air are mixed by the bypass air. It blows out from a blower outlet in the state separated as it is.
  • the amount of dehumidification can be controlled to be large, medium, and small as shown in FIGS. 21A, 21B, and 21C.
  • FIG. 22 shows a refrigerant flow during a heating cycle using another example of the indoor heat exchanger of the air conditioner.
  • This air conditioner has the same configuration as that of the air conditioner shown in FIG. 20 except for the position of the expansion mechanism 205, and the same components are denoted by the same reference numerals.
  • this air conditioner has a compressor 201, a four-way switching valve 202 having one end connected to the discharge side of the compressor 201, and one end at the other end of the four-way switching valve 202.
  • Refrigerant that increases or decreases the number of heat exchange parts acting as a condenser among the plurality of heat exchange parts of the indoor heat exchanger (204, 206A, 206B, 206C) by the expansion mechanism 205, the on-off valve 230A, and the on-off valve 230B.
  • the flow control unit is configured.
  • the on-off valve 230A and the on-off valve 230B are refrigerant flow path switching units that switch whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B.
  • the refrigerant flow control unit may be configured, and among the plurality of heat exchange units of the indoor heat exchanger, both the number of heat exchange units acting as a condenser and the number of heat exchange units acting as an evaporator You may comprise the refrigerant
  • the air conditioner switches the four-way switching valve 202 to the position shown by the solid line, opens the electric expansion valve 207, brings the expansion mechanism 205 into the throttle state, and opens the on-off valve 230A and the on-off valve 230B. Is closed and the compressor 201 is started.
  • the high-pressure gas refrigerant discharged from the compressor 201 is condensed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B, and then decompressed by the expansion mechanism 205.
  • the low-pressure refrigerant thus evaporated is evaporated by the fourth indoor heat exchanger 206C and the outdoor heat exchanger 208 and sucked into the compressor 201.
  • the indoor air is warmed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B as the condenser, while the fourth indoor heat exchanger 206C as the evaporator.
  • the room air is dehumidified by being cooled, and reheating operation is performed by the heating cycle.
  • the state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 23A.
  • the first indoor heat exchanger 204 (condenser), the heat exchange units 204a and 204b, the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, A four-room heat exchanger 206C (evaporator) forms an indoor heat exchanger bent in a cross-sectional shape.
  • the heat exchange parts 204a and 204b of the first indoor heat exchanger 204 are not thermally divided.
  • An indoor fan 212 is disposed on the leeward side of the indoor heat exchangers (204, 206A, 206B, 206C), and the first indoor heat exchanger 204a, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B
  • a panel 220 is arranged on the front side of the fourth indoor heat exchanger 206C.
  • the warm air warmed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B as condensers is blown out from the lower side of the outlet, and above the warm air.
  • the cold air cooled by the fourth indoor heat exchanger 206C is blown out.
  • the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A is closed and the on-off valve 230B is opened.
  • the indoor air is warmed by the first indoor heat exchanger 204 and the third indoor heat exchanger 206B as condensers, while the indoor air is heated by the fourth indoor heat exchanger 206C as an evaporator. Dehumidification is achieved by cooling, and reheating operation is performed by a heating cycle.
  • the low-pressure refrigerant from the expansion mechanism 205 flows through the open on-off valve 230A without flowing through the second indoor heat exchanger 206A (see the inside of the lower left dotted line frame in FIG. 22). Then, between the warm air and the cool air, bypass air that has passed through the second indoor heat exchanger 206A without being subjected to heat exchange blows out, so that the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
  • the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A and the on-off valve 230B are opened, as shown in FIG.
  • the room air is warmed by the first indoor heat exchanger 204 as a condenser
  • the room air is dehumidified by being cooled by the fourth indoor heat exchanger 206C as an evaporator, and is regenerated by the heating cycle. Thermal operation is performed.
  • the low-pressure refrigerant from the expansion mechanism 205 does not flow through the second indoor heat exchanger 206A but flows through the open on-off valve 230A, and the refrigerant from the on-off valve 230A does not flow through the third indoor heat exchanger 206B.
  • Flows through the open on-off valve 230B (refer to the inside of the lower right dotted line frame in FIG. 20). Then, between the warm air and the cool air, the bypass air that has passed through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B without being exchanged is blown out, so that the warm air and the cool air are mixed by the bypass air. It blows out from a blower outlet in the state separated as it is.
  • the heating capacity can be controlled to be large, medium, and small.
  • the air conditioner of the fourth embodiment has the same effect as the air conditioner of the third embodiment.
  • the air conditioner of the said 4th Embodiment in the reheating operation by a heating cycle, the area of the part which acts as an evaporator is large, and while it can enlarge the maximum dehumidification amount, Since the acting part is divided into multiple parts, the amount of dehumidification can be finely adjusted.
  • the expansion mechanism 205 in the reheat operation by the heating cycle, the area of the part that acts as a condenser is large, the maximum heating capacity can be increased, and the part that acts as a condenser is multi-divided, Heating capacity can be finely adjusted. Further, by disposing the expansion mechanism 205 on the downstream side of the condenser having a large area, the expansion mechanism 205 becomes the liquid side and the liquid-rich refrigerant flows, so that the pressure loss can be reduced regardless of the operation state. .
  • the air conditioner using the refrigerant flow control unit (205, 230A, 230B) having the configuration shown in FIGS. 20 and 22 has been described.
  • the refrigerant flow control unit is not limited to this, and thermal What is necessary is just to increase / decrease the number of the heat exchange parts which act as an evaporator, and the number of the heat exchange parts which act as an evaporator in the indoor heat exchanger which consists of a some heat exchange part divided
  • the air conditioner having one indoor unit has been described.
  • the present invention is not limited to this, and the present invention is applied to an air conditioner having two or more indoor units. Also good.
  • Rotation Shaft 50 ... Filter 50a ... High pressure loss part 51, 52 ... Rotating shaft 60 ... Filter 61 ... Cleaning part 71 ... First front heat exchanger 72 ... Second front heat exchanger 73 ... Rear heat exchanger 80 ... Outlet 81 ... 1st horizontal flap 82 ... 2nd horizontal flap 83 ... 1st vertical flap 84 ... 2nd vertical flap 90 ... Outlet passage 106B, 206B ... 3rd indoor heat exchanger 114, 214 ... Indoor heat exchanger temperature sensor 130, 230A, 230B ... open / close valve 206C ... fourth indoor heat exchanger

Abstract

In a reheat operation by a heating cycle using a first indoor heat exchanger (4) as a condenser and a second indoor heat exchanger (6) and an outdoor heat exchanger (8) as an evaporator, a control device (10) controls the condensation power of the heat exchange unit which acts as a condenser and the evaporation power of the heat exchange unit which acts as an evaporator among the first indoor heat exchanger (4) and the second indoor heat exchanger (6).  As a result, the dehumidification power and the heating power can be individually adjusted to enhance the efficiency of a heating operation while performing dehumidification.

