JP2018096594A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2018096594A
JP2018096594A JP2016240529A JP2016240529A JP2018096594A JP 2018096594 A JP2018096594 A JP 2018096594A JP 2016240529 A JP2016240529 A JP 2016240529A JP 2016240529 A JP2016240529 A JP 2016240529A JP 2018096594 A JP2018096594 A JP 2018096594A
Authority
JP
Japan
Prior art keywords
cold water
air conditioner
indoor air
temperature
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016240529A
Other languages
Japanese (ja)
Other versions
JP6836890B2 (en
Inventor
光生 山形
Mitsuo Yamagata
光生 山形
隆司 篠島
Takashi Shinojima
隆司 篠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016240529A priority Critical patent/JP6836890B2/en
Publication of JP2018096594A publication Critical patent/JP2018096594A/en
Application granted granted Critical
Publication of JP6836890B2 publication Critical patent/JP6836890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system capable of properly performing both processing of a latent heat load by an outdoor unit and processing of a sensible heat load by an indoor air conditioner by supplying cold water to the outdoor unit and the indoor air conditioner respectively from a cold source, and capable of efficiently suppressing heat loss by cold water delivery to the indoor air conditioner.SOLUTION: An air conditioning system includes: an outdoor unit 1 for performing cooling and dehumidification of the outside air by heat exchange between supplied cold water R and the outside air and supplying it to the indoors; an indoor air conditioner 2 for cooling the indoor air by heat exchange between the supplied cold water R and the indoor air; and a cold water circulation supply part 4 which can circulate and supply the cold water R from a cold source 3 with respect to the outdoor unit 1 and the indoor air conditioner 2 in parallel. A mixing part 7 is provided in which one part of the return cold water R from the outdoor unit 1 is mixed with the outgoing cold water R to the indoor air conditioner 2 to raise the temperature of the outgoing cold water R.SELECTED DRAWING: Figure 1

Description

本発明は、空調対象域の空調を行う空調システムに関する。   The present invention relates to an air conditioning system that performs air conditioning in an air conditioning target area.

この種の空調システムとして、特許文献1に示すように、供給される冷水と外気との熱交換により外気を冷却除湿して室内に供給する外調機(文献中の副空調機3)と、供給される冷水と室内空気との熱交換により室内空気を冷却する室内空調機(文献中の主空調機2)と、外調機及び室内空調機に対して冷熱源から冷水を並列に循環供給自在な冷水循環供給部とが備えられた空調システムが知られている(特許文献1の図1等参照)。
この空調システムは、外調機と室内空調機の各々に冷熱源からの設定温度の低温の冷水を供給するので、外調機による潜熱負荷の処理と、室内空調機での顕熱負荷の処理を十分に行うことができ、潜熱・顕熱分離空調を適切に実現することができる。
As this type of air conditioning system, as shown in Patent Document 1, an external air conditioner (sub air conditioner 3 in the literature) that cools and dehumidifies the outside air by heat exchange between the supplied cold water and the outside air and supplies the room indoors, Cooling water is circulated and supplied in parallel to the indoor air conditioner (main air conditioner 2 in the literature) that cools the indoor air by heat exchange between the supplied cold water and the indoor air, and the external air conditioner and the indoor air conditioner. There is known an air conditioning system including a free cold water circulation supply unit (see FIG. 1 of Patent Document 1).
This air conditioning system supplies low-temperature chilled water at a set temperature from a cooling source to each of the external air conditioner and the indoor air conditioner, so that the latent heat load is processed by the external air conditioner and the sensible heat load is processed by the indoor air conditioner. Can be sufficiently performed, and latent heat / sensible heat separation air conditioning can be appropriately realized.

また、特許文献2に示すように、外調機(文献中の第1コイル31を有する空調機部分)と、室内空調機(文献中の第2コイル32を有する空調機部分)と、外調機及び室内空調機に対して冷熱源から冷水を直列に循環供給自在な冷水循環供給部とが備えられた空調システムも知られている(特許文献2の図2、図4、段落[0009]、[0015]等参照)。
この空調システムは、冷熱源から低温の冷水を外調機に供給し、外調機から排出される中温の冷水の全量を室内空調機に供給するので、外調機による潜熱負荷の処理を十分に行えながら、外調機から排出される中温の冷水を利用して室内空調機による顕熱負荷の処理を行うことができる。
Moreover, as shown in patent document 2, an external air conditioner (the air conditioner part which has the 1st coil 31 in literature), an indoor air conditioner (the air conditioner part which has the 2nd coil 32 in literature), and external adjustment There is also known an air conditioning system including a cold water circulation supply unit that can freely circulate and supply cold water from a cold heat source in series to an air conditioner and an indoor air conditioner (FIG. 2, FIG. 4, paragraph [0009] of Patent Document 2). , [0015] etc.).
This air conditioning system supplies low-temperature chilled water from a cold heat source to the external air conditioner, and supplies the entire amount of medium-temperature cold water discharged from the external air conditioner to the indoor air conditioner. However, the sensible heat load can be processed by the indoor air conditioner using the medium-temperature cold water discharged from the external air conditioner.

更に、この特許文献2に記載の空調システムでは、外調機から排出されて室内空調機に供給される中温の冷水に対して、冷熱源からの低温の冷水を混合する配管及び弁(文献中の中間配管313及び第2二方弁62)が設けられ、低温の冷水の混合により中温の冷水の温度を低下させる形態で室内空調機の負荷処理度合いを調整することができる。   Furthermore, in the air conditioning system described in Patent Document 2, pipes and valves for mixing low temperature cold water from a cold heat source with medium temperature cold water discharged from an external air conditioner and supplied to an indoor air conditioner (in the literature) Intermediate pipe 313 and second two-way valve 62) are provided, and the load processing degree of the indoor air conditioner can be adjusted in such a manner that the temperature of the medium-temperature cold water is lowered by mixing the low-temperature cold water.

