JP2001116287A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001116287A
JP2001116287A JP29078399A JP29078399A JP2001116287A JP 2001116287 A JP2001116287 A JP 2001116287A JP 29078399 A JP29078399 A JP 29078399A JP 29078399 A JP29078399 A JP 29078399A JP 2001116287 A JP2001116287 A JP 2001116287A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heat
flow path
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29078399A
Other languages
Japanese (ja)
Inventor
Kimio Kouda
祈実男 国府田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29078399A priority Critical patent/JP2001116287A/en
Publication of JP2001116287A publication Critical patent/JP2001116287A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that can lighten the load of facilities being required for the dew condensation countermeasures of an exhaust duct. SOLUTION: This air conditioner is equipped with a first air channel AF1 that incorporates a heat pump where outdoor air and/or return air is used as a heat source, and extends from a return and opening RA to an air supplying opening SA via a third heat exchanger EX3, a second air channel AF2 that is connected to an outdoor air intake OA, and is merged with the first air channel AF1 at an upstream side as compared with the third heat exchanger EX3, and a third air channel AF3 that is connected to the outdoor air intake OA and/or the return air opening RA, divides flow without passing through the third heat exchange EX3 and is connected to an exhaust opening EA via the first heat exchange EX1. In the air-conditioner, a fourth air channel AF4 is formed between the downstream side of the first heat exchanger EX1 of the third air channel AF3 and the first air channel AF1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機に係
り、特に外気及び/又は還気を熱源とするヒートポンプ
ユニットを内蔵し、個別空調空間ごとの空調負荷要求に
柔軟に対応することが可能な空気調和機の排気部の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to a built-in heat pump unit that uses outside air and / or return air as a heat source, and can flexibly respond to an air conditioning load requirement for each individual air conditioning space. The present invention relates to improvement of an exhaust part of a simple air conditioner.

【0002】[0002]

【従来の技術】従来この種の空気調和機において、ヒー
トポンプユニットが冷房サイクルで運転される場合は、
第1熱交換器は気液接触型の蒸発式凝縮器として作用す
る。従って、第1熱交換器を通過した空気、即ち排気は
高温で高湿の飽和空気となるため、排気ダクト内で少し
でも温度降下が生じると、排気中の水分がダクト内で凝
縮し結露が発生する。従って、該排気ダクトには、厳重
な断熱施工を行った上で、更にそれでも発生する結露水
に対応するため、ダクトを水密構造にしたり、結露水の
回収機構を設ける必要があった。そのため、排気ダクト
の結露対策に係る設備の負担が大きいという問題があっ
た。
2. Description of the Related Art Conventionally, in this type of air conditioner, when a heat pump unit is operated in a cooling cycle,
The first heat exchanger functions as a vapor-liquid contact type evaporative condenser. Therefore, the air that has passed through the first heat exchanger, that is, the exhaust air is high-temperature, high-humidity saturated air. If any temperature drop occurs in the exhaust duct, the moisture in the exhaust condenses in the duct and dew condensation occurs. appear. Therefore, in order to cope with the condensed water that still occurs, it is necessary to provide the exhaust duct with a water-tight structure and to provide a condensed water collecting mechanism in order to cope with the condensed water that still occurs. For this reason, there is a problem that the load on the equipment for the dew condensation countermeasure of the exhaust duct is large.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、排気ダクトの結露対策にかかる設
備の負担を軽減させることができる空気調和機を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide an air conditioner capable of reducing the load on equipment for preventing dew condensation in an exhaust duct. .

