JPH09269160A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09269160A
JPH09269160A JP8103809A JP10380996A JPH09269160A JP H09269160 A JPH09269160 A JP H09269160A JP 8103809 A JP8103809 A JP 8103809A JP 10380996 A JP10380996 A JP 10380996A JP H09269160 A JPH09269160 A JP H09269160A
Authority
JP
Japan
Prior art keywords
air conditioner
pressure
flow rate
heat exchanger
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8103809A
Other languages
Japanese (ja)
Other versions
JP3748620B2 (en
Inventor
Isato Mihira
勇人 三平
Hiroaki Miyazaki
裕明 宮崎
Naohisa Hayakawa
尚央 早川
Yasuhiro Kojima
康洋 小島
Takumasa Shinmachi
拓正 新町
Shuhei Yoshimoto
周平 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPURE KK
TOUPURE KK
Original Assignee
TOPURE KK
TOUPURE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPURE KK, TOUPURE KK filed Critical TOPURE KK
Priority to JP10380996A priority Critical patent/JP3748620B2/en
Publication of JPH09269160A publication Critical patent/JPH09269160A/en
Application granted granted Critical
Publication of JP3748620B2 publication Critical patent/JP3748620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To change modes of an outdoor air conditioner device and an indoor air conditioner device within a minimum short period of time without stopping an operation of each of the devices and improve a rising characteristic in operation after changing modes. SOLUTION: A plurality of indoor air conditioners 50A, 50B are connected in parallel with an outdoor air conditioner through a branch device 40. There are provided a first connecting means comprised of flow rate adjusting valves 5A, 5B and a second connecting means comprised of flow rate adjusting valves 5A, 5B. When a mode is changed, refrigerant pressure within heat exchangers 6, 18 is decreased or increased while the flow rate of refrigerant is being restricted and conducted. When a pressure difference across the connecting means is lower than a predetermined value, full opened communication causes an operation of each of the devices to be started under a new mode setting within a minimum period of time. In addition, the flow rate adjusting valves 25, 14 adjacent to the expansion valves 7, 15 are fully opened only for a specified period of time, flush gas between the expansion valve and the flow rate adjusting valve is removed and its rising characteristic is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外調機と複数の室
内空調機とからなり、ビル等の空気調和に用いられるマ
ルチタイプの空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner comprising an air conditioner and a plurality of indoor air conditioners, which is used for air conditioning of a building or the like.

【0002】[0002]

【従来の技術】近年のビル等の空気調和は多様化し、夏
は冷房、冬は暖房といった単純なものではなくなってい
る。つまりビル等の内部では季節、部屋の方位や位置、
OA機器等の負荷により空気調和システム内で冷房運転
と暖房運転とを同時に行いたい場合がある。例えばビル
内のインテリアゾーンでは冷房運転を、ペリメータゾー
ンでは暖房運転を行いたい場合がある。また、春、秋の
中間期には朝夕に暖房運転、昼間には冷房運転が求めら
れる場合もある。そしてこの場合、冷房運転と暖房運転
の切り換え時期が空調ゾーンの方角により異なり、南側
では冷房運転に切り換わるべき条件に至っているのに、
北側では依然暖房運転が継続される必要があることもあ
る。さらにOA機器等の負荷の大きい所では、冬でも一
日中冷房運転しなければならない場合もある。しかもこ
れらの運転モード切り換えについては、機器が停止する
ことなく連続して行われる必要がある。
2. Description of the Related Art In recent years, air conditioning in buildings and the like has become diversified, and it is no longer as simple as cooling in summer and heating in winter. In other words, inside the building, the season, the direction and position of the room,
There is a case where it is desired to simultaneously perform the cooling operation and the heating operation in the air conditioning system due to the load of the OA equipment or the like. For example, there is a case where it is desired to perform a cooling operation in an interior zone in a building and perform a heating operation in a perimeter zone. In addition, heating operation may be required in the morning and evening in the middle of spring and autumn, and cooling operation may be required in the daytime. And in this case, the switching timing between the cooling operation and the heating operation differs depending on the direction of the air conditioning zone, and the condition to switch to the cooling operation is reached on the south side,
On the north side, heating operation may still need to be continued. Further, in a place with a heavy load such as OA equipment, it may be necessary to perform cooling operation all day even in winter. Moreover, it is necessary to continuously switch these operation modes without stopping the equipment.