特開2011−058676号公報JP 2011-058676 A 特開2015−059692号公報JP2015-059692A

ところで、外調機を大容量化し、潜熱負荷に加えて一部の顕熱負荷をも外調機にて処理することが検討されている。このようにすれば、室内空調機が処理すべき顕熱負荷が小さくなり、室内空調機に対する冷水量の低減や配管のサイズタウン等を図ることが可能となる。   By the way, it has been studied to increase the capacity of the external air conditioner and to process a part of the sensible heat load in addition to the latent heat load. In this way, the sensible heat load to be processed by the indoor air conditioner is reduced, and it becomes possible to reduce the amount of cold water for the indoor air conditioner, reduce the size of the piping, and the like.

この点、特許文献1記載の空調システムは、外調機と室内空調機の各々に冷熱源からの設定温度の低温の冷水を供給するので、上述のように、外調機を大容量化し、潜熱負荷に加えて一部の顕熱負荷をも外調機で処理する場合に、処理すべき顕熱負荷が低減された処理負荷の小さな室内空調機に対して供給する冷水の温度が無用に低過ぎることになり、室内空調機への冷水送水による熱損失が大きいという問題がある。   In this regard, the air conditioning system described in Patent Document 1 supplies low-temperature cold water having a set temperature from a cold heat source to each of the external air conditioner and the indoor air conditioner. When processing some sensible heat load in addition to the latent heat load with an external air conditioner, the temperature of the chilled water supplied to the indoor air conditioner with a small processing load with reduced sensible heat load to be processed becomes unnecessary. It becomes too low, and there is a problem that heat loss due to cold water feeding to the indoor air conditioner is large.

また、特許文献2記載の空調システムは、冷熱源から低温の冷水を外調機に供給し、外調機から排出される中温の冷水の室内空調機に供給するので、上述のように、外調機を大容量化し、潜熱負荷に加えて一部の顕熱負荷をも外調機で処理する場合に、外調機から排出される中温の冷水の温度がかなり高くなる。しかも、外調機と室内空調機とに冷水を直列に供給するが故に、外調機から排出される中温の冷水の全量を室内空調機に供給するので、高温化した多量の中温の冷水に対して低温の冷水を混合して低温化を図るにしても、低温化できる範囲に限度がある。よって、室内空調機に供給する中温の冷水を適温まで低温化できず、室内空調機による顕熱負荷の処理が適切に行えなくなる虞がある。   Moreover, since the air conditioning system described in Patent Document 2 supplies low-temperature cold water from a cold heat source to the external air conditioner and supplies it to the indoor air conditioner of medium-temperature cold water discharged from the external air conditioner, as described above, When the capacity of the air conditioner is increased and some sensible heat loads in addition to the latent heat load are processed by the air conditioner, the temperature of the medium-temperature cold water discharged from the air conditioner becomes considerably high. Moreover, since cold water is supplied in series to the external air conditioner and the indoor air conditioner, the entire amount of medium-temperature cold water discharged from the external air conditioner is supplied to the indoor air conditioner. On the other hand, even if low temperature cold water is mixed to reduce the temperature, there is a limit to the range in which the temperature can be reduced. Therefore, the medium-temperature cold water supplied to the indoor air conditioner cannot be lowered to an appropriate temperature, and the sensible heat load may not be appropriately processed by the indoor air conditioner.

この実情に鑑み、本発明の主たる課題は、外調機と室内空調機の各々に冷熱源から冷水を供給して、外調機による潜熱負荷の処理と室内空調機による顕熱負荷の処理の両方を適切に行うことができるとともに、室内空調機への冷水送水による熱損失を効率的に抑制することができる空調システムを提供する点にある。   In view of this situation, the main problem of the present invention is to supply cold water from a cold heat source to each of the external air conditioner and the indoor air conditioner, and process the latent heat load by the external air conditioner and the sensible heat load by the indoor air conditioner. It is in providing an air conditioning system capable of appropriately performing both and efficiently suppressing heat loss due to cold water supply to the indoor air conditioner.

本発明の第1特徴構成は、供給される冷水と外気との熱交換により外気を冷却除湿して室内に供給する外調機と、
供給される冷水と室内空気との熱交換により室内空気を冷却する室内空調機と、
前記外調機及び前記室内空調機に対して冷熱源から冷水を並列に循環供給自在な冷水循環供給部と、が備えられている空調システムであって、
前記外調機からの還り冷水の一部を前記室内空調機への往き冷水に混合して当該往き冷水を昇温させる混合部が備えられている点にある。
The first characteristic configuration of the present invention is an external air conditioner that cools and dehumidifies the outside air by heat exchange between the supplied cold water and the outside air, and supplies the air to the room.
An indoor air conditioner that cools the indoor air by heat exchange between the supplied cold water and the indoor air;
A cold water circulation supply unit capable of circulating and supplying cold water from a cold heat source in parallel to the external air conditioner and the indoor air conditioner, and an air conditioning system comprising:
There exists a mixing part which mixes a part of return cold water from the said external air conditioner with the incoming cold water to the said indoor air conditioner, and raises the said outgoing cold water.

本構成によれば、外気を冷却除湿して室内に供給する外調機と、室内空気を冷却して室内に供給する室内空調機に対して冷熱源から冷水を並列に循環供給することにより、外調機による潜熱負荷の処理と室内空調機による顕熱負荷の処理の両方を適切に行うことができる。
更に、外調機にて潜熱負荷に加えて一部の顕熱負荷をも処理することが可能となり、その場合、室内空調機が処理すべき顕熱負荷が小さくなり、室内空調機に対する冷水量の低減や配管のサイズタウン等を図ることができる。
しかも、混合部での冷水の混合により外調機からの還り冷水を活用して室内空調機への往き冷水を昇温するので、上述のように外調機にて潜熱負荷に加えて一部の顕熱負荷をも処理する場合でも、処理負荷の小さな室内空調機への冷水送水による熱損失を効率的に抑制することができる。
これらのことから、システム全体としての省エネルギ化を効果的に実現することができる。
According to this configuration, by supplying the cold air from the cold heat source in parallel to the external air conditioner that cools and dehumidifies the outside air and supplies the indoor air to the indoor air conditioner that cools the indoor air and supplies the indoor air, Both the latent heat load processing by the external air conditioner and the sensible heat load processing by the indoor air conditioner can be appropriately performed.
Furthermore, it becomes possible to process some sensible heat loads in addition to the latent heat load in the external air conditioner. In this case, the sensible heat load to be processed by the indoor air conditioner is reduced, and the amount of cold water for the indoor air conditioner is reduced. Reduction, piping size town, and the like.
In addition, the cooling water from the external air conditioner is used to mix the cold water in the mixing section to raise the temperature of the outgoing cold water to the indoor air conditioner. Even when the sensible heat load is also processed, it is possible to efficiently suppress heat loss due to the cold water supply to the indoor air conditioner having a small processing load.
From these things, energy saving as the whole system can be realized effectively.