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、外気及び/又は還気を熱源と
するヒートポンプを内蔵し、外気を取り入れる外気取り
入れ口と、室内から還気を取り入れる還気口と、屋外へ
排気を行う排気口と、空調対象空間に給気を行う給気口
と、排気空気と第1熱媒との間で熱交換する気液接触型
の第1の熱交換器と第1熱媒と第2熱媒との間で熱交換
する第2熱交換器と圧縮機と膨張弁とから少なくとも構
成され、切り替え手段により第1熱媒の循環方向を切り
換えることが可能な第1熱媒循環路と、給気空気と第2
熱媒との間で熱交換する第3熱交換器と第2熱交換器と
循環ポンプとから少なくとも構成される第2熱媒循環路
とを備え、機体内には、還気口から第3熱交換器を介し
て給気口に至る第1空気流路と、外気取り入れ口と連通
し第3熱交換器よりも上流側において第1空気流路と合
流する第2空気流路と、外気取り入れ口及び/又は還気
口と連通して第3熱交換器を経由することなく分流し第
1熱交換器を介して排気口に連通する第3空気流路とを
備えた空気調和機において、第3空気流路の第1熱交換
器の下流側と第1空気流路の間に第4空気流路を形成し
たことを特徴とする。
In order to solve the above-mentioned problems, the invention according to the first aspect of the present invention has a built-in heat pump that uses outside air and / or return air as a heat source, and has an outside air intake for taking in outside air, and a return from room. A return air inlet for taking in air, an exhaust port for exhausting air to the outside, an air supply port for supplying air to the air-conditioned space, and a gas-liquid contact type for exchanging heat between the exhaust air and the first heat medium. 1 heat exchanger, a second heat exchanger that exchanges heat between the first heat medium and the second heat medium, a compressor, and an expansion valve, and the switching means changes the circulation direction of the first heat medium. A first heat medium circuit that can be switched, a supply air and a second
A third heat exchanger for exchanging heat with the heat medium, a second heat exchanger including at least a second heat exchanger and a circulating pump; A first air flow path that reaches the air supply port through the heat exchanger, a second air flow path that communicates with the outside air intake port and merges with the first air flow path upstream of the third heat exchanger, An air conditioner having a third air flow passage communicating with an intake port and / or a return air port and diverting without passing through a third heat exchanger and communicating with an exhaust port via a first heat exchanger. A fourth air flow path is formed between the third air flow path downstream of the first heat exchanger and the first air flow path.

【0005】上記のように、第3空気流路の第1熱交換
器の下流側と第1空気流路の間に第4空気流路を形成し
たことにより、該第4空気流路を通じて還気の一部を第
1熱交換器を通過した空気に混合させて排気の相対湿度
を下げることができるから、排気ダクトに結露が発生し
にくくなる。
[0005] As described above, since the fourth air flow path is formed between the downstream side of the first heat exchanger in the third air flow path and the first air flow path, the air returns through the fourth air flow path. Since a part of the air can be mixed with the air that has passed through the first heat exchanger to reduce the relative humidity of the exhaust, dew condensation is less likely to occur in the exhaust duct.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図1は本発明に係る空気調和機
の構成を示す図である。図示するように、空気熱源型空
気調和機を構成するヒートポンプ回路などの各構成機器
は、設置場所に合わせて選択された所定形状のケーシン
グC内に収容されている。また、ケーシングCには、外
気を取り入れる外気取り入れ口OAと、室内から還気を
取り入れる還気口RAと、屋外への排気を行う排気口E
Aと、空調対象空間に給気を行う給気口SAとが設けら
れており、所定のダクトなどの給排気設備を介して、ケ
ーシングC内に形成される後述の空気流路から所定の空
気を給排気することが可能である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an air conditioner according to the present invention. As shown in the figure, components such as a heat pump circuit constituting the air heat source type air conditioner are housed in a casing C having a predetermined shape selected according to an installation location. Further, the casing C has an outside air intake OA for taking in outside air, a return air opening RA for taking in return air from the room, and an exhaust port E for exhausting to the outside.
A and an air supply port SA for supplying air to a space to be air-conditioned are provided, and a predetermined air is supplied from an air flow path formed in the casing C through a supply / exhaust facility such as a predetermined duct. Can be supplied and exhausted.

【0007】ケーシングC内には、ヒートポンプ回路を
構成する第1熱媒循環路(フロン系冷媒やアンモニアな
ど、気体−液体の相変化を利用する熱媒を用いたヒート
ポンプ回路であり、以下「冷媒回路」と称することがあ
る。)と、空調空気を形成するための第2熱媒循環路
(水又は不凍液を熱媒とする回路であり、以下「ブライ
ン回路」と称することがある。)と、後述する気液接触
型の第1熱交換器EX1に対して散布水を供給する散布
水循環路(第1熱交換器EX1が凝縮器として作用する
際にこれを冷却するための回路。以下「冷却水回路」と
称することがある。)とが形成されている。
In the casing C, there is provided a first heat medium circulation path (a heat pump circuit using a heat medium utilizing a gas-liquid phase change such as a CFC-based refrigerant or ammonia) constituting a heat pump circuit. Circuit) and a second heat medium circulation path for forming conditioned air (a circuit using water or antifreeze as a heat medium, and may be hereinafter referred to as a "brine circuit"). A spray water circulation path for supplying spray water to a gas-liquid contact type first heat exchanger EX1 described later (a circuit for cooling the first heat exchanger EX1 when it acts as a condenser. The cooling water circuit may be referred to as “cooling water circuit”).