【0003】これらの要望に応えるには4パイプ式エア
ーハンドリングユニットと呼ばれる空調機がある。これ
は冷房専用と暖房専用の2つの熱交換器を内蔵し、空調
負荷に合わせて冷房から暖房まで自由に給気温度を変え
ることができる空気調和装置である。また、デュアルダ
クト方式と呼ばれ、冷房専用と暖房専用の2台のエアー
ハンドリングユニットからの給気を混合して空気調和を
行う方式もある。しかしながら、どちらも冷暖両方の熱
源を用意したうえ、それぞれの廃熱は捨てられているこ
とから、省エネルギーに反することや配管の水漏れ事故
の多発等の理由から採用を控える傾向にある。
To meet these demands, there is an air conditioner called a 4-pipe type air handling unit. This is an air conditioner that has two built-in heat exchangers dedicated to cooling and heating, and can freely change the supply air temperature from cooling to heating according to the air conditioning load. In addition, there is also a method called a dual duct method, in which air supply from two air handling units dedicated to cooling and heating is mixed to perform air conditioning. However, since both heat sources for cooling and heating are prepared and the waste heat of each is discarded, there is a tendency to refrain from adopting it because it is against energy conservation and because of frequent occurrence of water leaks in pipes.

【0004】そこで、冷暖同時運転ができて、水を使わ
ないヒートポンプマルチエアコンが採用される場合があ
る。これは1台の室外ユニットと複数の室内ユニットで
構成され、室内ユニットを空調ゾーンごとに設置し、室
外ユニットと室内ユニットを液管、高圧ガス管、低圧ガ
ス管で構成される配管で接続し、個々の室内ユニットが
冷房運転と暖房運転を自由に運転可能な空気調和装置で
あり、冷暖同時運転時は省エネルギーとなり、コストも
安い点から採用されている。ところが、このヒートポン
プマルチエアコンをビル空調のため設置すると、空調負
荷状況により運転中に室内ユニットを冷房運転から暖房
運転、またはその反対に切り換えたり、室外ユニットの
熱交換器を蒸発モードから凝縮モード、またはその反対
に切り換えることが頻繁に起こる。そこで、電磁弁を切
り換えねばならず、その都度機器を停止して時間をかけ
て操作するしかなく、あるいは停止させずに操作させる
と異音が発生する問題があった。
Therefore, there is a case where a heat pump multi-air conditioner capable of simultaneous cooling and heating operation and using no water is adopted. This is composed of one outdoor unit and multiple indoor units. The indoor unit is installed in each air conditioning zone, and the outdoor unit and the indoor unit are connected by a pipe composed of a liquid pipe, a high pressure gas pipe and a low pressure gas pipe. The individual indoor unit is an air conditioner that can freely perform cooling and heating operations, and is used because it saves energy and costs at the same time during simultaneous cooling and heating operations. However, if this heat pump multi air conditioner is installed for building air conditioning, the indoor unit is switched from cooling operation to heating operation or vice versa depending on the air conditioning load condition, or the heat exchanger of the outdoor unit is changed from evaporation mode to condensation mode, Or vice versa, switching frequently occurs. Therefore, the solenoid valve has to be switched, and each time the device has to be stopped and operated for a long time, or if it is operated without stopping, abnormal noise occurs.

【0005】この異音の対策として、例えば特開平5−
203275号公報に開示されたものがある。これは、
冷暖同時型ヒートポンプマルチエアコンにおいて、室外
ユニットから来た吐出管(高圧ガス管)と室内ユニット
との間に第1の室内側切換弁を設け、また室外ユニット
から来た吸入管(低圧ガス管)と室内ユニットとの間に
第2の室内側切換弁を設けたものである。第1の室内側
切換弁には並列に第1のバイパス回路を、そして第2の
室内側切換弁には第2のバイパス回路を接続している。
As a countermeasure against this abnormal noise, for example, Japanese Unexamined Patent Publication No.
There is one disclosed in Japanese Patent Laid-Open No. 203275. this is,
In a simultaneous heating / cooling heat pump multi-air conditioner, a first indoor side switching valve is provided between the discharge pipe (high pressure gas pipe) coming from the outdoor unit and the indoor unit, and the suction pipe (low pressure gas pipe) coming from the outdoor unit. A second indoor side switching valve is provided between the indoor unit and the indoor unit. A first bypass circuit is connected in parallel to the first indoor side switching valve, and a second bypass circuit is connected to the second indoor side switching valve.