本発明の第2特徴構成は、前記混合部による冷水の混合割合を調整自在な混合割合調整部と、
前記室内空調機への往き冷水の温度が設定温度範囲内になるように前記混合割合調整部を制御する制御部と、が備えられている点にある。
The second characteristic configuration of the present invention is a mixing rate adjusting unit capable of adjusting a mixing rate of cold water by the mixing unit,
And a control unit that controls the mixing ratio adjusting unit so that the temperature of the cold water going to the indoor air conditioner falls within a set temperature range.

本構成によれば、混合割合調整部により混合部での冷水の混合割合を調整することにより、室内空調機への往き冷水の温度を調整することができる。そして、制御部により混合割合調整部を制御することにより、室内空調機への往き冷水の温度を設定温度範囲内に維持することができる。
よって、混合部での冷水の混合による室内空調機への往き冷水の昇温により、室内空調機への冷水送水による熱損失を抑制しながら、室内空調機への往き冷水の温度のバラツキによって室内空調機の空調温度が不安定になるのを回避することができる。
According to this configuration, the temperature of the incoming cold water to the indoor air conditioner can be adjusted by adjusting the mixing rate of the cold water in the mixing unit by the mixing rate adjusting unit. And the temperature of the going cold water to an indoor air conditioner can be maintained in a preset temperature range by controlling a mixing ratio adjustment part by a control part.
Therefore, the temperature rise of the incoming cold water to the indoor air conditioner by mixing the cold water in the mixing unit suppresses the heat loss due to the cold water supply to the indoor air conditioner, and the variation in the temperature of the incoming cold water to the indoor air conditioner It can be avoided that the air conditioning temperature of the air conditioner becomes unstable.

本発明の第3特徴構成は、前記室内空調機が複数備えられ、
前記冷水循環供給部が、複数の前記室内空調機に対して冷熱源から冷水を並列に循環供給自在に構成され、
前記混合部が、複数の前記室内空調機への往き冷水に対して、前記外調機からの還り冷水の一部を混合するように構成されている点にある。
A third characteristic configuration of the present invention includes a plurality of the indoor air conditioners,
The cold water circulation supply unit is configured to be capable of circulating and supplying cold water from a cold heat source in parallel to the plurality of indoor air conditioners,
The mixing unit is configured to mix a part of the return cold water from the external air conditioner with the cold water going to the plurality of indoor air conditioners.

本構成によれば、複数の室内空調機により室内の顕熱負荷を適切に処理することができる。そして、複数の室内空調機への往き冷水に対して外調機からの還り冷水の一部を混合するので、外調機からの還り冷水を更に活用して複数の室内空調機への往き冷水を昇温することができる。
よって、外調機にて潜熱負荷に加えて顕熱負荷の一部も処理する場合に、複数の室内空調機への冷水送水による熱損失を効率的に抑制することができ、更なる省エネルギ化を実現することができる。
According to this configuration, the sensible heat load in the room can be appropriately processed by the plurality of indoor air conditioners. And since some of the return chilled water from the external air conditioner is mixed with the chilled water going to the plurality of indoor air conditioners, the return chilled water from the external air conditioner is further utilized to make the outgoing chilled water to the multiple indoor air conditioners The temperature can be raised.
Therefore, when a part of the sensible heat load in addition to the latent heat load is processed in the external air conditioner, heat loss due to cold water supply to a plurality of indoor air conditioners can be efficiently suppressed, and further energy saving is achieved. Can be realized.

本発明の第4特徴構成は、前記混合部が、複数の前記室内空調機よりも前記外調機に近い部位に配置されている点にある。   The 4th characteristic structure of this invention exists in the point by which the said mixing part is arrange | positioned in the site | part close | similar to the said external air conditioner rather than the said some indoor air conditioner.

冷水循環供給部において、外調機側の配管は複数の室内空調機側の配管よりも配管サイズが大きくなる傾向にある。本構成によれば、外調機に近い部位にて冷水の混合処理を行うので、配管サイズの大きい外調機側の配管径路を短く構成し易くなり、冷水循環供給部を効率的に構成することが可能となる。   In the cold water circulation supply unit, the pipe on the external air conditioner side tends to have a larger pipe size than the pipes on the side of the plurality of indoor air conditioners. According to this configuration, since the cold water mixing process is performed at a site close to the external air conditioner, it is easy to configure the pipe path on the side of the external air conditioner with a large pipe size, and the cold water circulation supply unit is efficiently configured. It becomes possible.

空調システムの概念図Conceptual diagram of air conditioning system

本発明に係る空調システムの実施形態を図面に基づいて説明する。
図1は本発明に係る空調システムの構成を概念的に示したものである。同図1に示すように、この空調システムには、外気を冷却除湿して室内に供給する外調機1と、室内空気を冷却する複数の室内空調機2と、これらの冷熱源としての冷凍機(熱源機)3と、外調機1及び室内空調機2に対して冷凍機3から冷水Rを並列に循環供給自在な冷水循環供給部4と、空調システムを制御する制御装置10(制御部の一例)とが備えられている。当該空調システムは、外調機1にて潜熱負荷と一部の顕熱負荷の処理とを行い、複数の室内空調機2にて残りの顕熱負荷の処理を行うように構成されている。
An embodiment of an air-conditioning system according to the present invention will be described with reference to the drawings.
FIG. 1 conceptually shows the configuration of an air conditioning system according to the present invention. As shown in FIG. 1, the air conditioning system includes an external air conditioner 1 that cools and dehumidifies the outside air and supplies the air to the room, a plurality of indoor air conditioners 2 that cool the room air, and a refrigeration as a cooling heat source. A chilled water circulation supply unit 4 that can freely circulate and supply cold water R from the refrigerator 3 to the external air conditioner 1 and the indoor air conditioner 2 in parallel, and a control device 10 that controls the air conditioning system (control) Part of an example). The air conditioning system is configured to perform processing of a latent heat load and a part of the sensible heat load in the external air conditioner 1, and perform processing of the remaining sensible heat load in the plurality of indoor air conditioners 2.