【0008】まず、ヒートポンプ回路を構成する第1熱
媒循環路(冷媒回路)について説明する。この第1熱媒
循環路は、排気空気と熱交換を行う気液接触型の第1熱
交換器EX1と、圧縮機COMと、四方弁QVと、第1
熱媒と第2熱媒との間で熱交換を行う第2熱交換器EX
2と、第1膨張弁EV1と、第2膨張弁EV2と、液分
離器ACとを配管により結んだもので、四方弁QVを切
り換えることにより、所定の冷媒を所定方向に循環させ
て所定のヒートポンプ回路を構成するものである。機械
式の第1膨張弁EV1と第2膨張弁EV2には、チャッ
キ弁V1、V2が介挿されたバイパス路が設けられてお
り、冷媒の循環方向に応じて、冷媒が通過する膨張弁を
選択することが可能である。
First, the first heat medium circulation path (refrigerant circuit) constituting the heat pump circuit will be described. The first heat medium circulation path includes a gas-liquid contact type first heat exchanger EX1, which performs heat exchange with exhaust air, a compressor COM, a four-way valve QV, and a first heat exchanger.
A second heat exchanger EX for exchanging heat between the heat medium and the second heat medium
2, the first expansion valve EV1, the second expansion valve EV2, and the liquid separator AC are connected by a pipe, and by switching the four-way valve QV, a predetermined refrigerant is circulated in a predetermined direction to circulate a predetermined refrigerant. It constitutes a heat pump circuit. The mechanical first expansion valve EV1 and the second expansion valve EV2 are provided with bypass paths in which the check valves V1 and V2 are inserted, and the expansion valves through which the refrigerant passes according to the circulation direction of the refrigerant. It is possible to choose.

【0009】かかる構成により、第1熱媒循環路は、暖
房運転時には、四方弁QVを切り換えることにより、冷
媒を、圧縮機COM→四方弁QV→第2熱交換器(凝縮
器)EX2→チャッキ弁V1→第2膨張弁EV2→第1
熱交換器(蒸発器)EX1→四方弁QV→液分離器AC
→圧縮機COMと順次循環させることにより、後述する
ブライン回路に温熱を供給することができる。これに対
して、冷房運転時には、四方弁QVを切り換えることに
より、冷媒を、圧縮機COM→四方弁QV→第1熱交換
器(凝縮器)EX1→チャッキ弁V2→第1膨張弁EV
1→第2熱交換器(蒸発器)EX2→四方弁QV→液分
離器AC→圧縮機COMと順次循環させることにより、
後述するブライン回路に冷熱を供給することができる。
With this configuration, the first heat medium circulation path switches the refrigerant from the compressor COM to the four-way valve QV to the second heat exchanger (condenser) EX2 to the check by switching the four-way valve QV during the heating operation. Valve V1 → second expansion valve EV2 → first
Heat exchanger (evaporator) EX1 → four-way valve QV → liquid separator AC
→ By sequentially circulating with the compressor COM, it is possible to supply heat to a brine circuit described later. On the other hand, during the cooling operation, the four-way valve QV is switched so that the refrigerant is compressed by the compressor COM → the four-way valve QV → the first heat exchanger (condenser) EX1 → the check valve V2 → the first expansion valve EV.
1 → second heat exchanger (evaporator) EX2 → four-way valve QV → liquid separator AC → compressor COM
Cold heat can be supplied to a brine circuit described later.