Description

空気調和機Air conditioner
 この発明は、空気調和機に関する。 This invention relates to an air conditioner.
 従来、空気調和機としては、熱的に分割された2つの熱交換部からなる室内熱交換器のうちの一方の熱交換部と、室外熱交換器とを蒸発器として使用し、室内熱交換器のうちの他方の熱交換部を凝縮器として使用する暖房サイクルによる除湿運転において、室外ファンの回転速度を変化させることで除湿能力を制御し、圧縮機の運転周波数を変化させることで室内機の吹出温度を制御するものがある(例えば、特開2003-28536号公報(特許文献1)参照)。上記空気調和機では、膨張機構により凝縮器と蒸発器に分けられた室内熱交換器を用いるが、室内熱交換器の凝縮器による加熱熱量が室内熱交換器の蒸発器による冷却能力よりも大きいため、暖房しながら除湿を行うことができる。 Conventionally, as an air conditioner, one of the indoor heat exchangers consisting of two thermally divided heat exchangers and an outdoor heat exchanger are used as an evaporator to exchange indoor heat. In the dehumidifying operation by the heating cycle using the other heat exchange part as a condenser, the dehumidifying capacity is controlled by changing the rotation speed of the outdoor fan, and the operating frequency of the compressor is changed. There is one that controls the blow-out temperature (see, for example, Japanese Patent Laid-Open No. 2003-28536 (Patent Document 1)). The air conditioner uses an indoor heat exchanger divided into a condenser and an evaporator by an expansion mechanism, but the amount of heat heated by the condenser of the indoor heat exchanger is larger than the cooling capacity of the evaporator of the indoor heat exchanger. Therefore, dehumidification can be performed while heating.
 ところで、上記空気調和機では、室外ファンの回転数を増加させることにより、室内熱交換器の蒸発器としての潜熱能力(除湿能力)を下げ、また、圧縮機の周波数を上げることにより、吹出温度を上昇させるのが、暖房サイクルによる再熱運転での基本的な制御である。 By the way, in the above air conditioner, by increasing the rotational speed of the outdoor fan, the latent heat capacity (dehumidification capacity) as an evaporator of the indoor heat exchanger is lowered, and by increasing the frequency of the compressor, the blowout temperature is increased. Is the basic control in the reheat operation by the heating cycle.
 このような空気調和機では、除湿能力を上げるときに、室外ファン回転数を下げて室外熱交換器の蒸発器としての熱交換能力を下げることにより、室内熱交換器の蒸発器としての潜熱能力を上げている。この場合、室外熱交換器の蒸発器としての熱交換能力が低いため、十分な暖房能力が得られ難いという問題がある。更にまた、高い除湿量を必要としない場合でも、室内熱交換器の凝縮器と蒸発器との面積比が一定であるため、室内熱交換器の蒸発器による暖房のエネルギーロスが大きく、十分な暖房能力も得られ難いという問題があった。 In such an air conditioner, when increasing the dehumidification capacity, the latent heat capacity as an evaporator of the indoor heat exchanger is reduced by lowering the outdoor fan rotation speed and lowering the heat exchange capacity as the evaporator of the outdoor heat exchanger. Is raised. In this case, since the heat exchange capability as an evaporator of the outdoor heat exchanger is low, there is a problem that it is difficult to obtain a sufficient heating capability. Furthermore, even when a high dehumidification amount is not required, since the area ratio between the condenser and the evaporator of the indoor heat exchanger is constant, the energy loss of heating by the evaporator of the indoor heat exchanger is large and sufficient. There was a problem that it was difficult to obtain heating capacity.
特開2003-28536号公報JP 2003-28536 A
 そこで、この発明の課題は、暖房サイクルによる再熱運転において、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる空気調和機を提供することにある。 Then, the subject of this invention is providing the air conditioner which can adjust a dehumidification amount and a heating capability in reheat operation by a heating cycle, respectively, and can acquire sufficient heating capability efficiently, performing dehumidification operation. .
 上記課題を解決するため、この発明の空気調和機は、
 圧縮機と、室外熱交換器と、熱的に分割された複数の熱交換部からなる室内熱交換器と、上記室内熱交換器の複数の熱交換部のうちの少なくとも直列接続された2つの熱交換部の間に配設された膨張機構とを有する冷媒回路と、
 室内から吸い込んだ空気を上記室内熱交換器を介して室内に吹き出す室内ファンと、
 上記室外熱交換器に外気を供給する室外ファンと、
 暖房サイクルによる再熱運転において、上記室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力、または、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力の少なくとも一方を制御する制御装置と
を備えたことを特徴とする。
In order to solve the above problems, the air conditioner of the present invention is
At least two of the compressor, the outdoor heat exchanger, the indoor heat exchanger composed of a plurality of thermally divided heat exchange units, and the plurality of heat exchange units of the indoor heat exchanger connected in series A refrigerant circuit having an expansion mechanism disposed between the heat exchange units;
An indoor fan that blows air sucked from the room into the room through the indoor heat exchanger;
An outdoor fan for supplying outside air to the outdoor heat exchanger;
In the reheat operation by the heating cycle, the condensing capacity of the heat exchanging part acting as a condenser among the plural heat exchanging parts of the indoor heat exchanger, or the plural heat exchanging parts of the indoor heat exchanger And a control device that controls at least one of the evaporation capacities of the heat exchanging section that functions as an evaporator.
 上記構成の空気調和機によれば、暖房サイクルによる再熱運転において、制御装置により、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力、または、室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力の少なくとも一方を制御することによって、例えば凝縮器として作用する熱交換部の凝縮能力を小さくすると共に、蒸発器として作用する熱交換部の蒸発能力を大きくすると、除湿量は増え、暖房能力は下がる。一方、凝縮器として作用する熱交換部の凝縮能力を大きくすると共に、蒸発器として作用する熱交換部の蒸発能力を小さくすると、除湿量は下がり、暖房能力は上がる。このとき、必要に応じて制御装置により、圧縮機の運転周波数、室内ファンの回転速度、室外ファンの回転速度を制御することによって、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる。 According to the air conditioner having the above configuration, in the reheat operation by the heating cycle, the control device causes the heat exchange unit to function as a condenser among the plurality of heat exchange units of the indoor heat exchanger, or the indoor By controlling at least one of the evaporating capacity of the heat exchanging section that functions as an evaporator among the plurality of heat exchanging sections of the heat exchanger, for example, the condensing capacity of the heat exchanging section that functions as a condenser is reduced and evaporated. Increasing the evaporation capacity of the heat exchanger that acts as a heater increases the dehumidification amount and decreases the heating capacity. On the other hand, when the condensing capacity of the heat exchanging section that functions as a condenser is increased and the evaporating capacity of the heat exchanging section that functions as an evaporator is decreased, the dehumidification amount decreases and the heating capacity increases. At this time, by controlling the operation frequency of the compressor, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan as necessary, the dehumidification amount and the heating capacity can be adjusted, respectively, while the dehumidifying operation is sufficient. Heating capacity can be obtained efficiently.
 また、一実施形態の空気調和機では、
 上記室内熱交換器は、熱的に分割された3以上の熱交換部からなる。
Moreover, in the air conditioner of one embodiment,
The indoor heat exchanger includes three or more heat exchange units that are thermally divided.
 上記実施形態によれば、除湿量または暖房能力の少なくとも一方を細かく制御できる。 According to the above embodiment, at least one of the dehumidification amount and the heating capacity can be finely controlled.
 また、一実施形態の空気調和機では、
 上記暖房サイクルによる再熱運転において、上記室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の数、または、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の数の少なくとも一方を増減させる冷媒流制御部を備え、
 上記制御装置は、上記冷媒流制御部を制御することにより、上記室内熱交換器の上記凝縮能力または上記蒸発能力の少なくとも一方を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheat operation by the heating cycle, the number of heat exchange parts acting as a condenser among the plurality of heat exchange parts of the indoor heat exchanger, or of the plurality of heat exchange parts of the indoor heat exchanger A refrigerant flow control unit that increases or decreases at least one of the number of heat exchange units acting as an evaporator,
The control device controls at least one of the condensation capacity or the evaporation capacity of the indoor heat exchanger by controlling the refrigerant flow control unit.
 上記実施形態によれば、制御装置は、冷媒流制御部を制御して、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の数、または、室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の数の少なくとも一方を増減することによって、室内熱交換器の凝縮能力または蒸発能力の少なくとも一方を容易に制御できる。 According to the said embodiment, a control apparatus controls a refrigerant | coolant flow control part, the number of the heat exchange parts which act as a condenser among the several heat exchange parts of an indoor heat exchanger, or an indoor heat exchanger By increasing / decreasing at least one of the number of heat exchange portions acting as an evaporator among the plurality of heat exchange portions, it is possible to easily control at least one of the condensation capability or the evaporation capability of the indoor heat exchanger.
 また、一実施形態の空気調和機では、
 上記冷媒流制御部は、上記室内熱交換器の複数の熱交換部のうちの少なくとも1つを、上記凝縮器とするかまたは上記蒸発器とするかの切り換えが可能である。
Moreover, in the air conditioner of one embodiment,
The refrigerant flow control unit can switch whether at least one of the plurality of heat exchange units of the indoor heat exchanger is the condenser or the evaporator.
 上記実施形態によれば、室内熱交換器の凝縮能力と蒸発能力の制御範囲を広くできる。 According to the above embodiment, the control range of the condensation capacity and evaporation capacity of the indoor heat exchanger can be widened.
 また、一実施形態の空気調和機では、
 上記冷媒流制御部は、上記室内熱交換器の複数の熱交換部のうちの直列接続された熱交換部間に夫々配設された上記膨張機構を含む複数の膨張機構である。
Moreover, in the air conditioner of one embodiment,
The refrigerant flow control unit is a plurality of expansion mechanisms including the expansion mechanism respectively disposed between the heat exchange units connected in series among the plurality of heat exchange units of the indoor heat exchanger.
 上記実施形態によれば、室内熱交換器の複数の熱交換部のうちの直列接続された熱交換部間に夫々配設された複数の膨張機構を、冷媒流制御部に用いることによって、簡単な構成で冷媒流制御部を実現できる。 According to the above embodiment, the plurality of expansion mechanisms respectively disposed between the heat exchange units connected in series among the plurality of heat exchange units of the indoor heat exchanger can be easily used for the refrigerant flow control unit. A refrigerant flow control unit can be realized with a simple configuration.
 また、一実施形態の空気調和機では、
 上記冷媒流制御部は、上記室内熱交換器の複数の熱交換部のうちの少なくとも1つの熱交換部を流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部である。
Moreover, in the air conditioner of one embodiment,
The refrigerant flow control unit is a refrigerant flow switching unit that switches whether to bypass a refrigerant flow that flows through at least one heat exchange unit of the plurality of heat exchange units of the indoor heat exchanger.
 上記実施形態によれば、冷媒流路切換部により、室内熱交換器の複数の熱交換部のうちの少なくとも1つの熱交換部を流れる冷媒流をバイパスするか否かを切り換えることによって、簡単な構成で冷媒流制御部を実現できる。 According to the above-described embodiment, the refrigerant flow switching unit can easily switch whether or not to bypass the refrigerant flow flowing through at least one heat exchange unit among the plurality of heat exchange units of the indoor heat exchanger. A refrigerant flow control unit can be realized with the configuration.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記圧縮機の運転周波数と上記室内ファンの回転速度および上記室外ファンの回転速度の少なくとも1つを制御して、上記室内熱交換器の凝縮能力または蒸発能力の少なくとも一方を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheat operation by the heating cycle, the control device controls at least one of an operation frequency of the compressor, a rotation speed of the indoor fan, and a rotation speed of the outdoor fan, and condenses the indoor heat exchanger. Control at least one of capacity or evaporation capacity.
 上記実施形態によれば、暖房サイクルによる再熱運転において、例えば、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の数および室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の数を一定とすると共に室外ファンの回転速度を一定とした場合、制御装置によって、圧縮機の運転周波数を上げることにより、暖房能力が上がる。また、蒸発器温度が下がるため、除湿能力も上がる。また、室外ファンの回転速度を上げることにより、低圧が上がるため、暖房能力がある程度上がる。これにより、暖房能力および除湿能力についてより細かい制御ができる。 According to the above embodiment, in the reheat operation by the heating cycle, for example, the number of heat exchange units acting as a condenser among the plurality of heat exchange units of the indoor heat exchanger and the plurality of heat exchanges of the indoor heat exchanger. When the number of heat exchanging parts acting as an evaporator among the parts is made constant and the rotational speed of the outdoor fan is made constant, the heating capacity is increased by increasing the operating frequency of the compressor by the control device. Moreover, since the evaporator temperature is lowered, the dehumidifying ability is also increased. Moreover, since the low pressure increases by increasing the rotation speed of the outdoor fan, the heating capacity increases to some extent. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
 また、一実施形態の空気調和機では、
 室内空気の温度を検出する室内温度センサと、
 上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発器温度を検出する蒸発器温度センサと
を備えた。
Moreover, in the air conditioner of one embodiment,
An indoor temperature sensor for detecting the temperature of indoor air;
And an evaporator temperature sensor for detecting an evaporator temperature of a heat exchange part acting as an evaporator among a plurality of heat exchange parts of the indoor heat exchanger.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度より、目標湿度における露点温度を算出あるいは推定できるため、湿度センサを使用せずとも蒸発器温度センサにより検出された蒸発器温度に基づいて、例えば蒸発器温度が目標湿度における露点温度以下になるようにすることで、湿度制御が可能となる。 According to the above embodiment, since the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor, the evaporator temperature detected by the evaporator temperature sensor without using the humidity sensor. Based on the above, for example, by controlling the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity, the humidity can be controlled.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内温度センサにより検出された室内空気の温度と目標湿度に基づいて、上記室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機の運転周波数と、上記室内ファンの回転速度と、上記室外ファンの回転速度と、上記膨張機構の絞り量のうちの少なくとも1つを制御することにより、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の温度を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured as a condenser of the plurality of heat exchange units of the indoor heat exchanger based on the temperature of the indoor air and the target humidity detected by the indoor temperature sensor. The condensation capacity of the heat exchanger acting, the evaporation capacity of the heat exchange part acting as an evaporator among the plurality of heat exchange parts of the indoor heat exchanger, the operating frequency of the compressor, and the rotation of the indoor fan Heat exchange acting as an evaporator of the plurality of heat exchange portions of the indoor heat exchanger by controlling at least one of speed, rotational speed of the outdoor fan, and throttle amount of the expansion mechanism Control the temperature of the part.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度と目標湿度に基づいて、蒸発器として作用する熱交換部の蒸発器温度が上記目標湿度における露点温度以下になるように、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、圧縮機の運転周波数と、室内ファンの回転速度と、室外ファンの回転速度と、上記膨張機構の絞り量のうちの少なくとも1つを制御することによって、目標湿度に合わせた湿度制御ができる。 According to the above embodiment, based on the indoor air temperature detected by the indoor temperature sensor and the target humidity, the evaporator temperature of the heat exchanging unit acting as an evaporator is equal to or lower than the dew point temperature at the target humidity. Condensation capacity of the heat exchange part that acts as a condenser among the plurality of heat exchange parts of the indoor heat exchanger, and evaporation capacity of the heat exchange part that acts as an evaporator among the plurality of heat exchange parts of the indoor heat exchanger By controlling at least one of the operating frequency of the compressor, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism, the humidity can be controlled in accordance with the target humidity. .
 また、一実施形態の空気調和機では、
 室内空気の湿度を検出する室内湿度センサを備えた。
Moreover, in the air conditioner of one embodiment,
An indoor humidity sensor for detecting the humidity of the indoor air is provided.
 上記実施形態によれば、室内空気の湿度を検出する室内湿度センサを用いることによって、湿度制御が正確に行える。 According to the above embodiment, the humidity control can be accurately performed by using the indoor humidity sensor for detecting the humidity of the indoor air.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内温度センサにより検出された室内空気の温度と、上記室内湿度センサにより検出された室内空気の湿度に基づいて、上記室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機の運転周波数と、上記室内ファンの回転速度と、上記室外ファンの回転速度と、上記膨張機構の絞り量のうちの少なくとも1つを制御することにより、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の温度を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured to control the indoor heat exchanger based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor. Condensation capacity of the heat exchange section that acts as a condenser among the plurality of heat exchange sections, evaporation capacity of the heat exchange section that acts as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger, and the compression A plurality of heat exchanges of the indoor heat exchanger by controlling at least one of a machine operating frequency, a rotation speed of the indoor fan, a rotation speed of the outdoor fan, and a throttle amount of the expansion mechanism. The temperature of the heat exchange part which acts as an evaporator among the parts is controlled.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度と、室内湿度センサにより検出された室内空気の湿度に基づいて、蒸発器として作用する熱交換部の温度が雰囲気における露点温度以下になるように、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、圧縮機の運転周波数と、室内ファンの回転速度と、室外ファンの回転速度と、上記膨張機構の絞り量のうち少なくとも1つを制御装置により制御することによって、効果的な除湿が行える。 According to the embodiment, based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor, the temperature of the heat exchange unit acting as an evaporator is the dew point temperature in the atmosphere. As will be described below, the condensing capacity of the heat exchanging part that acts as a condenser among the plurality of heat exchanging parts of the indoor heat exchanger, and the evaporator of the plural heat exchanging parts of the indoor heat exchanger. By controlling at least one of the evaporation capacity of the heat exchange unit, the operating frequency of the compressor, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism by the control device, the effect Dehumidification can be performed.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記蒸発器温度センサにより検出される上記蒸発器温度が凍結する温度(以下、凍結温度という)以上となるように、上記室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機の運転周波数と、上記室内ファンの回転速度と、上記室外ファンの回転速度と、上記膨張機構の絞り量のうちの少なくとも1つを制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured so that the evaporator temperature detected by the evaporator temperature sensor is equal to or higher than a freezing temperature (hereinafter referred to as a freezing temperature). Condensation capacity of the heat exchange section that acts as a condenser among the plurality of heat exchange sections, evaporation capacity of the heat exchange section that acts as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger, and the compression At least one of the operating frequency of the machine, the rotational speed of the indoor fan, the rotational speed of the outdoor fan, and the throttle amount of the expansion mechanism is controlled.
 上記実施形態によれば、蒸発器温度センサにより検出される蒸発器温度が凍結温度以上となるように、室内熱交換器の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、室内熱交換器の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、圧縮機の運転周波数と、室内ファンの回転速度と、室外ファンの回転速度と、上記膨張機構の絞り量のうちの少なくとも1つを制御装置により制御することによって、蒸発器の凍結を防止することができる。 According to the above embodiment, the condensation of the heat exchange unit that acts as a condenser among the plurality of heat exchange units of the indoor heat exchanger so that the evaporator temperature detected by the evaporator temperature sensor is equal to or higher than the freezing temperature. Capacity, the evaporation capacity of the heat exchanger that acts as an evaporator among the plurality of heat exchangers of the indoor heat exchanger, the operating frequency of the compressor, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan, The evaporator can be prevented from freezing by controlling at least one of the throttle amounts of the expansion mechanism by the control device.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記蒸発器温度センサにより検出される上記蒸発器温度が目標温度より高いとき、上記圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御と、上記室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御と、上記室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御と、上記室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御と、上記膨張機構の減圧量を大きくする絞り量の制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operation frequency of the compressor is higher than the current frequency when the evaporator temperature detected by the evaporator temperature sensor is higher than a target temperature. Capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity, indoor fan control for lowering the rotation speed of the indoor fan than the current rotation speed, and rotation of the outdoor fan At least one of an outdoor fan control for reducing the speed below the current rotational speed and a throttle amount control for increasing the pressure reduction amount of the expansion mechanism is performed.
 上記実施形態によれば、蒸発器温度が目標温度より高いとき、圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御を行うことによって、低圧(蒸発器の出口圧力で蒸発器の温度に対応、低圧の上下に伴い、蒸発器の温度は上下する)を下げることができる。また、蒸発器温度が目標温度より高いとき、室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、蒸発器温度が目標温度より高いとき、室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、蒸発器温度が目標温度より高いとき、室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、上記膨張機構の絞り量を調整して減圧量を大きくすることにより、低圧が下がり、蒸発器温度を下げることができる。さらに、上記圧縮機制御と能力制御と室内ファン制御と室外ファン制御と膨張機構の絞り量の制御のうちの2以上を組合せることにより、要求される暖房能力や除湿能力に合わせて、蒸発器温度を適宜調節することができる。 According to the above embodiment, when the evaporator temperature is higher than the target temperature, the compressor control is performed so that the operating frequency of the compressor is higher than the current frequency, thereby reducing the low pressure (the evaporator outlet pressure to the evaporator temperature). Correspondingly, the evaporator temperature rises and falls as the low pressure rises and falls. In addition, when the evaporator temperature is higher than the target temperature, the low pressure can be lowered and the evaporator temperature can be lowered by performing capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity. . Further, when the evaporator temperature is higher than the target temperature, by performing the indoor fan control that makes the rotational speed of the indoor fan lower than the current rotational speed, the low pressure can be lowered and the evaporator temperature can be lowered. Further, when the evaporator temperature is higher than the target temperature, the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered. Further, by adjusting the throttle amount of the expansion mechanism to increase the pressure reduction amount, the low pressure can be lowered and the evaporator temperature can be lowered. Further, by combining two or more of the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion mechanism control of the expansion mechanism, the evaporator can be adjusted to the required heating capacity and dehumidification capacity. The temperature can be adjusted as appropriate.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において上記蒸発器温度センサにより検出される上記蒸発器温度が目標温度より低いとき、上記圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御と、上記室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御と、上記室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御と、上記室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御と、上記膨張機構の減圧量を小さくする絞り量の制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
The control device includes a compressor control that lowers an operating frequency of the compressor below a current frequency when the evaporator temperature detected by the evaporator temperature sensor is lower than a target temperature in the reheating operation by the heating cycle. Capacity control for controlling the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity, indoor fan control for making the rotation speed of the indoor fan higher than the current rotation speed, and rotation speed of the outdoor fan At least one of outdoor fan control for making the pressure higher than the current rotation speed and control of the throttle amount for reducing the pressure reduction amount of the expansion mechanism.
 上記実施形態によれば、蒸発器温度が目標温度より低いとき、圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、蒸発器温度が目標温度より低いとき、室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、蒸発器温度が目標温度より低いとき、室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、蒸発器温度が目標温度より低いとき、室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、上記膨張機構の絞り量を調整して減圧量を小さくすることにより、低圧が下がり、蒸発器温度を下げることができる。さらに、上記圧縮機制御と能力制御と室内ファン制御と室外ファン制御と膨張機構の絞り量の制御のうちの2以上を組合せることにより、要求される暖房能力や除湿能力に合わせて、蒸発器温度を適宜調節することができる。 According to the above embodiment, when the evaporator temperature is lower than the target temperature, by performing the compressor control that makes the operation frequency of the compressor lower than the current frequency, the low pressure can be increased and the evaporator temperature can be raised. Further, when the evaporator temperature is lower than the target temperature, the low pressure can be increased and the evaporator temperature can be increased by performing the capacity control for controlling the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity. . Further, when the evaporator temperature is lower than the target temperature, by performing the indoor fan control that makes the rotation speed of the indoor fan higher than the current rotation speed, the low pressure can be increased and the evaporator temperature can be raised. Further, when the evaporator temperature is lower than the target temperature, by performing the outdoor fan control that makes the rotational speed of the outdoor fan higher than the current rotational speed, the low pressure can be increased and the evaporator temperature can be raised. Further, by adjusting the throttle amount of the expansion mechanism to reduce the pressure reduction amount, the low pressure can be lowered and the evaporator temperature can be lowered. Further, by combining two or more of the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion mechanism control of the expansion mechanism, the evaporator can be adjusted to the required heating capacity and dehumidification capacity. The temperature can be adjusted as appropriate.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内熱交換器の現在暖房能力が要求暖房能力よりも小さいとき、上記圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御と、上記室内熱交換器の凝縮能力を現在凝縮能力よりも大きくなるように制御する能力制御と、上記室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御と、上記室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御と、上記室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device, when the current heating capacity of the indoor heat exchanger is smaller than the required heating capacity, the compressor control to make the operating frequency of the compressor higher than the current frequency, Capacity control for controlling the condensation capacity of the indoor heat exchanger to be greater than the current condensation capacity, capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity, and the outdoor At least one of outdoor fan control for increasing the rotational speed of the fan to be higher than the current rotational speed and indoor fan control for reducing the rotational speed of the indoor fan to be lower than the current rotational speed is performed.
 上記実施形態によれば、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも低いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う。また、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも高いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う。 According to the above embodiment, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the evaporation capacity of the indoor heat exchanger is made larger than the current evaporation capacity. Ability control to control to. In addition, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporating capacity I do.
 上記現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも低いとき、または、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも高いときのどちらの場合においても、上記室内熱交換器の凝縮能力を現在凝縮能力よりも大きくなるように制御する能力制御(暖房能力を大きくする制御)を併用してもよい。 When the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, or the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is required In either case, the capacity control (control for increasing the heating capacity) for controlling the condensation capacity of the indoor heat exchanger to be larger than the current condensation capacity may be used in combination.
 そうして、上記能力制御を踏まえたうえで、暖房能力が上がるように、次の(I)~(V)の何れか1つを行うか、または、(I)~(V)のうちの2以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を上げることができる。 Then, based on the above capacity control, either one of the following (I) to (V) is performed or heating (I) to (V) By performing a combination of two or more, it is possible to increase the heating capacity under the optimum conditions according to the operating conditions.
 (I) 圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御を行う。 (I) Compressor control is performed so that the operating frequency of the compressor is higher than the current frequency.
 (II) 室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (II) Perform capacity control to control the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
 (III) 室内熱交換器の凝縮能力を現在凝縮能力よりも大きくなるように制御する能力制御を行う(これは、要求される暖房能力との関係で適宜調整する)。 (III) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be larger than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
 (IV) 室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御を行う(蒸発温度が上がると共に、高圧(凝縮器の入口圧力、高圧の上下に伴い、凝縮器の温度も上下する)も上昇して暖房能力が上がる)。 (IV) The outdoor fan is controlled so that the rotational speed of the outdoor fan is higher than the current rotational speed (evaporation temperature rises and high pressure (condenser temperature increases and decreases with increasing and decreasing condenser inlet pressure). Will also increase the heating capacity).
 (V) 室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が減少し、結果として、暖房能力も上がる)。 (V) Indoor fan control is performed so that the rotational speed of the indoor fan is lower than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger decreases, resulting in an increase in heating capacity).
 なお、上記室内熱交換器の蒸発能力を制御する能力制御と、上記(I)~(V)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 The order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination with the above (I) to (V) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内熱交換器の現在暖房能力が要求暖房能力よりも大きいとき、上記圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御と、上記室内熱交換器の凝縮能力を現在凝縮能力よりも小さくなるように制御する能力制御と、上記室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御と、上記室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheat operation by the heating cycle, the control device, when the current heating capacity of the indoor heat exchanger is larger than the required heating capacity, the compressor control to lower the operating frequency of the compressor below the current frequency, Capability control for controlling the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity, outdoor fan control for lowering the rotation speed of the outdoor fan, and rotation speed of the indoor fan. At least one of indoor fan control to make it higher than the current rotation speed is performed.
 上記実施形態によれば、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも低いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う。また、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも高いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う。 According to the above embodiment, when the current heating capacity is larger than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the evaporation capacity of the indoor heat exchanger is made larger than the current evaporation capacity. Ability control to control to. In addition, when the current heating capacity is greater than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the capacity control that controls the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity I do.
 上記現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも低いとき、または、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも高いときのどちらの場合においても、上記室内熱交換器の凝縮能力を現在凝縮能力よりも小さくなるように制御する能力制御(暖房能力を小さくする制御)を併用してもよい。 When the current heating capacity is greater than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, or the current heating capacity is greater than the required heating capacity and the current dehumidifying capacity is required In either case, the capacity control (control for reducing the heating capacity) for controlling the condensation capacity of the indoor heat exchanger so as to be smaller than the current condensation capacity may be used in combination.
 そうして、上記能力制御を踏まえたうえで、暖房能力を下げるように、次の(A)~(E)の何れか1つを行うか、または、(A)~(E)のうちの2つ以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を下げることができる。 Then, based on the above capacity control, either one of the following (A) to (E) is performed to reduce the heating capacity, or (A) to (E) By performing a combination of two or more, it is possible to reduce the heating capacity under optimum conditions according to the operating conditions.
 (A) 圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御を行う。 (A) Compressor control is performed so that the operating frequency of the compressor is lower than the current frequency.
 (B) 室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (B) Capability control is performed to control the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
 (C) 室内熱交換器の凝縮能力を現在凝縮能力よりも小さくなるように制御する能力制御を行う(これは、要求される暖房能力との関係で適宜調整する)。 (C) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
 (D) 室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御を行う(蒸発温度が下がると共に、高圧も下がるので、凝縮温度も下がり、暖房能力も下がる)。 (D) The outdoor fan control is performed so that the rotation speed of the outdoor fan is lower than the current rotation speed (the evaporation temperature is lowered and the high pressure is also lowered, so the condensation temperature is lowered and the heating capacity is also lowered).
 (E) 室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (E) The indoor fan is controlled so that the rotation speed of the indoor fan is higher than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger increases, resulting in a decrease in the heating capacity).
 なお、上記室内熱交換器の蒸発能力を制御する能力制御と、上記(A)~(E)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 The order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination of the above (A) to (E) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
 また、一実施形態の空気調和機では、
 上記冷媒回路は、暖房サイクルと冷房サイクルを切り換える四路切換弁を有し、
 上記制御装置は、上記四路切換弁を制御することによって、上記室内熱交換器の複数の熱交換部のうちの一部を凝縮器とし、上記室内熱交換器の複数の熱交換部のうちの他の少なくとも一部と上記室外熱交換器を蒸発器とした暖房サイクルによる再熱運転を行うと共に、上記室外熱交換器を凝縮器とし、上記室内熱交換器の複数の熱交換部のうちの一部を凝縮器とし、上記室内熱交換器の複数の熱交換部のうちの他の少なくとも一部を蒸発器とした冷房サイクルによる再熱運転を行う。
Moreover, in the air conditioner of one embodiment,
The refrigerant circuit has a four-way switching valve that switches between a heating cycle and a cooling cycle,
The control device controls the four-way switching valve so that a part of the plurality of heat exchange units of the indoor heat exchanger is a condenser, and among the plurality of heat exchange units of the indoor heat exchanger And performing reheating operation by a heating cycle using the outdoor heat exchanger as an evaporator and the outdoor heat exchanger as a condenser, and a plurality of heat exchange units of the indoor heat exchanger. Is used as a condenser, and at least another part of the plurality of heat exchange parts of the indoor heat exchanger is used as an evaporator to perform reheating operation by a cooling cycle.
 上記実施形態によれば、暖房サイクルによる再熱運転と、冷房サイクルによる再熱運転を行うことによって、暖房サイクルと冷房サイクル双方のいずれの運転条件でも除湿が可能となる。 According to the above-described embodiment, dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle.
 また、一実施形態の空気調和機では、
 上記冷媒回路は、暖房サイクルと冷房サイクルのいずれにおいても、上記室内熱交換器の複数の熱交換部を同じ方向に冷媒が流れるようにする冷媒流方向規制部を有する。
Moreover, in the air conditioner of one embodiment,
The refrigerant circuit includes a refrigerant flow direction regulating unit that allows the refrigerant to flow in the same direction through the plurality of heat exchange units of the indoor heat exchanger in both the heating cycle and the cooling cycle.
 上記実施形態によれば、暖房サイクルと冷房サイクルのいずれにおいても、冷媒流方向規制部によって、室内熱交換器の複数の熱交換部を同じ方向に冷媒が流れるようにすることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に室内側の蒸発器と凝縮器の位置が変わらない。このため、暖房サイクルと冷房サイクルとで同様の気流制御ができるだけでなく、露付きについても個別に対策する必要がないため、構造の簡略化も可能となる。また、膨張機構に流れる冷媒方向が、暖房サイクル,冷房サイクルに関わらず一方向であるので、膨張機構に逆圧がかかることがないようにでき、膨張機構に逆圧に弱い安価な開閉弁などを使用することができる。 According to the above embodiment, in both the heating cycle and the cooling cycle, the refrigerant flow direction regulating unit causes the refrigerant to flow in the same direction through the plurality of heat exchange units of the indoor heat exchanger. Even if the cooling cycle or the cooling cycle is switched to the heating cycle, the positions of the indoor evaporator and the condenser are not always changed during the reheating operation. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
 また、この発明の空気調和機は、
 圧縮機と、室外熱交換器と、第1室内熱交換器および第2室内熱交換器と、上記第1室内熱交換器と上記第2室内熱交換器との間に接続された膨張機構とを有する冷媒回路と、
 室内から吸い込んだ空気を上記第1,第2室内熱交換器を介して室内に吹き出す室内ファンと、
 上記室外熱交換器に外気を供給する室外ファンと、
 上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を変える通風量比制御部と、
 上記圧縮機と上記膨張機構と上記室内ファンと上記室外ファンおよび上記通風量比制御部を制御する制御装置と
を備え、
 上記制御装置は、上記第1室内熱交換器を凝縮器とし、上記第2室内熱交換器と上記室外熱交換器を蒸発器とした暖房サイクルによる再熱運転において、上記通風量比制御部を制御して、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御することを特徴とする。
Moreover, the air conditioner of this invention is
A compressor, an outdoor heat exchanger, a first indoor heat exchanger and a second indoor heat exchanger, and an expansion mechanism connected between the first indoor heat exchanger and the second indoor heat exchanger. A refrigerant circuit having
An indoor fan that blows air sucked from the room into the room through the first and second indoor heat exchangers;
An outdoor fan for supplying outside air to the outdoor heat exchanger;
An air flow rate ratio control unit that changes a ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger;
A controller that controls the compressor, the expansion mechanism, the indoor fan, the outdoor fan, and the ventilation rate control unit;
In the reheating operation by a heating cycle in which the first indoor heat exchanger is a condenser and the second indoor heat exchanger and the outdoor heat exchanger are evaporators, the control device is configured to set the ventilation rate ratio control unit to And controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger.
 上記構成の空気調和機によれば、第1室内熱交換器を凝縮器とし、第2室内熱交換器と室外熱交換器を蒸発器とした暖房サイクルによる再熱運転において、制御装置により通風量比制御部を制御して、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御することによって、例えば第2室内熱交換器(蒸発器)の通風量に対して第1室内熱交換器(凝縮器)の通風量を相対的に少なくして、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を大きくすると、除湿量が増えて暖房能力が下がる。一方、第2室内熱交換器(蒸発器)の通風量に対して第1室内熱交換器(凝縮器)の通風量を相対的に多くして、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を小さくすると、除湿量が下がり暖房能力が上がる。このとき、必要に応じて制御装置により、圧縮機の運転周波数、室内ファンの回転速度、室外ファンの回転速度を制御することによって、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる。 According to the air conditioner having the above-described configuration, in the reheating operation by the heating cycle in which the first indoor heat exchanger is a condenser and the second indoor heat exchanger and the outdoor heat exchanger are evaporators, By controlling the ratio control unit to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, for example, the ventilation rate of the second indoor heat exchanger (evaporator) On the other hand, when the air flow rate of the first indoor heat exchanger (condenser) is relatively reduced and the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is increased, the dehumidification amount Increases and heating capacity decreases. On the other hand, the air flow rate of the first indoor heat exchanger (condenser) is relatively increased with respect to the air flow rate of the second indoor heat exchanger (evaporator), and the air flow rate of the first indoor heat exchanger is increased. If the ratio of the ventilation rate of the two indoor heat exchangers is reduced, the dehumidification amount is reduced and the heating capacity is increased. At this time, by controlling the operation frequency of the compressor, the rotational speed of the indoor fan, and the rotational speed of the outdoor fan as necessary, the dehumidification amount and the heating capacity can be adjusted, respectively, while the dehumidifying operation is sufficient. Heating capacity can be obtained efficiently.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記通風量比制御部を制御して、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御することにより、暖房能力または除湿能力の少なくとも一方を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device controls the ventilation rate ratio control unit to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger. Thus, at least one of the heating capacity and the dehumidifying capacity is controlled.