【0006】暖房運転から冷房運転に切り換える際に
は、室内ユニットにおいて、膨張弁を全閉かつ第1の室
内側切換弁を閉とした状態を所定の時間維持した後、第
2のバイパス回路を閉、第2の室内側切換弁、第1のバ
イパス回路および膨張弁を開とするよう制御される。ま
た、冷房運転から暖房運転に切り換える際には、第2の
室内側切換弁および第2のバイパス回路を閉、膨張弁を
全閉とした状態を所定の時間維持した後、第1のバイパ
ス回路を閉、第1の室内側切換弁、第2のバイパス回路
および膨張弁を開とするものである。
When switching from the heating operation to the cooling operation, in the indoor unit, the state in which the expansion valve is fully closed and the first indoor-side switching valve is closed is maintained for a predetermined time, and then the second bypass circuit is turned on. It is controlled to close and open the second indoor-side switching valve, the first bypass circuit and the expansion valve. When switching from the cooling operation to the heating operation, the second indoor side switching valve and the second bypass circuit are closed, and the expansion valve is fully closed for a predetermined time, and then the first bypass circuit. Is closed and the first indoor-side switching valve, the second bypass circuit and the expansion valve are opened.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このヒ
ートポンプマルチエアコンは冷暖同時運転はできるもの
の、吹き出し温度については制御の対象となっておら
ず、冷房から暖房まで任意の吹き出し温度を得るという
ことはできない。さらに、複数の室内ユニットの間で冷
媒を任意に分配する制御もできず、またコンプレッサの
容量制御も十分でないため、吹き出し温度もまちまちで
あることから、室内が設定温度に達すると室内ユニット
の制御弁を閉じ機能を停止してしまい、室温制御性が良
いとは言いがたい。また、室内空気循環型の空気調和方
式であるため、外気処理機能のためには新たに外気処理
装置を室内ユニットごとに設置しなければならず、設備
コストを要するという問題がある。
However, although this heat pump multi-air conditioner is capable of simultaneous cooling and heating operation, it does not control the blowing temperature, and it is not possible to obtain any blowing temperature from cooling to heating. . Furthermore, since it is not possible to control the distribution of refrigerant between multiple indoor units arbitrarily, and the capacity control of the compressor is not sufficient, the blowout temperature is also different. It is hard to say that room temperature controllability is good because the valve is closed and the function is stopped. Further, since it is an indoor air circulation type air conditioning system, an outside air processing device must be newly installed for each indoor unit for the outside air processing function, which causes a problem that equipment cost is required.

【0008】さらに、上記ヒートポンプマルチエアコン
では、室内ユニットはコンプレッサを運転中にモード切
り換えが可能な場合もあるが、室内ユニットのモード変
更を伴なう場合はコンプレッサを停止し、配管内が均圧
されるのを待たねばならず、その間機器を停止しなけれ
ばならない。また、第1および第2のバイパス回路をモ
ード変更時に所定の時間だけ開くようになっているが、
冷凍サイクルの運転状態によって前後の差圧はまちまち
であり、均圧に要する時間もその都度変動する。これを
カバーして異音を確実に防止するためには、バイパス回
路を開いておく時間を長く設定するしかなく、早急に変
更しなければならないビル空調には不適当である。
Further, in the above heat pump multi-air conditioner, the mode of the indoor unit may be switched while the compressor is operating, but when the mode of the indoor unit is changed, the compressor is stopped and the pressure in the pipe is equalized. You have to wait for it to be done, while you have to shut down the equipment. Further, although the first and second bypass circuits are designed to be opened for a predetermined time when the mode is changed,
The differential pressure between the front and rear varies depending on the operating state of the refrigeration cycle, and the time required for pressure equalization varies each time. In order to cover this and surely prevent abnormal noise, there is no choice but to set a long time for keeping the bypass circuit open, which is unsuitable for a building air conditioner that needs to be changed immediately.