【0010】次に、第2熱媒循環路(ブライン回路)に
ついて説明する。第2熱媒循環路は、第1熱媒(冷媒)
との間で熱交換を行う第2熱交換器EX2と、空気と第
2熱媒(ブライン)との間で熱交換を行う第3熱交換器
EX3と、ポンプP1とから構成される。そして、上記
ヒートポンプ回路の運転モードに応じて、第2熱交換器
EX2により温熱又は冷熱を取得し、第3熱交換器EX
3により給気を加熱又は冷却することにより、最適な温
調を行なうことができる。
Next, the second heat medium circulation path (brine circuit) will be described. The second heat medium circulation path is a first heat medium (refrigerant).
And a third heat exchanger EX3 that performs heat exchange between air and a second heat medium (brine), and a pump P1. Then, according to the operation mode of the heat pump circuit, the second heat exchanger EX2 acquires hot or cold heat, and the third heat exchanger EX
By heating or cooling the air supply by means of 3, the optimum temperature control can be performed.

【0011】次に、散布水循環路(冷却水回路)と気液
接触型の第1熱交換器EX1の構成について説明する。
散布水循環路は、散水管SPと、散布水を貯留する冷却
水槽(下部水槽)WBと、ポンプP2と、冷却水を循環
する配管路と、図示しない配管路に取り付けられるスト
レーナと、散布水の飛散を低減するためのエリミネータ
と、飛散及び蒸発した散布水の水量分を補う給水管を備
えている。
Next, the configuration of the spray water circulation path (cooling water circuit) and the first heat exchanger EX1 of the gas-liquid contact type will be described.
The spray water circulation path includes a spray pipe SP, a cooling water tank (lower water tank) WB for storing the spray water, a pump P2, a pipe line for circulating the cooling water, a strainer attached to a pipe line (not shown), and a spray water. An eliminator for reducing scatter and a water supply pipe for supplementing the amount of scattered and evaporated spray water are provided.

【0012】第1熱交換器EX1は、例えば蒸発式凝縮
器であり、第1熱交換器EX1に対して散水管SPより
散水することにより、第1熱交換器EX1から蒸発潜熱
を奪うと共に、発生した蒸気を排気空気で搬送させ、高
密度な熱の搬送を実現する。散水された冷却水は冷却水
槽WBで受けられた後、冷却水ポンプP2により汲み上
げられ、再び散水管SPから第1熱交換器EX1に散水
される。勿論、冷却水を散水しなくとも、十分熱交換が
行われる場合には、散布水循環路を運転する必要はな
い。
The first heat exchanger EX1 is, for example, an evaporative condenser. The first heat exchanger EX1 removes latent heat of evaporation from the first heat exchanger EX1 by spraying water from the water spray pipe SP to the first heat exchanger EX1. The generated steam is transported by exhaust air to achieve high-density heat transport. The sprinkled cooling water is received by the cooling water tank WB, pumped up by the cooling water pump P2, and sprinkled again from the sprinkling pipe SP to the first heat exchanger EX1. Of course, even if the cooling water is not sprinkled, it is not necessary to operate the spray water circulation path when the heat exchange is sufficiently performed.

【0013】次に、ケーシングC内に形成される空気流
路について説明する。本実施の形態に係る空気調和機で
は、ケーシングC内に主に3つの空気流路AF1、AF
2、AF3が形成される。第1空気流路AF1は、還気
口RAと給気口SAとを結ぶ空気流路であり、途中、空
気中の塵芥を除去するフィルタF2と空気量を調整する
ための還気用ダンパRDが介挿されている。第2空気流
路AF2は、外気取り入れ口OAと第1空気流路AF1
とを結ぶ空気流路であり、途中、空気中の塵芥を除去す
るためのフィルタF1と空気量を調整するための外気取
入用ダンパODが介挿されている。
Next, the air flow path formed in the casing C will be described. In the air conditioner according to the present embodiment, three air flow paths AF1 and AF
2. AF3 is formed. The first air flow path AF1 is an air flow path connecting the return air port RA and the air supply port SA, and includes a filter F2 for removing dust in the air and a return air damper RD for adjusting the amount of air. Is inserted. The second air passage AF2 is connected to the outside air intake OA and the first air passage AF1.
A filter F1 for removing dust in the air and an outside air intake damper OD for adjusting the amount of air are interposed on the way.