 上記実施形態によれば、通風量比制御の作用が理解しやすいように、例えば、室内ファンの風量、第1室内熱交換器の凝縮温度、第2室内熱交換器の蒸発温度を一定とした場合、制御装置により通風量比制御部を制御して、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を大きくすることにより、除湿能力が大きくなる一方、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を小さくすることにより、除湿能力が小さくなる。または、制御装置により通風量比制御部を制御して、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を大きくすることにより、暖房能力が小さくなる一方、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を小さくすることにより、暖房能力が大きくなる。 According to the above embodiment, for example, the air volume of the indoor fan, the condensation temperature of the first indoor heat exchanger, and the evaporation temperature of the second indoor heat exchanger are made constant so that the operation of the air flow ratio control can be easily understood. In this case, the controller controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, thereby increasing the dehumidifying capacity, By reducing the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the 1 indoor heat exchanger, the dehumidifying capacity is reduced. Alternatively, by controlling the ventilation rate ratio control unit with the control device to increase the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger, the heating capacity is reduced, By reducing the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger, the heating capacity is increased.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記圧縮機の運転周波数と上記室内ファンの回転速度と上記室外ファンの回転速度および上記膨張機構の絞り量の少なくとも1つを制御して、暖房能力あるいは除湿能力の少なくとも一方を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device controls at least one of an operating frequency of the compressor, a rotation speed of the indoor fan, a rotation speed of the outdoor fan, and a throttle amount of the expansion mechanism, Control at least one of heating capacity and dehumidification capacity.
 上記実施形態によれば、例えば、通風量比と室内ファンの回転数を一定とした場合、制御装置によって、圧縮機の運転周波数を上げることにより、暖房能力が上がると共に、蒸発温度は下がり、除湿機能も上がる。また、室外ファンの回転速度を上げることにより、低圧(蒸発器側の冷媒圧力で、冷媒の蒸発温度に対応)が上がるため、暖房能力がある程度上がる。また、膨張機構の絞り量を調整して減圧量を大きくすることにより、蒸発器温度は下がり、除湿能力も上がる。これにより、暖房能力および除湿能力についてより細かい制御ができる。 According to the above embodiment, for example, when the air flow rate ratio and the number of rotations of the indoor fan are constant, the control device increases the operating frequency of the compressor, thereby increasing the heating capacity and lowering the evaporation temperature. Function goes up. Further, by increasing the rotational speed of the outdoor fan, the low pressure (corresponding to the refrigerant evaporation temperature with the refrigerant pressure on the evaporator side) increases, so that the heating capacity increases to some extent. In addition, by adjusting the expansion amount of the expansion mechanism to increase the amount of decompression, the evaporator temperature is lowered and the dehumidifying ability is also raised. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
 また、一実施形態の空気調和機では、
 室内空気の温度を検出する室内温度センサと、
 上記第2室内熱交換器の温度を検出する第2室内熱交換器温度センサと
を備えた。
Moreover, in the air conditioner of one embodiment,
An indoor temperature sensor for detecting the temperature of indoor air;
A second indoor heat exchanger temperature sensor for detecting the temperature of the second indoor heat exchanger.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度より、目標湿度における露点温度を算出あるいは推定できるため、湿度センサを使用せずとも第2室内熱交換器温度センサにより検出された蒸発器温度に基づいて、例えば蒸発器温度が目標湿度における露点温度以下になるようにすることで、湿度制御が可能となる。 According to the above embodiment, since the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor, it is detected by the second indoor heat exchanger temperature sensor without using the humidity sensor. Based on the evaporator temperature, for example, the humidity can be controlled by setting the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内温度センサにより検出された室内空気の温度と目標湿度に基づいて、上記圧縮機と上記通風量比制御部と上記室内ファンと上記室外ファンと上記膨張機構の絞り量の少なくとも1つを制御することにより、上記第2室内熱交換器の温度を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured to control the compressor, the air flow rate ratio control unit, the indoor fan, and the outdoor unit based on the indoor air temperature and the target humidity detected by the indoor temperature sensor. The temperature of the second indoor heat exchanger is controlled by controlling at least one of the throttle amount of the fan and the expansion mechanism.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度と目標湿度に基づいて、第2室内熱交換器の温度が上記目標湿度における露点温度以下になるように、圧縮機と通風量比制御部と室内ファンと室外ファンと膨張機構の絞り量の少なくとも1つを制御することによって、目標湿度に合わせた湿度制御ができる。 According to the above-described embodiment, the compressor and the ventilation are configured so that the temperature of the second indoor heat exchanger is equal to or lower than the dew point temperature at the target humidity based on the temperature of the indoor air detected by the indoor temperature sensor and the target humidity. By controlling at least one of the amount ratio control unit, the indoor fan, the outdoor fan, and the expansion amount of the expansion mechanism, humidity control in accordance with the target humidity can be performed.
 また、一実施形態の空気調和機では、
 室内空気の湿度を検出する室内湿度センサを備えた。
Moreover, in the air conditioner of one embodiment,
An indoor humidity sensor for detecting the humidity of the indoor air is provided.
 上記実施形態によれば、室内空気の湿度を検出する室内湿度センサを用いることによって、湿度制御が正確に行える。 According to the above embodiment, the humidity control can be accurately performed by using the indoor humidity sensor for detecting the humidity of the indoor air.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記室内温度センサにより検出された室内空気の温度と、上記室内湿度センサにより検出された室内空気の湿度に基づいて、上記圧縮機と上記通風量比制御部と上記室内ファンと上記室外ファンと上記膨張機構の絞り量の少なくとも1つを制御することにより、上記第2室内熱交換器の温度を制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured so that the compressor and the ventilation are based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor. The temperature of the second indoor heat exchanger is controlled by controlling at least one of the amount ratio control unit, the indoor fan, the outdoor fan, and the expansion amount of the expansion mechanism.
 上記実施形態によれば、室内温度センサにより検出された室内空気の温度と、室内湿度センサにより検出された室内空気の湿度に基づいて、第2室内熱交換器の温度が雰囲気における露点温度以下になるように、圧縮機と通風量比制御部と室内ファンと室外ファンと膨張機構の絞り量の少なくとも1つを制御装置により制御することによって、効果的な除湿が行える。 According to the embodiment, based on the temperature of the indoor air detected by the indoor temperature sensor and the humidity of the indoor air detected by the indoor humidity sensor, the temperature of the second indoor heat exchanger is equal to or lower than the dew point temperature in the atmosphere. As described above, effective dehumidification can be performed by controlling at least one of the throttle amount of the compressor, the air flow rate ratio control unit, the indoor fan, the outdoor fan, and the expansion mechanism by the control device.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器温度センサにより検出される上記第2室内熱交換器の温度が凍結温度以上となるように、上記圧縮機と上記通風量比制御部と上記室内ファンと上記室外ファンと上記膨張機構の絞り量の少なくとも1つを制御する。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured so that the temperature of the second indoor heat exchanger detected by the second indoor heat exchanger temperature sensor is equal to or higher than a freezing temperature. It controls at least one of the throttle amount of the air flow rate ratio control unit, the indoor fan, the outdoor fan, and the expansion mechanism.
 上記実施形態によれば、第2室内熱交換器温度センサにより検出される第2室内熱交換器の温度が凍結温度以上となるように、圧縮機と通風量比制御部と室内ファンと室外ファンと膨張機構の絞り量の少なくとも1つを制御装置により制御することによって、第2室内熱交換器(蒸発器)の凍結を防止することができる。 According to the above embodiment, the compressor, the air flow rate ratio control unit, the indoor fan, and the outdoor fan so that the temperature of the second indoor heat exchanger detected by the second indoor heat exchanger temperature sensor is equal to or higher than the freezing temperature. By controlling at least one of the expansion amounts of the expansion mechanism by the control device, freezing of the second indoor heat exchanger (evaporator) can be prevented.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器の温度が目標温度より高いとき、上記圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御と、上記第2室内熱交換器の通風量が現在通風量よりも小さくなるように、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御する通風量比制御と、上記室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御と、上記室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御と、上記膨張機構の絞り量を調節して減圧量を大きくする絞り量の制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device includes a compressor control for setting the operating frequency of the compressor to be higher than a current frequency when the temperature of the second indoor heat exchanger is higher than a target temperature, A ventilation rate ratio control for controlling a ratio of a ventilation rate of the second indoor heat exchanger to a ventilation rate of the first indoor heat exchanger so that a ventilation rate of the two indoor heat exchangers is smaller than a current ventilation rate; , Indoor fan control for lowering the rotational speed of the indoor fan lower than the current rotational speed, outdoor fan control for lowering the rotational speed of the outdoor fan lower than the current rotational speed, and adjusting the throttle amount of the expansion mechanism to reduce the pressure At least one of the control of the diaphragm amount to increase the amount is performed.
 上記実施形態によれば、第2室内熱交換器の温度が目標温度より高いとき、圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器の温度が目標温度より高いとき、第2室内熱交換器の通風量が現在通風量よりも小さくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器の温度が目標温度より高いとき、室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器の温度が目標温度より高いとき、室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、膨張機構の絞り量を調節して減圧量を大きくする制御をすることによって、低圧が下がり、蒸発器温度を下げることができる。さらに、上記圧縮機制御と通風量比制御と室内ファン制御と室外ファン制御と膨張機構の絞り量の制御のうちの2以上を組合せることにより、要求される暖房能力や除湿能力に合わせて、蒸発器温度を適宜調節することができる。 According to the above embodiment, when the temperature of the second indoor heat exchanger is higher than the target temperature, by performing the compressor control that makes the operation frequency of the compressor higher than the current frequency, the low pressure is lowered, and the evaporator temperature is reduced. Can be lowered. In addition, when the temperature of the second indoor heat exchanger is higher than the target temperature, the second indoor with respect to the air flow rate of the first indoor heat exchanger is set so that the air flow rate of the second indoor heat exchanger is smaller than the current air flow rate. By performing the air flow rate ratio control for controlling the air flow rate ratio of the heat exchanger, the low pressure can be lowered and the evaporator temperature can be lowered. Further, when the temperature of the second indoor heat exchanger is higher than the target temperature, the indoor fan control is performed so that the rotational speed of the indoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered. . Further, when the temperature of the second indoor heat exchanger is higher than the target temperature, the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, whereby the low pressure can be lowered and the evaporator temperature can be lowered. . Further, by controlling the expansion amount of the expansion mechanism to increase the amount of decompression, the low pressure can be lowered and the evaporator temperature can be lowered. Furthermore, by combining two or more of the compressor control, the air flow rate ratio control, the indoor fan control, the outdoor fan control, and the expansion amount control of the expansion mechanism, according to the required heating capacity and dehumidification capacity, The evaporator temperature can be adjusted as appropriate.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器の温度が目標温度より低いとき、上記圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御と、上記第2室内熱交換器の通風量が現在通風量よりも多くなるように、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御する通風量比制御と、上記室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御と、上記室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御と、上記膨張機構の絞り量を調節して減圧量を小さくする絞り量の制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device includes a compressor control that lowers an operating frequency of the compressor below a current frequency when the temperature of the second indoor heat exchanger is lower than a target temperature, A ventilation rate ratio control for controlling a ratio of a ventilation rate of the second indoor heat exchanger to a ventilation rate of the first indoor heat exchanger so that a ventilation rate of the two indoor heat exchangers is larger than a current ventilation rate; , Indoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed, outdoor fan control for making the rotational speed of the outdoor fan higher than the current rotational speed, and adjusting the throttle amount of the expansion mechanism to reduce the pressure At least one of the control of the aperture amount to reduce the amount is performed.
 上記実施形態によれば、第2室内熱交換器の温度が目標温度より低いとき、圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器の温度が目標温度より低いとき、第2室内熱交換器の通風量が現在通風量よりも多くなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器の温度が目標温度より低いとき、室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器の温度が目標温度より低いとき、室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、膨張機構の絞り量を調節して減圧量を小さくする制御をすることによって、低圧が上がり、蒸発器温度を上げることができる。さらに、上記圧縮機制御と通風量比制御と室内ファン制御と室外ファン制御と膨張機構の絞り量の制御のうちの2以上を組合せることにより、要求される暖房能力や除湿能力に合わせて、蒸発器温度を適宜調節することができる。 According to the above embodiment, when the temperature of the second indoor heat exchanger is lower than the target temperature, by performing the compressor control to lower the operating frequency of the compressor than the current frequency, the low pressure is increased, and the evaporator temperature is increased. Can be raised. In addition, when the temperature of the second indoor heat exchanger is lower than the target temperature, the second indoor with respect to the ventilation rate of the first indoor heat exchanger is set so that the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate. By performing the air flow rate ratio control for controlling the air flow rate ratio of the heat exchanger, the low pressure increases and the evaporator temperature can be raised. Further, when the temperature of the second indoor heat exchanger is lower than the target temperature, by performing indoor fan control that makes the rotational speed of the indoor fan higher than the current rotational speed, the low pressure can be increased and the evaporator temperature can be raised. . Further, when the temperature of the second indoor heat exchanger is lower than the target temperature, the outdoor fan control is performed so that the rotation speed of the outdoor fan is higher than the current rotation speed, thereby increasing the low pressure and increasing the evaporator temperature. . Further, by controlling the expansion amount of the expansion mechanism to reduce the pressure reduction amount, the low pressure can be increased and the evaporator temperature can be increased. Furthermore, by combining two or more of the compressor control, the air flow rate ratio control, the indoor fan control, the outdoor fan control, and the expansion amount control of the expansion mechanism, according to the required heating capacity and dehumidification capacity, The evaporator temperature can be adjusted as appropriate.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも小さいとき、上記圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御と、上記第2室内熱交換器の通風量が現在通風量よりも小さくなるように、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御する通風量比制御と、上記室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御と、上記室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operating frequency of the compressor is higher than the current frequency when the current heating capacity is smaller than the required heating capacity, and the second indoor heat exchange. A flow rate ratio control for controlling a ratio of a flow rate of the second indoor heat exchanger to a flow rate of the first indoor heat exchanger so that a flow rate of the cooler is smaller than a current flow rate; and the outdoor fan At least one of the outdoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed and the indoor fan control for making the rotational speed of the indoor fan higher than the current rotational speed.
 上記実施形態によれば、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも低いときは、第2室内熱交換器の通風量が現在通風量よりも大きくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う。また、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも高いときは、第2室内熱交換器の通風量が現在通風量よりも小さくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う。 According to the above embodiment, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate. As described above, the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is performed. Further, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the second indoor heat exchanger has an air flow rate that is smaller than the current air flow rate. Ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger.
 そうして、上記通風量比制御を踏まえたうえで、暖房能力が上がるように、次の(i)~(iv)の何れか1つを行うか、または、(i)~(iv)のうちの2以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を上げることができる。 Then, in consideration of the above air flow rate ratio control, either one of the following (i) to (iv) is performed, or (i) to (iv) By performing a combination of two or more of them, the heating capacity can be increased under the optimum conditions according to the operating conditions.
 (i) 圧縮機の運転周波数を現在周波数よりも高くする圧縮機制御を行う。 (I) Compressor control is performed so that the operating frequency of the compressor is higher than the current frequency.
 (ii) 第2室内熱交換器の通風量が現在通風量よりも小さくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (ii) Ventilation ratio that controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger so that the ventilation rate of the second indoor heat exchanger is smaller than the current ventilation rate. Control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
 (iii) 室外ファンの回転速度を現在回転速度よりも高くする室外ファン制御を行う(蒸発温度が上がると共に、高圧(凝縮器側の冷媒圧力、冷媒の凝縮温度に対応)も上昇して暖房能力が上がる)。 (iii) Outdoor fan control that increases the rotational speed of the outdoor fan higher than the current rotational speed (evaporation temperature rises and high pressure (corresponding to the refrigerant pressure on the condenser side and the refrigerant condensing temperature) also increases to increase the heating capacity. Rises).
 (iv) 室内ファンの回転速度を現在回転速度よりも低くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が減少し、結果として、暖房能力も上がる)。 (Iv) The indoor fan control is performed so that the rotation speed of the indoor fan is lower than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger is reduced, resulting in an increase in the heating capacity).
 なお、上記第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御と、上記(i)~(iv)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 Note that the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger and the capacity control when combined with the above (i) to (iv) The order is not limited to the above, but may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
 また、一実施形態の空気調和機では、
 上記制御装置は、上記暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも大きいとき、上記圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御と、上記第2室内熱交換器の通風量が現在通風量よりも大きくなるように、上記第1室内熱交換器の通風量に対する上記第2室内熱交換器の通風量の比を制御する通風量比制御と、上記室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御と、上記室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行う。
Moreover, in the air conditioner of one embodiment,
In the reheating operation by the heating cycle, the control device is configured to control the compressor so that the operating frequency of the compressor is lower than the current frequency when the current heating capacity is larger than the required heating capacity, and the second indoor heat exchange. A flow rate ratio control for controlling a ratio of a flow rate of the second indoor heat exchanger to a flow rate of the first indoor heat exchanger so that a flow rate of the cooler is larger than a current flow rate; and the outdoor fan At least one of the outdoor fan control for lowering the rotational speed of the indoor fan and the indoor fan control for increasing the rotational speed of the indoor fan higher than the current rotational speed.
 上記実施形態によれば、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも低いときは、第2室内熱交換器の通風量が現在通風量よりも大きくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う。また、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも高いときは、第2室内熱交換器の通風量が現在通風量よりも小さくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う。 According to the embodiment, when the current heating capacity is larger than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate. As described above, the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger is performed. Further, when the current heating capacity is larger than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the second indoor heat exchanger has an air flow rate that is smaller than the current air flow rate. Ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the 1 indoor heat exchanger.
 そうして、上記通風量比制御を踏まえたうえで、暖房能力を下げるように、次の(a)~(d)の何れか1つを行うか、または、(a)~(d)のうちの2つ以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を下げることができる。 Then, in consideration of the above air flow ratio control, either one of the following (a) to (d) is performed so as to reduce the heating capacity, or (a) to (d) By performing a combination of two or more of them, the heating capacity can be lowered under the optimum conditions according to the operating conditions.
 (a) 圧縮機の運転周波数を現在周波数よりも低くする圧縮機制御を行う。 (A) Compressor control is performed so that the operating frequency of the compressor is lower than the current frequency.
 (b) 第2室内熱交換器の通風量が現在通風量よりも大きくなるように、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (b) Ventilation ratio that controls the ratio of the ventilation rate of the second indoor heat exchanger to the ventilation rate of the first indoor heat exchanger so that the ventilation rate of the second indoor heat exchanger is larger than the current ventilation rate. Control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
 (c) 室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御を行う(蒸発温度が下がることにより、室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (c) The outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed (the lowering of the evaporation temperature increases the amount of heat exchange in the evaporator of the indoor heat exchanger, resulting in an increase in heating capacity. Down).
 (d) 室内ファンの回転速度を現在回転速度よりも高くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (D) The indoor fan control is performed so that the rotation speed of the indoor fan is higher than the current rotation speed (the heat exchange amount of the evaporator of the indoor heat exchanger is increased, resulting in a decrease in the heating capacity).
 なお、上記第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を制御する通風量比制御と、上記(a)~(d)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 Note that the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger and the capacity control when combined with the above (a) to (d). The order is not limited to the above, but may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
 また、一実施形態の空気調和機では、
 上記冷媒回路は、暖房サイクルと冷房サイクルを切り換える四路切換弁を有し、
 上記制御装置は、上記四路切換弁を制御することによって、上記第1室内熱交換器を凝縮器とし、上記第2室内熱交換器と上記室外熱交換器を蒸発器とした暖房サイクルによる再熱運転を行うと共に、上記室外熱交換器を凝縮器とし、上記第1室内熱交換器または上記第2室内熱交換器の一方を凝縮器とし、上記第1室内熱交換器または上記第2室内熱交換器の他方を蒸発器とした冷房サイクルによる再熱運転を行う。
Moreover, in the air conditioner of one embodiment,
The refrigerant circuit has a four-way switching valve that switches between a heating cycle and a cooling cycle,
The control device controls the four-way switching valve so that the first indoor heat exchanger serves as a condenser and the second indoor heat exchanger and the outdoor heat exchanger serve as an evaporator. While performing a heat operation, the outdoor heat exchanger is a condenser, and one of the first indoor heat exchanger or the second indoor heat exchanger is a condenser, and the first indoor heat exchanger or the second indoor heat exchanger is used. Reheating operation is performed by a cooling cycle in which the other side of the heat exchanger is an evaporator.
 上記実施形態によれば、暖房サイクルによる再熱運転と、冷房サイクルによる再熱運転を行うことによって、暖房サイクルと冷房サイクル双方のいずれの運転条件でも除湿が可能となる。 According to the above-described embodiment, dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle.
 また、一実施形態の空気調和機では、
 上記冷媒回路は、暖房サイクルと冷房サイクルのいずれにおいても、上記第1室内熱交換器から上記膨張機構を介して上記第2室内熱交換器に冷媒が流れるようにする冷媒流方向規制部を有する。
Moreover, in the air conditioner of one embodiment,
The refrigerant circuit includes a refrigerant flow direction regulating unit that allows the refrigerant to flow from the first indoor heat exchanger to the second indoor heat exchanger via the expansion mechanism in both the heating cycle and the cooling cycle. .
 上記実施形態によれば、暖房サイクルと冷房サイクルのいずれにおいても、冷媒流方向規制部によって、第1室内熱交換器から膨張機構を介して第2室内熱交換器に冷媒が流れるようにすることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に室内側の蒸発器と凝縮器の位置が変わらない。このため、暖房サイクルと冷房サイクルとで同様の気流制御ができるだけでなく、露付きについても個別に対策する必要がないため、構造の簡略化も可能となる。また、膨張機構に流れる冷媒方向が、暖房サイクル,冷房サイクルに関わらず一方向であるので、膨張機構に逆圧がかかることがないようにでき、膨張機構に逆圧に弱い安価な開閉弁などを使用することができる。 According to the embodiment, in both the heating cycle and the cooling cycle, the refrigerant flows in the second indoor heat exchanger from the first indoor heat exchanger via the expansion mechanism by the refrigerant flow direction restricting portion. Thus, even when the heating cycle is switched to the cooling cycle or from the cooling cycle to the heating cycle, the position of the evaporator and the condenser on the indoor side does not always change during the reheating operation. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
 以上より明らかなように、この発明の空気調和機によれば、暖房サイクルによる再熱運転において、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる空気調和機を実現することができる。 As is clear from the above, according to the air conditioner of the present invention, the dehumidification amount and the heating capacity can be adjusted in the reheating operation by the heating cycle, respectively, and sufficient heating capacity can be efficiently obtained while performing the dehumidifying operation. An air conditioner can be realized.
図1はこの発明の第1実施形態の空気調和機の暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 1 is a circuit diagram showing the refrigerant flow during the heating cycle of the air conditioner according to the first embodiment of the present invention. 図2Aは上記空気調和機のモリエル線図である。FIG. 2A is a Mollier diagram of the air conditioner. 図2Bは上記空気調和機のモリエル線図である。FIG. 2B is a Mollier diagram of the air conditioner. 図3Aは上記空気調和機のモリエル線図である。FIG. 3A is a Mollier diagram of the air conditioner. 図3Bは上記空気調和機のモリエル線図である。FIG. 3B is a Mollier diagram of the air conditioner. 図3Cは上記空気調和機のモリエル線図である。FIG. 3C is a Mollier diagram of the air conditioner. 図4は上記空気調和機の冷房サイクルのときの冷媒の流れを示す回路図である。FIG. 4 is a circuit diagram showing the flow of refrigerant during the cooling cycle of the air conditioner. 図5は上記空気調和機の他の回路図である。FIG. 5 is another circuit diagram of the air conditioner. 図6Aは上記空気調和機の第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を変える通風量比制御部を示す模式図である。FIG. 6A is a schematic diagram showing an air flow rate ratio control unit that changes a ratio of the air flow rate of the second indoor heat exchanger to the air flow rate of the first indoor heat exchanger of the air conditioner. 図6Bは上記通風量比制御部を示す模式図である。FIG. 6B is a schematic diagram showing the ventilation rate ratio control unit. 図7Aは他の通風量比制御部の例を示す模式図である。FIG. 7A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図7Bは上記通風量比制御部を示す模式図である。FIG. 7B is a schematic diagram showing the ventilation rate ratio control unit. 図8Aは他の通風量比制御部の例を示す模式図である。FIG. 8A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図8Bは上記通風量比制御部を示す模式図である。FIG. 8B is a schematic diagram showing the ventilation rate ratio control unit. 図9Aは他の通風量比制御部の例を示す模式図である。FIG. 9A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図9Bは上記通風量比制御部を示す模式図である。FIG. 9B is a schematic diagram showing the ventilation rate ratio control unit. 図10Aは他の通風量比制御部の例を示す模式図である。FIG. 10A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図10Bは上記通風量比制御部を示す模式図である。FIG. 10B is a schematic diagram showing the ventilation rate ratio control unit. 図10Cは上記通風量比制御部を示す模式図である。FIG. 10C is a schematic diagram illustrating the ventilation rate ratio control unit. 図10Dは上記通風量比制御部を示す模式図である。FIG. 10D is a schematic diagram illustrating the ventilation rate ratio control unit. 図11Aは他の通風量比制御部の例を示す模式図である。FIG. 11A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図11Bは上記通風量比制御部を示す模式図である。FIG. 11B is a schematic diagram showing the ventilation rate ratio control unit. 図12Aは他の通風量比制御部の例を示す模式図である。FIG. 12A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図12Bは上記通風量比制御部を示す模式図である。FIG. 12B is a schematic diagram showing the ventilation rate ratio control unit. 図13Aは他の通風量比制御部の例を示す模式図である。FIG. 13A is a schematic diagram illustrating an example of another ventilation rate ratio control unit. 図13Bは上記通風量比制御部を示す模式図である。FIG. 13B is a schematic diagram showing the ventilation rate ratio control unit. 図14はこの発明の第2実施形態の空気調和機の暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 14 is a circuit diagram showing a refrigerant flow during the heating cycle of the air conditioner according to the second embodiment of the present invention. 図15Aは上記空気調和機の室内熱交換器の凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力の冷媒流制御部による制御を説明するための模式図である。FIG. 15A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is. 図15Bは上記冷媒流制御部を説明するための模式図である。FIG. 15B is a schematic diagram for explaining the refrigerant flow control unit. 図15Cは上記冷媒流制御部を説明するための模式図である。FIG. 15C is a schematic diagram for explaining the refrigerant flow control unit. 図15Dは上記冷媒流制御部を説明するための模式図である。FIG. 15D is a schematic diagram for explaining the refrigerant flow control unit. 図16はこの発明の第3実施形態の空気調和機の暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 16: is a circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating cycle of the air conditioner of 3rd Embodiment of this invention. 図17Aは上記空気調和機の室内熱交換器の凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力の冷媒流制御部による制御を説明するための模式図である。FIG. 17A is a schematic diagram for explaining control by the refrigerant flow control unit of the condensation capacity of the heat exchange unit that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporation capacity of the heat exchange unit that functions as an evaporator. It is. 図17Bは上記冷媒流制御部による制御を説明するための模式図である。FIG. 17B is a schematic diagram for explaining control by the refrigerant flow control unit. 図17Cは上記冷媒流制御部による制御を説明するための模式図である。FIG. 17C is a schematic diagram for explaining control by the refrigerant flow control unit. 図17Dは上記冷媒流制御部による制御を説明するための模式図である。FIG. 17D is a schematic diagram for explaining control by the refrigerant flow control unit. 図17Eは上記冷媒流制御部による制御を説明するための模式図である。FIG. 17E is a schematic diagram for explaining control by the refrigerant flow control unit. 図18は上記空気調和機の他の室内熱交換器の例を用いた暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 18 is a circuit diagram showing a refrigerant flow during a heating cycle using an example of another indoor heat exchanger of the air conditioner. 図19Aは上記空気調和機の室内熱交換器の凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力の冷媒流制御部による制御を説明するための模式図である。FIG. 19A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section acting as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section acting as an evaporator. It is. 図19Bは上記冷媒流制御部による制御を説明するための模式図である。FIG. 19B is a schematic diagram for explaining control by the refrigerant flow control unit. 図19Cは上記冷媒流制御部による制御を説明するための模式図である。FIG. 19C is a schematic diagram for explaining control by the refrigerant flow control unit. 図20はこの発明の第4実施形態の空気調和機の暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 20 is a circuit diagram showing the refrigerant flow during the heating cycle of the air conditioner according to the fourth embodiment of the present invention. 図21Aは上記空気調和機の室内熱交換器の凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力の冷媒流制御部による制御を説明するための模式図である。FIG. 21A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is. 図21Bは上記冷媒流制御部による制御を説明するための模式図である。FIG. 21B is a schematic diagram for explaining control by the refrigerant flow control unit. 図21Cは上記冷媒流制御部による制御を説明するための模式図である。FIG. 21C is a schematic diagram for explaining control by the refrigerant flow control unit. 図22は上記空気調和機の他の室内熱交換器の例を用いた暖房サイクルのときの冷媒の流れを示す回路図である。FIG. 22 is a circuit diagram showing a refrigerant flow during a heating cycle using an example of another indoor heat exchanger of the air conditioner. 図23Aは上記空気調和機の室内熱交換器の凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力の冷媒流制御部による制御を説明するための模式図である。FIG. 23A is a schematic diagram for explaining the control by the refrigerant flow control unit of the condensing capacity of the heat exchanging section that functions as a condenser of the indoor heat exchanger of the air conditioner and the evaporating capacity of the heat exchanging section that functions as an evaporator. It is. 図23Bは上記冷媒流制御部による制御を説明するための模式図である。FIG. 23B is a schematic diagram for explaining control by the refrigerant flow control unit. 図23Cは上記冷媒流制御部による制御を説明するための模式図である。FIG. 23C is a schematic diagram for explaining control by the refrigerant flow control unit.
 以下、この発明の空気調和機を図示の実施の形態により詳細に説明する。 Hereinafter, the air conditioner of the present invention will be described in detail with reference to embodiments shown in the drawings.
 〔第1実施形態〕
 図1はこの発明の第1実施形態の空気調和機の回路図を示している。この空気調和機は、図1に示すように、圧縮機1と、上記圧縮機1の吐出側に一端が接続された四路切換弁2と、上記四路切換弁2の他端に一端が接続された冷媒流方向規制部3と、上記冷媒流方向規制部3の他端に一端が接続された第1室内熱交換器4と、上記第1室内熱交換器4の他端に一端が接続された膨張機構5と、上記膨張機構5の他端に一端が接続された第2室内熱交換器6と、上記第2室内熱交換器6の他端に冷媒流方向規制部3を介して一端が接続された電動膨張弁7と、上記電動膨張弁7の他端に一端が接続され、他端が四路切換弁2を介して圧縮機1の吸込側に接続された室外熱交換器8とを備えている。上記圧縮機1と四路切換弁2と冷媒流方向規制部3と第1室内熱交換器4と膨張機構5と第2室内熱交換器6と電動膨張弁7および室外熱交換器8で冷媒回路を構成している。また、上記膨張機構5は、絞り機構内蔵の開閉弁、可変絞り弁(電動膨張弁などのように、減圧量が調整可能な弁)、開閉弁とそれに並列配置された絞り機構などを用いている。なお、膨張機構5の減圧時における絞り量は、キャピラリーやオリフィスのように一定値でもよいが、電動膨張弁のように、減圧量が調整可能な弁を使用した場合は、減圧量を大きくすることにより低圧が下がる一方、減圧量を小さくすることにより低圧が上がるので、暖房能力,除湿能力について、より細かい制御が可能となる。
[First Embodiment]
FIG. 1 shows a circuit diagram of an air conditioner according to a first embodiment of the present invention. As shown in FIG. 1, this air conditioner has a compressor 1, a four-way switching valve 2 having one end connected to the discharge side of the compressor 1, and one end at the other end of the four-way switching valve 2. The refrigerant flow direction restricting unit 3 connected, the first indoor heat exchanger 4 having one end connected to the other end of the refrigerant flow direction restricting unit 3, and the other end of the first indoor heat exchanger 4 having one end. The connected expansion mechanism 5, the second indoor heat exchanger 6 having one end connected to the other end of the expansion mechanism 5, and the other end of the second indoor heat exchanger 6 via the refrigerant flow direction regulating unit 3. And one end connected to the other end of the electric expansion valve 7 and the other end connected to the suction side of the compressor 1 via the four-way switching valve 2. And a container 8. In the compressor 1, the four-way switching valve 2, the refrigerant flow direction restriction unit 3, the first indoor heat exchanger 4, the expansion mechanism 5, the second indoor heat exchanger 6, the electric expansion valve 7, and the outdoor heat exchanger 8, the refrigerant The circuit is configured. The expansion mechanism 5 uses an on-off valve with a built-in throttling mechanism, a variable throttle valve (a valve whose pressure reduction amount can be adjusted, such as an electric expansion valve), an on-off valve and a throttling mechanism arranged in parallel therewith. Yes. Note that the expansion amount at the time of depressurization of the expansion mechanism 5 may be a constant value such as a capillary or an orifice. However, when a valve with an adjustable depressurization amount such as an electric expansion valve is used, the depressurization amount is increased. As a result, the low pressure is lowered, while the low pressure is raised by reducing the amount of decompression, so that finer control can be performed on the heating capacity and the dehumidifying capacity.
 上記冷媒流方向規制部3は、一方向にのみ冷媒の流れを許容する逆止弁3a,3b,3c,3dがブリッジ状に形成され、入出力ポート2つと入力ポート,出力ポートを各1つ有するブリッジ回路である。上記冷媒流方向規制部3の一方の入出力ポートに四路切換弁2を接続し、他方の入出力ポートに電動膨張弁7を接続している。さらに、冷媒流方向規制部3の入力ポートに第2室内熱交換器6の他端を接続し、冷媒流方向規制部3の出力ポートに第1室内熱交換器4の一端を接続している。 In the refrigerant flow direction restricting section 3, check valves 3a, 3b, 3c and 3d which allow refrigerant flow only in one direction are formed in a bridge shape, and two input / output ports, one input port and one output port are provided. A bridge circuit. The four-way switching valve 2 is connected to one input / output port of the refrigerant flow direction restricting section 3, and the electric expansion valve 7 is connected to the other input / output port. Furthermore, the other end of the second indoor heat exchanger 6 is connected to the input port of the refrigerant flow direction regulating unit 3, and one end of the first indoor heat exchanger 4 is connected to the output port of the refrigerant flow direction regulating unit 3. .
 上記冷媒流方向規制部3は、室内熱交換器(4,6)近傍(具体的には室内側)に設けることが望ましい。その理由は、次のとおりである。
 一般に、室内熱交換器と室外熱交換器は、冷媒流方向規制部が無い場合、ガス冷媒が流れるガス配管(断面積が大)と、液冷媒が流れる液配管(断面積が小)の2本の冷媒配管で接続されている。これに対して、冷媒流方向規制部3を有する場合、室外熱交換器8と冷媒流方向規制部3との間では、ガス冷媒はガス配管を流れ、液冷媒は液配管を流れる。一方、室内熱交換器(4,6)と冷媒流方向規制部3との間では、ガス冷媒・液冷媒は、上流側配管と下流側配管のどちらにも流れるので、どちらの配管にガス冷媒が流れても、過剰に高圧損とならないように、両配管の断面積を太くしなければならない。つまり、室内熱交換器(4,6)と冷媒流方向規制部3との間の接続配管のスペースが大きくなり、必要な冷媒量も多くなるので、室内熱交換器(4,6)と冷媒流方向規制部3との間の配管の距離は短いことが望ましいのである。
The refrigerant flow direction regulating unit 3 is desirably provided in the vicinity of the indoor heat exchangers (4, 6) (specifically, on the indoor side). The reason is as follows.
Generally, an indoor heat exchanger and an outdoor heat exchanger have two pipes, a gas pipe through which a gas refrigerant flows (large cross-sectional area) and a liquid pipe through which liquid refrigerant flows (small cross-sectional area) when there is no refrigerant flow direction regulating portion. They are connected by a refrigerant pipe. On the other hand, when the refrigerant flow direction restriction unit 3 is provided, the gas refrigerant flows through the gas pipe and the liquid refrigerant flows through the liquid pipe between the outdoor heat exchanger 8 and the refrigerant flow direction restriction unit 3. On the other hand, between the indoor heat exchanger (4, 6) and the refrigerant flow direction restricting portion 3, the gas refrigerant / liquid refrigerant flows into both the upstream side pipe and the downstream side pipe. The cross-sectional area of both pipes must be increased so that there is no excessive high pressure loss even if That is, since the space of the connection pipe between the indoor heat exchanger (4, 6) and the refrigerant flow direction restricting portion 3 is increased and the amount of necessary refrigerant is increased, the indoor heat exchanger (4, 6) and the refrigerant are increased. It is desirable that the distance of the pipe between the flow direction restricting unit 3 is short.
 また、上記空気調和機は、室外熱交換器8に外気を供給する室外ファン11と、室内から吸い込んだ空気を第1室内熱交換器4と第2室内熱交換器6を介して室内に吹き出すための室内ファン12とを備えている。上記室内ファン12には、クロスフローファンを用いている。 The air conditioner blows the air sucked from the room through the first indoor heat exchanger 4 and the second indoor heat exchanger 6 into the room through the outdoor fan 11 that supplies the outdoor air to the outdoor heat exchanger 8. The indoor fan 12 is provided. The indoor fan 12 is a cross flow fan.
 また、上記空気調和機は、室内空気の温度を検出する室内温度センサ13と、第2室内熱交換器6の温度を検出する第2室内熱交換器温度センサ14と、室内空気の湿度を検出する室内湿度センサ15と、マイクロコンピュータと入出力回路などからなる制御装置10を備えている。上記制御装置10は、室内温度センサ13により検出された室内空気の温度と第2室内熱交換器温度センサ14により検出された第2室内熱交換器6の温度と、室内湿度センサ15により検出された室内空気の湿度に基づいて、圧縮機1と四路切換弁2と冷媒流方向規制部3と第1室内熱交換器4と膨張機構5と第2室内熱交換器6と電動膨張弁7と室外ファン11と室内ファン12を制御する。 The air conditioner also detects the temperature of the indoor air, the indoor temperature sensor 13 for detecting the temperature of the indoor air, the second indoor heat exchanger temperature sensor 14 for detecting the temperature of the second indoor heat exchanger 6, and the humidity of the indoor air. And a control device 10 including a microcomputer and an input / output circuit. The control device 10 detects the temperature of the indoor air detected by the indoor temperature sensor 13, the temperature of the second indoor heat exchanger 6 detected by the second indoor heat exchanger temperature sensor 14, and the indoor humidity sensor 15. Based on the humidity of the indoor air, the compressor 1, the four-way switching valve 2, the refrigerant flow direction regulating unit 3, the first indoor heat exchanger 4, the expansion mechanism 5, the second indoor heat exchanger 6, and the electric expansion valve 7 are used. The outdoor fan 11 and the indoor fan 12 are controlled.