前記外調機1は、例えば、熱交換器や送風機やエアフィルター等を備えたエアハンドリングユニット等から構成され、冷水循環供給部4により供給される冷水Rと外気とを熱交換させることで、外気を露点温度以下に冷却して所望の湿度に除湿し、低温の除湿外気を室内に供給する。外調機1は、このように低温の除湿外気を室内に供給することで、潜熱負荷の処理と一部の顕熱負荷の処理とを行う。   The external air conditioner 1 includes, for example, an air handling unit including a heat exchanger, a blower, an air filter, and the like, and exchanges heat between the cold water R supplied by the cold water circulation supply unit 4 and the outside air. The outside air is cooled to a dew point temperature or lower to be dehumidified to a desired humidity, and low temperature dehumidified outside air is supplied into the room. The external conditioner 1 supplies the low-temperature dehumidified outside air to the room in this way, thereby performing the latent heat load process and a part of the sensible heat load process.

前記室内空調機2は、例えば、熱交換器や送風機等を備えたファンコイルユニット等から構成され、冷水循環供給部4により供給される冷水Rと室内空気とを熱交換させることで、室内空気を所望の温度まで冷却し、その冷却空気を室内に供給する。室内空調機2は、このように室内空気を冷却して室内に供給することで、残りの顕熱負荷の処理を行う。   The indoor air conditioner 2 includes, for example, a fan coil unit including a heat exchanger, a blower, and the like, and exchanges heat between the cold water R supplied by the cold water circulation supply unit 4 and the indoor air, thereby Is cooled to a desired temperature, and the cooling air is supplied into the room. The indoor air conditioner 2 processes the remaining sensible heat load by cooling the indoor air and supplying it to the room in this way.

前記冷凍機3は、例えば、インバータ制御等により能力調整が可能なターボ冷凍機や吸収冷凍機等から構成され、差圧制御等により還り冷水Rを設定温度に冷却し、設定温度の往き冷水Rを生成する。また、制御装置10は、例えば、通信部や演算部を備えたコンピュータ等から構成され、空調システムの各部との通信により空調システムの作動状態を制御する。   The refrigerator 3 is composed of, for example, a turbo chiller or an absorption chiller whose capacity can be adjusted by inverter control or the like, and cools the return chilled water R to a set temperature by differential pressure control or the like. Is generated. Moreover, the control apparatus 10 is comprised from the computer etc. which were provided with the communication part and the calculating part, for example, and controls the operating state of an air conditioning system by communication with each part of an air conditioning system.

前記冷水循環供給部4は、冷凍機3にて生成した往き冷水Rを外調機1及び複数の室内空調機2に供給する往路5と、外調機1及び複数の室内空調機2からの還り冷水Rを冷凍機3に還す還路6と、ポンプPとが備えられ、ポンプPの吐出圧により、外調機1と室内空調機2に対して冷凍機3から冷水Rを並列に循環供給するとともに、複数の室内空調機2の各々に対しても冷凍機3から冷水Rを並列に循環供給するように構成されている。   The chilled water circulation supply unit 4 includes a forward path 5 for supplying the forward cold water R generated by the refrigerator 3 to the external air conditioner 1 and the plurality of indoor air conditioners 2, and the external air conditioner 1 and the plurality of indoor air conditioners 2. A return path 6 for returning the return cold water R to the refrigerator 3 and a pump P are provided. By the discharge pressure of the pump P, the cold water R is circulated in parallel from the refrigerator 3 to the external air conditioner 1 and the indoor air conditioner 2. In addition to the supply, each of the plurality of indoor air conditioners 2 is also configured to circulate and supply cold water R from the refrigerator 3 in parallel.

冷水循環供給部4の往路5には、例えば、冷凍機3に接続された主往路5Aと、主往路5Aの下流側から分岐して外調機1に接続された外調機用往路5Bと、主往路5Aの下流側から分岐して室内空調機2側に向かう室内空調機用往路5Cと、室内空調機用往路5Cの下流側から分岐して複数の室内空調機2の各々に接続された複数の室内空調機用個別往路5Dとが備えられている。   The forward path 5 of the chilled water circulation supply unit 4 includes, for example, a main forward path 5A connected to the refrigerator 3 and an external air conditioner outbound path 5B branched from the downstream side of the main forward path 5A and connected to the external air conditioner 1. The indoor air conditioner outbound path 5C branching from the downstream side of the main outbound path 5A toward the indoor air conditioner 2 side and the downstream of the indoor air conditioner outbound path 5C is branched and connected to each of the plurality of indoor air conditioners 2. In addition, a plurality of individual outbound paths 5D for indoor air conditioners are provided.

冷水循環供給部4の還路6には、例えば、外調機1に接続された外調機用還路6Aと、複数の室内空調機2の各々に接続された複数の室内空調機用個別還路6Bと、複数の室内空調機用個別還路6Bが合流した室内空調機用還路6Cと、外調機用還路6Aと室内空調機用還路6Cとが合流した主還路6Dとが備えられており、主還路6Dが冷凍機3に接続されている。   In the return path 6 of the chilled water circulation supply unit 4, for example, an external air conditioner return path 6 </ b> A connected to the external air conditioner 1, and a plurality of indoor air conditioners connected to each of the multiple indoor air conditioners 2. A return path 6B, a return path 6C for indoor air conditioners where a plurality of individual return paths 6B for indoor air conditioners merge, a main return path 6D where a return path 6A for external air conditioners and a return path 6C for indoor air conditioners merge. The main return path 6 </ b> D is connected to the refrigerator 3.