【0014】更に、第3空気流路AF3は、排気口EA
と第1空気流路AF1とを結ぶ空気流路である。ただ
し、第3空気流路AF3は、外気を導入する第2空気流
路AF2よりも還気口RAに近い位置で第1空気流路A
F1と連通している。そして排気口EA付近には、排気
用ファンEFが、給気口SA付近には、給気用ファンS
Fがそれぞれ設置されている。
Further, the third air flow path AF3 is provided with an exhaust port EA.
And the first air flow path AF1. However, the third air flow path AF3 is located at a position closer to the return air opening RA than the second air flow path AF2 for introducing outside air.
It is in communication with F1. An exhaust fan EF is provided near the exhaust port EA, and an air supply fan S is provided near the air inlet SA.
F are installed respectively.

【0015】次に、上記のように構成された空気調和機
の動作について説明する。まず、外気取り入れ口OAよ
り取り入れられ給気口SAより空調対象空間に供給され
る空気は、還気口RAよりケーシングC内に取り入れら
れる。そして、本空気調和機によれば、排気用ファンE
Fを駆動することにより、還気の一部が第3空気流路A
F3を介して気液接触型の第1熱交換器EX1に送ら
れ、そこで第1熱媒(冷媒)と熱交換される。そして、
第1熱媒循環路(冷媒回路)を所定のモード(暖房モー
ド又は冷房モード)で駆動することにより、温熱又は冷
熱が第2熱媒流路(ブライン回路)に供給され、第3熱
交換器EX3により第1空気流路AF1を流れる外気及
び/又は還気は所望の温度に加熱又は冷却され空調対象
空間に供給される。
Next, the operation of the air conditioner configured as described above will be described. First, air that is taken in from the outside air intake OA and supplied to the air-conditioned space from the air supply port SA is taken into the casing C from the return air port RA. According to the present air conditioner, the exhaust fan E
F, a part of the return air is supplied to the third air flow path A.
It is sent to the gas-liquid contact type first heat exchanger EX1 via F3, where it is exchanged with the first heat medium (refrigerant). And
By driving the first heat medium circulation path (refrigerant circuit) in a predetermined mode (heating mode or cooling mode), hot or cold heat is supplied to the second heat medium flow path (brine circuit), and the third heat exchanger The outside air and / or return air flowing through the first air flow path AF1 is heated or cooled to a desired temperature by the EX3 and supplied to the air-conditioned space.

【0016】このように、本空気調和機のヒートポンプ
機構は、実質的に取り入れ外気量以下の排気空気を熱源
として利用するので、空調室内の室内空気質を維持する
ために取り入れた外気量以上の空気を熱源として使用し
ない。従って、見かけ上熱源を必要としない完全独立分
散型の空気熱源型空気調和機を構築することが可能であ
る。また、熱媒循環路を熱源用と空気調和用とに各々構
成しているので、例えば第2熱交換器EX2の配置上の
制約が緩和されるなど、装置構成の自由度が増してい
る。さらに、第1、第2それぞれの熱媒循環装置は、ポ
ンプP1、P2の回転数制御が独立して行えるので、公
知の制御方法を駆使して多種の運転モードの中から応答
性・省エネルギー性等が最適なモードが選択できる。
As described above, since the heat pump mechanism of the present air conditioner uses the exhaust air substantially less than the intake outside air amount as a heat source, the heat pump mechanism exceeds the outside air amount introduced to maintain the indoor air quality in the air-conditioned room. Do not use air as a heat source. Therefore, it is possible to construct a completely independent decentralized air heat source type air conditioner that apparently does not require a heat source. Further, since the heat medium circulating path is configured for each of the heat source and the air conditioning, for example, restrictions on the arrangement of the second heat exchanger EX2 are relaxed, and the degree of freedom of the device configuration is increased. Further, since the first and second heat medium circulating devices can independently control the rotation speeds of the pumps P1 and P2, the responsiveness and the energy saving can be improved from various operation modes by making use of a known control method. The optimal mode can be selected.