【0009】したがって、本発明は、上記従来の問題点
に鑑み、外調機と複数の室内空調機を備える空気調和装
置において、給気温度を制御でき、コンプレッサを停止
することなく早急にかつ自由に室内空調機を冷房運転か
ら暖房運転、あるいは暖房運転から冷房運転に切り換え
ができ、同じく外調機の熱交換器も蒸発モードから凝縮
モード、あるいは凝縮モードから蒸発モードに切り換え
ができる空気調和装置を提供することを目的とする。
Therefore, in view of the above-mentioned conventional problems, the present invention can control the supply air temperature in an air conditioner equipped with an external air conditioner and a plurality of indoor air conditioners, and can quickly and freely operate without stopping the compressor. An air conditioner that can switch the indoor air conditioner from cooling operation to heating operation, or from heating operation to cooling operation, and also can switch the heat exchanger of the external controller from evaporation mode to condensation mode or from condensation mode to evaporation mode The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】このため、本発明は、熱
交換器、該熱交換器に付設された膨張弁、該膨張弁と直
列に設けられた流量調整弁を備える外調機と、それぞれ
熱交換器、該熱交換器に付設された膨張弁、該膨張弁と
直列に設けられた流量調整弁を備え、冷凍サイクルの液
管と高圧ガス管と低圧ガス管を形成する冷媒配管により
外調機に並列に接続された複数の室内空調機とからな
り、それぞれの室内空調機が個別に冷房運転または暖房
運転に選択的に制御される空気調和装置において、外調
機の熱交換器に接続されたガス管と前記高圧ガス管また
は低圧ガス管との間を流量調整可能な第1の接続手段で
接続し、室内空調機の熱交換器に接続されたガス管と前
記高圧ガス管または低圧ガス管との間を流量調整可能な
第2の接続手段で接続したものとした。
To this end, the present invention provides an external conditioner including a heat exchanger, an expansion valve attached to the heat exchanger, and a flow rate adjusting valve provided in series with the expansion valve, A heat exchanger, an expansion valve attached to the heat exchanger, a flow rate adjustment valve provided in series with the expansion valve, and a refrigerant pipe forming a liquid pipe, a high pressure gas pipe, and a low pressure gas pipe of a refrigeration cycle. In an air conditioner comprising a plurality of indoor air conditioners connected in parallel to an external air conditioner, each of the indoor air conditioners being selectively controlled for cooling operation or heating operation, a heat exchanger for the external air conditioner. And a high-pressure gas pipe connected to a heat exchanger of an indoor air conditioner by connecting a gas pipe connected to the Alternatively, the second low pressure gas pipe is connected by a second connecting means capable of adjusting the flow rate. It was what was.

【0011】とくに上記の第1の接続手段は、外調機の
熱交換器が蒸発モードから凝縮モードに変更になるとき
外調機の熱交換器内の圧力と前記高圧ガス管の圧力が所
定の圧力差以上に保持されるよう制限しながら高圧ガス
管から冷媒を導通させ、外調機の熱交換器が凝縮モード
から蒸発モードに変更になるとき外調機の熱交換器内の
圧力と前記低圧ガス管の圧力が所定の圧力差以上に保持
されるよう制限しながら低圧ガス管に冷媒を導通させ、
それぞれ圧力差が所定値より小さくなったとき全開連通
するように構成され、また、第2の接続手段は、室内空
調機の熱交換器が暖房運転から冷房運転に変更になると
き室内空調機の熱交換器内の圧力と前記低圧ガス管の圧
力が所定の圧力差以上に保持されるよう制限しながら低
圧ガス管に冷媒を導通させ、室内空調機の熱交換器が冷
房運転から暖房運転に変更になるとき室内空調機の熱交
換器内の圧力と前記高圧ガス管の圧力が所定の圧力差以
上に保持されるよう制限しながら高圧ガス管から冷媒を
導通させ、それぞれ圧力差が所定値より小さくなったと
き全開連通するように構成されることができる。
In particular, the above-mentioned first connecting means is such that when the heat exchanger of the external conditioner is changed from the evaporation mode to the condensation mode, the pressure inside the heat exchanger of the external conditioner and the pressure of the high pressure gas pipe are predetermined. When the heat exchanger of the external controller changes from the condensation mode to the evaporation mode while conducting the refrigerant from the high pressure gas pipe while limiting the pressure so that it is maintained above the pressure difference of Passing the refrigerant through the low-pressure gas pipe while limiting the pressure of the low-pressure gas pipe to be maintained at a predetermined pressure difference or more,
When the pressure difference becomes smaller than a predetermined value, they are connected so as to be fully opened, and the second connecting means is provided for the indoor air conditioner when the heat exchanger of the indoor air conditioner is changed from heating operation to cooling operation. The refrigerant is conducted to the low pressure gas pipe while limiting the pressure in the heat exchanger and the pressure of the low pressure gas pipe so as to be maintained at a predetermined pressure difference or more, and the heat exchanger of the indoor air conditioner is changed from the cooling operation to the heating operation. When changing the pressure inside the heat exchanger of the indoor air conditioner and the pressure of the high-pressure gas pipe are controlled so as to be maintained at a predetermined pressure difference or more, and the refrigerant is conducted from the high-pressure gas pipe, and each pressure difference has a predetermined value. It can be configured to be in full open communication when smaller.