冷水循環供給部4は、冷凍機3、主往路5A、外調機用往路5B、外調機1、外調機用還路6A、主還路6Dの順に冷水Rを通流させることで、外調機1に対して冷凍機3から冷水Rを循環供給する。
また、冷水循環供給部4は、冷凍機3、主往路5A、室内空調機用往路5C、各々の室内空調機用個別往路5D、各々の室内空調機2、各々の室内空調機用個別還路6B、室内空調機用還路6C、主還路6Dの順に冷水Rを通流させることで、冷凍機3から冷水Rを複数の室内空調機2に循環供給する。
このようにして、冷水循環供給部4は、外調機1と室内空調機2に対して冷凍機3から冷水Rを並列に循環供給するとともに、複数の室内空調機2の各々に対して冷凍機3から冷水Rを並列に循環供給する。
The chilled water circulation supply unit 4 allows the chilled water R to flow in the order of the refrigerator 3, the main outbound path 5A, the external air conditioner outbound path 5B, the external air conditioner 1, the external air conditioner return path 6A, and the main return path 6D. Cold water R is circulated and supplied from the refrigerator 3 to the external air conditioner 1.
The chilled water circulation supply unit 4 includes a refrigerator 3, a main outbound path 5A, an indoor air conditioner outbound path 5C, each indoor air conditioner outbound path 5D, each indoor air conditioner 2, and each indoor air conditioner individual return path. The cold water R is circulated and supplied from the refrigerator 3 to the plurality of indoor air conditioners 2 by flowing the cold water R in the order of 6B, the return path 6C for the indoor air conditioner, and the main return path 6D.
In this way, the chilled water circulation supply unit 4 circulates and supplies the cold water R from the refrigerator 3 in parallel to the external air conditioner 1 and the indoor air conditioner 2 and refrigerates each of the plurality of indoor air conditioners 2. Cold water R is circulated and supplied from the machine 3 in parallel.

なお、冷水循環供給部4の外調機用還路6Aには、外調機1の処理負荷に応じて外調機1に通流させる冷水Rの流量を制御する流量制御弁V1が介装されている。また、冷水循環供給部4の室内空調機用個別還路6Bの各々にも、当該還路6Bに設けられた室内空調機2の処理負荷に応じて室内空調機2に通流させる冷水Rの流量を制御する流量制御弁V2が介装されている。   In addition, a flow control valve V1 that controls the flow rate of the cold water R that is passed through the external air conditioner 1 according to the processing load of the external air conditioner 1 is provided in the external air conditioner return path 6A of the cold water circulation supply unit 4. Has been. In addition, in each of the indoor air conditioner individual return paths 6B of the chilled water circulation supply unit 4, the cold water R to be passed through the indoor air conditioner 2 according to the processing load of the indoor air conditioner 2 provided in the return path 6B. A flow rate control valve V2 for controlling the flow rate is interposed.

そして、この空調システムには、外調機1からの還り冷水Rの一部を複数の室内空調機2への往き冷水Rに混合して当該往き冷水Rを昇温させる混合部7が備えられている。
本実施形態では、冷水循環供給部4に、外調機1からの還り冷水Rが通流する外調機用往路5Bと、複数の室内空調機2への往き冷水Rが通流する室内空調機用往路5Cとを接続する混合路8が備えられており、この混合路8と室内空調機用往路5Cとの接続部位にて混合部7が構成されている。
The air conditioning system includes a mixing unit 7 that mixes a part of the return cold water R from the external air conditioner 1 with the outgoing cold water R to the plurality of indoor air conditioners 2 and raises the temperature of the outgoing cold water R. ing.
In the present embodiment, the external air conditioner outgoing path 5B through which the return cold water R from the external air conditioner 1 flows to the cold water circulation supply unit 4 and the indoor air conditioner through which the outgoing cold water R to the plurality of indoor air conditioners 2 flows. A mixing path 8 for connecting the machine outbound path 5C is provided, and a mixing portion 7 is configured at a connection portion between the mixing path 8 and the indoor air conditioner outbound path 5C.

例えば、冷凍機3にて5℃の冷水Rを生成する場合、外調機1に対する循環経路での冷水Rの温度変化(以下、括弧内に温度を示す。)は、主往路5A(5℃)→外調機用往路5B(5℃)→外調機1→外調機用還路6A(15℃)→主還路6D(17℃)となる。
これに対して、複数の室内空調機2に対する循環経路での冷水Rの温度変化は、混合部7による冷水Rの混合により複数の室内空調機2への往き冷水Rが昇温することで、主往路5A(5℃)→室内空調機用往路5Cにおける混合部7の上流側(5℃)→室内空調機用往路5Cにおける混合部7の下流側(10℃)→室内空調機用個別往路5D(10℃)→複数の室内空調機2→室内空調機用個別還路6B(20℃)→室内空調機用還路6C(20℃)→主還路6D(17℃)となる。
つまり、複数の室内空調機2への往き冷水R、換言すれば、室内空調機用往路5Cにおける混合部7の下流側、及び、室内空調機用個別往路5Dを通流する冷水Rは、冷凍機3で生成されて主往路5Aを通流する冷水Rの温度(5℃)よりも高い温度(10℃)となる。なお、勿論、冷水Rの具体的な温度は適宜に変更可能である。
For example, when 5 ° C. cold water R is generated in the refrigerator 3, the temperature change of the cold water R in the circulation path to the external air compressor 1 (hereinafter, the temperature is indicated in parentheses) is the main forward path 5A (5 ° C. ) → Outward air conditioner outbound path 5B (5 ° C.) → External air conditioner 1 → External air conditioner return path 6A (15 ° C.) → Main return path 6D (17 ° C.).
On the other hand, the temperature change of the cold water R in the circulation path with respect to the plurality of indoor air conditioners 2 is caused by the temperature rise of the outgoing cold water R to the plurality of indoor air conditioners 2 by the mixing of the cold water R by the mixing unit 7. Main outbound path 5A (5 ° C.) → Upstream side of mixing section 7 in indoor air conditioner outbound path 5C (5 ° C.) → Downstream side of mixing section 7 in indoor air conditioner outbound path 5C (10 ° C.) → Individual outbound path for indoor air conditioner 5D (10 ° C.) → Multiple indoor air conditioners 2 → Individual return path 6B (20 ° C.) for indoor air conditioner → Return path 6C (20 ° C.) for indoor air conditioner → Main return path 6D (17 ° C.)
That is, the chilled water R to the plurality of indoor air conditioners 2, in other words, the chilled water R flowing on the downstream side of the mixing section 7 in the indoor air conditioner outbound path 5C and the individual indoor air conditioner outbound path 5D is refrigerated. The temperature (10 ° C.) is higher than the temperature (5 ° C.) of the cold water R generated by the machine 3 and flowing through the main forward path 5A. Of course, the specific temperature of the cold water R can be changed as appropriate.