【0017】上記空気調和機の構成及び動作は従来のも
のと同じである。上記構成の空気調和機においては、上
記のようにヒートポンプユニットが冷房サイクルで運転
される場合は、第1熱交換器EX1は気液接触型の蒸発
式凝縮器として作用する。従って、第1熱交換器EX1
を通過した空気、即ち排気は高温で高湿の飽和空気とな
るため、排気ダクト内で少しでも温度降下が生じると、
排気中の水分がダクト内で凝縮し結露が発生するという
問題があった。
The structure and operation of the air conditioner are the same as those of the conventional air conditioner. In the air conditioner having the above configuration, when the heat pump unit is operated in the cooling cycle as described above, the first heat exchanger EX1 acts as a gas-liquid contact type evaporative condenser. Therefore, the first heat exchanger EX1
Since the air that has passed through, i.e., the exhaust air is high-temperature, high-humidity saturated air, if any temperature drop occurs in the exhaust duct,
There is a problem that moisture in the exhaust gas condenses in the duct and dew condensation occurs.

【0018】そこで、第3空気流路AF3の第1熱交換
器EX1の下流側と第1空気流路AF1の間に第4空気
流路AF4を設け、該第4空気流路AF4を通して還気
口RAから取り入れる還気の一部を第1熱交換器EX1
を通過した空気、即ち排気に混合するようにした。この
ように排気に還気の一部を混合させることにより、排気
の相対湿度を下げることができるから、排気ダクトに結
露が発生しにくくなる。
Therefore, a fourth air flow path AF4 is provided between the downstream side of the first heat exchanger EX1 of the third air flow path AF3 and the first air flow path AF1, and air is returned through the fourth air flow path AF4. Part of the return air taken in from the mouth RA is part of the first heat exchanger EX1
To the air that passed through, i.e., the exhaust gas. As described above, by mixing a part of the return air with the exhaust gas, the relative humidity of the exhaust gas can be reduced, so that dew condensation hardly occurs in the exhaust duct.

【0019】本空気調和機を一般的な事務室空調に使用
するとして、その設計条件を、還気風量と第1熱交換器
EX1を通過する通過風量の比を6:1、還気空気の状
態を温度27℃/相対湿度50%、第1熱交換器EX1
を通過した後の空気の状態を温度34℃/相対湿度10
0%に設定する。
Assuming that the air conditioner is used for general office air conditioning, the design conditions are as follows: the ratio of the return air volume to the air volume passing through the first heat exchanger EX1 is 6: 1; The condition is temperature 27 ° C / relative humidity 50%, first heat exchanger EX1
The temperature of the air after passing through is 34 ° C./relative humidity 10
Set to 0%.

【0020】ここで仮に、還気風量の3.3%を第4空
気流路AF4に分岐させ、第1熱交換器EX1を通過す
る空気と0.2:1の割合で混合させると、排気空気は
温度32.6℃/相対湿度95%となり、その露点温度
は32℃となる。従って、還気を混合せずに、第1熱交
換器EX1を通過した空気をそのまま排気した場合より
露点温度は2℃降下することになり、排気ダクトは通常
の断熱施工程度でも結露が発生することがないので、水
密ダクトや結露水回収機構の設置が不要となる。
If, for example, 3.3% of the return air volume is branched into the fourth air flow path AF4 and mixed with the air passing through the first heat exchanger EX1, at a ratio of 0.2: 1, the exhaust gas is exhausted. The air has a temperature of 32.6 ° C./95% relative humidity and a dew point of 32 ° C. Therefore, the dew point temperature drops by 2 ° C. as compared with the case where the air that has passed through the first heat exchanger EX1 is exhausted as it is without mixing the return air, and dew condensation occurs in the exhaust duct even with ordinary heat insulation construction. There is no need to install a watertight duct or a dew condensation water recovery mechanism.

【0021】なお、第1熱交換器EX1を通過した空気
に還気を混合する場合は、混合せずに排気する場合に比
べて、排気風量が上記の場合20%増加することにな
る。従って、エアバランスを確保するために外気風量が
20%増加することになるが、一般的に全空調負荷の中
で外気負荷が占める割合は20%程度であるので、外気
風量増加に伴う外気熱負荷の増加は全空調負荷の4%で
あり、その影響は無視できる程度である。
When the return air is mixed with the air that has passed through the first heat exchanger EX1, the exhaust air volume is increased by 20% in the above case as compared with the case where the air is exhausted without mixing. Therefore, the outside air flow increases by 20% in order to secure the air balance. However, the ratio of the outside air load to the total air conditioning load is generally about 20%. The increase in load is 4% of the total air conditioning load, and its effect is negligible.