【0012】さらに、外調機の流量調整弁は、蒸発モー
ドから凝縮モードへの変更または凝縮モードから蒸発モ
ードへの変更に際して閉じられ、第1の接続手段による
制限された導通のあと所定時間だけ所定開度まで開かれ
て外調機の膨張弁近傍のガス状冷媒を除去するように構
成されるのが好ましい。また、室内空調機の流量調整弁
も、暖房運転から冷房運転への変更または冷房運転から
暖房運転への変更に際して閉じられ、第2の接続手段に
よる制限された導通のあと所定時間だけ所定開度まで開
かれて室内空調機の膨張弁近傍のガス状冷媒を除去する
ように構成されるのが好ましい。
Furthermore, the flow control valve of the external regulator is closed when the evaporation mode is changed to the condensation mode or when the condensation mode is changed to the evaporation mode, and only for a predetermined time after the limited conduction by the first connecting means. It is preferably configured to be opened to a predetermined opening degree to remove the gaseous refrigerant near the expansion valve of the external pressure regulator. Further, the flow rate control valve of the indoor air conditioner is also closed at the time of changing from the heating operation to the cooling operation or from the cooling operation to the heating operation, and after a limited conduction by the second connecting means, a predetermined opening degree for a predetermined time. It is preferably configured to be opened to remove gaseous refrigerant near the expansion valve of the indoor air conditioner.

【0013】上記第1の接続手段または第2の接続手段
は、それぞれその開度を制御される電子式流量調整弁で
構成することができる。あるいはまた、第1の接続手段
または第2の接続手段を、主電磁弁と、副電磁弁および
キャピラリを直列に接続し主電磁弁に並列に接続された
バイパス回路で構成し、主電磁弁を閉じバイパス回路を
開くことにより制限された導通を行ない、その後主電磁
弁による接続に移行するものとすることもできる。
Each of the first connecting means and the second connecting means can be composed of an electronic flow rate adjusting valve whose opening is controlled. Alternatively, the first connecting means or the second connecting means is configured by a main solenoid valve and a bypass circuit in which the sub solenoid valve and the capillary are connected in series and connected in parallel to the main solenoid valve, and the main solenoid valve is It is also possible to provide a limited conduction by opening the closed bypass circuit and then to transfer to the connection by the main solenoid valve.

【0014】[0014]

【作用】外調機の熱交換器の蒸発モード・凝縮モード間
変更、あるいは室内空調機の冷房運転・暖房運転間の変
更にあたって、まず第1または第2の接続手段で冷媒流
量を制限させながら導通させて熱交換器内の冷媒圧力を
減圧または昇圧させる。これにより、変更時の異音の発
生が防止される。とくに、接続手段の前後の圧力差が予
め定められた値以下になったとき全開連通させものとす
ることにより、切り換えに要する時間が必要最小限で新
たなモードでの運転が開始される。
[Function] When changing between the evaporation mode and the condensation mode of the heat exchanger of the external air conditioner or between the cooling operation and the heating operation of the indoor air conditioner, first, the refrigerant flow rate is limited by the first or second connecting means. The refrigerant pressure in the heat exchanger is reduced or increased by making it conductive. This prevents the generation of abnormal noise when changing. In particular, when the pressure difference before and after the connecting means becomes equal to or less than a predetermined value, the full-open communication is performed, so that the operation in the new mode is started with the minimum required time for switching.

【0015】さらに、外調機や室内空調機の流量調整弁
を新たなモードの運転開始にあたって所定時間だけ所定
開度まで開くことにより、膨張弁と流量調整弁の間など
膨張弁近傍のフラッシュガス等が除去される。
Further, by opening the flow control valve of the external air conditioner or the indoor air conditioner to a predetermined opening for a predetermined time when the operation of the new mode is started, the flash gas near the expansion valve such as between the expansion valve and the flow control valve is opened. Etc. are removed.

【0016】[0016]

【発明の実施の形態】図1は本発明の第1の実施例の冷
媒回路を示す。この実施例においては、2機の室内空調
機50A、50Bは分岐ユニット40を介して、液管、
低圧ガス管および高圧ガス管を形成する冷媒配管R1、
R2、R3により、外調機30に対して並列に接続され
ている。外調機30は能力可変のコンプレッサ1と熱交
換器6を備える。コンプレッサ1の吐出側と吸い込み側
の配管には、それぞれ圧力センサ11A、11Bが設け
られている。
1 shows a refrigerant circuit according to a first embodiment of the present invention. In this embodiment, the two indoor air conditioners 50A and 50B are connected via a branch unit 40 to a liquid pipe,
A refrigerant pipe R1 forming a low pressure gas pipe and a high pressure gas pipe,
The external modulator 30 is connected in parallel by R2 and R3. The external air conditioner 30 includes a compressor 1 having a variable capacity and a heat exchanger 6. The discharge side and suction side pipes of the compressor 1 are provided with pressure sensors 11A and 11B, respectively.