このように、外調機1からの還り冷水Rを活用して複数の室内空調機2への往き冷水Rを昇温することで、処理負荷の小さな室内空調機2への冷水送水による熱損失を効率的に抑制することができる。   In this way, by using the return chilled water R from the external air conditioner 1 to raise the temperature of the outgoing chilled water R to the plurality of indoor air conditioners 2, heat loss due to chilled water feeding to the indoor air conditioner 2 with a small processing load Can be efficiently suppressed.

混合部7は、複数の室内空調機2よりも外調機1に近い部位に配置されている。このようにすることで、配管サイズが大きくなる傾向にある外調機1に近い部位にて冷水Rの混合処理を行うことができる。よって、配管サイズの大きい外調機1側の配管径路を短く構成し易くなり、冷水循環供給部4を効率的に構成することが可能となる。   The mixing unit 7 is disposed in a portion closer to the external air conditioner 1 than the plurality of indoor air conditioners 2. By doing in this way, the mixing process of cold water R can be performed in the site | part close | similar to the external air handler 1 in which the piping size tends to become large. Therefore, it is easy to configure the pipe path on the side of the external air conditioner 1 having a large pipe size, and the cold water circulation supply unit 4 can be configured efficiently.

図示は省略するが、例えば、混合路8と、混合路8と室内空調機用往路5Cとの接続部位である混合部7と、混合路8と外調機用還路6Aとの接続部位とを、外調機1の隣接部位に集合配置することにより、複数の室内空調機2よりも外調機1に近い部位の一例として、外調機1の隣接部位に混合部7を配置することができる。   Although illustration is omitted, for example, the mixing path 8, the mixing portion 7 that is a connecting part between the mixing path 8 and the indoor air conditioner outgoing path 5C, and the connecting part between the mixing path 8 and the external air conditioner return path 6A Are arranged in the adjacent part of the external air conditioner 1, so that the mixing unit 7 is arranged in the adjacent part of the external air conditioner 1 as an example of the part closer to the external air conditioner 1 than the plurality of indoor air conditioners 2. Can do.

また、この空調システムには、混合部7による冷水Rの混合割合を調整自在な混合割合調整部9が備えられている。この混合割合調整部9により混合部7での冷水Rの混合割合を調整することにより、複数の室内空調機2への往き冷水Rの温度を調整することができる。   The air conditioning system also includes a mixing ratio adjusting unit 9 that can adjust the mixing ratio of the cold water R by the mixing unit 7. By adjusting the mixing rate of the cold water R in the mixing unit 7 by the mixing rate adjusting unit 9, the temperature of the outgoing cold water R to the plurality of indoor air conditioners 2 can be adjusted.

この混合割合調整部9は、外調機用還路6Aから混合路8に流入させる冷水Rの流量を調整することで、混合部7による冷水Rの混合割合を調整するように構成されている。混合割合調整部9は、例えば、外調機用還路6Aと混合路8との接続部位に三方弁9aを介装して構成することができる。この場合、三方弁9aにて、混合路8に流入させる冷水Rと外調機用還路6Aの下流側に流入させる冷水Rとに分流する割合を調整することで、外調機用往路5Bから混合路8に流入させる冷水Rの流量を調整し、混合部7による冷水Rの混合割合を調整することができる。
この他、混合割合調整部9は、混合路8、及び、外調機用還路6Aにおける混合路8との接続部位よりも下流側の部位の各々に流量制御弁を介装して構成することもできる。
The mixing ratio adjusting unit 9 is configured to adjust the mixing ratio of the cold water R by the mixing unit 7 by adjusting the flow rate of the cold water R that flows into the mixing path 8 from the external controller return path 6A. . The mixing ratio adjusting unit 9 can be configured, for example, by interposing a three-way valve 9a at a connection site between the external air conditioner return path 6A and the mixing path 8. In this case, the three-way valve 9a adjusts the ratio of the cold water R flowing into the mixing path 8 and the cold water R flowing downstream of the external air conditioner return path 6A, thereby adjusting the external air conditioner outbound path 5B. Thus, the flow rate of the cold water R flowing into the mixing path 8 can be adjusted, and the mixing ratio of the cold water R by the mixing unit 7 can be adjusted.
In addition, the mixing ratio adjusting unit 9 is configured by interposing a flow rate control valve in each of the mixing path 8 and the downstream portion of the connection section with the mixing path 8 in the external air conditioner return path 6A. You can also.