 上記空気調和機は、暖房サイクルによる再熱運転において、四路切換弁2を実線の位置に切り換え、電動膨張弁7を開いた状態で、膨張機構5を絞り状態にして、圧縮機1を起動する。そして、圧縮機1から吐出された高圧ガス冷媒は、ガス管と冷媒流方向規制部3を介して第1室内熱交換器4に流入して凝縮した後、膨張機構5により減圧され、減圧された低圧冷媒は第2室内熱交換器6と室外熱交換器8で蒸発して、圧縮機1に吸い込まれる。 In the reheating operation by the heating cycle, the above air conditioner switches the four-way switching valve 2 to the position of the solid line, opens the electric expansion valve 7, sets the expansion mechanism 5 to the throttle state, and starts the compressor 1 To do. The high-pressure gas refrigerant discharged from the compressor 1 flows into the first indoor heat exchanger 4 through the gas pipe and the refrigerant flow direction regulating unit 3 and condenses, and then is decompressed and decompressed by the expansion mechanism 5. The low-pressure refrigerant evaporated in the second indoor heat exchanger 6 and the outdoor heat exchanger 8 is sucked into the compressor 1.
 これにより、凝縮器としての第1室内熱交換器4により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器6により室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Thereby, while the room air is warmed by the first indoor heat exchanger 4 as a condenser, the room air is dehumidified by being cooled by the second indoor heat exchanger 6 as an evaporator, and thus is heated. Reheating operation is performed.
 この空気調和機は、凝縮器としての第1室内熱交換器4の通風量に対する蒸発器としての第2室内熱交換器6の通風量の比を変える通風量比制御部(図示せず)を備えている。 This air conditioner includes a ventilation rate ratio control unit (not shown) that changes the ratio of the ventilation rate of the second indoor heat exchanger 6 as an evaporator to the ventilation rate of the first indoor heat exchanger 4 as a condenser. I have.
 ここで、暖房サイクルによる再熱運転の場合、制御装置10は、圧縮機1の運転周波数、室外ファン11と室内ファン12の回転速度を制御し、通風量比制御部(図示せず)を制御する。この暖房サイクルによる再熱運転での暖房能力は、通風量比制御部を要求される除湿能力に合わせて適宜調節することを除いては、通常の暖房運転と同様、圧縮機1の運転周波数、室外ファン11と室内ファン12の回転速度で制御する。また、除湿能力は、主に通風量比制御部(図示せず)により第1室内熱交換器4の通風量に対する第2室内熱交換器6(蒸発器)の通風量の比を調整することにより制御する。これにより、任意の暖房能力と除湿能力を兼ね備えた制御が可能になる。 Here, in the case of the reheat operation by the heating cycle, the control device 10 controls the operation frequency of the compressor 1, the rotation speed of the outdoor fan 11 and the indoor fan 12, and controls the air flow rate ratio control unit (not shown). To do. The heating capacity in the reheating operation by the heating cycle is the same as the operation frequency of the compressor 1 as in the normal heating operation except that the ventilation rate ratio control unit is appropriately adjusted according to the required dehumidifying capacity. Control is performed by the rotational speeds of the outdoor fan 11 and the indoor fan 12. The dehumidifying capacity is mainly adjusted by adjusting the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the first indoor heat exchanger 4 by the ventilation rate control unit (not shown). Control by. Thereby, the control which has arbitrary heating capability and dehumidification capability is attained.
 図2A,図2Bは蒸発器温度が雰囲気の露点温度よりも十分低い場合の上記空気調和機のモリエル線図を示しており、図2A,図2Bにおいて、縦軸は圧力を表し、横軸はエンタルピーを表している。ここで、「蒸発器温度が雰囲気の露点温度よりも十分低い場合」とは、蒸発器温度が雰囲気の露点温度よりも概ね5deg以上低い場合をいう。 2A and 2B show Mollier diagrams of the air conditioner when the evaporator temperature is sufficiently lower than the dew point temperature of the atmosphere. In FIGS. 2A and 2B, the vertical axis represents pressure, and the horizontal axis represents It represents enthalpy. Here, “when the evaporator temperature is sufficiently lower than the dew point temperature of the atmosphere” refers to a case where the evaporator temperature is approximately 5 degrees or more lower than the dew point temperature of the atmosphere.
 図2A,図2Bの点Aから点Bが第2室内熱交換器6(蒸発器)と室外熱交換器8による蒸発工程、点Bから点Cが圧縮機1による圧縮行程、点Cから点Dが第1室内熱交換器4(凝縮器)による凝縮工程、点Dから点Aが膨張機構5による膨張行程である。 2A and 2B, point A to point B are the evaporation process by the second indoor heat exchanger 6 (evaporator) and the outdoor heat exchanger 8, point B to point C are the compression stroke by the compressor 1, point C to point D is a condensation step by the first indoor heat exchanger 4 (condenser), and points D to A are expansion strokes by the expansion mechanism 5.
 図2Aでは、制御装置10により通風量比制御部(図示せず)を制御して、第2室内熱交換器6(図2Aでは蒸発器)の通風量を多くして、第1室内熱交換器4(図2Aでは凝縮器)の通風量に対する第2室内熱交換器6(蒸発器)の通風量の比を大きくしたときの例を示している。上記第2室内熱交換器6(蒸発器)を通過する風量を多くすると、除湿量が増える一方で暖房能力が下がる。第1室内熱交換器4(凝縮器)による暖房能力は、第2室内熱交換器6(蒸発器)による暖房ロス分低下する。 In FIG. 2A, the control device 10 controls the ventilation rate ratio control unit (not shown) to increase the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 2A), and thereby the first indoor heat exchange. An example is shown in which the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the condenser 4 (condenser in FIG. 2A) is increased. If the amount of air passing through the second indoor heat exchanger 6 (evaporator) is increased, the amount of dehumidification increases while the heating capacity decreases. The heating capacity by the first indoor heat exchanger 4 (condenser) is reduced by the heating loss by the second indoor heat exchanger 6 (evaporator).
 図2Bでは、制御装置10により通風量比制御部(図示せず)を制御して、第2室内熱交換器6(蒸発器)の通風量を少なくして、第1室内熱交換器4(凝縮器)の通風量に対する第2室内熱交換器6(蒸発器)の通風量の比を小さくしたときの例を示している。上記第2室内熱交換器6(蒸発器)を通過する風量を少なくすると、除湿量が減る。一方、第1室内熱交換器4(凝縮器)による暖房能力は、第2室内熱交換器6(蒸発器)による暖房ロス分が小さくなるので、暖房能力は、図2Aよりも上がる。 In FIG. 2B, the control device 10 controls the ventilation rate ratio control unit (not shown) to reduce the ventilation rate of the second indoor heat exchanger 6 (evaporator), and the first indoor heat exchanger 4 ( An example is shown in which the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator) to the ventilation rate of the condenser is reduced. When the amount of air passing through the second indoor heat exchanger 6 (evaporator) is reduced, the dehumidification amount is reduced. On the other hand, the heating capacity of the first indoor heat exchanger 4 (condenser) is smaller than that of the second indoor heat exchanger 6 (evaporator), so that the heating capacity is higher than that of FIG. 2A.
 一方、図3Aは蒸発器温度が雰囲気の露点温度よりも十分低くない場合の上記空気調和機のモリエル線図を示しており、図3A~Cにおいて、縦軸は圧力を表し、横軸はエンタルピーを表している。 On the other hand, FIG. 3A shows a Mollier diagram of the air conditioner when the evaporator temperature is not sufficiently lower than the dew point temperature of the atmosphere. In FIGS. 3A to 3C, the vertical axis represents pressure and the horizontal axis represents enthalpy. Represents.
 現在の暖房能力が要求暖房能力以上のとき、図3Aでは、制御装置10により通風量比制御部(図示せず)を制御して、室外熱交換器8(蒸発器)の通風量を多くして、第1室内熱交換器4(図3Aでは凝縮器)の通風量に対する第2室内熱交換器6(図3Aでは蒸発器)の通風量の比を小さくしたときの例を示している。 When the current heating capacity is equal to or greater than the required heating capacity, in FIG. 3A, the control device 10 controls the ventilation rate ratio control unit (not shown) to increase the ventilation rate of the outdoor heat exchanger 8 (evaporator). In this example, the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3A) to the ventilation rate of the first indoor heat exchanger 4 (condenser in FIG. 3A) is reduced.
 次に、図3Bでは、制御装置10により室外ファン11を制御して、室外熱交換器8(蒸発器)の通風量を少なくして、第1室内熱交換器4(図3Bでは凝縮器)の通風量に対する第2室内熱交換器6(図3Bでは蒸発器)の通風量の比を大きくしている。上記室外熱交換器8(蒸発器)を通過する風量を少なくすると、図3Aのときよりも低圧が下がって、蒸発器温度が下がる。このとき、除湿能力が増える一方で、第2室内熱交換器6(蒸発器)による暖房ロス分が大きくなって暖房能力が低下する。 Next, in FIG. 3B, the outdoor fan 11 is controlled by the control device 10 to reduce the air flow rate of the outdoor heat exchanger 8 (evaporator), and the first indoor heat exchanger 4 (condenser in FIG. 3B). The ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3B) to the ventilation rate of is increased. When the amount of air passing through the outdoor heat exchanger 8 (evaporator) is reduced, the low pressure is lowered and the evaporator temperature is lowered as compared with FIG. 3A. At this time, while the dehumidifying capacity increases, the heating loss by the second indoor heat exchanger 6 (evaporator) increases and the heating capacity decreases.
 また、図3Cは、図3Bの状態より制御装置10により通風量比制御部(図示せず)を制御して、第2室内熱交換器6(図3Cでは蒸発器)の通風量を少なくして、第1室内熱交換器4(図3Cでは凝縮器)の通風量に対する第2室内熱交換器6(図3Cでは蒸発器)の通風量の比を小さくした場合を示している。上記室外熱交換器8(蒸発器)を通過する風量を少なくすると、図3Bのときよりもさらに低圧が下がって、蒸発器温度が下がる。このとき、第2室内熱交換器6(図3Cでは蒸発器)の通風量が少なくなるため、除湿能力が減る傾向にあるが、蒸発器温度を雰囲気の露点温度よりも容易に低温に保てるため、確実に除湿できると共に、暖房能力の低下を抑えることができる。 3C, the controller 10 controls the ventilation rate ratio control unit (not shown) from the state of FIG. 3B to reduce the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C). In this case, the ratio of the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C) to the ventilation rate of the first indoor heat exchanger 4 (condenser in FIG. 3C) is reduced. When the amount of air passing through the outdoor heat exchanger 8 (evaporator) is reduced, the low pressure is further lowered than in the case of FIG. 3B, and the evaporator temperature is lowered. At this time, since the ventilation rate of the second indoor heat exchanger 6 (evaporator in FIG. 3C) decreases, the dehumidifying capacity tends to decrease, but the evaporator temperature can be easily kept lower than the dew point temperature of the atmosphere. It is possible to reliably dehumidify and suppress a decrease in heating capacity.
 なお、現在の暖房能力が要求暖房能力未満のときは、これら制御に加えて、圧縮機1の運転周波数を上げることにより、暖房能力を要求暖房能力に近づけることができる。 In addition, when the current heating capacity is less than the required heating capacity, in addition to these controls, the heating capacity can be brought close to the required heating capacity by increasing the operating frequency of the compressor 1.
 図4は上記空気調和機の冷房サイクルのときの冷媒の流れを示す回路図を示している。上記空気調和機は、冷房サイクルによる再熱運転において、四路切換弁2を点線の位置に切り換え、電動膨張弁7を開いた状態で、膨張機構5を絞り状態にして、圧縮機1を起動する。そして、圧縮機1から吐出された高圧ガス冷媒は、ガス管と冷媒流方向規制部3を介して第1室内熱交換器4に流入して凝縮した後、膨張機構5により減圧され、減圧された低圧冷媒は第2室内熱交換器6と室外熱交換器8で蒸発して、圧縮機1に吸い込まれる。 FIG. 4 shows a circuit diagram showing the flow of the refrigerant during the cooling cycle of the air conditioner. In the reheating operation by the cooling cycle, the air conditioner switches the four-way switching valve 2 to the dotted line position, opens the electric expansion valve 7, sets the expansion mechanism 5 to the throttle state, and starts the compressor 1. To do. The high-pressure gas refrigerant discharged from the compressor 1 flows into the first indoor heat exchanger 4 through the gas pipe and the refrigerant flow direction regulating unit 3 and condenses, and then is decompressed and decompressed by the expansion mechanism 5. The low-pressure refrigerant evaporated in the second indoor heat exchanger 6 and the outdoor heat exchanger 8 is sucked into the compressor 1.
 これにより、凝縮器としての第1室内熱交換器4により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器6により室内空気が冷却されることにより除湿されて、冷房サイクルによる再熱運転が行われる。 Thereby, while the room air is warmed by the first indoor heat exchanger 4 as a condenser, the room air is dehumidified by being cooled by the second indoor heat exchanger 6 as an evaporator, and the cooling cycle is performed. Reheating operation is performed.
 このように、暖房サイクルと冷房サイクルのいずれにおいても、冷媒流方向規制部3によって、第1室内熱交換器4から膨張機構5を介して第2室内熱交換器6に冷媒が流れるようにすることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に室内側の蒸発器と凝縮器の位置が変わらない。このため、暖房サイクルと冷房サイクルとで同様の気流制御ができるだけでなく、露付きについても個別に対策する必要がないため、構造の簡略化も可能となる。また、膨張機構に流れる冷媒方向が、暖房サイクル,冷房サイクルに関わらず一方向であるので、膨張機構に逆圧がかかることがないようにでき、膨張機構に逆圧に弱い安価な開閉弁などを使用することができる。 Thus, in both the heating cycle and the cooling cycle, the refrigerant flow direction regulating unit 3 causes the refrigerant to flow from the first indoor heat exchanger 4 to the second indoor heat exchanger 6 via the expansion mechanism 5. Thus, even when the heating cycle is switched to the cooling cycle or from the cooling cycle to the heating cycle, the position of the evaporator and the condenser on the indoor side does not always change during the reheating operation. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
 図5は上記空気調和機の他の回路図を示している。この空気調和機は、図5に示すように、室内側のユニットが2つある点を除いて図1に示す空気調和機と同様の構成をしており、同一構成部には同一参照番号を付している。この空気調和機では、暖房サイクルによる再熱運転や冷房サイクルによる再熱運転は、図1に示す空気調和機と同様に行える。なお、この実施の形態に限らず、室内側のユニットが3以上ある空気調和機にこの発明を適用してもよい。 FIG. 5 shows another circuit diagram of the air conditioner. As shown in FIG. 5, this air conditioner has the same configuration as that of the air conditioner shown in FIG. 1 except that there are two indoor units. It is attached. In this air conditioner, the reheat operation by the heating cycle and the reheat operation by the cooling cycle can be performed in the same manner as the air conditioner shown in FIG. The present invention is not limited to this embodiment, and may be applied to an air conditioner having three or more indoor units.
 図6A,図6Bは上記空気調和機の第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を変える通風量比制御部を示す模式図を示している。 6A and 6B are schematic views showing an air flow rate ratio control unit that changes the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 of the air conditioner.
 この空気調和機では、図6A,図6Bに示すように、第1室内熱交換器4(凝縮器)である熱交換部4a,4bと第2室内熱交換器6(蒸発器)で断面くの字形状に屈曲した熱交換器を形成している。この熱交換器の風下側に室内ファン12を配置している。 In this air conditioner, as shown in FIGS. 6A and 6B, the heat exchangers 4a and 4b, which are the first indoor heat exchanger 4 (condenser), and the second indoor heat exchanger 6 (evaporator) have a cross section. A heat exchanger bent into a letter shape is formed. An indoor fan 12 is disposed on the leeward side of the heat exchanger.
 図6A,図6Bでは、第1室内熱交換器4と第2室内熱交換器6の前面側に、通風量比制御部の一例としての開閉式のパネル20を前後方向に移動可能に配置している。このパネル20は、図6Aに示すように前方に移動して開口21を開くことにより、第2室内熱交換器6(蒸発器)の通風量が大きくなる一方、図6Bに示すように後方に移動して開口21を閉じることにより、第2室内熱交換器6の通風量が小さくなる。また、図6Aと図6Bの中間位置で、パネル20の開度を調整することにより、第2室内熱交換器6(蒸発器)の通風量を細かく調整できる。 6A and 6B, an open / close panel 20 as an example of an air flow rate ratio control unit is arranged on the front side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 so as to be movable in the front-rear direction. ing. The panel 20 moves forward as shown in FIG. 6A to open the opening 21, thereby increasing the air flow rate of the second indoor heat exchanger 6 (evaporator), while rearward as shown in FIG. 6B. By moving and closing the opening 21, the ventilation rate of the second indoor heat exchanger 6 is reduced. Further, by adjusting the opening of the panel 20 at an intermediate position between FIG. 6A and FIG. 6B, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
 また、図7A,図7Bは他の通風量比制御部の例を示す模式図を示している。図7A,図7Bでは、第1室内熱交換器4と第2室内熱交換器6の前面側の開口31を開閉する通風量比制御部の一例としてのシャッター30を配置している。このシャッター30は、上下方向に移動可能であり、図7Aに示すように上方に移動して開口31を開くことにより、第2室内熱交換器6(蒸発器)の通風量が大きくなる一方、図7Bに示すように下方に移動して開口31を閉じることにより、第2室内熱交換器6の通風量が小さくなる。また、図7Aと図7Bの中間位置で、シャッター30の開度を調整することにより、第2室内熱交換器6(蒸発器)の通風量を細かく調整できる。 7A and 7B are schematic diagrams showing examples of other ventilation rate ratio control units. 7A and 7B, a shutter 30 as an example of an air flow rate ratio control unit that opens and closes the opening 31 on the front side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 is disposed. The shutter 30 is movable in the vertical direction. As shown in FIG. 7A, the shutter 30 moves upward to open the opening 31, thereby increasing the air flow rate of the second indoor heat exchanger 6 (evaporator). By moving downward as shown in FIG. 7B and closing the opening 31, the air flow rate of the second indoor heat exchanger 6 is reduced. Further, by adjusting the opening degree of the shutter 30 at an intermediate position between FIG. 7A and FIG. 7B, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
 また、図8A,図8Bは他の通風量比制御部の例を示す模式図を示している。図8A,図8Bに示すように、第1室内熱交換器4と第2室内熱交換器6の風上側に、上下の回転軸41,42でフィルター40を上下方向移動可能に配置している。このフィルター40と回転軸41,42で通風量比制御部を構成している。 8A and 8B are schematic diagrams showing examples of other ventilation rate ratio control units. As shown in FIGS. 8A and 8B, the filter 40 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6 so as to be movable in the vertical direction by the upper and lower rotary shafts 41 and 42. . The filter 40 and the rotary shafts 41 and 42 constitute a ventilation amount ratio control unit.
 このフィルター40は、図8Aに示すように上方に移動した状態では、第2室内熱交換器6(蒸発器)の通風量が大きくなる。一方、図8Bに示すように下方に移動して第2室内熱交換器6の前方にフィルター40が2重に重なることにより、第2室内熱交換器6の通風量が小さくなる。また、フィルター40が2重に重なる部分の面積や位置を調整することにより、第2室内熱交換器6(蒸発器)の通風量を細かく調整できる。 When the filter 40 moves upward as shown in FIG. 8A, the air flow rate of the second indoor heat exchanger 6 (evaporator) increases. On the other hand, as shown in FIG. 8B, the air flow rate of the second indoor heat exchanger 6 is reduced by moving downward and the filter 40 overlapping in front of the second indoor heat exchanger 6. Further, by adjusting the area and position of the portion where the filter 40 overlaps twice, the air flow rate of the second indoor heat exchanger 6 (evaporator) can be finely adjusted.
 また、図9A,図9Bは他の通風量比制御部の例を示す模式図を示している。図9A,図9Bに示すように、第1室内熱交換器4と第2室内熱交換器6の風上側に、上下の回転軸51,52に巻回されたフィルター50を配置している。このフィルター50には、高圧損部50aが設けられ、回転軸51,52の回転により高圧損部50aが上下方向に移動する。フィルター50と高圧損部50aと回転軸51,52で通風量比制御部を構成している。 9A and 9B are schematic diagrams showing examples of other ventilation rate ratio control units. As shown in FIGS. 9A and 9B, a filter 50 wound around upper and lower rotary shafts 51 and 52 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6. The filter 50 is provided with a high-pressure loss part 50a, and the high-pressure loss part 50a moves in the vertical direction by the rotation of the rotary shafts 51 and 52. The filter 50, the high-pressure loss part 50a, and the rotary shafts 51 and 52 constitute an air flow rate ratio control part.
 このフィルター50の高圧損部50aは、図9Aに示すように上方に移動した状態では、第2室内熱交換器6(蒸発器)の通風量が大きくなる一方、図9Bに示すように下方に移動して第2室内熱交換器6の前方の位置に移動した状態では、第2室内熱交換器6の通風量が小さくなる。なお、図8A,図8B,図9A,図9Bでは、フィルターが動作することにより、通風量比を制御する方策を例示したが、この方策に限られることなく、他の動き方や形態のフィルター(例えば、近年、多く出願されているフィルターお掃除機構で見られるフィルター動作)を使用した場合についても適用できることは言うまでもない。 When the high pressure loss part 50a of the filter 50 is moved upward as shown in FIG. 9A, the air flow rate of the second indoor heat exchanger 6 (evaporator) is increased, while it is lowered as shown in FIG. 9B. In a state where the second indoor heat exchanger 6 has moved and moved to a position in front of the second indoor heat exchanger 6, the air flow rate of the second indoor heat exchanger 6 becomes small. 8A, FIG. 8B, FIG. 9A, and FIG. 9B exemplify a method for controlling the air flow rate ratio by operating the filter. However, the present invention is not limited to this method, and filters of other movement methods and forms are used. Needless to say, the present invention can also be applied to the case of using (for example, a filter operation found in a filter cleaning mechanism that has been filed for many times in recent years).
 また、図10A,図10Bは他の通風量比制御部の例を示す模式図を示している。図10A,図10Bに示すように、第1室内熱交換器4と第2室内熱交換器6の風上側にフィルター60を配置している。このフィルター60に、通風量比制御部の一例としての掃除部61(風が通過し難い圧損部材として機能)を上下方向に移動可能に配置している。この掃除部61は、図10Aに示すように、第1室内熱交換器4に位置する状態では、第2室内熱交換器6(蒸発器)の通風量が最も小さい。そして、図10Aから図10Dに示すように、掃除部61が上方に徐々に移動すると、第2室内熱交換器6の通風量が徐々に大きくなる。 FIG. 10A and FIG. 10B are schematic views showing examples of other ventilation rate ratio control units. As shown in FIGS. 10A and 10B, a filter 60 is disposed on the windward side of the first indoor heat exchanger 4 and the second indoor heat exchanger 6. In this filter 60, a cleaning unit 61 (functioning as a pressure loss member that is difficult for air to pass) as an example of an air flow rate ratio control unit is arranged to be movable in the vertical direction. As shown in FIG. 10A, the cleaning unit 61 has the smallest ventilation rate of the second indoor heat exchanger 6 (evaporator) in a state where it is located in the first indoor heat exchanger 4. Then, as shown in FIGS. 10A to 10D, when the cleaning unit 61 gradually moves upward, the air flow rate of the second indoor heat exchanger 6 gradually increases.
 図11A,図11Bは他の空気調和機の通風量比制御部の例を示す模式図を示している。この空気調和機では、図11A,図11Bに示すように、第1前面熱交換器71と第2前面熱交換器72と後面熱交換器73で、断面くの字形状の室内熱交換器を形成し、通風量比制御部を構成している。図11Aでは、第1前面熱交換器71と第2前面熱交換器72を蒸発器(第2室内熱交換器6に相当)とし、後面熱交換器73を凝縮器(第1室内熱交換器4に相当)とし、蒸発器の通風量を大きくしている。一方、図11Bでは、第1前面熱交換器71を蒸発器(第2室内熱交換器6に相当)とし、第2前面熱交換器72と後面熱交換器73を凝縮器(第1室内熱交換器4に相当)とし、蒸発器の通風量を小さくしている。 FIG. 11A and FIG. 11B are schematic views showing an example of the air flow rate ratio control unit of another air conditioner. In this air conditioner, as shown in FIGS. 11A and 11B, a first front heat exchanger 71, a second front heat exchanger 72, and a rear heat exchanger 73 are used to form an indoor heat exchanger having a U-shaped cross section. The air flow rate ratio control unit is formed. In FIG. 11A, the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased. On the other hand, in FIG. 11B, the first front heat exchanger 71 is an evaporator (corresponding to the second indoor heat exchanger 6), and the second front heat exchanger 72 and the rear heat exchanger 73 are condensers (first indoor heat exchanger). Equivalent to the exchanger 4) and the ventilation rate of the evaporator is reduced.
 また、図12A,図12Bは他の空気調和機の通風量比制御部の例を示す模式図を示している。この空気調和機では、図12A,図12Bに示すように、第1前面熱交換器71と第2前面熱交換器72と後面熱交換器73で断面くの字形状の室内熱交換器を構成している。図12Aでは、第1前面熱交換器71と第2前面熱交換器72を蒸発器(第2室内熱交換器6に相当)とし、後面熱交換器73を凝縮器(第1室内熱交換器4に相当)とし、蒸発器の通風量を大きくしている。一方、図12Bでは、第1前面熱交換器71を蒸発器(第2室内熱交換器6に相当)とし、後面熱交換器73を凝縮器(第1室内熱交換器4に相当)として、第2前面熱交換器72への冷媒流をバイパスすることにより、蒸発器の通風量を小さくしている。 12A and 12B are schematic views showing examples of the air flow rate ratio control unit of another air conditioner. In this air conditioner, as shown in FIGS. 12A and 12B, a first front heat exchanger 71, a second front heat exchanger 72, and a rear heat exchanger 73 constitute an indoor heat exchanger having a U-shaped cross section. is doing. In FIG. 12A, the first front heat exchanger 71 and the second front heat exchanger 72 are evaporators (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (first indoor heat exchanger). 4), and the ventilation rate of the evaporator is increased. On the other hand, in FIG. 12B, the first front heat exchanger 71 is an evaporator (corresponding to the second indoor heat exchanger 6), and the rear heat exchanger 73 is a condenser (corresponding to the first indoor heat exchanger 4). By bypassing the refrigerant flow to the second front heat exchanger 72, the ventilation rate of the evaporator is reduced.
 また、図13A,図13Bは他の通風量比制御部の例を示す模式図を示している。この空気調和機では、図13A,図13Bに示すように、第1室内熱交換器4(凝縮器)である熱交換部4a,4bと第2室内熱交換器6(蒸発器)で断面くの字形状に屈曲した熱交換器を形成している。この熱交換器の風下側に室内ファン12を配置している。 FIG. 13A and FIG. 13B are schematic diagrams showing examples of other ventilation rate ratio control units. In this air conditioner, as shown in FIGS. 13A and 13B, the heat exchangers 4a and 4b, which are the first indoor heat exchanger 4 (condenser), and the second indoor heat exchanger 6 (evaporator) have a cross section. A heat exchanger bent into a letter shape is formed. An indoor fan 12 is disposed on the leeward side of the heat exchanger.
 この空気調和機では、吹出口80に、通風量比制御部の一例としての第1,第2水平フラップ81,82を配置すると共に、第1,第2水平フラップ81,82よりも上流側に上下2段構造の第1,第2垂直フラップ83,84を配置している。そして、第2室内熱交換器6により冷却された冷気は、吹出通路90内の上側を流れると共に、第1室内熱交換器4により暖められた暖気は、吹出通路90内の下側を流れる。 In this air conditioner, first and second horizontal flaps 81 and 82 as an example of the air flow rate ratio control unit are disposed at the air outlet 80, and further upstream than the first and second horizontal flaps 81 and 82. First and second vertical flaps 83 and 84 having an upper and lower two-stage structure are arranged. And the cool air cooled by the 2nd indoor heat exchanger 6 flows through the upper side in the blowing passage 90, and the warm air heated by the 1st indoor heat exchanger 4 flows in the lower side in the blowing passage 90.
 図13Aに示すように、第1,第2水平フラップ81,82が全開状態の場合は、吹出通路90内の圧力損失は小さいので、第2室内熱交換器6(蒸発器)の通風量は大きい。一方、図13Bに示すように、第1水平フラップ81が全閉状態で、かつ、第2水平フラップ82が全開状態の場合は、吹出通路90内の上側の圧力損失は大きくなるので、第2室内熱交換器6(蒸発器)の通風量が小さくなる。なお、このような水平フラップを用いて通風量比を制御する方策に限られることなく、吹出し側の圧損を変化させる他の手段を用いて、通風量比を制御してもよい。 As shown in FIG. 13A, when the first and second horizontal flaps 81 and 82 are fully opened, the pressure loss in the blowout passage 90 is small, so the air flow rate of the second indoor heat exchanger 6 (evaporator) is large. On the other hand, as shown in FIG. 13B, when the first horizontal flap 81 is in the fully closed state and the second horizontal flap 82 is in the fully open state, the pressure loss on the upper side in the blowing passage 90 becomes large. The ventilation rate of the indoor heat exchanger 6 (evaporator) is reduced. In addition, you may control an air flow rate ratio using the other means which changes the pressure loss on the blowing side, without restricting to the measure which controls an air flow rate ratio using such a horizontal flap.
 上記構成の空気調和機によれば、第1室内熱交換器4を凝縮器とし、第2室内熱交換器6と室外熱交換器を蒸発器とした暖房サイクルによる再熱運転において、制御装置10により通風量比制御部を制御して、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御することによって、例えば第2室内熱交換器6(蒸発器)の通風量に対して第1室内熱交換器4(凝縮器)の通風量を相対的に少なくして、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を大きくすると、除湿量が増えて暖房能力が下がる。一方、第2室内熱交換器6(蒸発器)の通風量に対して第1室内熱交換器4(凝縮器)の通風量を相対的に多くして、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を小さくすると、除湿量が下がり暖房能力が上がる。このとき、必要に応じて制御装置10により、圧縮機1の運転周波数、室内ファン12の回転速度、室外ファン11の回転速度、膨張機構5の絞り量を制御することによって、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる。 According to the air conditioner having the above configuration, in the reheating operation by the heating cycle in which the first indoor heat exchanger 4 is a condenser and the second indoor heat exchanger 6 and the outdoor heat exchanger are evaporators, By controlling the ventilation rate ratio control unit by controlling the ventilation rate of the second indoor heat exchanger 6 with respect to the ventilation rate of the first indoor heat exchanger 4, for example, the second indoor heat exchanger 6 (evaporation) The air flow rate of the first indoor heat exchanger 4 (condenser) is relatively reduced with respect to the air flow rate of the second indoor heat exchanger 6 with respect to the air flow rate of the first indoor heat exchanger 4. Increasing the ratio of the amount increases the amount of dehumidification and decreases the heating capacity. On the other hand, the ventilation rate of the first indoor heat exchanger 4 is increased by relatively increasing the ventilation rate of the first indoor heat exchanger 4 (condenser) with respect to the ventilation rate of the second indoor heat exchanger 6 (evaporator). When the ratio of the ventilation rate of the second indoor heat exchanger 6 to the amount is reduced, the dehumidification amount is reduced and the heating capacity is increased. At this time, the controller 10 controls the operating frequency of the compressor 1, the rotational speed of the indoor fan 12, the rotational speed of the outdoor fan 11, and the throttle amount of the expansion mechanism 5, as necessary. And sufficient heating capacity can be efficiently obtained while performing dehumidifying operation.
 また、上記制御装置10により通風量比制御部を制御して、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を大きくすることにより、除湿能力が大きくなる一方、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を小さくすることにより、除湿能力が小さくなる。または、制御装置10により通風量比制御部を制御して、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を大きくすることにより、暖房能力が小さくなる一方、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を小さくすることにより、暖房能力が大きくなる。 In addition, the controller 10 controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4, thereby increasing the dehumidification capability. On the other hand, by reducing the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4, the dehumidifying capacity is reduced. Alternatively, the control device 10 controls the ventilation rate ratio control unit to increase the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4, thereby reducing the heating capacity. On the other hand, by reducing the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4, the heating capacity is increased.
 また、例えば、通風量の比と室内ファン12の回転数を一定とした場合、制御装置10によって、圧縮機1の運転周波数を上げることにより、暖房能力が上がると共に、蒸発温度は下がり、除湿能力も上がる。また、室外ファン11の回転速度を上げることにより、低圧が上がるため、暖房能力がある程度上がる。これにより、暖房能力および除湿能力についてより細かい制御ができる。 For example, when the ratio of the ventilation rate and the rotation speed of the indoor fan 12 are constant, the controller 10 increases the operating frequency of the compressor 1 to increase the heating capacity and the evaporation temperature to decrease the dehumidifying capacity. Also goes up. Moreover, since the low pressure increases by increasing the rotational speed of the outdoor fan 11, the heating capacity increases to some extent. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
 また、室内温度センサ13により検出された室内空気の温度より、目標湿度における露点温度を算出あるいは、推定できるため、湿度センサを使用せずとも第2室内熱交換器温度センサ14により検出された蒸発器温度に基づいて、例えば蒸発器温度が目標湿度における露点温度以下になるようにすることで、湿度制御が可能となる。 Further, since the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor 13, the evaporation detected by the second indoor heat exchanger temperature sensor 14 without using the humidity sensor. Based on the vessel temperature, for example, the humidity can be controlled by setting the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity.
 また、暖房サイクルによる再熱運転において、室内温度センサ13により検出された室内空気の温度と目標湿度に基づいて、第2室内熱交換器6の温度が上記目標湿度における露点温度以下になるように、圧縮機1と通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と室内ファン12と室外ファン11と膨張機構5の少なくとも1つを制御することによって、湿度制御が容易にできる。 Further, in the reheating operation by the heating cycle, the temperature of the second indoor heat exchanger 6 is set to be equal to or lower than the dew point temperature at the target humidity based on the temperature of the indoor air detected by the indoor temperature sensor 13 and the target humidity. , Compressor 1, air flow rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82), indoor fan 12, outdoor fan 11, and expansion mechanism By controlling at least one of 5, humidity control can be easily performed.
 また、室内空気の湿度を検出する室内湿度センサ15を用いることによって、湿度制御が正確に行える。 Further, the humidity control can be accurately performed by using the indoor humidity sensor 15 for detecting the humidity of the indoor air.
 また、暖房サイクルによる再熱運転において、室内温度センサ13により検出された室内空気の温度と、室内湿度センサ15により検出された室内空気の湿度に基づいて、第2室内熱交換器6の温度が雰囲気における露点温度以下になるように、圧縮機1と室内ファン12と室外ファン11と膨張機構5の少なくとも1つを制御装置10により制御することによって、効果的な除湿を行うことができる。 Further, in the reheat operation by the heating cycle, the temperature of the second indoor heat exchanger 6 is based on the temperature of the indoor air detected by the indoor temperature sensor 13 and the humidity of the indoor air detected by the indoor humidity sensor 15. By controlling at least one of the compressor 1, the indoor fan 12, the outdoor fan 11, and the expansion mechanism 5 with the control device 10 so that the dew point temperature in the atmosphere is lower than that, effective dehumidification can be performed.
 また、暖房サイクルによる再熱運転において、第2室内熱交換器6の温度が凍結温度以上となるように、圧縮機1と通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と室内ファン12と室外ファン11と膨張機構5の少なくとも1つを制御装置10により制御することによって、第2室内熱交換器6(蒸発器)の凍結を防止することができる。 Further, in the reheating operation by the heating cycle, the compressor 1 and the air flow rate ratio control unit (20, 30, 40, 41, 42, 50, so that the temperature of the second indoor heat exchanger 6 is equal to or higher than the freezing temperature. 50a, 51, 52, 61, 71 to 73, 81, 82), at least one of the indoor fan 12, the outdoor fan 11, and the expansion mechanism 5 is controlled by the control device 10, whereby the second indoor heat exchanger 6 ( Freezing of the evaporator can be prevented.
 また、暖房サイクルによる再熱運転において、第2室内熱交換器6の温度が目標温度より高いとき、圧縮機1の運転周波数を現在周波数よりも高くする圧縮機制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器6の温度が目標温度より高いとき、第2室内熱交換器6の通風量が現在通風量よりも小さくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器6の温度が目標温度より高いとき、室内ファン12の回転速度を現在回転速度よりも低くする室内ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器6の温度が目標温度より高いとき、室外ファンの回転速度を現在回転速度よりも低くする室外ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第2室内熱交換器6の温度が目標温度より高いとき、膨張機構5の絞り量を調節して減圧量を大きくする絞り量制御をすることによって、低圧が下がり、蒸発器温度を下げることができる。さらに、上記圧縮機制御と通風量比制御と室内ファン制御と室外ファン制御と膨張機構5の絞り量制御のうちの2以上を組合せることにより、運転状況に応じた最適条件で蒸発器温度を下げることができる。 Further, in the reheat operation by the heating cycle, when the temperature of the second indoor heat exchanger 6 is higher than the target temperature, the low pressure is lowered by performing the compressor control that makes the operation frequency of the compressor 1 higher than the current frequency. The evaporator temperature can be lowered. Further, when the temperature of the second indoor heat exchanger 6 is higher than the target temperature, the air flow rate of the first indoor heat exchanger 4 is set so that the air flow rate of the second indoor heat exchanger 6 becomes smaller than the current air flow rate. By performing the air flow rate ratio control for controlling the air flow rate ratio of the second indoor heat exchanger 6, the low pressure can be lowered and the evaporator temperature can be lowered. Further, when the temperature of the second indoor heat exchanger 6 is higher than the target temperature, the indoor fan control is performed so that the rotational speed of the indoor fan 12 is lower than the current rotational speed, thereby lowering the low pressure and lowering the evaporator temperature. Can do. Further, when the temperature of the second indoor heat exchanger 6 is higher than the target temperature, the outdoor fan control is performed so that the rotational speed of the outdoor fan is lower than the current rotational speed, thereby lowering the low pressure and lowering the evaporator temperature. it can. Also, when the temperature of the second indoor heat exchanger 6 is higher than the target temperature, the low pressure is lowered and the evaporator temperature is lowered by adjusting the throttle amount of the expansion mechanism 5 to increase the pressure reduction amount. be able to. Further, by combining two or more of the compressor control, the air flow rate ratio control, the indoor fan control, the outdoor fan control, and the throttle amount control of the expansion mechanism 5, the evaporator temperature can be adjusted under the optimum conditions according to the operating conditions. Can be lowered.
 また、暖房サイクルによる再熱運転において、第2室内熱交換器6の温度が目標温度より低いとき、圧縮機1の運転周波数を現在周波数よりも低くする圧縮機制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器6の温度が目標温度より低いとき、第2室内熱交換器6の通風量が現在通風量よりも多くなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器6の温度が目標温度より低いとき、室内ファン12の回転速度を現在回転速度よりも高くする室内ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器6の温度が目標温度より低いとき、室外ファン11の回転速度を現在回転速度よりも高くする室外ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第2室内熱交換器6の温度が目標温度より低いとき、膨張機構の絞り量を調節して減圧量を小さくする絞り量制御をすることによって、低圧が上がり、蒸発器温度を上げることができる。さらに、上記圧縮機制御と通風量比制御と室内ファン制御と室外ファン制御と膨張機構5の絞り量制御のうちの2以上を組合せることにより、運転状況に応じた最適条件で蒸発器温度を下げることができる。 Further, in the reheat operation by the heating cycle, when the temperature of the second indoor heat exchanger 6 is lower than the target temperature, the low pressure is increased by performing the compressor control that makes the operation frequency of the compressor 1 lower than the current frequency. The evaporator temperature can be raised. In addition, when the temperature of the second indoor heat exchanger 6 is lower than the target temperature, the amount of ventilation of the first indoor heat exchanger 4 is increased so that the amount of ventilation of the second indoor heat exchanger 6 is larger than the current amount of ventilation. By performing the air flow rate ratio control for controlling the air flow rate ratio of the second indoor heat exchanger 6, the low pressure can be increased and the evaporator temperature can be raised. Further, when the temperature of the second indoor heat exchanger 6 is lower than the target temperature, the indoor fan control is performed so that the rotational speed of the indoor fan 12 is higher than the current rotational speed, thereby increasing the low pressure and raising the evaporator temperature. Can do. Further, when the temperature of the second indoor heat exchanger 6 is lower than the target temperature, the outdoor fan control is performed so that the rotational speed of the outdoor fan 11 is higher than the current rotational speed, thereby increasing the low pressure and raising the evaporator temperature. Can do. Further, when the temperature of the second indoor heat exchanger 6 is lower than the target temperature, by controlling the amount of expansion by adjusting the amount of expansion of the expansion mechanism to reduce the amount of pressure reduction, the low pressure increases and the evaporator temperature increases. Can do. Further, by combining two or more of the compressor control, the air flow rate ratio control, the indoor fan control, the outdoor fan control, and the throttle amount control of the expansion mechanism 5, the evaporator temperature can be adjusted under the optimum conditions according to the operating conditions. Can be lowered.
 また、暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも低いときは、第2室内熱交換器6(蒸発器)の通風量が現在通風量よりも大きくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う。また、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも高いときは、第2室内熱交換器6(蒸発器)の通風量が現在通風量よりも小さくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う。 In the reheating operation by the heating cycle, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the ventilation of the second indoor heat exchanger 6 (evaporator) is performed. The ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 so that the amount becomes larger than the current ventilation rate. When the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the ventilation rate of the second indoor heat exchanger 6 (evaporator) is smaller than the current ventilation rate. Thus, the air flow rate ratio control is performed to control the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4.
 そうして、上記通風量比制御を踏まえたうえで、暖房能力が上がるように、次の(i)~(iv)の何れか1つを行うか、または、(i)~(iv)のうちの2以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を上げることができる。 Then, in consideration of the above air flow rate ratio control, either one of the following (i) to (iv) is performed, or (i) to (iv) By performing a combination of two or more of them, the heating capacity can be increased under the optimum conditions according to the operating conditions.
 (i) 圧縮機1の運転周波数を現在周波数よりも高くする圧縮機制御を行う。 (I) Compressor control is performed so that the operating frequency of the compressor 1 is higher than the current frequency.
 (ii) 第2室内熱交換器6の通風量が現在通風量よりも小さくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (ii) Control the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 so that the ventilation rate of the second indoor heat exchanger 6 is smaller than the current ventilation rate. Ventilation ratio control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
 (iii) 室外ファン11の回転速度を現在回転速度よりも高くする室外ファン制御を行う(蒸発温度が上がると共に、高圧も上がり、凝縮温度も上昇して暖房能力が上がる)。 (Iii) The outdoor fan control is performed so that the rotation speed of the outdoor fan 11 is higher than the current rotation speed (the evaporation temperature increases, the high pressure increases, the condensation temperature also increases, and the heating capacity increases).
 (iv) 室内ファン12の回転速度を現在回転速度よりも低くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が減少し、結果として、暖房能力も上がる)。 (Iv) Indoor fan control is performed so that the rotational speed of the indoor fan 12 is lower than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger is reduced, resulting in an increase in heating capacity).
 なお、上記第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御と、上記(i)~(iv)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 It should be noted that the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 and the ability when combined with the above (i) to (iv) The order of control is not limited to the above, and may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
 また、暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも低いときは、第2室内熱交換器6(蒸発器)の通風量が現在通風量よりも大きくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う。また、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも高いときは、第2室内熱交換器6(蒸発器)の通風量が現在通風量よりも小さくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う。 In the reheating operation by the heating cycle, when the current heating capacity is larger than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity, the ventilation of the second indoor heat exchanger 6 (evaporator) is performed. The ventilation rate ratio control is performed to control the ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 so that the amount becomes larger than the current ventilation rate. Further, when the current heating capacity is larger than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the ventilation rate of the second indoor heat exchanger 6 (evaporator) is smaller than the current ventilation rate. Thus, the air flow rate ratio control is performed to control the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4.
 そうして、上記除湿量の制御を踏まえたうえで、暖房能力を下げるように、次の(a)~(d)の何れか1つを行うか、または、(a)~(d)のうちの2つ以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を下げることができる。 Then, based on the control of the dehumidification amount, either one of the following (a) to (d) is performed so as to reduce the heating capacity, or (a) to (d) By performing a combination of two or more of them, the heating capacity can be lowered under the optimum conditions according to the operating conditions.