【0022】なお、本発明に係る空気調和機の実施にあ
たっては、第4空気流路AF4の通過空気量は、実際に
与えられた空調条件から、外気負荷の増加と排気ダクト
の簡便化を考慮して、最適な風量になるように、図2に
示すように第4空気流路AF4にモータダンパMD等調
節機構を介挿し調節することも可能である。また、第1
熱交換器EX1の下流側から第1空気流路AF1への逆
流を防止するためチャッキダンパCDを設けることもで
きる。
In implementing the air conditioner according to the present invention, the amount of air passing through the fourth air flow path AF4 is determined in consideration of an increase in external air load and simplification of the exhaust duct from the actually given air-conditioning conditions. As shown in FIG. 2, it is also possible to adjust the fourth air flow path AF4 by inserting an adjustment mechanism such as a motor damper MD so as to obtain an optimum air volume. Also, the first
A check damper CD may be provided to prevent backflow from the downstream side of the heat exchanger EX1 to the first air flow path AF1.

【0023】[0023]

【発明の効果】以上説明したように請求項1に記載の発
明によれば、第3空気流路の第1熱交換器の下流側と第
1空気流路の間に第4空気流路を形成したことにより、
該第4空気流路を通して還気の一部を第1熱交換器を通
過した空気に混合させて排気の相対湿度を下げることが
できるから、排気ダクトの結露対策にかかる設備の負担
を軽減させることができるという優れた効果が得られ
る。
As described above, according to the first aspect of the present invention, the fourth air flow path is provided between the downstream side of the first heat exchanger of the third air flow path and the first air flow path. By forming
Part of the return air can be mixed with the air that has passed through the first heat exchanger through the fourth air flow passage to lower the relative humidity of the exhaust gas, thereby reducing the load on the equipment for taking measures against dew condensation in the exhaust duct. The excellent effect that can be obtained is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空気調和機の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an air conditioner according to the present invention.

【図2】本発明に係る空気調和機の第4空気流路の構成
例を示す図である。
FIG. 2 is a diagram illustrating a configuration example of a fourth air flow path of the air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

C ケーシング EX1 第1熱交換器 EX2 第2熱交換器 EX3 第3熱交換器 COM 圧縮機 EV1 第1膨張弁 EV2 第2膨張弁 P1 ポンプ P2 ポンプ EF 排気用ファン SF 給気用ファン OD 外気取入用ダンパ RD 還気用ダンパ AF1 第1空気流路 AF2 第2空気流路 AF3 第3空気流路 AF4 第4空気流路 CD チャッキダンパ MD モータダンパ C Casing EX1 First heat exchanger EX2 Second heat exchanger EX3 Third heat exchanger COM Compressor EV1 First expansion valve EV2 Second expansion valve P1 Pump P2 Pump EF Exhaust fan SF Air supply fan OD Outside air intake Damper RD Return air damper AF1 First air passage AF2 Second air passage AF3 Third air passage AF4 Fourth air passage CD Check damper MD Motor damper

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外気及び/又は還気を熱源とするヒート
ポンプを内蔵し、外気を取り入れる外気取り入れ口と、
室内から還気を取り入れる還気口と、屋外へ排気を行う
排気口と、空調対象空間に給気を行う給気口と、排気空
気と第1熱媒との間で熱交換する気液接触型の第1熱交
換器と前記第1熱媒と第2熱媒との間で熱交換する第2
熱交換器と圧縮機と膨張弁とから少なくとも構成され、
切り替え手段により前記第1熱媒の循環方向を切り換え
ることが可能な第1熱媒循環路と、給気空気と前記第2
熱媒との間で熱交換する第3熱交換器と前記第2熱交換
器と循環ポンプとから少なくとも構成される第2熱媒循
環路とを備え、機体内には、前記還気口から前記第3熱
交換器を介して前記給気口に至る第1空気流路と、前記
外気取り入れ口と連通し前記第3熱交換器よりも上流側
において前記第1空気流路と合流する第2空気流路と、 前記外気取り入れ口及び/又は還気口と連通して前記第
3熱交換器を経由することなく分流し前記第1熱交換器
を介して前記排気口に連通する第3空気流路とを備えた
空気調和機において、 前記第3空気流路の第1熱交換器の下流側と前記第1空
気流路の間に第4空気流路を形成したことを特徴とする
空気調和機。
1. An external air intake, which incorporates a heat pump using external air and / or return air as a heat source, and takes in external air;
A return air port that takes in return air from the room, an exhaust port that exhausts outdoors, an air supply port that supplies air to the air-conditioned space, and gas-liquid contact that exchanges heat between the exhaust air and the first heat medium. A first heat exchanger of a mold and a second heat exchanger for exchanging heat between the first heat medium and the second heat medium.
At least comprises a heat exchanger, a compressor and an expansion valve,
A first heat medium circulating passage capable of switching a circulation direction of the first heat medium by a switching unit;
A third heat exchanger that exchanges heat with a heat medium, a second heat medium circulation path including at least the second heat exchanger, and a circulation pump; A first air flow path that reaches the air supply port through the third heat exchanger, and a first air flow path that communicates with the outside air intake port and merges with the first air flow path at an upstream side of the third heat exchanger. (2) a third air passage communicating with the outside air intake port and / or the return air port and diverting without passing through the third heat exchanger and communicating with the exhaust port via the first heat exchanger; An air conditioner having an air flow path, wherein a fourth air flow path is formed between the third air flow path downstream of the first heat exchanger and the first air flow path. Air conditioner.
JP29078399A 1999-10-13 1999-10-13 Air conditioner Pending JP2001116287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29078399A JP2001116287A (en) 1999-10-13 1999-10-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29078399A JP2001116287A (en) 1999-10-13 1999-10-13 Air conditioner