制御装置10は、複数の室内空調機2への往き冷水Rの温度が設定温度範囲内になるように混合割合調整部9を制御するように構成されている。例えば、制御装置10は、室内空調機用往路5Cの上流側を通流する冷水Rの温度が5℃、外調機1での熱交換で昇温した外調機1からの還り冷水Rの温度が15℃であるとき、室内空調機用往路5Cの下流側を通流する複数の室内空調機2への往き冷水Rの温度が10℃以内になるように混合割合調整部9を制御する。   The control device 10 is configured to control the mixing ratio adjusting unit 9 so that the temperature of the incoming cold water R to the plurality of indoor air conditioners 2 is within the set temperature range. For example, the control device 10 determines that the temperature of the cold water R flowing upstream of the indoor air conditioner outbound path 5C is 5 ° C. and the temperature of the return cold water R from the external air conditioner 1 that is raised by heat exchange in the external air conditioner 1 When the temperature is 15 ° C., the mixing ratio adjusting unit 9 is controlled so that the temperature of the outgoing cold water R to the plurality of indoor air conditioners 2 flowing downstream of the indoor air conditioner outgoing path 5C is within 10 ° C. .

この制御装置10は、室内空調機用往路5Cの混合部7よりも下流側に備えられた温度センサ11による検出温度が設定温度範囲内になるように混合割合調整部9を制御することで、複数の室内空調機2への往き冷水Rの温度を設定温度範囲内に調整する。具体的には、制御装置10は、温度センサ11の検出温度を取得し、取得した検出冷水温度と設定温度範囲とに基づいて冷水Rの混合割合を演算する。そして、制御装置10は、その演算した混合割合となるように混合割合調整部9を制御する制御信号を混合割合調整部9に出力し、混合割合調整部9を制御する。   The control device 10 controls the mixing ratio adjusting unit 9 so that the temperature detected by the temperature sensor 11 provided on the downstream side of the mixing unit 7 of the indoor air conditioner outbound path 5C is within the set temperature range. The temperature of the outgoing cold water R to the plurality of indoor air conditioners 2 is adjusted within the set temperature range. Specifically, the control device 10 acquires the detected temperature of the temperature sensor 11 and calculates the mixing ratio of the cold water R based on the acquired detected cold water temperature and the set temperature range. And the control apparatus 10 outputs the control signal which controls the mixing ratio adjustment part 9 to the mixing ratio adjustment part 9 so that it may become the calculated mixing ratio, and controls the mixing ratio adjustment part 9.

このように、制御装置10により混合割合調整部9を制御することにより、複数の室内空調機2への往き冷水Rの温度を設定温度範囲内に維持することができる。よって、混合部7での冷水Rの混合による複数の室内空調機2への往き冷水Rの昇温により、複数の室内空調機2への冷水送水による熱損失を抑制しながら、複数の室内空調機2への往き冷水Rの温度のバラツキによって複数の室内空調機2の空調温度が不安定になるのを回避することができる。   Thus, by controlling the mixing ratio adjusting unit 9 by the control device 10, the temperature of the outgoing cold water R to the plurality of indoor air conditioners 2 can be maintained within the set temperature range. Therefore, a plurality of indoor air conditioners are controlled while suppressing heat loss due to the cold water feeding to the plurality of indoor air conditioners 2 by increasing the temperature of the outgoing cold water R to the plurality of indoor air conditioners 2 by mixing the cold water R in the mixing unit 7. It is possible to prevent the air conditioning temperatures of the plurality of indoor air conditioners 2 from becoming unstable due to variations in the temperature of the cold water R going to the machine 2.

〔別実施形態〕
(1)前述の実施形態では、外調機1が1つである場合を例に示したが、複数備えられていてもよい。その場合、冷水循環供給部4が、複数の外調機1に対して冷熱源から冷水Rを並列に循環供給自在に構成されていてもよい。なお、室内空調機2も、複数に限らず1つであってもよい。
[Another embodiment]
(1) In the above-described embodiment, the case where there is one external air conditioner 1 is shown as an example, but a plurality of external air conditioners 1 may be provided. In that case, the cold water circulation supply unit 4 may be configured to be capable of circulating and supplying the cold water R from the cold heat source to the plurality of external air conditioners 1 in parallel. The number of indoor air conditioners 2 is not limited to a plurality and may be one.

(2)前述の実施形態では、混合部7が、複数の室内空調機2への往き冷水Rに対して、外調機1からの還り冷水Rの一部を混合するように構成されている場合を例に示したが、例えば、複数の室内空調機2のうちの一部の室内空調機2への往き冷水Rに対して、外調機1からの還り冷水Rの一部を混合するように構成されていてもよい。   (2) In the above-described embodiment, the mixing unit 7 is configured to mix a part of the return cold water R from the external air conditioner 1 with the outgoing cold water R to the plurality of indoor air conditioners 2. Although the case has been shown as an example, for example, a part of the return cold water R from the external air conditioner 1 is mixed with the outgoing cold water R to some of the indoor air conditioners 2 among the plurality of indoor air conditioners 2. It may be configured as follows.

(3)前述の実施形態では、制御装置10にて室内空調機2への往き冷水Rの温度が設定温度範囲内になるように混合割合調整部9を制御する場合を例に示したが、このような制御を省き、外調機1からの還り冷水Rの一定量を室内空調機2への往き冷水Rに混合するように構成されていてもよい。   (3) In the above-described embodiment, the control device 10 illustrates the case where the mixing ratio adjusting unit 9 is controlled so that the temperature of the incoming cold water R to the indoor air conditioner 2 is within the set temperature range. Such a control may be omitted, and a certain amount of the return cold water R from the external air conditioner 1 may be mixed with the return cold water R to the indoor air conditioner 2.