 (a) 圧縮機1の運転周波数を現在周波数よりも低くする圧縮機制御を行う。 (A) Compressor control is performed so that the operating frequency of the compressor 1 is lower than the current frequency.
 (b) 第2室内熱交換器6の通風量が現在通風量よりも大きくなるように、第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (b) The ratio of the ventilation rate of the second indoor heat exchanger 6 to the ventilation rate of the first indoor heat exchanger 4 is controlled so that the ventilation rate of the second indoor heat exchanger 6 is larger than the current ventilation rate. Ventilation ratio control is performed (this is adjusted as appropriate in relation to the required amount of dehumidification).
 (c) 室外ファン11の回転速度を現在回転速度よりも低くする室外ファン制御を行う(蒸発温度が下がることにより、室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (c) The outdoor fan control is performed so that the rotational speed of the outdoor fan 11 is lower than the current rotational speed (the lowering of the evaporation temperature increases the amount of heat exchange in the evaporator of the indoor heat exchanger, resulting in heating capacity Also goes down).
 (d) 室内ファン12の回転速度を現在回転速度よりも高くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (D) Indoor fan control is performed so that the rotational speed of the indoor fan 12 is higher than the current rotational speed (the heat exchange amount of the evaporator of the indoor heat exchanger is increased, resulting in a decrease in heating capacity).
 なお、上記第1室内熱交換器4の通風量に対する第2室内熱交換器6の通風量の比を制御する通風量比制御と、上記(a)~(d)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 It should be noted that the air flow rate ratio control for controlling the ratio of the air flow rate of the second indoor heat exchanger 6 to the air flow rate of the first indoor heat exchanger 4 and the performance when combined with the above (a) to (d) The order of control is not limited to the above, and may be changed as appropriate so that the required heating capacity and dehumidifying capacity can be obtained.
 また、暖房サイクルによる再熱運転と、冷房サイクルによる再熱運転を行うことによって、暖房運転と冷房運転のほとんど全ての運転条件での除湿が可能となる。 Also, by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle, dehumidification can be performed under almost all operating conditions of the heating operation and the cooling operation.
 また、冷媒流方向規制部3を備えることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に暖房サイクルと冷房サイクルによらず、再熱運転時の室内熱交換器の蒸発器と凝縮器の位置が変わらないため、吹出口から出る冷気や暖気の分布を同様にできる。 Further, by providing the refrigerant flow direction restricting unit 3, even when switching from the heating cycle to the cooling cycle or from the cooling cycle to the heating cycle, the room during the reheating operation is always used regardless of the heating cycle and the cooling cycle. Since the positions of the evaporator and condenser of the heat exchanger do not change, the distribution of cold air and warm air coming out from the outlet can be made the same.
 このように、暖房サイクルと冷房サイクルのいずれにおいても、冷媒流方向規制部3によって、第1室内熱交換器4から膨張機構5を介して第2室内熱交換器6に冷媒が流れるようにすることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に室内側の蒸発器と凝縮器の位置が変わらない。このため、暖房サイクルと冷房サイクルとで同様の気流制御ができるだけでなく、露付きについても個別に対策する必要がないため、構造の簡略化も可能となる。また、膨張機構に流れる冷媒方向が、暖房サイクル,冷房サイクルに関わらず一方向であるので、膨張機構に逆圧がかかることがないようにでき、膨張機構に逆圧に弱い安価な開閉弁などを使用することができる。 Thus, in both the heating cycle and the cooling cycle, the refrigerant flow direction regulating unit 3 causes the refrigerant to flow from the first indoor heat exchanger 4 to the second indoor heat exchanger 6 via the expansion mechanism 5. Thus, even when the heating cycle is switched to the cooling cycle or from the cooling cycle to the heating cycle, the position of the evaporator and the condenser on the indoor side does not always change during the reheating operation. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
 上記第1実施形態では、図6A~図13Bに示す構成の通風量比制御部について説明したが、通風量比制御部はこれに限らず、第1室内熱交換器の通風量に対する第2室内熱交換器の通風量の比を変えるものであればよい。 In the first embodiment, the ventilation rate ratio control unit having the configuration shown in FIGS. 6A to 13B has been described. However, the ventilation rate ratio control unit is not limited to this, and the second indoor volume with respect to the ventilation rate of the first indoor heat exchanger is not limited thereto. Any device that changes the ratio of the air flow rate of the heat exchanger may be used.
 〔第2実施形態〕
 図14はこの発明の第2実施形態の空気調和機の回路図を示している。
[Second Embodiment]
FIG. 14 shows a circuit diagram of an air conditioner according to a second embodiment of the present invention.
 この空気調和機は、図14に示すように、圧縮機101と、上記圧縮機101の吐出側に一端が接続された四路切換弁102と、上記四路切換弁102の他端に一端が接続された第1室内熱交換器104と、上記第1室内熱交換器104の他端に一端が接続された膨張機構105Aと、上記膨張機構105Aの他端に一端が接続された第2室内熱交換器106Aと、上記第2室内熱交換器106Aの他端に一端が接続された膨張機構105Bと、上記膨張機構105Bの他端に一端が接続された第3室内熱交換器106Bと、上記第3室内熱交換器106Bの他端に一端が接続された電動膨張弁107と、上記電動膨張弁107の他端に一端が接続され、他端が四路切換弁102を介して圧縮機101の吸込側に接続された室外熱交換器108とを備えている。 As shown in FIG. 14, the air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102. A connected first indoor heat exchanger 104, an expansion mechanism 105A having one end connected to the other end of the first indoor heat exchanger 104, and a second indoor having one end connected to the other end of the expansion mechanism 105A A heat exchanger 106A, an expansion mechanism 105B having one end connected to the other end of the second indoor heat exchanger 106A, a third indoor heat exchanger 106B having one end connected to the other end of the expansion mechanism 105B, An electric expansion valve 107 having one end connected to the other end of the third indoor heat exchanger 106B, one end connected to the other end of the electric expansion valve 107, and the other end connected to the compressor via the four-way switching valve 102 Outdoor heat exchanger 1 connected to the suction side of 101 And a 8.
 上記第1室内熱交換器104と第2室内熱交換器106Aと第3室内熱交換器106Bは、熱的に分割された複数の熱交換部であって、その複数の熱交換部で室内熱交換器を構成している。上記圧縮機101と四路切換弁102と第1室内熱交換器104と膨張機構105Aと第2室内熱交換器106Aと膨張機構105Bと第3室内熱交換器106Bと電動膨張弁107および室外熱交換器108で冷媒回路を構成している。また、上記膨張機構105A,105Bは、絞り機構内蔵の開閉弁、可変絞り弁、開閉弁とそれに並列配置された絞り機構などを用いている。 The first indoor heat exchanger 104, the second indoor heat exchanger 106 </ b> A, and the third indoor heat exchanger 106 </ b> B are a plurality of thermally divided heat exchanging units, and the indoor heat It constitutes an exchange. The compressor 101, the four-way switching valve 102, the first indoor heat exchanger 104, the expansion mechanism 105A, the second indoor heat exchanger 106A, the expansion mechanism 105B, the third indoor heat exchanger 106B, the electric expansion valve 107, and the outdoor heat. The exchanger 108 constitutes a refrigerant circuit. The expansion mechanisms 105A and 105B use an on-off valve with a built-in throttle mechanism, a variable throttle valve, an on-off valve and a throttle mechanism arranged in parallel therewith.
 なお、この第2実施形態の空気調和機において、第1実施形態の図1に示す空気調和機の冷媒流方向規制部3を用いてもよい。 In the air conditioner of the second embodiment, the refrigerant flow direction regulating unit 3 of the air conditioner shown in FIG. 1 of the first embodiment may be used.
 また、上記空気調和機は、室外熱交換器108に外気を供給する室外ファン111と、室内から吸い込んだ空気を室内熱交換器(104,106A,106B)を介して室内に吹き出すための室内ファン112とを備えている。上記室内ファン112には、クロスフローファンを用いている。 The air conditioner includes an outdoor fan 111 that supplies outdoor air to the outdoor heat exchanger 108, and an indoor fan that blows out air sucked from the room into the room through the indoor heat exchanger (104, 106A, 106B). 112. As the indoor fan 112, a cross flow fan is used.
 また、上記空気調和機は、室内空気の温度を検出する室内温度センサ113と、第3室内熱交換器106Bの上流側の冷媒の温度を検出する蒸発器温度センサの一例としての室内熱交換器温度センサ114と、室内空気の湿度を検出する室内湿度センサ115と、マイクロコンピュータと入出力回路などからなる制御装置110を備えている。上記制御装置110は、室内温度センサ113により検出された室内空気の温度と室内熱交換器温度センサ114により検出された第3室内熱交換器106Bの上流側の冷媒の温度と、室内湿度センサ115により検出された室内空気の湿度に基づいて、圧縮機101と四路切換弁102と膨張機構105A,膨張機構105Bと電動膨張弁107と室外ファン111と室内ファン112を制御する。 The air conditioner includes an indoor temperature sensor 113 that detects the temperature of indoor air, and an indoor heat exchanger that is an example of an evaporator temperature sensor that detects the temperature of refrigerant upstream of the third indoor heat exchanger 106B. A temperature sensor 114, an indoor humidity sensor 115 for detecting the humidity of room air, and a control device 110 including a microcomputer and an input / output circuit are provided. The control device 110 includes the indoor air temperature detected by the indoor temperature sensor 113, the refrigerant temperature upstream of the third indoor heat exchanger 106B detected by the indoor heat exchanger temperature sensor 114, and the indoor humidity sensor 115. The compressor 101, the four-way switching valve 102, the expansion mechanism 105A, the expansion mechanism 105B, the electric expansion valve 107, the outdoor fan 111, and the indoor fan 112 are controlled based on the humidity of the indoor air detected by the above.
 上記空気調和機は、暖房サイクルによる再熱運転において、四路切換弁102を実線の位置に切り換え、電動膨張弁107を開き、膨張機構105Aを開いた状態にする一方、膨張機構105Bを絞り状態にして、圧縮機101を起動する。そして、圧縮機101から吐出された高圧ガス冷媒は、ガス管を介して第1室内熱交換器104に流入して凝縮し、さらに膨張機構105Aを介して第2室内熱交換器106Aに流入して凝縮した後、膨張機構105Bにより減圧され、減圧された低圧冷媒は第3室内熱交換器106Bと室外熱交換器8で蒸発して、圧縮機101に吸い込まれる。 In the reheating operation by the heating cycle, the air conditioner switches the four-way switching valve 102 to the position of the solid line, opens the electric expansion valve 107, and opens the expansion mechanism 105A, while the expansion mechanism 105B is in the throttle state. Then, the compressor 101 is started. The high-pressure gas refrigerant discharged from the compressor 101 flows into the first indoor heat exchanger 104 through the gas pipe, condenses, and further flows into the second indoor heat exchanger 106A through the expansion mechanism 105A. After being condensed, the pressure is reduced by the expansion mechanism 105B, and the reduced low-pressure refrigerant evaporates in the third indoor heat exchanger 106B and the outdoor heat exchanger 8, and is sucked into the compressor 101.
 これにより、凝縮器としての第1室内熱交換器104,第2室内熱交換器106Aにより室内空気が暖められる一方で、蒸発器としての第3室内熱交換器106Bにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Accordingly, the indoor air is warmed by the first indoor heat exchanger 104 and the second indoor heat exchanger 106A as the condenser, while the indoor air is cooled by the third indoor heat exchanger 106B as the evaporator. Is dehumidified by the reheating operation by the heating cycle.
 このときの空気調和機の室内熱交換器の状態を図15Aの模式図に示している。この空気調和機では、図15Aに示すように、第1室内熱交換器104(凝縮器)である熱交換部104a,104bおよび第2室内熱交換器106A(凝縮器)と第3室内熱交換器106B(蒸発器)で断面くの字形状に屈曲した室内熱交換器を形成している。なお、この第1室内熱交換器104の熱交換部104a,104bは、熱的に分割されていない。この室内熱交換器(104,106A,106B)の風下側に室内ファン112を配置すると共に、熱交換部104aおよび第2室内熱交換器106Aと第3室内熱交換器106Bの前面側にパネル120を配置している。 The state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 15A. In this air conditioner, as shown in FIG. 15A, the first indoor heat exchanger 104 (condenser) and the second indoor heat exchanger 106A (condenser) and the third indoor heat exchanger 104a and 104b. An indoor heat exchanger bent in a cross-sectional shape is formed by the vessel 106B (evaporator). In addition, the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided. An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and a panel 120 is provided on the front side of the heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B. Is arranged.
 上記膨張機構105Aと膨張機構105Bで、室内熱交換器(104,106A,106B)の複数の熱交換部のうち、蒸発器として作用する熱交換部の数を増減させる冷媒流制御部を構成している。 The expansion mechanism 105A and the expansion mechanism 105B constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B). ing.
 なお、室内熱交換器および膨張機構の構成を適宜変更して、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成してもよいし、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数、および、蒸発器として作用する熱交換部の数の両方を増減させる冷媒流制御部を構成してもよい。 In addition, the configuration of the indoor heat exchanger and the expansion mechanism is changed as appropriate to configure a refrigerant flow control unit that increases or decreases the number of heat exchange units that act as condensers among the plurality of heat exchange units of the indoor heat exchanger. Alternatively, among the plurality of heat exchange units of the indoor heat exchanger, a refrigerant flow control unit that increases or decreases both the number of heat exchange units that act as condensers and the number of heat exchange units that act as evaporators. May be configured.
 ここで、暖房サイクルによる再熱運転の場合、制御装置110は、圧縮機101の運転周波数および室外ファン111,室内ファン112の回転速度を制御し、膨張機構(105A,105B)を制御する。この暖房サイクルによる再熱運転での暖房能力は、要求される除湿能力に合わせて冷媒流制御部を適宜調節することを除いては、通常の暖房運転と同様、圧縮機101の運転周波数、室外ファン111と室内ファン112の回転速度で制御する。 Here, in the case of the reheat operation by the heating cycle, the control device 110 controls the operation frequency of the compressor 101 and the rotational speed of the outdoor fan 111 and the indoor fan 112 to control the expansion mechanism (105A, 105B). The heating capacity in the reheating operation by the heating cycle is the same as that in the normal heating operation except that the refrigerant flow control unit is appropriately adjusted in accordance with the required dehumidifying capacity. Control is based on the rotational speed of the fan 111 and the indoor fan 112.
 例えば、四路切換弁102が実線の位置において、電動膨張弁107を開き、膨張機構105Aを絞り状態にする一方、膨張機構105Bを開いた状態にしたとき、図15Bに示すように、凝縮器としての第1室内熱交換器104により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。これにより、図15Bでは、図15Aのときよりも除湿量を多くできる。 For example, when the four-way switching valve 102 is in the position of the solid line, when the electric expansion valve 107 is opened and the expansion mechanism 105A is in the throttle state, while the expansion mechanism 105B is in the open state, as shown in FIG. While the indoor air is warmed by the first indoor heat exchanger 104 as, the indoor air is dehumidified by being cooled by the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as the evaporator, Reheating operation is performed by the heating cycle. Thereby, in FIG. 15B, dehumidification amount can be increased rather than the time of FIG. 15A.
 また、通常の暖房運転の場合は、四路切換弁102が実線の位置において、電動膨張弁107を絞り、膨張機構105Aおよび膨張機構105Bを開いた状態にしたとき、図15Cに示すように、凝縮器としての第1室内熱交換器104,第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が暖められる。 In the case of normal heating operation, when the four-way switching valve 102 is in a solid line position, when the electric expansion valve 107 is throttled and the expansion mechanism 105A and the expansion mechanism 105B are opened, as shown in FIG. Indoor air is warmed by the first indoor heat exchanger 104, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B as condensers.
 一方、通常の冷房運転の場合は、四路切換弁102が点線の位置に切り換え、電動膨張弁107を絞り、膨張機構105Aおよび膨張機構105Bを開いた状態にしたとき、図15Dに示すように、蒸発器としての第1室内熱交換器104,第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が冷却される。 On the other hand, in the case of normal cooling operation, when the four-way switching valve 102 is switched to the dotted line position, the electric expansion valve 107 is throttled and the expansion mechanism 105A and the expansion mechanism 105B are opened, as shown in FIG. 15D. The indoor air is cooled by the first indoor heat exchanger 104, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B as evaporators.
 上記構成の空気調和機によれば、暖房サイクルによる再熱運転において、制御装置110により、室内熱交換器(104,106A,106B)のうちの凝縮器として作用する熱交換部の凝縮能力および蒸発器として作用する熱交換部の蒸発能力を制御することによって、例えば凝縮器として作用する熱交換部の凝縮能力を小さくして、蒸発器として作用する熱交換部の蒸発能力を大きくすると、除湿量が増えて暖房能力が下がる。一方、凝縮器として作用する熱交換部の凝縮能力を大きくして、蒸発器として作用する熱交換部の蒸発能力を小さくすると、除湿量が下がり暖房能力が上がる。このとき、必要に応じて制御装置110により、圧縮機101の運転周波数、室内ファン112の回転速度、室外ファン111の回転速度を制御することによって、除湿量と暖房能力を夫々調整でき、除湿運転しつつ十分な暖房能力を効率よく得ることができる。 According to the air conditioner having the above configuration, in the reheating operation by the heating cycle, the control device 110 causes the condensing capacity and evaporation of the heat exchanging portion acting as a condenser of the indoor heat exchangers (104, 106A, 106B). The amount of dehumidification can be reduced by controlling the evaporation capacity of the heat exchanger acting as a condenser, for example, reducing the condensation capacity of the heat exchanger acting as a condenser, and increasing the evaporation capacity of the heat exchanger acting as an evaporator. Increases and heating capacity decreases. On the other hand, when the condensing capacity of the heat exchanging section that functions as a condenser is increased and the evaporating capacity of the heat exchanging section that functions as an evaporator is decreased, the dehumidification amount decreases and the heating capacity increases. At this time, by controlling the operation frequency of the compressor 101, the rotation speed of the indoor fan 112, and the rotation speed of the outdoor fan 111 by the control device 110 as necessary, the dehumidification amount and the heating capacity can be adjusted respectively. However, sufficient heating capacity can be obtained efficiently.
 また、熱的に分割された3以上の室内熱交換器(この実施形態では、第1室内熱交換器104,第2室内熱交換器106A,第3室内熱交換器106B)を用いることによって、除湿量または暖房能力の少なくとも一方を細かく制御することができる。 Further, by using three or more indoor heat exchangers (in this embodiment, the first indoor heat exchanger 104, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B) that are thermally divided, At least one of the dehumidifying amount and the heating capacity can be finely controlled.
 また、制御装置110は、膨張機構(105A,105B)を制御して、凝縮器として作用する熱交換部の数および蒸発器として作用する熱交換部の数を増減することによって、室内熱交換器(104,106A,106B)の凝縮能力と蒸発能力を容易に制御できる。なお、この発明の空気調和機では、凝縮器として作用する熱交換部の数、または、蒸発器として作用する熱交換部の数の一方のみを増減することによって、室内熱交換器の凝縮能力または蒸発能力を制御してもよい。 In addition, the control device 110 controls the expansion mechanism (105A, 105B) to increase / decrease the number of heat exchange units acting as condensers and the number of heat exchange units acting as evaporators, thereby increasing the number of heat exchange units. The condensing capacity and evaporating capacity of (104, 106A, 106B) can be easily controlled. In the air conditioner of the present invention, the condensation capacity of the indoor heat exchanger or the number of heat exchangers acting as a condenser or the number of heat exchangers acting as an evaporator is increased or decreased. The evaporation capacity may be controlled.
 また、上記膨張機構(105A,105B)は、室内熱交換器(104,106A,106B)のうちの第2室内熱交換器106Aを、凝縮器とするかまたは蒸発器とするかの切り換えが可能とすることによって、室内熱交換器の凝縮能力と蒸発能力の制御範囲を広くできる。なお、室内熱交換器が4以上の熱交換部からなる構成では、2以上の熱交換部を凝縮器とするかまたは蒸発器とするかの切り換えが可能とすることが可能である。 The expansion mechanism (105A, 105B) can switch whether the second indoor heat exchanger 106A of the indoor heat exchangers (104, 106A, 106B) is a condenser or an evaporator. By doing so, the control range of the condensation capacity and evaporation capacity of the indoor heat exchanger can be widened. In the configuration in which the indoor heat exchanger is composed of four or more heat exchange units, it is possible to switch between two or more heat exchange units as a condenser or an evaporator.
 また、上記冷媒流制御部に膨張機構105A,105Bを用いることによって、簡単な構成で冷媒流制御部を実現することができる。 Further, by using the expansion mechanisms 105A and 105B in the refrigerant flow control unit, the refrigerant flow control unit can be realized with a simple configuration.
 また、例えば、室内熱交換器(104,106A,106B)の凝縮器として作用する熱交換部の数および蒸発器として作用する熱交換部の数を一定とすると共に室内ファン112の回転数を一定とした場合、制御装置110によって、圧縮機1の運転周波数を上げることにより、暖房能力が上がる。また、蒸発器温度が下がるため、除湿能力も上がる。また、室外ファン111の回転速度を上げることにより、低圧が上がるため、暖房能力がある程度上がる。これにより、暖房能力および除湿能力についてより細かい制御ができる。 Further, for example, the number of heat exchanging portions acting as condensers and the number of heat exchanging portions acting as evaporators of the indoor heat exchangers (104, 106A, 106B) is made constant and the rotation speed of the indoor fan 112 is made constant. In this case, the controller 110 increases the operating frequency of the compressor 1 to increase the heating capacity. Moreover, since the evaporator temperature is lowered, the dehumidifying ability is also increased. Moreover, since the low pressure increases by increasing the rotational speed of the outdoor fan 111, the heating capacity increases to some extent. Thereby, finer control can be performed about a heating capability and a dehumidification capability.
 また、室内温度センサ113により検出された室内空気の温度より、目標湿度における露点温度を算出あるいは、推定できるため、湿度センサを使用せずとも室内熱交換器温度センサ114により検出された蒸発器温度(第3室内熱交換器106Bの上流側の冷媒の温度)に基づいて、例えば蒸発器温度が目標湿度における露点温度以下になるようにすることで、湿度制御が可能となる。 Further, since the dew point temperature at the target humidity can be calculated or estimated from the temperature of the indoor air detected by the indoor temperature sensor 113, the evaporator temperature detected by the indoor heat exchanger temperature sensor 114 without using the humidity sensor. Based on (the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B), for example, the humidity can be controlled by setting the evaporator temperature to be equal to or lower than the dew point temperature at the target humidity.
 また、暖房サイクルによる再熱運転において、室内温度センサ113により検出された室内空気の温度と目標湿度に基づいて、第3室内熱交換器106Bの上流側の冷媒の温度が上記目標湿度における露点温度以下になるように、室内熱交換器(104,106A,106B)のうちの凝縮器として作用する熱交換部の数と蒸発器として作用する熱交換部の数の増減と、圧縮機101と室内ファン112と室外ファン111と膨張機構(105A,105B)の絞り量の少なくとも1つを制御することによって、湿度制御が容易にできる。 Further, in the reheat operation by the heating cycle, based on the indoor air temperature and the target humidity detected by the indoor temperature sensor 113, the temperature of the refrigerant upstream of the third indoor heat exchanger 106B is the dew point temperature at the target humidity. In the indoor heat exchangers (104, 106A, 106B), the number of heat exchange units acting as a condenser, the number of heat exchange parts acting as an evaporator, the number of heat exchange parts acting as an evaporator, By controlling at least one of the throttle amounts of the fan 112, outdoor fan 111, and expansion mechanism (105A, 105B), humidity control can be facilitated.
 また、室内空気の湿度を検出する室内湿度センサ115を用いることによって、湿度制御が正確に行える。 Further, the humidity control can be accurately performed by using the indoor humidity sensor 115 for detecting the humidity of the indoor air.
 また、暖房サイクルによる再熱運転において、室内温度センサ113により検出された室内空気の温度と、室内湿度センサ115により検出された室内空気の湿度に基づいて、蒸発器としての第3室内熱交換器106Bの上流側の冷媒の温度が雰囲気における露点温度以下になるように、圧縮機101と室内ファン112と室外ファン111と膨張機構(105A,105B)の絞り量の少なくとも1つを制御装置110により制御することによって、効果的な除湿を行うことができる。ここで、第2室内熱交換器106A,第3室内熱交換器106Bを蒸発器として暖房サイクルによる再熱運転を行う場合は、室内温度センサ113により検出された室内空気の温度と、室内湿度センサ115により検出された室内空気の湿度に基づいて、第2室内熱交換器106A,第3室内熱交換器106Bの上流側の冷媒の温度が雰囲気における露点温度以下になるように、圧縮機101と室内ファン112と室外ファン111と膨張機構(105A,105B)の絞り量の少なくとも1つを制御装置110により制御する。 Further, in the reheat operation by the heating cycle, the third indoor heat exchanger as an evaporator is based on the temperature of the indoor air detected by the indoor temperature sensor 113 and the humidity of the indoor air detected by the indoor humidity sensor 115. The control device 110 controls at least one of the throttle amounts of the compressor 101, the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B) so that the temperature of the refrigerant upstream of 106B is equal to or lower than the dew point temperature in the atmosphere. By controlling, effective dehumidification can be performed. Here, in the case of performing reheating operation by the heating cycle using the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as an evaporator, the temperature of the indoor air detected by the indoor temperature sensor 113 and the indoor humidity sensor Based on the humidity of the indoor air detected by 115, the compressor 101 and the compressor 101 so that the temperature of the refrigerant on the upstream side of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B is equal to or lower than the dew point temperature in the atmosphere. The controller 110 controls at least one of the throttle amounts of the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B).
 また、暖房サイクルによる再熱運転において、第3室内熱交換器106Bの上流側の冷媒の温度が凍結温度以上となるように、室内熱交換器の凝縮器として作用する熱交換部の数と蒸発器として作用する熱交換部の数と圧縮機101と室内ファン112と室外ファン111と膨張機構(105A,105B)の絞り量の少なくとも1つを制御装置110により制御することによって、蒸発器の凍結を防止することができる。 Further, in the reheat operation by the heating cycle, the number of heat exchange units acting as a condenser of the indoor heat exchanger and evaporation so that the temperature of the refrigerant upstream of the third indoor heat exchanger 106B is equal to or higher than the freezing temperature. The control unit 110 controls at least one of the number of heat exchangers acting as an evaporator and the throttle amount of the compressor 101, the indoor fan 112, the outdoor fan 111, and the expansion mechanism (105A, 105B), thereby freezing the evaporator. Can be prevented.
 また、暖房サイクルによる再熱運転において、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より高いとき、圧縮機1の運転周波数を現在周波数よりも高くする圧縮機制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より高いとき、蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より高いとき、室内ファン112の回転速度を現在回転速度よりも低くする室内ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より高いとき、室外ファン111の回転速度を現在回転速度よりも低くする室外ファン制御を行うことによって、低圧が下がり、蒸発器温度を下げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より高いとき、膨張機構105Bの絞り量を調節して減圧量を大きくする絞り量制御をすることによって、低圧が下がり、蒸発器温度を下げることができる。さらに、上記圧縮機制御と能力制御と室内ファン制御と膨張機構5の絞り量制御のうちの2以上を組合せることにより、運転状況に応じた最適条件で蒸発器温度を下げることができる。 Further, in the reheat operation by the heating cycle, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the compressor control is performed so that the operation frequency of the compressor 1 is higher than the current frequency. Can lower the low pressure and lower the evaporator temperature. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the low pressure is lowered by performing capacity control for controlling the evaporation capacity to be smaller than the current evaporation capacity, and the evaporator The temperature can be lowered. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the indoor fan control is performed so that the rotational speed of the indoor fan 112 is lower than the current rotational speed, thereby lowering the low pressure and evaporating. The vessel temperature can be lowered. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the outdoor fan control is performed so that the rotation speed of the outdoor fan 1111 is lower than the current rotation speed, thereby lowering the low pressure and evaporating. The vessel temperature can be lowered. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is higher than the target temperature, the low pressure is lowered by adjusting the throttle amount of the expansion mechanism 105B to increase the pressure reduction amount, The evaporator temperature can be lowered. Furthermore, by combining two or more of the compressor control, capacity control, indoor fan control, and expansion amount control of the expansion mechanism 5, the evaporator temperature can be lowered under the optimum conditions according to the operating conditions.
 また、暖房サイクルによる再熱運転において、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より低いとき、圧縮機101の運転周波数を現在周波数よりも低くする圧縮機制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より低いとき、蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より低いとき、室内ファン112の回転速度を現在回転速度よりも高くする室内ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より低いとき、室外ファン111の回転速度を現在回転速度よりも高くする室外ファン制御を行うことによって、低圧が上がり、蒸発器温度を上げることができる。また、第3室内熱交換器106Bの上流側の冷媒の温度が目標温度より低いとき、膨張機構105Bの絞り量を調節して減圧量を小さくする絞り量制御をすることによって、低圧が上がり、蒸発器温度を上げることができる。さらに、上記圧縮機制御と能力制御と室内ファン制御と室外ファン制御と膨張機構5の絞り量制御のうちの2以上を組合せることにより、運転状況に応じた最適条件で蒸発器温度を下げることができる。 Further, in the reheat operation by the heating cycle, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is lower than the target temperature, the compressor control is performed so that the operation frequency of the compressor 101 is lower than the current frequency. Can increase the low pressure and raise the evaporator temperature. In addition, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is lower than the target temperature, the low pressure is increased by performing capacity control for controlling the evaporation capacity to be smaller than the current evaporation capacity, and the evaporator The temperature can be raised. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is lower than the target temperature, the indoor fan control is performed so that the rotational speed of the indoor fan 112 is higher than the current rotational speed, thereby increasing the low pressure and evaporating. The vessel temperature can be raised. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is lower than the target temperature, the outdoor fan control is performed so that the rotation speed of the outdoor fan 111 is higher than the current rotation speed. The vessel temperature can be raised. Further, when the temperature of the refrigerant on the upstream side of the third indoor heat exchanger 106B is lower than the target temperature, the low pressure is increased by adjusting the throttle amount of the expansion mechanism 105B to reduce the pressure reduction amount, The evaporator temperature can be raised. Further, by combining two or more of the compressor control, capacity control, indoor fan control, outdoor fan control, and expansion amount control of the expansion mechanism 5, the evaporator temperature is lowered under the optimum conditions according to the operating conditions. Can do.
 また、暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも低いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う。また、現在暖房能力が要求暖房能力よりも小さく、現在の除湿能力が要求される除湿能力よりも高いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う。 In addition, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity in the reheating operation by the heating cycle, the evaporation capacity of the indoor heat exchanger is set to be lower than the current evaporating capacity. Ability control is performed to increase the control. In addition, when the current heating capacity is smaller than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the capacity control for controlling the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporating capacity I do.
 そうして、上記能力制御を踏まえたうえで、暖房能力が上がるように、次の(I)~(V)の何れか1つを行うか、または、(I)~(V)のうちの2以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を上げることができる。 Then, based on the above capacity control, either one of the following (I) to (V) is performed or heating (I) to (V) By performing a combination of two or more, it is possible to increase the heating capacity under the optimum conditions according to the operating conditions.
 (I) 圧縮機101の運転周波数を現在周波数よりも高くする圧縮機制御を行う。 (I) Compressor control is performed so that the operating frequency of the compressor 101 is higher than the current frequency.
 (II) 室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (II) Perform capacity control to control the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
 (III) 室内熱交換器の凝縮能力を現在凝縮能力よりも大きくなるように制御する能力制御を行う(これは、要求される暖房能力との関係で適宜調整する)。 (III) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be larger than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
 (IV) 室外ファン111の回転速度を現在回転速度よりも高くする室外ファン制御を行う(蒸発温度が上がると共に、高圧(凝縮器の入口圧力、高圧の上下に伴い、凝縮器の温度も上下する)も上昇して暖房能力が上がる)。 (IV) The outdoor fan control is performed so that the rotational speed of the outdoor fan 111 is higher than the current rotational speed (the evaporation temperature rises, and the high pressure (the condenser inlet pressure, the condenser temperature rises and falls as the high pressure rises and falls). ) Also rises and heating capacity increases).
 (V) 室内ファン112の回転速度を現在回転速度よりも低くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が減少し、結果として、暖房能力も上がる)。 (V) Indoor fan control is performed so that the rotational speed of the indoor fan 112 is lower than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger is reduced, resulting in an increase in heating capacity).
 なお、上記室内熱交換器の蒸発能力を制御する能力制御と、上記(I)~(V)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 The order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination with the above (I) to (V) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
 また、暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも低いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う。また、現在暖房能力が要求暖房能力よりも大きく、現在の除湿能力が要求される除湿能力よりも高いときは、室内熱交換器の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御を行う。 In addition, when the current heating capacity is greater than the required heating capacity and the current dehumidifying capacity is lower than the required dehumidifying capacity in the reheating operation by the heating cycle, the evaporation capacity of the indoor heat exchanger is set higher than the current evaporating capacity. Ability control is performed to increase the control. In addition, when the current heating capacity is greater than the required heating capacity and the current dehumidifying capacity is higher than the required dehumidifying capacity, the capacity control that controls the evaporation capacity of the indoor heat exchanger to be smaller than the current evaporation capacity I do.
 そうして、上記除湿量の制御を踏まえたうえで、暖房能力を下げるように、次の(A)~(E)の何れか1つを行うか、または、(A)~(E)のうちの2つ以上を組合せて行うことにより、運転状況に応じた最適条件で暖房能力を下げることができる。 Then, in consideration of the control of the dehumidification amount, either one of the following (A) to (E) is performed so as to reduce the heating capacity, or (A) to (E) By performing a combination of two or more of them, the heating capacity can be lowered under the optimum conditions according to the operating conditions.
 (A) 圧縮機101の運転周波数を現在周波数よりも低くする圧縮機制御を行う。 (A) Compressor control is performed so that the operating frequency of the compressor 101 is lower than the current frequency.
 (B) 室内熱交換器の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御を行う(これは、要求される除湿量との関係で適宜調整する)。 (B) Capability control is performed to control the evaporation capacity of the indoor heat exchanger to be larger than the current evaporation capacity (this is adjusted as appropriate in relation to the required dehumidification amount).
 (C) 室内熱交換器の凝縮能力を現在凝縮能力よりも小さくなるように制御する能力制御を行う(これは、要求される暖房能力との関係で適宜調整する)。 (C) Perform capacity control to control the condensation capacity of the indoor heat exchanger to be smaller than the current condensation capacity (this is adjusted as appropriate in relation to the required heating capacity).
 (D) 室外ファン111の回転速度を現在回転速度よりも低くする室外ファン制御を行う(蒸発温度が下がると共に、高圧も下がるので、凝縮温度も下がり、暖房能力も下がる)。 (D) The outdoor fan control is performed so that the rotation speed of the outdoor fan 111 is lower than the current rotation speed (the evaporation temperature is lowered and the high pressure is also lowered, so the condensation temperature is lowered and the heating capacity is also lowered).
 (E) 室内ファン112の回転速度を現在回転速度よりも高くする室内ファン制御を行う(室内熱交換器の蒸発器の熱交換量が増加し、結果として、暖房能力も下がる)。 (E) Indoor fan control is performed so that the rotational speed of the indoor fan 112 is higher than the current rotational speed (the amount of heat exchange in the evaporator of the indoor heat exchanger increases, resulting in a decrease in heating capacity).
 なお、上記室内熱交換器の蒸発能力を制御する能力制御と、上記(A)~(E)の組合せて行うときの能力制御の順序は、上記に限られることなく、要求する暖房能力と除湿能力が得られるように、適宜変更してもよい。 The order of the capacity control for controlling the evaporation capacity of the indoor heat exchanger and the capacity control performed in combination of the above (A) to (E) is not limited to the above, and the required heating capacity and dehumidification are not limited to the above. You may change suitably so that capability may be acquired.
 また、暖房サイクルによる再熱運転と、冷房サイクルによる再熱運転を行うことによって、暖房サイクル,冷房サイクルのいずれの運転条件でも除湿が可能となる。 In addition, by performing the reheating operation by the heating cycle and the reheating operation by the cooling cycle, dehumidification can be performed under both operating conditions of the heating cycle and the cooling cycle.
 なお、膨張機構105A,膨張機構105Bに逆圧に弱い弁を使用した場合、図1に示す冷媒流方向規制部3を用いずに冷房サイクルによる再熱運転を行うと、冷媒圧力により、膨張機構105A,膨張機構105Bが開いてしまう場合がある。この場合、冷房サイクルによる再熱運転は行わずに、冷房能力を弱にした冷房運転で代用してもよい。これにより、暖気味除湿は暖房サイクルで行い、冷気味除湿は冷凍サイクルで弱冷運転を行うことでほとんどの運転エリアをカバーすることができる。 In addition, when a valve weak against a reverse pressure is used for the expansion mechanism 105A and the expansion mechanism 105B, if the reheating operation is performed by the cooling cycle without using the refrigerant flow direction regulating unit 3 illustrated in FIG. 105A and the expansion mechanism 105B may open. In this case, the reheating operation by the cooling cycle may not be performed, and the cooling operation in which the cooling capacity is weakened may be substituted. Thereby, warm air dehumidification is performed by a heating cycle, and cold flavor dehumidification can cover most operation areas by performing a weak cooling operation by a refrigerating cycle.
 また、第1実施形態の空気調和機と同様に、図1に示す冷媒流方向規制部3をこの第2実施形態の空気調和機に備えてもよい。この場合、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に暖房サイクルと冷房サイクルによらず、再熱運転時の室内熱交換器の蒸発器と凝縮器の位置が変わらないため、吹出口から出る冷気や暖気の分布を同様にできる。 Further, similarly to the air conditioner of the first embodiment, the air conditioner of the second embodiment may be provided with the refrigerant flow direction regulating unit 3 shown in FIG. In this case, even when the heating cycle is switched to the cooling cycle or from the cooling cycle to the heating cycle, the evaporator and condenser of the indoor heat exchanger during the reheating operation are not always used during the reheating operation, regardless of the heating cycle and the cooling cycle. Since the position does not change, the distribution of cold air and warm air from the outlet can be made the same.
 このように、冷媒流方向規制部を冷媒回路に用いることにより、暖房サイクルと冷房サイクルのいずれにおいても、第1室内熱交換器104から膨張機構105A,第2室内熱交換器106A,膨張機構105B,第3室内熱交換器106Bの順に冷媒が流れるようにすることによって、暖房サイクルから冷房サイクルまたは冷房サイクルから暖房サイクルに切り替わっても、再熱運転時は常に室内側の蒸発器と凝縮器の位置が変わらない。このため、暖房サイクルと冷房サイクルとで同様の気流制御ができるだけでなく、露付きについても個別に対策する必要がないため、構造の簡略化も可能となる。また、膨張機構に流れる冷媒方向が、暖房サイクル,冷房サイクルに関わらず一方向であるので、膨張機構に逆圧がかかることがないようにでき、膨張機構に逆圧に弱い安価な開閉弁などを使用することができる。 In this way, by using the refrigerant flow direction restricting portion in the refrigerant circuit, the expansion mechanism 105A, the second indoor heat exchanger 106A, and the expansion mechanism 105B are transferred from the first indoor heat exchanger 104 in both the heating cycle and the cooling cycle. , By allowing the refrigerant to flow in the order of the third indoor heat exchanger 106B, even when switching from the heating cycle to the cooling cycle or from the cooling cycle to the heating cycle, the indoor evaporator and condenser are always in the reheat operation. The position does not change. For this reason, not only the airflow control similar to the heating cycle and the cooling cycle can be performed, but also there is no need to individually take measures against dew, so that the structure can be simplified. In addition, since the direction of the refrigerant flowing through the expansion mechanism is one direction regardless of the heating cycle or the cooling cycle, it is possible to prevent back pressure from being applied to the expansion mechanism. Can be used.
 上記第2実施形態では、図14に示す構成の膨張機構(105A,105B)を用いた空気調和機について説明したが、冷媒流制御部はこれに限らず、熱的に分割された複数の熱交換部からなる室内熱交換器において、凝縮器として作用する熱交換部の数または蒸発器として作用する熱交換部の数のうちの少なくとも一方を増減するものであればよい。 In the second embodiment, the air conditioner using the expansion mechanism (105A, 105B) having the configuration shown in FIG. 14 has been described. However, the refrigerant flow control unit is not limited to this, and a plurality of thermally divided heats are used. In the indoor heat exchanger composed of the exchange unit, it is sufficient that at least one of the number of heat exchange units acting as a condenser or the number of heat exchange units acting as an evaporator is increased or decreased.
 〔第3実施形態〕
 図16はこの発明の第3実施形態の空気調和機の回路図を示している。この第3実施形態の空気調和機は、開閉弁130を除いて第2実施形態の図14に示す空気調和機と同様の構成をしており、同一構成部は同一参照番号を付している。
[Third Embodiment]
FIG. 16 shows a circuit diagram of an air conditioner according to a third embodiment of the present invention. The air conditioner of the third embodiment has the same configuration as the air conditioner shown in FIG. 14 of the second embodiment except for the on-off valve 130, and the same components are denoted by the same reference numerals. .
 この空気調和機は、図16に示すように、圧縮機101と、上記圧縮機101の吐出側に一端が接続された四路切換弁102と、上記四路切換弁102の他端に一端が接続された第1室内熱交換器104と、上記第1室内熱交換器104の他端に一端が接続された膨張機構105と、上記膨張機構105の他端に一端が接続された第2室内熱交換器106Aと、上記第2室内熱交換器106Aの両端に並列に接続された開閉弁130と、上記第2室内熱交換器106Aの他端に一端が接続された第3室内熱交換器106Bと、上記第3室内熱交換器106Bの他端に一端が接続された電動膨張弁107と、上記電動膨張弁107の他端に一端が接続され、他端が四路切換弁102を介して圧縮機101の吸込側に接続された室外熱交換器108とを備えている。 As shown in FIG. 16, the air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102. The first indoor heat exchanger 104 connected, the expansion mechanism 105 having one end connected to the other end of the first indoor heat exchanger 104, and the second room having one end connected to the other end of the expansion mechanism 105 A heat exchanger 106A, an on-off valve 130 connected in parallel to both ends of the second indoor heat exchanger 106A, and a third indoor heat exchanger whose one end is connected to the other end of the second indoor heat exchanger 106A 106B, an electric expansion valve 107 having one end connected to the other end of the third indoor heat exchanger 106B, one end connected to the other end of the electric expansion valve 107, and the other end via the four-way switching valve 102. The outdoor heat exchanger 1 connected to the suction side of the compressor 101 And a 8.