Publications (1)

Publication Number Publication Date
JP2001116287A true JP2001116287A (en) 2001-04-27

Family

ID=17760462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29078399A Pending JP2001116287A (en) 1999-10-13 1999-10-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2001116287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650784A (en) * 2016-01-21 2016-06-08 西安工程大学 Three-stage evaporative cooling-variable-channel air supply system for textile mill
CN113692189A (en) * 2021-08-18 2021-11-23 珠海格力电器股份有限公司 Machine room air conditioner, control method and device thereof, storage medium and processor
WO2023045359A1 (en) * 2021-09-24 2023-03-30 青岛海尔空调器有限总公司 Method and system for controlling computer room air conditioner, electronic device, and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650784A (en) * 2016-01-21 2016-06-08 西安工程大学 Three-stage evaporative cooling-variable-channel air supply system for textile mill
CN105650784B (en) * 2016-01-21 2018-09-07 西安工程大学 Three-level evaporates cooling-textile mills' variable conduit supply air system
CN113692189A (en) * 2021-08-18 2021-11-23 珠海格力电器股份有限公司 Machine room air conditioner, control method and device thereof, storage medium and processor
WO2023045359A1 (en) * 2021-09-24 2023-03-30 青岛海尔空调器有限总公司 Method and system for controlling computer room air conditioner, electronic device, and storage medium

Similar Documents

Publication Publication Date Title
US20120012285A1 (en) Dehumidification system
CN110645636A (en) Fresh air conditioner and control method thereof
WO2015037360A1 (en) Branch controller, system for temperature and humidity control, and method for controlling temperature and humidity
CN112880034A (en) Fresh air temperature and humidity control system, fresh air conditioner and fresh air dehumidification temperature control method
JP4647399B2 (en) Ventilation air conditioner
CN112229003B (en) Air conditioning system and control method thereof
JP2894571B2 (en) Air conditioning systems and air conditioners
JP2005291553A (en) Multiple air conditioner
JP2001116287A (en) Air conditioner
JP3078746B2 (en) Air conditioner
CN110608541A (en) Heat pump system
CN210832606U (en) Air conditioner
JP3603844B2 (en) External heat recovery system
JP2002181349A (en) Heat pump air conditioner
JPH0894202A (en) Air conditioner
CN115183441B (en) Air conditioner
CN114413499B (en) Air conditioner jet circulation system and control method thereof
JP3422421B2 (en) Low noise heat pump type outside air treatment air conditioner
CN110608540B (en) Heat pump system
JP4285010B2 (en) Air conditioner
JP2004144334A (en) Ceiling-installed integral type air conditioner
JP3420660B2 (en) Heat source unit, operation method thereof, and air conditioning system using the heat source unit
JPH06213478A (en) Air-conditioning machine
JPH10292949A (en) Compressor capacity controller for air conditioner
JP2008286444A (en) Air conditioning device