1 外調機
2 室内空調機
3 冷凍機(冷熱源)
4 冷水循環供給部
7 混合部
9 混合割合調整部
10 制御装置(制御部)
R 冷水
1 External air conditioner 2 Indoor air conditioner 3 Refrigerator (cooling heat source)
4 Chilled water circulation supply unit 7 Mixing unit 9 Mixing ratio adjusting unit 10 Control device (control unit)
R cold water

Claims (4)

供給される冷水と外気との熱交換により外気を冷却除湿して室内に供給する外調機と、
供給される冷水と室内空気との熱交換により室内空気を冷却する室内空調機と、
前記外調機及び前記室内空調機に対して冷熱源から冷水を並列に循環供給自在な冷水循環供給部と、が備えられている空調システムであって、
前記外調機からの還り冷水の一部を前記室内空調機への往き冷水に混合して当該往き冷水を昇温させる混合部が備えられている空調システム。
An external air conditioner that cools and dehumidifies the outside air by heat exchange between the supplied cold water and the outside air and supplies it to the room;
An indoor air conditioner that cools the indoor air by heat exchange between the supplied cold water and the indoor air;
A cold water circulation supply unit capable of circulating and supplying cold water from a cold heat source in parallel to the external air conditioner and the indoor air conditioner, and an air conditioning system comprising:
An air conditioning system provided with a mixing unit that mixes a part of the return cold water from the external air conditioner with the incoming cold water to the indoor air conditioner to raise the temperature of the outgoing cold water.
前記混合部による冷水の混合割合を調整自在な混合割合調整部と、
前記室内空調機への往き冷水の温度が設定温度範囲内になるように前記混合割合調整部を制御する制御部と、が備えられている請求項1記載の空調システム。
A mixing ratio adjusting unit capable of adjusting a mixing ratio of cold water by the mixing unit;
The air-conditioning system of Claim 1 provided with the control part which controls the said mixing ratio adjustment part so that the temperature of the going cold water to the said indoor air conditioner may be in a preset temperature range.
前記室内空調機が複数備えられ、
前記冷水循環供給部が、複数の前記室内空調機に対して冷熱源から冷水を並列に循環供給自在に構成され、
前記混合部が、複数の前記室内空調機への往き冷水に対して、前記外調機からの還り冷水の一部を混合するように構成されている請求項1又は2記載の空調システム。
A plurality of the indoor air conditioners are provided,
The cold water circulation supply unit is configured to be capable of circulating and supplying cold water from a cold heat source in parallel to the plurality of indoor air conditioners,
The air conditioning system according to claim 1 or 2, wherein the mixing unit is configured to mix a part of the return cold water from the external air conditioner with respect to the incoming cold water to the plurality of indoor air conditioners.
前記混合部が、複数の前記室内空調機よりも前記外調機に近い部位に配置されている請求項3記載の空調システム。   The air conditioning system according to claim 3, wherein the mixing unit is disposed in a portion closer to the external air conditioner than the plurality of indoor air conditioners.
JP2016240529A 2016-12-12 2016-12-12 Air conditioning system Active JP6836890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240529A JP6836890B2 (en) 2016-12-12 2016-12-12 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240529A JP6836890B2 (en) 2016-12-12 2016-12-12 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2018096594A true JP2018096594A (en) 2018-06-21
JP6836890B2 JP6836890B2 (en) 2021-03-03

Family

ID=62632792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240529A Active JP6836890B2 (en) 2016-12-12 2016-12-12 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6836890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539439A (en) * 2018-12-11 2019-03-29 珠海格力电器股份有限公司 Fan control method, device, medium and unit of evaporative cooling type water chilling unit
JP2021014947A (en) * 2019-07-11 2021-02-12 日本ピーマック株式会社 Air conditioner and air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141721A (en) * 1991-11-21 1993-06-08 Taikisha Ltd Ice storage system air conditioner
JPH10300172A (en) * 1997-04-22 1998-11-13 Shin Nippon Kucho Kk Air introduction processing system for room with variable number of persons inside it
JP2009162411A (en) * 2007-12-28 2009-07-23 Toshiba Corp Air-conditioning control device and air-conditioning control method
JP2011058676A (en) * 2009-09-08 2011-03-24 Shimizu Corp Air conditioning system
JP2015059692A (en) * 2013-09-18 2015-03-30 新晃工業株式会社 Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141721A (en) * 1991-11-21 1993-06-08 Taikisha Ltd Ice storage system air conditioner
JPH10300172A (en) * 1997-04-22 1998-11-13 Shin Nippon Kucho Kk Air introduction processing system for room with variable number of persons inside it
JP2009162411A (en) * 2007-12-28 2009-07-23 Toshiba Corp Air-conditioning control device and air-conditioning control method
JP2011058676A (en) * 2009-09-08 2011-03-24 Shimizu Corp Air conditioning system
JP2015059692A (en) * 2013-09-18 2015-03-30 新晃工業株式会社 Air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539439A (en) * 2018-12-11 2019-03-29 珠海格力电器股份有限公司 Fan control method, device, medium and unit of evaporative cooling type water chilling unit
CN109539439B (en) * 2018-12-11 2019-11-29 珠海格力电器股份有限公司 Fan control method, device, medium and unit of evaporative cooling type water chilling unit
JP2021014947A (en) * 2019-07-11 2021-02-12 日本ピーマック株式会社 Air conditioner and air conditioning system
JP7374633B2 (en) 2019-07-11 2023-11-07 日本ピーマック株式会社 Air conditioners and air conditioning systems

Also Published As

Publication number Publication date
JP6836890B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
US10006649B2 (en) Air-conditioning system
EP3282211A1 (en) Air conditioning system and control method for same
JP5869648B1 (en) Air conditioning system
JP2013253753A (en) Outside air cooling system for data center
JP2005069554A (en) Water heat source air conditioning system
KR101629341B1 (en) Heat exchange coil and air conditioning unit
CN108076653B (en) Liquid temperature adjusting device and temperature control system
JP2018096594A (en) Air conditioning system
US11959647B2 (en) Air-conditioning unit having a coil with an active portion and an inactive portion
JP4422124B2 (en) Air conditioning system
JP6024726B2 (en) External control device
JP6747920B2 (en) Air conditioning system
JP2018204823A (en) Ventilation system
JP2015007484A (en) Air conditioning system
US6817209B1 (en) Fluid cooled air conditioning system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP7383364B1 (en) Air conditioning system and its control method
JP6951259B2 (en) Air conditioning system
JP7439629B2 (en) air conditioning system
JP6401054B2 (en) Information processing system and information processing system program
WO2023148854A1 (en) Heat-exchange-type ventilation device
JP3236927B2 (en) Refrigerant circulation type air conditioning system
JP2021017999A (en) Air conditioning apparatus
JP2024061295A (en) Air Conditioning System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6836890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150