 上記膨張機構105と開閉弁130で、室内熱交換器の複数の熱交換部(104,106A,106B)のうち、蒸発器として作用する熱交換部の数を増減させる冷媒流制御部を構成している。また、上記開閉弁130は、第2室内熱交換器106Aを流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部である。 The expansion mechanism 105 and the on-off valve 130 constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units (104, 106A, 106B) of the indoor heat exchanger. ing. The on-off valve 130 is a refrigerant flow switching unit that switches whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 106A.
 なお、上記実施形態に限らず、室内熱交換器および膨張機構,開閉弁の構成を適宜変更して、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成してもよいし、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数、および、蒸発器として作用する熱交換部の数の両方を増減させる冷媒流制御部を構成してもよい。 It should be noted that the number of heat exchanging parts acting as a condenser among the plurality of heat exchanging parts of the indoor heat exchanger is not limited to the above embodiment, and the configurations of the indoor heat exchanger, the expansion mechanism, and the on-off valve are appropriately changed. The refrigerant flow control unit may be configured to increase or decrease the number of heat exchange units that function as a condenser, and the heat exchange unit that functions as an evaporator among the plurality of heat exchange units of the indoor heat exchanger. You may comprise the refrigerant | coolant flow control part which increases / decreases both of a number.
 上記空気調和機は、暖房サイクルによる再熱運転において、四路切換弁102を実線の位置に切り換え、電動膨張弁107を開き、膨張機構105を絞り状態にする一方、開閉弁130を開いた状態にして、圧縮機101を起動する。そして、圧縮機101から吐出された高圧ガス冷媒は、ガス管を介して第1室内熱交換器104に流入して凝縮した後、膨張機構105により減圧され、減圧された低圧冷媒は膨張機構105を流れて第3室内熱交換器106Bと室外熱交換器8で蒸発して、圧縮機101に吸い込まれる。このとき、膨張機構105からの低圧冷媒は、第2室内熱交換器106Aを流れずに開状態の開閉弁130を流れる。 In the reheat operation by the heating cycle, the air conditioner switches the four-way switching valve 102 to the position shown by the solid line, opens the electric expansion valve 107, brings the expansion mechanism 105 into the throttle state, and opens the on-off valve 130. Then, the compressor 101 is started. The high-pressure gas refrigerant discharged from the compressor 101 flows into the first indoor heat exchanger 104 through the gas pipe and condenses, and then is decompressed by the expansion mechanism 105. The decompressed low-pressure refrigerant is the expansion mechanism 105. And is evaporated by the third indoor heat exchanger 106B and the outdoor heat exchanger 8 and sucked into the compressor 101. At this time, the low-pressure refrigerant from the expansion mechanism 105 flows through the open on-off valve 130 without flowing through the second indoor heat exchanger 106A.
 これにより、凝縮器としての第1室内熱交換器104により室内空気が暖められる一方で、蒸発器としての第3室内熱交換器106Bにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 As a result, the room air is warmed by the first indoor heat exchanger 104 as a condenser, while the room air is dehumidified by being cooled by the third indoor heat exchanger 106B as an evaporator, and thus is heated by the heating cycle. Reheating operation is performed.
 このときの空気調和機の室内熱交換器の状態を図17Aの模式図に示している。この空気調和機では、図17Aに示すように、第1室内熱交換器104(凝縮器)である熱交換部104a,104bおよび第2室内熱交換器106Aと第3室内熱交換器106B(蒸発器)で断面くの字形状に屈曲した室内熱交換器を形成している。なお、この第1室内熱交換器104の熱交換部104a,104bは、熱的に分割されていない。この室内熱交換器(104,106A,106B)の風下側に室内ファン112を配置すると共に、第1室内熱交換器104aおよび第2室内熱交換器106Aと第3室内熱交換器106Bの前面側にパネル120を配置している。 The state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 17A. In this air conditioner, as shown in FIG. 17A, the heat exchangers 104a and 104b, which are the first indoor heat exchanger 104 (condenser), the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B (evaporation) The indoor heat exchanger bent in a cross-sectional shape is formed. In addition, the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided. An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and the front side of the first indoor heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B. A panel 120 is disposed on the panel.
 図17Aでは、凝縮器としての第1室内熱交換器104により暖められた暖気が吹出口の下側から吹き出し、その暖気の上側に、第3室内熱交換器106Bにより冷却された冷気が吹き出す。このとき、暖気と冷気との間に、第2室内熱交換器106Aを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 In FIG. 17A, warm air warmed by the first indoor heat exchanger 104 as a condenser is blown out from the lower side of the outlet, and cold air cooled by the third indoor heat exchanger 106B is blown out above the warm air. At this time, since the bypass air that has passed through the second indoor heat exchanger 106A without heat exchange blows out between the warm air and the cool air, the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
 また、図17Bに示すように、図16に示す冷媒回路と同一の冷媒回路を用いて、第2室内熱交換器106Aと第3室内熱交換器106Bの上下の配置を入れ換えた構成にしてもよい。 Also, as shown in FIG. 17B, the same refrigerant circuit as the refrigerant circuit shown in FIG. 16 is used, and the upper and lower arrangements of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B are interchanged. Good.
 また、四路切換弁102が実線の位置において、電動膨張弁107を開き、膨張機構105を絞り状態にすると共に、開閉弁130を閉じた状態にしたとき、図17Cに示すように、凝縮器としての第1室内熱交換器104により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 When the four-way switching valve 102 is in the position of the solid line, when the electric expansion valve 107 is opened, the expansion mechanism 105 is in the throttle state, and the on-off valve 130 is closed, as shown in FIG. While the indoor air is warmed by the first indoor heat exchanger 104 as the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as the evaporator, the indoor air is dehumidified by being cooled, Reheating operation is performed by the heating cycle.
 このとき、膨張機構105からの低圧冷媒は、閉じた状態の開閉弁130を流れずに第2室内熱交換器106Aを流れる(図16の右下点線枠内を参照)。 At this time, the low-pressure refrigerant from the expansion mechanism 105 flows through the second indoor heat exchanger 106A without flowing through the closed on-off valve 130 (see the lower right dotted frame in FIG. 16).
 また、通常の暖房運転の場合は、四路切換弁102が実線の位置において、電動膨張弁107を絞り、膨張機構105を開いた状態にする一方、開閉弁130を閉じた状態にしたとき、図17Dに示すように、凝縮器としての第1室内熱交換器104,第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が暖められる。なお、図17Dでは、第2室内熱交換器106Aを上側にし、第3室内熱交換器106Bに下側にした、上下の配置を入れ換えた構成である。 In the case of normal heating operation, when the four-way switching valve 102 is in the position of the solid line, the electric expansion valve 107 is throttled and the expansion mechanism 105 is opened, while the on-off valve 130 is closed. As shown in FIG. 17D, the indoor air is warmed by the first indoor heat exchanger 104, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B as condensers. In FIG. 17D, the second indoor heat exchanger 106A is on the upper side and the third indoor heat exchanger 106B is on the lower side, and the upper and lower arrangements are interchanged.
 この状態で、開閉弁130を開いた状態にして第2室内熱交換器106Aをバイパスすると、図17Eに示すように、凝縮器としての第1室内熱交換器104,第3室内熱交換器106Bにより暖められた暖気が吹出口の下側から吹き出し、その暖気の上側に、第2室内熱交換器106Aを熱交換されずにそのまま通過したバイパス空気が吹き出すので、暖気が舞い上がるのをバイパス空気が抑え込んだ頭寒足熱運転を行うことができる。 In this state, when the on-off valve 130 is opened and the second indoor heat exchanger 106A is bypassed, as shown in FIG. 17E, the first indoor heat exchanger 104 and the third indoor heat exchanger 106B as condensers. The warm air warmed by the air is blown out from the lower side of the air outlet, and the bypass air that has passed through the second indoor heat exchanger 106A without heat exchange blows out to the upper side of the warm air. It is possible to perform restrained head cold foot heat driving.
 また、図18は上記空気調和機の他の室内熱交換器の例を用いた暖房サイクルのときの冷媒の流れを示している。この空気調和機は、開閉弁130を除いて図16に示す空気調和機と同様の構成をしており、同一構成部は同一参照番号を付している。 FIG. 18 shows the flow of the refrigerant during the heating cycle using another example of the indoor heat exchanger of the air conditioner. This air conditioner has the same configuration as that of the air conditioner shown in FIG. 16 except for the on-off valve 130, and the same components are denoted by the same reference numerals.
 この空気調和機は、図18に示すように、圧縮機101と、上記圧縮機101の吐出側に一端が接続された四路切換弁102と、上記四路切換弁102の他端に一端が接続された第1室内熱交換器104と、上記第1室内熱交換器104の他端に一端が接続された膨張機構105と、上記膨張機構105の他端に一端が接続された第2室内熱交換器106Aと、上記第2室内熱交換器106Aの他端に一端が接続された第3室内熱交換器106Bと、上記第3室内熱交換器106Bの両端に並列に接続された開閉弁130と、上記第3室内熱交換器106Bの他端に一端が接続された電動膨張弁107と、上記電動膨張弁107の他端に一端が接続され、他端が四路切換弁102を介して圧縮機101の吸込側に接続された室外熱交換器108とを備えている。 As shown in FIG. 18, this air conditioner has a compressor 101, a four-way switching valve 102 having one end connected to the discharge side of the compressor 101, and one end at the other end of the four-way switching valve 102. The first indoor heat exchanger 104 connected, the expansion mechanism 105 having one end connected to the other end of the first indoor heat exchanger 104, and the second room having one end connected to the other end of the expansion mechanism 105 A heat exchanger 106A, a third indoor heat exchanger 106B having one end connected to the other end of the second indoor heat exchanger 106A, and an on-off valve connected in parallel to both ends of the third indoor heat exchanger 106B 130, an electric expansion valve 107 having one end connected to the other end of the third indoor heat exchanger 106B, one end connected to the other end of the electric expansion valve 107, and the other end via the four-way switching valve 102. The outdoor heat exchanger 1 connected to the suction side of the compressor 101 And a 8.
 上記膨張機構105と開閉弁130で、室内熱交換器(104,106A,106B)の複数の熱交換部のうち、蒸発器として作用する熱交換部の数を増減させる冷媒流制御部を構成している。また、上記開閉弁130は、第3室内熱交換器106Bを流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部である。 The expansion mechanism 105 and the on-off valve 130 constitute a refrigerant flow control unit that increases or decreases the number of heat exchange units acting as an evaporator among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B). ing. The on-off valve 130 is a refrigerant flow switching unit that switches whether to bypass the refrigerant flow flowing through the third indoor heat exchanger 106B.
 なお、室内熱交換器および膨張機構の構成を適宜変更して、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成してもよいし、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数、および、蒸発器として作用する熱交換部の数の両方を増減させる冷媒流制御部を構成してもよい。 In addition, the configuration of the indoor heat exchanger and the expansion mechanism is changed as appropriate to configure a refrigerant flow control unit that increases or decreases the number of heat exchange units that act as condensers among the plurality of heat exchange units of the indoor heat exchanger. Alternatively, among the plurality of heat exchange units of the indoor heat exchanger, a refrigerant flow control unit that increases or decreases both the number of heat exchange units that act as condensers and the number of heat exchange units that act as evaporators. May be configured.
 このときの空気調和機の室内熱交換器の状態を図19Aの模式図に示している。この空気調和機では、図19Aに示すように、第1室内熱交換器104(凝縮器)である熱交換部104a,104bおよび第2室内熱交換器106Aと第3室内熱交換器106B(蒸発器)で断面くの字形状に屈曲した室内熱交換器を形成している。なお、この第1室内熱交換器104の熱交換部104a,104bは、熱的に分割されていない。この室内熱交換器(104,106A,106B)の風下側に室内ファン112を配置すると共に、第1室内熱交換器104aおよび第2室内熱交換器106Aと第3室内熱交換器106Bの前面側にパネル120を配置している。 The state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 19A. In this air conditioner, as shown in FIG. 19A, the heat exchangers 104a and 104b, which are the first indoor heat exchanger 104 (condenser), the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B (evaporation) The indoor heat exchanger bent in a cross-sectional shape is formed. In addition, the heat exchange parts 104a and 104b of the first indoor heat exchanger 104 are not thermally divided. An indoor fan 112 is disposed on the leeward side of the indoor heat exchangers (104, 106A, 106B), and the front side of the first indoor heat exchanger 104a, the second indoor heat exchanger 106A, and the third indoor heat exchanger 106B. A panel 120 is disposed on the panel.
 図19Aでは、凝縮器としての第1室内熱交換器104により暖められた暖気が吹出口の下側から吹き出し、その暖気の上側に、第2室内熱交換器106Aにより冷却された冷気が吹き出す。このとき、暖気と冷気との間に、第3室内熱交換器106Bを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 In FIG. 19A, warm air heated by the first indoor heat exchanger 104 as a condenser is blown out from the lower side of the outlet, and cold air cooled by the second indoor heat exchanger 106A is blown out above the warm air. At this time, since the bypass air that has passed through the third indoor heat exchanger 106B without heat exchange blows out between the warm air and the cool air, the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
 また、図19Bに示すように、図18に示す冷媒回路と同一の冷媒回路を用いて、第2室内熱交換器106Aと第3室内熱交換器106Bの上下の配置を入れ換えた構成にしてもよい。 Further, as shown in FIG. 19B, the same refrigerant circuit as that shown in FIG. 18 is used, and the upper and lower arrangements of the second indoor heat exchanger 106A and the third indoor heat exchanger 106B are interchanged. Good.
 また、四路切換弁102が実線の位置において、電動膨張弁107を開き、膨張機構105を絞り状態にすると共に、開閉弁130を閉じた状態にしたとき、図19Cに示すように、凝縮器としての第1室内熱交換器104により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器106A,第3室内熱交換器106Bにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 When the four-way switching valve 102 is in the position of the solid line, when the electric expansion valve 107 is opened, the expansion mechanism 105 is in the throttle state, and the on-off valve 130 is closed, as shown in FIG. While the indoor air is warmed by the first indoor heat exchanger 104 as the second indoor heat exchanger 106A and the third indoor heat exchanger 106B as the evaporator, the indoor air is dehumidified by being cooled, Reheating operation is performed by the heating cycle.
 このとき、膨張機構105からの低圧冷媒は、閉じた状態の開閉弁130を流れずに第2室内熱交換器106Aを流れる(図18の右下点線枠内を参照)。 At this time, the low-pressure refrigerant from the expansion mechanism 105 flows through the second indoor heat exchanger 106A without flowing through the closed on-off valve 130 (see the lower right dotted line frame in FIG. 18).
 この第3実施形態の空気調和機は、第2実施形態の空気調和機と同様の効果を有する。この第3実施形態の空気調和機では、暖房サイクルによる再熱運転において、制御装置110の制御は、第2実施形態の空気調和機と同様の制御を行う。 The air conditioner of the third embodiment has the same effect as the air conditioner of the second embodiment. In the air conditioner of the third embodiment, in the reheat operation by the heating cycle, the control of the control device 110 performs the same control as the air conditioner of the second embodiment.
 また、冷媒流路切換部である開閉弁130により第3室内熱交換器106Bを流れる冷媒流をバイパスするか否かを切り換えることによって、簡単な構成で冷媒流制御部を実現できる。 Further, the refrigerant flow control unit can be realized with a simple configuration by switching whether or not the refrigerant flow flowing through the third indoor heat exchanger 106B is bypassed by the on-off valve 130 which is the refrigerant flow switching unit.
 上記第3実施形態では、図16,図18に示す構成の冷媒流制御部(105,130)を用いた空気調和機について説明したが、冷媒流制御部はこれに限らず、熱的に分割された複数の熱交換部からなる室内熱交換器において、凝縮器として作用する熱交換部の数および蒸発器として作用する熱交換部の数を増減するものであればよい。 In the third embodiment, the air conditioner using the refrigerant flow control unit (105, 130) having the configuration shown in FIGS. 16 and 18 has been described. However, the refrigerant flow control unit is not limited to this and is thermally divided. What is necessary is just to increase / decrease the number of the heat exchange parts which act as an evaporator and the number of the heat exchange parts which act as an evaporator in the indoor heat exchanger which consists of a plurality of heat exchange parts.
 〔第4実施形態〕
 図20はこの発明の第4実施形態の空気調和機の回路図を示している。
[Fourth Embodiment]
FIG. 20 shows a circuit diagram of an air conditioner according to a fourth embodiment of the present invention.
 この空気調和機は、図20に示すように、圧縮機201と、上記圧縮機201の吐出側に一端が接続された四路切換弁202と、上記四路切換弁202の他端に一端が接続された第1室内熱交換器204と、上記第1室内熱交換器204の他端に一端が接続された膨張機構205と、上記膨張機構205の他端に一端が接続された第2室内熱交換器206Aと、上記第2室内熱交換器206Aの両端に並列に接続された開閉弁230Aと、上記第2室内熱交換器206Aの他端に一端が接続された第3室内熱交換器206Bと、上記第3室内熱交換器206Bの両端に並列に接続された開閉弁230Bと、上記第3室内熱交換器206Bの他端に一端が接続された第4室内熱交換器206Cと、上記第4室内熱交換器206Cの他端に一端が接続された電動膨張弁207と、上記電動膨張弁207の他端に一端が接続され、他端が四路切換弁202を介して圧縮機201の吸込側に接続された室外熱交換器208とを備えている。 As shown in FIG. 20, the air conditioner has a compressor 201, a four-way switching valve 202 having one end connected to the discharge side of the compressor 201, and one end at the other end of the four-way switching valve 202. The connected first indoor heat exchanger 204, the expansion mechanism 205 having one end connected to the other end of the first indoor heat exchanger 204, and the second indoor having one end connected to the other end of the expansion mechanism 205 A heat exchanger 206A, an on-off valve 230A connected in parallel to both ends of the second indoor heat exchanger 206A, and a third indoor heat exchanger whose one end is connected to the other end of the second indoor heat exchanger 206A 206B, an on-off valve 230B connected in parallel to both ends of the third indoor heat exchanger 206B, a fourth indoor heat exchanger 206C having one end connected to the other end of the third indoor heat exchanger 206B, One end at the other end of the fourth indoor heat exchanger 206C A connected electric expansion valve 207, and an outdoor heat exchanger 208 having one end connected to the other end of the electric expansion valve 207 and the other end connected to the suction side of the compressor 201 via the four-way switching valve 202; It has.
 上記膨張機構205と開閉弁230Aと開閉弁230Bで、室内熱交換器(204,206A,206B,206C)の複数の熱交換部のうち、蒸発器として作用する熱交換部の数を増減させる冷媒流制御部を構成している。また、上記開閉弁230A,開閉弁230Bは、第2室内熱交換器206A,第3室内熱交換器206Bを流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部である。 Refrigerant that increases or decreases the number of heat exchange parts acting as an evaporator among a plurality of heat exchange parts of the indoor heat exchanger (204, 206A, 206B, 206C) by the expansion mechanism 205, the on-off valve 230A, and the on-off valve 230B. The flow control unit is configured. The on-off valve 230A and the on-off valve 230B are refrigerant flow path switching units that switch whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B.
 なお、上記実施形態に限らず、室内熱交換器および膨張機構の構成を適宜変更して、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成してもよいし、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数、および、蒸発器として作用する熱交換部の数の両方を増減させる冷媒流制御部を構成してもよい。 In addition, not only the said embodiment but the structure of an indoor heat exchanger and an expansion mechanism is changed suitably, and the number of the heat exchange parts which act as a condenser is increased / decreased among several heat exchange parts of an indoor heat exchanger. The refrigerant flow control unit may be configured, and among the plurality of heat exchange units of the indoor heat exchanger, both the number of heat exchange units acting as a condenser and the number of heat exchange units acting as an evaporator You may comprise the refrigerant | coolant flow control part which increases / decreases.
 また、上記空気調和機は、室内空気の温度を検出する室内温度センサ213と、第4室内熱交換器206Cの温度を検出する蒸発器温度センサの一例としての室内熱交換器温度センサ214と、室内空気の湿度を検出する室内湿度センサ215と、マイクロコンピュータと入出力回路などからなる制御装置210を備えている。上記制御装置210は、室内温度センサ213により検出された室内空気の温度と室内熱交換器温度センサ214により検出された第4室内熱交換器206Cの温度と、室内湿度センサ215により検出された室内空気の湿度に基づいて、圧縮機201と四路切換弁202と膨張機構205と開閉弁230A,230Bと電動膨張弁207と室外ファン211と室内ファン212を制御する。 The air conditioner includes an indoor temperature sensor 213 that detects the temperature of indoor air, an indoor heat exchanger temperature sensor 214 that is an example of an evaporator temperature sensor that detects the temperature of the fourth indoor heat exchanger 206C, An indoor humidity sensor 215 that detects the humidity of the indoor air, and a control device 210 including a microcomputer and an input / output circuit are provided. The controller 210 detects the indoor air temperature detected by the indoor temperature sensor 213, the temperature of the fourth indoor heat exchanger 206 </ b> C detected by the indoor heat exchanger temperature sensor 214, and the indoor humidity sensor 215. Based on the humidity of the air, the compressor 201, the four-way switching valve 202, the expansion mechanism 205, the on-off valves 230A and 230B, the electric expansion valve 207, the outdoor fan 211, and the indoor fan 212 are controlled.
 上記空気調和機は、暖房サイクルによる再熱運転において、四路切換弁202を実線の位置に切り換え、電動膨張弁207を開き、膨張機構205を絞り状態にすると共に、開閉弁230Aと開閉弁230Bを閉じた状態にして、圧縮機201を起動する。そして、圧縮機201から吐出された高圧ガス冷媒は、ガス管を介して第1室内熱交換器204に流入して凝縮した後、膨張機構205により減圧され、減圧された低圧冷媒は膨張機構205を流れて第2室内熱交換器206A,第3室内熱交換器206Bと第4室内熱交換器206Cと室外熱交換器208で蒸発して、圧縮機201に吸い込まれる。 In the reheating operation by the heating cycle, the air conditioner switches the four-way switching valve 202 to the position shown by the solid line, opens the electric expansion valve 207, brings the expansion mechanism 205 into the throttle state, and opens the on-off valve 230A and the on-off valve 230B. Is closed and the compressor 201 is started. The high-pressure gas refrigerant discharged from the compressor 201 flows into the first indoor heat exchanger 204 through the gas pipe and condenses, and then is decompressed by the expansion mechanism 205, and the decompressed low-pressure refrigerant is the expansion mechanism 205. The second indoor heat exchanger 206A, the third indoor heat exchanger 206B, the fourth indoor heat exchanger 206C, and the outdoor heat exchanger 208 are evaporated and sucked into the compressor 201.
 これにより、凝縮器としての第1室内熱交換器204により室内空気が暖められる一方で、蒸発器としての第2室内熱交換器206A,第3室内熱交換器206Bと第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Thereby, while the indoor air is warmed by the first indoor heat exchanger 204 as a condenser, the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, and the fourth indoor heat exchanger 206C as evaporators. Thus, the room air is dehumidified by being cooled, and reheating operation is performed by the heating cycle.
 このときの空気調和機の室内熱交換器の状態を図21Aの模式図に示している。この空気調和機では、図21Aに示すように、第1室内熱交換器204(凝縮器)である熱交換部204a,204bおよび第2室内熱交換器206A,第3室内熱交換器206B,第4室内熱交換器206C(蒸発器)で断面くの字形状に屈曲した室内熱交換器を形成している。なお、この第1室内熱交換器204の熱交換部204a,204bは、熱的に分割されていない。この室内熱交換器(204,206A,206B,206C)の風下側に室内ファン212を配置すると共に、第1室内熱交換器204aおよび第2室内熱交換器206Aと第3室内熱交換器206Bと第4室内熱交換器206Cの前面側にパネル220を配置している。 The state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 21A. In this air conditioner, as shown in FIG. 21A, the heat exchangers 204a and 204b and the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, the first indoor heat exchanger 204 (condenser), A four-room heat exchanger 206C (evaporator) forms an indoor heat exchanger bent in a cross-sectional shape. In addition, the heat exchange parts 204a and 204b of the first indoor heat exchanger 204 are not thermally divided. An indoor fan 212 is disposed on the leeward side of the indoor heat exchangers (204, 206A, 206B, 206C), and the first indoor heat exchanger 204a, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B A panel 220 is arranged on the front side of the fourth indoor heat exchanger 206C.
 図21Aでは、凝縮器としての第1室内熱交換器204により暖められた暖気が吹出口の下側から吹き出し、その暖気の上側に、第2室内熱交換器206Aと第3室内熱交換器206Bと第4室内熱交換器206Cにより冷却された冷気が吹き出す。 In FIG. 21A, the warm air warmed by the first indoor heat exchanger 204 as a condenser blows out from the lower side of the outlet, and the second indoor heat exchanger 206A and the third indoor heat exchanger 206B are located above the warm air. And the cold air cooled by the 4th indoor heat exchanger 206C blows off.
 また、四路切換弁202が実線の位置において、電動膨張弁207を開き、膨張機構205を絞り状態にする一方、開閉弁230Aを閉じた状態にし、開閉弁230Bを開いた状態にしたとき、図21Bに示すように、凝縮器としての第1室内熱交換器204により室内空気が暖められる一方で、蒸発器としての第3室内熱交換器206B,第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Also, when the four-way switching valve 202 is in the position of the solid line, the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A is closed and the on-off valve 230B is opened. As shown in FIG. 21B, the indoor air is warmed by the first indoor heat exchanger 204 as a condenser, while the indoor air is heated by the third indoor heat exchanger 206B and the fourth indoor heat exchanger 206C as evaporators. Dehumidification is achieved by cooling, and reheating operation is performed by a heating cycle.
 このとき、膨張機構205からの低圧冷媒は、第2室内熱交換器206Aを流れずに開状態の開閉弁230Aを流れる(図20の左下点線枠内を参照)。そうして、暖気と冷気との間に、第2室内熱交換器206Aを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 At this time, the low-pressure refrigerant from the expansion mechanism 205 flows through the open on-off valve 230A without flowing through the second indoor heat exchanger 206A (see the inside of the lower left dotted line frame in FIG. 20). Then, between the warm air and the cool air, bypass air that has passed through the second indoor heat exchanger 206A without being subjected to heat exchange blows out, so that the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
 また、四路切換弁202が実線の位置において、電動膨張弁207を開き、膨張機構205を絞り状態にする一方、開閉弁230Aと開閉弁230Bを開いた状態にしたとき、図21Cに示すように、凝縮器としての第1室内熱交換器204により室内空気が暖められる一方で、蒸発器としての第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Further, when the four-way switching valve 202 is in the position of the solid line, the electric expansion valve 207 is opened to bring the expansion mechanism 205 into the throttle state, while the on-off valve 230A and the on-off valve 230B are opened, as shown in FIG. 21C. In addition, while the room air is warmed by the first indoor heat exchanger 204 as a condenser, the room air is dehumidified by being cooled by the fourth indoor heat exchanger 206C as an evaporator, and is regenerated by the heating cycle. Thermal operation is performed.
 このとき、膨張機構205からの低圧冷媒は、第2室内熱交換器206Aを流れずに開状態の開閉弁230Aを流れ、開閉弁230Aからの冷媒は、第3室内熱交換器206Bを流れずに開状態の開閉弁230Bを流れる(図20の右下点線枠内を参照)。そうして、暖気と冷気との間に、第2室内熱交換器206A,第3室内熱交換器206Bを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 At this time, the low-pressure refrigerant from the expansion mechanism 205 does not flow through the second indoor heat exchanger 206A but flows through the open on-off valve 230A, and the refrigerant from the on-off valve 230A does not flow through the third indoor heat exchanger 206B. Flows through the open on-off valve 230B (refer to the inside of the lower right dotted line frame in FIG. 20). Then, between the warm air and the cool air, the bypass air that has passed through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B without being exchanged is blown out, so that the warm air and the cool air are mixed by the bypass air. It blows out from a blower outlet in the state separated as it is.
 このように、開閉弁230Aと開閉弁230Bを制御して、図21A,図21B,図21Cのとおり、除湿量を大中小に制御することができる。 Thus, by controlling the on-off valve 230A and the on-off valve 230B, the amount of dehumidification can be controlled to be large, medium, and small as shown in FIGS. 21A, 21B, and 21C.
 また、図22は上記空気調和機の他の室内熱交換器の例を用いた暖房サイクルのときの冷媒の流れを示している。この空気調和機は、膨張機構205の位置を除いて図20に示す空気調和機と同様の構成をしており、同一構成部は同一参照番号を付している。 FIG. 22 shows a refrigerant flow during a heating cycle using another example of the indoor heat exchanger of the air conditioner. This air conditioner has the same configuration as that of the air conditioner shown in FIG. 20 except for the position of the expansion mechanism 205, and the same components are denoted by the same reference numerals.
 この空気調和機は、図22に示すように、圧縮機201と、上記圧縮機201の吐出側に一端が接続された四路切換弁202と、上記四路切換弁202の他端に一端が接続された第1室内熱交換器204と、上記第1室内熱交換器204の他端に一端が接続された第2室内熱交換器206Aと、上記第2室内熱交換器206Aの両端に並列に接続された開閉弁230Aと、上記第2室内熱交換器206Aの他端に一端が接続された第3室内熱交換器206Bと、上記第3室内熱交換器206Bの両端に並列に接続された開閉弁230Bと、上記第3室内熱交換器206Bの他端に一端が接続された膨張機構205と、上記膨張機構205の他端に一端が接続された第4室内熱交換器206Cと、上記第4室内熱交換器206Cの他端に一端が接続された電動膨張弁207と、上記電動膨張弁207の他端に一端が接続され、他端が四路切換弁202を介して圧縮機201の吸込側に接続された室外熱交換器208とを備えている。 As shown in FIG. 22, this air conditioner has a compressor 201, a four-way switching valve 202 having one end connected to the discharge side of the compressor 201, and one end at the other end of the four-way switching valve 202. The connected first indoor heat exchanger 204, the second indoor heat exchanger 206A having one end connected to the other end of the first indoor heat exchanger 204, and the both ends of the second indoor heat exchanger 206A in parallel. Open / close valve 230A connected to the other end, third indoor heat exchanger 206B having one end connected to the other end of the second indoor heat exchanger 206A, and both ends of the third indoor heat exchanger 206B connected in parallel. An open / close valve 230B, an expansion mechanism 205 having one end connected to the other end of the third indoor heat exchanger 206B, a fourth indoor heat exchanger 206C having one end connected to the other end of the expansion mechanism 205, One end at the other end of the fourth indoor heat exchanger 206C A connected electric expansion valve 207, and an outdoor heat exchanger 208 having one end connected to the other end of the electric expansion valve 207 and the other end connected to the suction side of the compressor 201 via the four-way switching valve 202; It has.
 上記膨張機構205と開閉弁230Aと開閉弁230Bで、室内熱交換器(204,206A,206B,206C)の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成している。また、上記開閉弁230A,開閉弁230Bは、第2室内熱交換器206A,第3室内熱交換器206Bを流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部である。 Refrigerant that increases or decreases the number of heat exchange parts acting as a condenser among the plurality of heat exchange parts of the indoor heat exchanger (204, 206A, 206B, 206C) by the expansion mechanism 205, the on-off valve 230A, and the on-off valve 230B. The flow control unit is configured. The on-off valve 230A and the on-off valve 230B are refrigerant flow path switching units that switch whether to bypass the refrigerant flow flowing through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B.
 なお、この実施形態に限らず、室内熱交換器および膨張機構の構成を適宜変更して、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数を増減させる冷媒流制御部を構成してもよいし、室内熱交換器の複数の熱交換部のうち、凝縮器として作用する熱交換部の数、および、蒸発器として作用する熱交換部の数の両方を増減させる冷媒流制御部を構成してもよい。 In addition, not only this embodiment but the structure of an indoor heat exchanger and an expansion mechanism is changed suitably, and the number of the heat exchange parts which act as a condenser is increased / decreased among several heat exchange parts of an indoor heat exchanger. The refrigerant flow control unit may be configured, and among the plurality of heat exchange units of the indoor heat exchanger, both the number of heat exchange units acting as a condenser and the number of heat exchange units acting as an evaporator You may comprise the refrigerant | coolant flow control part which increases / decreases.
 上記空気調和機は、暖房サイクルによる再熱運転において、四路切換弁202を実線の位置に切り換え、電動膨張弁207を開き、膨張機構205を絞り状態にすると共に、開閉弁230Aと開閉弁230Bを閉じた状態にして、圧縮機201を起動する。そして、圧縮機201から吐出された高圧ガス冷媒は、第1室内熱交換器204,第2室内熱交換器206A,第3室内熱交換器206Bで凝縮した後、膨張機構205により減圧され、減圧された低圧冷媒は第4室内熱交換器206Cと室外熱交換器208で蒸発して、圧縮機201に吸い込まれる。 In the reheating operation by the heating cycle, the air conditioner switches the four-way switching valve 202 to the position shown by the solid line, opens the electric expansion valve 207, brings the expansion mechanism 205 into the throttle state, and opens the on-off valve 230A and the on-off valve 230B. Is closed and the compressor 201 is started. The high-pressure gas refrigerant discharged from the compressor 201 is condensed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B, and then decompressed by the expansion mechanism 205. The low-pressure refrigerant thus evaporated is evaporated by the fourth indoor heat exchanger 206C and the outdoor heat exchanger 208 and sucked into the compressor 201.
 これにより、凝縮器としての第1室内熱交換器204,第2室内熱交換器206A,第3室内熱交換器206Bにより室内空気が暖められる一方で、蒸発器としての第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Thus, the indoor air is warmed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B as the condenser, while the fourth indoor heat exchanger 206C as the evaporator. Thus, the room air is dehumidified by being cooled, and reheating operation is performed by the heating cycle.
 このときの空気調和機の室内熱交換器の状態を図23Aの模式図に示している。この空気調和機では、図23Aに示すように、第1室内熱交換器204(凝縮器)である熱交換部204a,204bおよび第2室内熱交換器206A,第3室内熱交換器206B,第4室内熱交換器206C(蒸発器)で断面くの字形状に屈曲した室内熱交換器を形成している。なお、この第1室内熱交換器204の熱交換部204a,204bは、熱的に分割されていない。この室内熱交換器(204,206A,206B,206C)の風下側に室内ファン212を配置すると共に、第1室内熱交換器204aおよび第2室内熱交換器206Aと第3室内熱交換器206Bと第4室内熱交換器206Cの前面側にパネル220を配置している。 The state of the indoor heat exchanger of the air conditioner at this time is shown in the schematic diagram of FIG. 23A. In this air conditioner, as shown in FIG. 23A, the first indoor heat exchanger 204 (condenser), the heat exchange units 204a and 204b, the second indoor heat exchanger 206A, the third indoor heat exchanger 206B, A four-room heat exchanger 206C (evaporator) forms an indoor heat exchanger bent in a cross-sectional shape. In addition, the heat exchange parts 204a and 204b of the first indoor heat exchanger 204 are not thermally divided. An indoor fan 212 is disposed on the leeward side of the indoor heat exchangers (204, 206A, 206B, 206C), and the first indoor heat exchanger 204a, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B A panel 220 is arranged on the front side of the fourth indoor heat exchanger 206C.
 図23Aでは、凝縮器としての第1室内熱交換器204,第2室内熱交換器206A,第3室内熱交換器206Bにより暖められた暖気が吹出口の下側から吹き出し、その暖気の上側に、第4室内熱交換器206Cにより冷却された冷気が吹き出す。 In FIG. 23A, the warm air warmed by the first indoor heat exchanger 204, the second indoor heat exchanger 206A, and the third indoor heat exchanger 206B as condensers is blown out from the lower side of the outlet, and above the warm air. The cold air cooled by the fourth indoor heat exchanger 206C is blown out.
 また、四路切換弁202が実線の位置において、電動膨張弁207を開き、膨張機構205を絞り状態にする一方、開閉弁230Aを閉じた状態にし、開閉弁230Bを開いた状態にしたとき、図23Bに示すように、凝縮器としての第1室内熱交換器204,第3室内熱交換器206Bにより室内空気が暖められる一方で、蒸発器としての第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Also, when the four-way switching valve 202 is in the position of the solid line, the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A is closed and the on-off valve 230B is opened. As shown in FIG. 23B, the indoor air is warmed by the first indoor heat exchanger 204 and the third indoor heat exchanger 206B as condensers, while the indoor air is heated by the fourth indoor heat exchanger 206C as an evaporator. Dehumidification is achieved by cooling, and reheating operation is performed by a heating cycle.
 このとき、膨張機構205からの低圧冷媒は、第2室内熱交換器206Aを流れずに開状態の開閉弁230Aを流れる(図22の左下点線枠内を参照)。そうして、暖気と冷気との間に、第2室内熱交換器206Aを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 At this time, the low-pressure refrigerant from the expansion mechanism 205 flows through the open on-off valve 230A without flowing through the second indoor heat exchanger 206A (see the inside of the lower left dotted line frame in FIG. 22). Then, between the warm air and the cool air, bypass air that has passed through the second indoor heat exchanger 206A without being subjected to heat exchange blows out, so that the warm air and the cool air are not mixed by the bypass air and are separated as they are. Blow out from the outlet.
 また、四路切換弁202が実線の位置において、電動膨張弁207を開き、膨張機構205を絞り状態にする一方、開閉弁230Aと開閉弁230Bを開いた状態にしたとき、図23Cに示すように、凝縮器としての第1室内熱交換器204により室内空気が暖められる一方で、蒸発器としての第4室内熱交換器206Cにより室内空気が冷却されることにより除湿されて、暖房サイクルによる再熱運転が行われる。 Further, when the four-way switching valve 202 is in the position of the solid line, the electric expansion valve 207 is opened and the expansion mechanism 205 is in the throttle state, while the on-off valve 230A and the on-off valve 230B are opened, as shown in FIG. In addition, while the room air is warmed by the first indoor heat exchanger 204 as a condenser, the room air is dehumidified by being cooled by the fourth indoor heat exchanger 206C as an evaporator, and is regenerated by the heating cycle. Thermal operation is performed.
 このとき、膨張機構205からの低圧冷媒は、第2室内熱交換器206Aを流れずに開状態の開閉弁230Aを流れ、開閉弁230Aからの冷媒は、第3室内熱交換器206Bを流れずに開状態の開閉弁230Bを流れる(図20の右下点線枠内を参照)。そうして、暖気と冷気との間に、第2室内熱交換器206A,第3室内熱交換器206Bを熱交換されずにそのまま通過したバイパス空気が吹き出すので、バイパス空気により暖気と冷気が混合されずにそのまま分離された状態で吹出口から吹き出す。 At this time, the low-pressure refrigerant from the expansion mechanism 205 does not flow through the second indoor heat exchanger 206A but flows through the open on-off valve 230A, and the refrigerant from the on-off valve 230A does not flow through the third indoor heat exchanger 206B. Flows through the open on-off valve 230B (refer to the inside of the lower right dotted line frame in FIG. 20). Then, between the warm air and the cool air, the bypass air that has passed through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B without being exchanged is blown out, so that the warm air and the cool air are mixed by the bypass air. It blows out from a blower outlet in the state separated as it is.
 このように、開閉弁230Aと開閉弁230Bを制御して、図23A,図23B,図23Cのとおり、暖房能力を大中小に制御することができる。 Thus, by controlling the on-off valve 230A and the on-off valve 230B, as shown in FIGS. 23A, 23B, and 23C, the heating capacity can be controlled to be large, medium, and small.
 この第4実施形態の空気調和機は、第3実施形態の空気調和機と同様の効果を有する。 The air conditioner of the fourth embodiment has the same effect as the air conditioner of the third embodiment.
 また、冷媒流路切換部である開閉弁230A,開閉弁230Bにより第2室内熱交換器206A,第3室内熱交換器206Bを流れる冷媒流をバイパスするか否かを切り換えることによって、簡単な構成で冷媒流制御部を実現できる。 Further, by switching whether or not the refrigerant flow flowing through the second indoor heat exchanger 206A and the third indoor heat exchanger 206B is bypassed by the on-off valve 230A and the on-off valve 230B that are refrigerant flow switching units, a simple configuration is achieved. Thus, a refrigerant flow control unit can be realized.
 また、上記第4実施形態の空気調和機では、図20に示すように、暖房サイクルによる再熱運転において、蒸発器として作用する部分の面積が大きく、最大除湿量を大きくできると共に、蒸発器として作用する部分が多分割されているので、除湿量を細かく調整できる。 Moreover, in the air conditioner of the said 4th Embodiment, as shown in FIG. 20, in the reheating operation by a heating cycle, the area of the part which acts as an evaporator is large, and while it can enlarge the maximum dehumidification amount, Since the acting part is divided into multiple parts, the amount of dehumidification can be finely adjusted.
 一方、図22に示すように、暖房サイクルによる再熱運転において、凝縮器として作用する部分の面積が大きく、最大暖房能力を大きくできると共に、凝縮器として作用する部分が多分割されているので、暖房能力を細かく調整できる。また、面積の大きい凝縮器の下流側に膨張機構205を配置することにより、膨張機構205が液側となって液リッチの冷媒が流れるため、運転状態に拘わらず、圧損を小さくすることができる。 On the other hand, as shown in FIG. 22, in the reheat operation by the heating cycle, the area of the part that acts as a condenser is large, the maximum heating capacity can be increased, and the part that acts as a condenser is multi-divided, Heating capacity can be finely adjusted. Further, by disposing the expansion mechanism 205 on the downstream side of the condenser having a large area, the expansion mechanism 205 becomes the liquid side and the liquid-rich refrigerant flows, so that the pressure loss can be reduced regardless of the operation state. .
 上記第4実施形態では、図20,図22に示す構成の冷媒流制御部(205,230A,230B)を用いた空気調和機について説明したが、冷媒流制御部はこれに限らず、熱的に分割された複数の熱交換部からなる室内熱交換器において、凝縮器として作用する熱交換部の数および蒸発器として作用する熱交換部の数を増減するものであればよい。 In the fourth embodiment, the air conditioner using the refrigerant flow control unit (205, 230A, 230B) having the configuration shown in FIGS. 20 and 22 has been described. However, the refrigerant flow control unit is not limited to this, and thermal What is necessary is just to increase / decrease the number of the heat exchange parts which act as an evaporator, and the number of the heat exchange parts which act as an evaporator in the indoor heat exchanger which consists of a some heat exchange part divided | segmented into (3).
 なお、上記第2~第4実施形態では、室内側のユニットが1つの空気調和機について説明したが、これに限らず、室内側のユニットが2以上ある空気調和機にこの発明を適用してもよい。 In the second to fourth embodiments, the air conditioner having one indoor unit has been described. However, the present invention is not limited to this, and the present invention is applied to an air conditioner having two or more indoor units. Also good.
 1,101,201…圧縮機
 2,102,202…四路切換弁
 3…冷媒流方向規制部
 4,104,204…第1室内熱交換器
 5,105,105A,105B,205…膨張機構
 6,106A,206A…第2室内熱交換器
 7,107,207…電動膨張弁
 8,108,208…室外熱交換器
 10,110,210…制御装置
 11,111,211…室外ファン
 12,112,212…室内ファン
 13,113,213…室内温度センサ
 14…第2室内熱交換器温度センサ
 15,115,215…室内湿度センサ
 20,120,220…パネル
 30…シャッター
 40…フィルター
 41,42…回転軸
 50…フィルター
 50a…高圧損部
 51,52…回転軸
 60…フィルター
 61…掃除部
 71…第1前面熱交換器
 72…第2前面熱交換器
 73…後面熱交換器
 80…吹出口
 81…第1水平フラップ
 82…第2水平フラップ
 83…第1垂直フラップ
 84…第2垂直フラップ
 90…吹出通路
 106B,206B…第3室内熱交換器
 114,214…室内熱交換器温度センサ
 130,230A,230B…開閉弁
 206C…第4室内熱交換器
DESCRIPTION OF SYMBOLS 1,101,201 ... Compressor 2,102,202 ... Four-way switching valve 3 ... Refrigerant flow direction control part 4,104,204 ... 1st indoor heat exchanger 5,105,105A, 105B, 205 ... Expansion mechanism 6 106A, 206A ... second indoor heat exchanger 7,107,207 ... electric expansion valve 8,108,208 ... outdoor heat exchanger 10,110,210 ... control device 11,111,211 ... outdoor fan 12,112, 212 ... Indoor fan 13, 113, 213 ... Indoor temperature sensor 14 ... Second indoor heat exchanger temperature sensor 15, 115, 215 ... Indoor humidity sensor 20, 120, 220 ... Panel 30 ... Shutter 40 ... Filter 41, 42 ... Rotation Shaft 50 ... Filter 50a ... High pressure loss part 51, 52 ... Rotating shaft 60 ... Filter 61 ... Cleaning part 71 ... First front heat exchanger 72 ... Second front heat exchanger 73 ... Rear heat exchanger 80 ... Outlet 81 ... 1st horizontal flap 82 ... 2nd horizontal flap 83 ... 1st vertical flap 84 ... 2nd vertical flap 90 ... Outlet passage 106B, 206B ... 3rd indoor heat exchanger 114, 214 ... Indoor heat exchanger temperature sensor 130, 230A, 230B ... open / close valve 206C ... fourth indoor heat exchanger

Claims (32)

  1.  圧縮機(1,101,201)と、室外熱交換器(8,108,208)と、熱的に分割された複数の熱交換部からなる室内熱交換器(4,6,104,106A,106B,204,206A~206C)と、上記室内熱交換器(4,6,104,106A,106B,204,206A~206C)の複数の熱交換部のうちの少なくとも直列接続された2つの熱交換部の間に配設された膨張機構(5,105,105A,105B,205)とを有する冷媒回路と、
     室内から吸い込んだ空気を上記室内熱交換器(4,6,104,106A,106B,204,206A~206C)を介して室内に吹き出す室内ファン(12,112,212)と、
     上記室外熱交換器(8,108,208)に外気を供給する室外ファン(11,111,211)と、
     暖房サイクルによる再熱運転において、上記室内熱交換器(4,6,104,106A,106B,204,206A~206C)の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力、または、上記室内熱交換器(4,6,104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力の少なくとも一方を制御する制御装置(10,110,210)と
    を備えたことを特徴とする空気調和機。
    Compressor (1, 101, 201), outdoor heat exchanger (8, 108, 208), and indoor heat exchanger (4, 6, 104, 106A, consisting of a plurality of thermally divided heat exchange units) 106B, 204, 206A to 206C) and at least two heat exchange units connected in series among the plurality of heat exchange parts of the indoor heat exchanger (4, 6, 104, 106A, 106B, 204, 206A to 206C) A refrigerant circuit having an expansion mechanism (5, 105, 105A, 105B, 205) disposed between the sections;
    An indoor fan (12, 112, 212) for blowing out the air sucked from the room into the room through the indoor heat exchangers (4, 6, 104, 106A, 106B, 204, 206A to 206C);
    Outdoor fans (11, 111, 211) for supplying outside air to the outdoor heat exchanger (8, 108, 208);
    Condensing capacity of the heat exchanging part that acts as a condenser among the plural heat exchanging parts of the indoor heat exchangers (4, 6, 104, 106A, 106B, 204, 206A to 206C) in the reheat operation by the heating cycle. Or control at least one of the evaporation capacities of the heat exchanging section that functions as an evaporator among the plurality of heat exchanging sections of the indoor heat exchangers (4, 6, 104, 106A, 106B, 204, 206A to 206C). An air conditioner comprising a control device (10, 110, 210) for performing the above operation.
  2.  請求項1に記載の空気調和機において、
     上記室内熱交換器(104,106A,106B,204,206A~206C)は、熱的に分割された3以上の熱交換部からなることを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    The indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C) is composed of three or more heat exchange sections that are thermally divided, and is an air conditioner.
  3.  請求項1または2に記載の空気調和機において、
     上記暖房サイクルによる再熱運転において、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの凝縮器として作用する熱交換部の数、または、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の数の少なくとも一方を増減させる冷媒流制御部(105,105A,105B130,230A,230B)を備え、
     上記制御装置(110,210)は、上記冷媒流制御部(105,105A,105B130,230A,230B)を制御することにより、上記室内熱交換器(104,106A,106B,204,206A~206C)の凝縮能力または蒸発能力の少なくとも一方を制御することを特徴とする空気調和機。
    In the air conditioner according to claim 1 or 2,
    In the reheat operation by the heating cycle, the number of heat exchange parts acting as a condenser among the plurality of heat exchange parts of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C), or the above Refrigerant flow control unit (105, 105A) that increases or decreases at least one of the number of heat exchange units acting as an evaporator among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). , 105B130, 230A, 230B)
    The control device (110, 210) controls the refrigerant flow control unit (105, 105A, 105B 130, 230A, 230B) to thereby control the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). An air conditioner characterized by controlling at least one of a condensation capacity and an evaporation capacity.
  4.  請求項3に記載の空気調和機において、
     上記冷媒流制御部(105,105A,105B130,230A,230B)は、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの少なくとも1つを、上記凝縮器とするかまたは上記蒸発器とするかの切り換えが可能であることを特徴とする空気調和機。
    In the air conditioner according to claim 3,
    The refrigerant flow control unit (105, 105A, 105B 130, 230A, 230B) includes at least one of the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C), An air conditioner that can be switched between the condenser and the evaporator.
  5.  請求項3または4に記載の空気調和機において、
     上記冷媒流制御部(105,105A,105B,130,230A,230B)は、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの直列接続された熱交換部間に夫々配設された上記膨張機構を含む複数の膨張機構であることを特徴とする空気調和機。
    In the air conditioner according to claim 3 or 4,
    The refrigerant flow control unit (105, 105A, 105B, 130, 230A, 230B) is connected in series among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). An air conditioner comprising a plurality of expansion mechanisms including the expansion mechanisms disposed between the heat exchange units.
  6.  請求項3から5までのいずれか1つに記載の空気調和機において、
     上記冷媒流制御部(130,230A,230B)は、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの少なくとも1つの熱交換部を流れる冷媒流をバイパスするか否かを切り換える冷媒流路切換部であることを特徴とする空気調和機。
    In the air conditioner according to any one of claims 3 to 5,
    The refrigerant flow control unit (130, 230A, 230B) is a refrigerant that flows through at least one heat exchange unit among the plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). An air conditioner that is a refrigerant flow path switching unit that switches whether to bypass the flow.
  7.  請求項1から6までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記圧縮機(101,201)の運転周波数と上記室内ファン(112,212)の回転速度および上記室外ファン(111,211)の回転速度の少なくとも1つを制御して、上記室内熱交換器(104,106A,106B,204,206A~206C)の凝縮能力または蒸発能力の少なくとも一方を制御することを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 1-6,
    In the reheating operation by the heating cycle, the control device (110, 210) operates the operating frequency of the compressor (101, 201), the rotational speed of the indoor fan (112, 212), and the outdoor fan (111, 211). ) To control at least one of condensing capacity or evaporating capacity of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C). Machine.
  8.  請求項1から7までのいずれか1つに記載の空気調和機において、
     室内空気の温度を検出する室内温度センサ(113,213)と、
     上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発器温度を検出する蒸発器温度センサ(114,214)と
    を備えたことを特徴とする空気調和機。
    In the air conditioner according to any one of claims 1 to 7,
    Indoor temperature sensors (113, 213) for detecting the temperature of indoor air;
    Evaporator temperature sensors (114, 214) for detecting the evaporator temperature of the heat exchange section acting as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). And an air conditioner.
  9.  請求項8に記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記室内温度センサ(113,213)により検出された室内空気の温度と目標湿度に基づいて、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機(101,201)の運転周波数と、上記室内ファン(112,212)の回転速度と、上記室外ファン(111,211)の回転速度と、上記膨張機構(105,105A,105B,205)の絞り量のうちの少なくとも1つを制御することにより、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の温度を制御することを特徴とする空気調和機。
    The air conditioner according to claim 8,
    The control device (110, 210), based on the indoor air temperature and the target humidity detected by the indoor temperature sensor (113, 213) in the reheating operation by the heating cycle, the indoor heat exchanger (104 , 106A, 106B, 204, 206A to 206C), and the condensation capacity of the heat exchange section acting as a condenser, and the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C). ) Evaporating capacity of the heat exchanging part acting as an evaporator, the operating frequency of the compressor (101, 201), the rotational speed of the indoor fan (112, 212), and the above By controlling at least one of the rotational speed of the outdoor fan (111, 211) and the amount of expansion of the expansion mechanism (105, 105A, 105B, 205), the indoor heat exchanger (104, 106) is controlled. An air conditioner that controls the temperature of a heat exchange section that functions as an evaporator among a plurality of heat exchange sections of A, 106B, 204, 206A to 206C).
  10.  請求項8または9に記載の空気調和機において、
     室内空気の湿度を検出する室内湿度センサ(115,215)を備えたことを特徴とする空気調和機。
    The air conditioner according to claim 8 or 9,
    An air conditioner comprising indoor humidity sensors (115, 215) for detecting the humidity of room air.
  11.  請求項10に記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記室内温度センサ(113,213)により検出された室内空気の温度と、上記室内湿度センサ(115,215)により検出された室内空気の湿度に基づいて、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機(101,201)の運転周波数と、上記室内ファン(112,212)の回転速度と、上記室外ファン(111,211)の回転速度と、上記膨張機構(105,105A,105B,205)の絞り量のうちの少なくとも1つを制御することにより、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の温度を制御することを特徴とする空気調和機。
    The air conditioner according to claim 10,
    The control device (110, 210) detects the temperature of the indoor air detected by the indoor temperature sensor (113, 213) and the indoor humidity sensor (115, 215) in the reheating operation by the heating cycle. Based on the humidity of the indoor air, the heat exchanging capacity of the heat exchanging portion acting as a condenser among the plurality of heat exchanging portions of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C), The evaporating capacity of the heat exchanging section that acts as an evaporator among the plurality of heat exchanging sections of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C), and the operating frequency of the compressor (101, 201) And the rotational speed of the indoor fans (112, 212), the rotational speed of the outdoor fans (111, 211), and the throttle amount of the expansion mechanism (105, 105A, 105B, 205). By controlling one, it is possible to control the temperature of the heat exchange section that functions as an evaporator among the plurality of heat exchange sections of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). A featured air conditioner.
  12.  請求項8から11までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記蒸発器温度センサ(114,214)により検出される上記蒸発器温度が凍結温度以上となるように、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの凝縮器として作用する熱交換部の凝縮能力と、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの蒸発器として作用する熱交換部の蒸発能力と、上記圧縮機(101,201)の運転周波数と、上記室内ファン(112,212)の回転速度と、上記室外ファン(111,211)の回転速度と、上記膨張機構(105,105A,105B,205)の絞り量のうちの少なくとも1つを制御することを特徴とする空気調和機。
    The air conditioner according to any one of claims 8 to 11,
    In the reheating operation by the heating cycle, the control device (110, 210) performs the indoor heat exchange so that the evaporator temperature detected by the evaporator temperature sensor (114, 214) is equal to or higher than the freezing temperature. Among the plurality of heat exchange units of the heat exchangers (104, 106A, 106B, 204, 206A to 206C), the condensation capacity of the heat exchange unit acting as a condenser, and the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) of the plurality of heat exchange units, the evaporation capacity of the heat exchange unit acting as an evaporator, the operating frequency of the compressor (101, 201), and the rotational speed of the indoor fan (112, 212) And an air conditioner that controls at least one of a rotation speed of the outdoor fan (111, 211) and a throttle amount of the expansion mechanism (105, 105A, 105B, 205).
  13.  請求項8から12までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記蒸発器温度センサ(114,214)により検出される上記蒸発器温度が目標温度より高いとき、上記圧縮機(101,201)の運転周波数を現在周波数よりも高くする圧縮機制御と、上記室内熱交換器(104,106A,106B,204,206A~206C)の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御と、上記室内ファン(112,212)の回転速度を現在回転速度よりも低くする室内ファン制御と、上記室外ファン(111,211)の回転速度を現在回転速度よりも低くする室外ファン制御と、上記膨張機構(5,105,105A,105B,205)の減圧量を大きくする絞り量の制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 8-12,
    When the evaporator temperature detected by the evaporator temperature sensor (114, 214) is higher than a target temperature in the reheating operation by the heating cycle, the control device (110, 210) is configured to compress the compressor (101, 210). 201), which controls the compressor so that the operation frequency is higher than the current frequency, and the evaporation capacity of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) is controlled to be smaller than the current evaporation capacity. Capability control, indoor fan control for reducing the rotational speed of the indoor fans (112, 212) below the current rotational speed, and outdoor fan control for reducing the rotational speed of the outdoor fans (111, 211) below the current rotational speed And an air conditioner that performs at least one of control of a throttle amount that increases a pressure reduction amount of the expansion mechanism (5, 105, 105A, 105B, 205)
  14.  請求項8から13までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において上記蒸発器温度センサ(114,214)により検出される上記蒸発器温度が目標温度より低いとき、上記圧縮機(101,201)の運転周波数を現在周波数よりも低くする圧縮機制御と、上記室内熱交換器(104,106A,106B,204,206A~206C)の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御と、上記室内ファン(112,212)の回転速度を現在回転速度よりも高くする室内ファン制御と、上記室外ファン(111,211)の回転速度を現在回転速度よりも高くする室外ファン制御と、上記膨張機構(105,105A,105B,205)の減圧量を小さくする絞り量の制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 8-13,
    When the evaporator temperature detected by the evaporator temperature sensor (114, 214) is lower than a target temperature in the reheating operation by the heating cycle, the control device (110, 210) is configured to compress the compressor (101, 201). ) To control the operation frequency of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) to be larger than the current evaporation capability. Control, indoor fan control for making the rotational speed of the indoor fans (112, 212) higher than the current rotational speed, and outdoor fan control for making the rotational speed of the outdoor fans (111, 211) higher than the current rotational speed, An air conditioner that performs at least one of control of a throttle amount for reducing a pressure reduction amount of the expansion mechanism (105, 105A, 105B, 205).
  15.  請求項8から14までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記室内熱交換器(104,106A,106B,204,206A~206C)の現在暖房能力が要求暖房能力よりも小さいとき、上記圧縮機(101,201)の運転周波数を現在周波数よりも高くする圧縮機制御と、上記室内熱交換器(104,106A,106B,204,206A~206C)の凝縮能力を現在凝縮能力よりも大きくなるように制御する能力制御と、上記室内熱交換器(104,106A,106B,204,206A~206C)の蒸発能力を現在蒸発能力よりも小さくなるように制御する能力制御と、上記室外ファン(111,211)の回転速度を現在回転速度よりも高くする室外ファン制御と、上記室内ファン(112,212)の回転速度を現在回転速度よりも低くする室内ファン制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 8-14,
    In the reheating operation by the heating cycle, the control device (110, 210), when the current heating capacity of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C) is smaller than the required heating capacity, Compressor control for making the operating frequency of the compressor (101, 201) higher than the current frequency, and the condensing capacity of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) more than the current condensing capacity Capacity control for controlling the capacity to increase, capacity control for controlling the evaporation capacity of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) to be smaller than the current evaporation capacity, and the outdoor fan The outdoor fan control for making the rotation speed of (111, 211) higher than the current rotation speed, and the rotation speed of the indoor fan (112, 212) lower than the current rotation speed. Air conditioner and performing at least one of the indoor fan control for.
  16.  請求項8から15までのいずれか1つに記載の空気調和機において、
     上記制御装置(110,210)は、上記暖房サイクルによる再熱運転において、上記室内熱交換器(104,106A,106B,204,206A~206C)の現在暖房能力が要求暖房能力よりも大きいとき、上記圧縮機(101,201)の運転周波数を現在周波数よりも低くする圧縮機制御と、上記室内熱交換器(104,106A,106B,204,206A~206C)の蒸発能力を現在蒸発能力よりも大きくなるように制御する能力制御と、上記室外ファン(111,211)の回転速度を現在回転速度よりも低くする室外ファン制御と、上記室内ファン(112,212)の回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 8-15,
    In the reheating operation by the heating cycle, when the current heating capacity of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C) is larger than the required heating capacity, the control device (110, 210) Compressor control for lowering the operating frequency of the compressor (101, 201) lower than the current frequency, and the evaporation capacity of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) than the current evaporation capacity Capability control to increase the speed, outdoor fan control to lower the rotational speed of the outdoor fans (111, 211) below the current rotational speed, and rotational speed of the indoor fans (112, 212) from the current rotational speed An air conditioner characterized by performing at least one of indoor fan control to increase the height.
  17.  請求項1から16までのいずれか1つに記載の空気調和機において、
     上記冷媒回路は、暖房サイクルと冷房サイクルを切り換える四路切換弁(102,202)を有し、
     上記制御装置(110,210)は、上記四路切換弁(102,202)を制御することによって、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの一部を凝縮器とし、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの他の少なくとも一部と上記室外熱交換器(108,208)を蒸発器とした暖房サイクルによる再熱運転を行うと共に、上記室外熱交換器(108,208)を凝縮器とし、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの一部を凝縮器とし、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部のうちの他の少なくとも一部を蒸発器とした冷房サイクルによる再熱運転を行うことを特徴とする空気調和機。
    In the air conditioner as described in any one of Claim 1-16,
    The refrigerant circuit has a four-way switching valve (102, 202) for switching between a heating cycle and a cooling cycle,
    The control device (110, 210) controls the four-way switching valve (102, 202) to thereby control a plurality of heat exchange units of the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). Of the plurality of heat exchange units of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) and the outdoor heat exchanger (108). , 208) as an evaporator, and the outdoor heat exchanger (108, 208) as a condenser and the indoor heat exchanger (104, 106A, 106B, 204, 206A to 206C). ) As a condenser, and at least another part of the plurality of heat exchange units of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) Cooling rhinoceros as an evaporator Air conditioner and performing reheating operation by Le.
  18.  請求項1から17までのいずれか1つに記載の空気調和機において、
     上記冷媒回路は、暖房サイクルと冷房サイクルのいずれにおいても、上記室内熱交換器(104,106A,106B,204,206A~206C)の複数の熱交換部を同じ方向に冷媒が流れるようにする冷媒流方向規制部を有することを特徴とする空気調和機。
    The air conditioner according to any one of claims 1 to 17,
    The refrigerant circuit allows the refrigerant to flow in the same direction through the plurality of heat exchange portions of the indoor heat exchangers (104, 106A, 106B, 204, 206A to 206C) in both the heating cycle and the cooling cycle. An air conditioner having a flow direction regulating portion.
  19.  圧縮機(1)と、室外熱交換器(8)と、第1室内熱交換器(4)および第2室内熱交換器(6)と、上記第1室内熱交換器(4)と上記第2室内熱交換器(6)との間に接続された膨張機構(5)とを有する冷媒回路と、
     室内から吸い込んだ空気を上記第1,第2室内熱交換器(4,6)を介して室内に吹き出す室内ファン(12)と、
     上記室外熱交換器(8)に外気を供給する室外ファン(11)と、
     上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を変える通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と、
     上記圧縮機(1)と上記膨張機構(5)と上記室内ファン(12)と上記室外ファン(11)および上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)を制御する制御装置(10)と
    を備え、
     上記制御装置(10)は、上記第1室内熱交換器(4)を凝縮器とし、上記第2室内熱交換器(6)と上記室外熱交換器(8)を蒸発器とした暖房サイクルによる再熱運転において、上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)を制御して、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御することを特徴とする空気調和機。
    A compressor (1), an outdoor heat exchanger (8), a first indoor heat exchanger (4) and a second indoor heat exchanger (6), the first indoor heat exchanger (4), and the first A refrigerant circuit having an expansion mechanism (5) connected between two indoor heat exchangers (6);
    An indoor fan (12) for blowing out air sucked from the room into the room through the first and second indoor heat exchangers (4, 6);
    An outdoor fan (11) for supplying outside air to the outdoor heat exchanger (8);
    Ventilation rate ratio control unit (20, 30, 40, 41, 42, 50, 50a) for changing the ratio of the ventilation rate of the second indoor heat exchanger (6) to the ventilation rate of the first indoor heat exchanger (4) , 51, 52, 61, 71 to 73, 81, 82),
    The compressor (1), the expansion mechanism (5), the indoor fan (12), the outdoor fan (11), and the ventilation rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51 , 52, 61, 71 to 73, 81, 82) and a control device (10),
    The control device (10) is based on a heating cycle in which the first indoor heat exchanger (4) is a condenser and the second indoor heat exchanger (6) and the outdoor heat exchanger (8) are evaporators. In the reheating operation, the air flow rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82) is controlled to control the first indoor heat. An air conditioner characterized by controlling a ratio of a ventilation amount of the second indoor heat exchanger (6) to a ventilation amount of the exchanger (4).
  20.  請求項19に記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)を制御して、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御することにより、暖房能力または除湿能力の少なくとも一方を制御することを特徴とする空気調和機。
    The air conditioner according to claim 19,
    In the reheating operation by the heating cycle, the control device (10) is configured to control the ventilation rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82) to control the ratio of the air flow rate of the second indoor heat exchanger (6) to the air flow rate of the first indoor heat exchanger (4), thereby at least one of the heating capacity and the dehumidifying capacity. An air conditioner characterized by controlling the air conditioner.
  21.  請求項19または20に記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記圧縮機(1)の運転周波数と上記室内ファン(12)の回転速度と上記室外ファン(11)の回転速度および上記膨張機構(5)の絞り量の少なくとも1つを制御して、暖房能力あるいは除湿能力の少なくとも一方を制御することを特徴とする空気調和機。
    The air conditioner according to claim 19 or 20,
    In the reheating operation by the heating cycle, the control device (10) is configured such that the operating frequency of the compressor (1), the rotational speed of the indoor fan (12), the rotational speed of the outdoor fan (11), and the expansion mechanism. An air conditioner characterized by controlling at least one of a heating capacity and a dehumidifying capacity by controlling at least one of the throttle amounts in (5).
  22.  請求項19から21までのいずれか1つに記載の空気調和機において、
     室内空気の温度を検出する室内温度センサ(13)と、
     上記第2室内熱交換器(6)の温度を検出する第2室内熱交換器温度センサ(14)と
    を備えたことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 21,
    An indoor temperature sensor (13) for detecting the temperature of the indoor air;
    An air conditioner comprising a second indoor heat exchanger temperature sensor (14) for detecting the temperature of the second indoor heat exchanger (6).
  23.  請求項22に記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記室内温度センサ(13)により検出された室内空気の温度と目標湿度に基づいて、上記圧縮機(1)と上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と上記室内ファン(12)と上記室外ファン(11)と、上記膨張機構(5)の少なくとも1つを制御することにより、上記第2室内熱交換器(6)の温度を制御することを特徴とする空気調和機。
    The air conditioner according to claim 22,
    In the reheating operation by the heating cycle, the control device (10) is configured so that the compressor (1) and the ventilation rate ratio are based on the indoor air temperature and the target humidity detected by the indoor temperature sensor (13). Control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82), the indoor fan (12), the outdoor fan (11), and the expansion mechanism An air conditioner, wherein the temperature of the second indoor heat exchanger (6) is controlled by controlling at least one of (5).
  24.  請求項22または23に記載の空気調和機において、
     室内空気の湿度を検出する室内湿度センサ(15)を備えたことを特徴とする空気調和機。
    The air conditioner according to claim 22 or 23,
    An air conditioner comprising an indoor humidity sensor (15) for detecting the humidity of indoor air.
  25.  請求項24に記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記室内温度センサ(13)により検出された室内空気の温度と、上記室内湿度センサ(15)により検出された室内空気の湿度に基づいて、上記圧縮機(1)と上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と上記室内ファン(12)と上記室外ファン(11)と、上記膨張機構(5)の少なくとも1つを制御することにより、上記第2室内熱交換器(6)の温度を制御することを特徴とする空気調和機。
    The air conditioner according to claim 24,
    In the reheating operation by the heating cycle, the control device (10) adjusts the indoor air temperature detected by the indoor temperature sensor (13) and the indoor air humidity detected by the indoor humidity sensor (15). On the basis of the compressor (1), the air flow rate control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82) and the indoor fan ( 12), the outdoor fan (11), and at least one of the expansion mechanism (5) to control the temperature of the second indoor heat exchanger (6). .
  26.  請求項22から25のいずれか1つに記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器温度センサ(14)により検出される上記第2室内熱交換器(6)の温度が凍結温度以上となるように、上記圧縮機(1)と上記通風量比制御部(20,30,40,41,42,50,50a,51,52,61,71~73,81,82)と上記室内ファン(12)と上記室外ファン(11)と、上記膨張機構(5)の少なくとも1つを制御することを特徴とする空気調和機。
    The air conditioner according to any one of claims 22 to 25,
    In the reheating operation by the heating cycle, the control device (10) is configured such that the temperature of the second indoor heat exchanger (6) detected by the second indoor heat exchanger temperature sensor (14) is equal to or higher than a freezing temperature. The compressor (1), the air flow rate ratio control unit (20, 30, 40, 41, 42, 50, 50a, 51, 52, 61, 71 to 73, 81, 82) and the indoor fan (12) An air conditioner that controls at least one of the outdoor fan (11) and the expansion mechanism (5).
  27.  請求項19から25のいずれか1つに記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器(6)の温度が目標温度より高いとき、上記圧縮機(1)の運転周波数を現在周波数よりも高くする圧縮機制御と、上記第2室内熱交換器(6)の通風量が現在通風量よりも小さくなるように、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御する通風量比制御と、上記室内ファン(12)の回転速度を現在回転速度よりも低くする室内ファン制御と、上記室外ファン(11)の回転速度を現在回転速度よりも低くする室外ファン制御と、上記膨張機構(5)の減圧量を大きくする絞り量の制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 25,
    In the reheating operation by the heating cycle, when the temperature of the second indoor heat exchanger (6) is higher than a target temperature, the control device (10) sets the operating frequency of the compressor (1) to be higher than the current frequency. The second indoor heat with respect to the ventilation amount of the first indoor heat exchanger (4) so that the compressor control to be increased and the ventilation amount of the second indoor heat exchanger (6) are smaller than the current ventilation amount. Ventilation ratio control for controlling the ratio of the ventilation volume of the exchanger (6), indoor fan control for lowering the rotation speed of the indoor fan (12) below the current rotation speed, and rotation speed of the outdoor fan (11) An air conditioner that performs at least one of an outdoor fan control for lowering the current rotational speed and a throttle amount control for increasing the pressure reduction amount of the expansion mechanism (5).
  28.  請求項19から25のいずれか1つに記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、上記第2室内熱交換器(6)の温度が目標温度より低いとき、上記圧縮機(1)の運転周波数を現在周波数よりも低くする圧縮機制御と、上記第2室内熱交換器(6)の通風量が現在通風量よりも多くなるように、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御する通風量比制御と、上記室内ファン(12)の回転速度を現在回転速度よりも高くする室内ファン制御と、上記室外ファン(11)の回転速度を現在回転速度よりも高くする室外ファン制御と、上記膨張機構(5)の減圧量を小さくする絞り量の制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 25,
    In the reheating operation by the heating cycle, when the temperature of the second indoor heat exchanger (6) is lower than a target temperature, the control device (10) sets the operation frequency of the compressor (1) to be higher than the current frequency. The second indoor heat with respect to the air flow rate of the first indoor heat exchanger (4) so that the compressor control to be lowered and the air flow rate of the second indoor heat exchanger (6) are larger than the current air flow rate. Ventilation ratio control for controlling the ratio of ventilation amount of the exchanger (6), indoor fan control for making the rotational speed of the indoor fan (12) higher than the current rotational speed, and rotational speed of the outdoor fan (11) An air conditioner characterized by performing at least one of an outdoor fan control for making the pressure higher than the current rotation speed and a throttle amount control for reducing the pressure reduction amount of the expansion mechanism (5).
  29.  請求項19から28のいずれか1つに記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも小さいとき、上記圧縮機(1)の運転周波数を現在周波数よりも高くする圧縮機制御と、上記第2室内熱交換器(6)の通風量が現在通風量よりも小さくなるように、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御する通風量比制御と、上記室外ファン(11)の回転速度を現在回転速度よりも高くする室外ファン制御と、上記室内ファン(12)の回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 28,
    The control device (10) includes a compressor control for setting the operating frequency of the compressor (1) to be higher than the current frequency when the current heating capacity is smaller than the required heating capacity in the reheating operation by the heating cycle. The ventilation rate of the second indoor heat exchanger (6) with respect to the ventilation rate of the first indoor heat exchanger (4) so that the ventilation rate of the second indoor heat exchanger (6) is smaller than the current ventilation rate. Ventilation ratio control for controlling the amount ratio, outdoor fan control for making the rotational speed of the outdoor fan (11) higher than the current rotational speed, and for making the rotational speed of the indoor fan (12) higher than the current rotational speed An air conditioner that performs at least one of indoor fan control.
  30.  請求項19から29のいずれか1つに記載の空気調和機において、
     上記制御装置(10)は、上記暖房サイクルによる再熱運転において、現在暖房能力が要求暖房能力よりも大きいとき、上記圧縮機(1)の運転周波数を現在周波数よりも低くする圧縮機制御と、上記第2室内熱交換器(6)の通風量が現在通風量よりも大きくなるように、上記第1室内熱交換器(4)の通風量に対する上記第2室内熱交換器(6)の通風量の比を制御する通風量比制御と、上記室外ファン(11)の回転速度を現在回転速度よりも低くする室外ファン制御と、上記室内ファン(12)の回転速度を現在回転速度よりも高くする室内ファン制御のうちの少なくとも1つを行うことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 29,
    The control device (10) includes a compressor control that lowers the operating frequency of the compressor (1) below the current frequency when the current heating capacity is larger than the required heating capacity in the reheating operation by the heating cycle. The ventilation rate of the second indoor heat exchanger (6) with respect to the ventilation rate of the first indoor heat exchanger (4) so that the ventilation rate of the second indoor heat exchanger (6) is larger than the current ventilation rate. Ventilation ratio control for controlling the amount ratio, outdoor fan control for lowering the rotational speed of the outdoor fan (11) below the current rotational speed, and rotational speed of the indoor fan (12) higher than the current rotational speed An air conditioner that performs at least one of indoor fan control.
  31.  請求項19から30のいずれか1つに記載の空気調和機において、
     上記冷媒回路は、暖房サイクルと冷房サイクルを切り換える四路切換弁(2)を有し、
     上記制御装置(10)は、上記四路切換弁(2)を制御することによって、上記第1室内熱交換器(4)を凝縮器とし、上記第2室内熱交換器(6)と上記室外熱交換器(8)を蒸発器とした暖房サイクルによる再熱運転を行うと共に、上記室外熱交換器(8)を凝縮器とし、上記第1室内熱交換器(4)または上記第2室内熱交換器(6)の一方を凝縮器とし、上記第1室内熱交換器(4)または上記第2室内熱交換器(6)の他方を蒸発器とした冷房サイクルによる再熱運転を行うことを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 30, wherein
    The refrigerant circuit has a four-way switching valve (2) for switching between a heating cycle and a cooling cycle,
    The control device (10) controls the four-way switching valve (2) to use the first indoor heat exchanger (4) as a condenser, and the second indoor heat exchanger (6) and the outdoor Reheating operation is performed by a heating cycle using the heat exchanger (8) as an evaporator, and the outdoor heat exchanger (8) is a condenser, and the first indoor heat exchanger (4) or the second indoor heat is used. One of the exchangers (6) is a condenser, and reheating operation is performed by a cooling cycle using the other of the first indoor heat exchanger (4) and the second indoor heat exchanger (6) as an evaporator. A featured air conditioner.
  32.  請求項19から31のいずれか1つに記載の空気調和機において、
     上記冷媒回路は、暖房サイクルと冷房サイクルのいずれにおいても、上記第1室内熱交換器(4)から上記膨張機構(5)を介して上記第2室内熱交換器(6)に冷媒が流れるようにする冷媒流方向規制部(3)を有することを特徴とする空気調和機。
    The air conditioner according to any one of claims 19 to 31,
    In the refrigerant circuit, the refrigerant flows from the first indoor heat exchanger (4) to the second indoor heat exchanger (6) through the expansion mechanism (5) in both the heating cycle and the cooling cycle. An air conditioner having a refrigerant flow direction regulating section (3).
PCT/JP2009/066766 2008-11-20 2009-09-28 Air conditioner WO2010058654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-296751 2008-11-20
JP2008296751 2008-11-20

Publications (1)

Publication Number Publication Date
WO2010058654A1 true WO2010058654A1 (en) 2010-05-27

Family

ID=42198093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066766 WO2010058654A1 (en) 2008-11-20 2009-09-28 Air conditioner

Country Status (1)

Country Link
WO (1) WO2010058654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106045A (en) * 2018-01-26 2018-06-01 鲁东大学 A kind of air-conditioning refrigerator combined system of central refrigerating split cooling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330274A (en) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd Air-conditioner and its operation method
JP2002054833A (en) * 2000-08-10 2002-02-20 Fujitsu General Ltd Method for controlling air conditioner
JP2003050061A (en) * 2001-08-06 2003-02-21 Mitsubishi Electric Corp Air conditioner
JP2003139343A (en) * 2001-10-30 2003-05-14 Sanyo Electric Co Ltd Air conditioner
JP2003148830A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner
JP2003172557A (en) * 2001-12-06 2003-06-20 Daikin Ind Ltd Air-conditioner
JP2006177599A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330274A (en) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd Air-conditioner and its operation method
JP2002054833A (en) * 2000-08-10 2002-02-20 Fujitsu General Ltd Method for controlling air conditioner
JP2003050061A (en) * 2001-08-06 2003-02-21 Mitsubishi Electric Corp Air conditioner
JP2003139343A (en) * 2001-10-30 2003-05-14 Sanyo Electric Co Ltd Air conditioner
JP2003148830A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner
JP2003172557A (en) * 2001-12-06 2003-06-20 Daikin Ind Ltd Air-conditioner
JP2006177599A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106045A (en) * 2018-01-26 2018-06-01 鲁东大学 A kind of air-conditioning refrigerator combined system of central refrigerating split cooling

Similar Documents

Publication Publication Date Title
JP5533926B2 (en) Air conditioner
WO2010015123A1 (en) Constant temperature dehumidifying air-conditioner
JP5316668B1 (en) Air conditioner
WO2013157403A1 (en) Air conditioner
JP5484919B2 (en) air conditioner
JP5817660B2 (en) Refrigeration cycle equipment
JP4389430B2 (en) Air conditioner
KR20120071018A (en) Heat pump type cooling and heating system for vehicle
JP2010243018A (en) Air conditioner
JP5049500B2 (en) Dehumidifying air conditioning system and dehumidifying air conditioner
CN211119681U (en) Air conditioning system and air conditioner with same
JP2009097834A (en) Air conditioner
JP4258117B2 (en) Air conditioner
JP7154035B2 (en) air conditioner
WO2010058654A1 (en) Air conditioner
JP5310904B1 (en) Air conditioner
JP4483141B2 (en) Air conditioner
JP4012892B2 (en) Air conditioner
KR100430292B1 (en) Air conditioner with the function for adjusting temperature of cooling air
CN110939998A (en) Air conditioning system, air conditioner and control method
JP2004293941A (en) Air conditioner and operation control method for air conditioner
JP6630923B2 (en) Air conditioner
JP2002362359A (en) Air conditioner for rolling stock
JP2001246929A (en) Air conditioner for vehicle
JPH08128748A (en) Multi-room type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09827435

Country of ref document: EP

Kind code of ref document: A1