【0017】外調機30には、さらに分岐ユニット40
からの冷媒配管R1から熱交換器6方向に順に液タンク
27、電子式の流量調整弁25、同じく電子式の膨張弁
7が付設されている。熱交換器6の他端側の冷媒配管
(ガス管)には、圧力センサ8が付設されるとともに、
電子式の流量調整弁5Aを介して冷媒配管R2に接続さ
れ、また流量調整弁5Bを介して冷媒配管R3に接続さ
れている。冷媒配管R2はまたアキュムレータ3に接続
され、冷媒配管R3はコンプレッサ1の吐出側に接続さ
れている。さらに熱交換器6には送風機21を備えてい
る。
The external conditioner 30 further includes a branch unit 40.
A liquid tank 27, an electronic flow rate adjusting valve 25, and an electronic expansion valve 7 are attached in this order from the refrigerant pipe R1 to the heat exchanger 6 direction. A pressure sensor 8 is attached to the refrigerant pipe (gas pipe) on the other end side of the heat exchanger 6, and
It is connected to the refrigerant pipe R2 via an electronic flow rate adjusting valve 5A, and is also connected to the refrigerant pipe R3 via a flow rate adjusting valve 5B. The refrigerant pipe R2 is also connected to the accumulator 3, and the refrigerant pipe R3 is connected to the discharge side of the compressor 1. Further, the heat exchanger 6 is provided with a blower 21.

【0018】分岐ユニット40は電子式の流量調整弁1
3A、13B、23A、23Bが備えられ、流量調整弁
13A、13Bはそれぞれ室内空調機50A、50Bを
冷媒配管R2に連通可能とし、流量調整弁23A、23
Bはそれぞれ室内空調機50A、50Bを冷媒配管R3
に連通可能とする。
The branch unit 40 is an electronic flow control valve 1
3A, 13B, 23A, 23B are provided, and the flow rate adjusting valves 13A, 13B enable the indoor air conditioners 50A, 50B to communicate with the refrigerant pipe R2, respectively, and the flow rate adjusting valves 23A, 23B.
B is a refrigerant pipe R3 for the indoor air conditioners 50A and 50B, respectively.
Can communicate with

【0019】室内空調機50Aは、熱交換器18Aと、
これに付設された送風機24Aを備える。熱交換器18
Aの一方の端は、分岐ユニット40を通り冷媒配管R1
に接続され、他端方は分岐ユニット40の流量調整弁1
3Aと23Aに接続される。上記熱交換器18Aの一端
側の冷媒配管R1には、分岐ユニット40から熱交換器
18A方向に順に電子式の流量調整弁14A、同じく電
子式の膨張弁15Aが設けられている。また、熱交換器
18Aの反対側には圧力センサ16Aが設けられてい
る。熱交換器18Aで熱交換され、送風機24Aにより
吹き出される給気は、ダクトにより空調ゾーンへ導かれ
る。室内空調機50Bも室内空調機50Aと同様に構成
され、それぞれ参照番号にBを付して示す。
The indoor air conditioner 50A includes a heat exchanger 18A,
It has a blower 24A attached thereto. Heat exchanger 18
One end of A passes through the branch unit 40 and the refrigerant pipe R1.
The flow control valve 1 of the branch unit 40 is connected to
Connected to 3A and 23A. The refrigerant pipe R1 on one end side of the heat exchanger 18A is provided with an electronic flow rate adjusting valve 14A and an electronic expansion valve 15A in the order from the branch unit 40 in the direction of the heat exchanger 18A. A pressure sensor 16A is provided on the opposite side of the heat exchanger 18A. The air supplied by the heat exchanger 18A and blown out by the blower 24A is guided to the air conditioning zone by the duct. The indoor air conditioner 50B is also configured in the same manner as the indoor air conditioner 50A, and each reference numeral is indicated by adding B.

【0020】図2は、上記室内空調機および外調機にお
ける制御装置を示す。制御装置はマイクロコンピュータ
およびその周辺機器からなる。すなわち、空調機制御部
31には外調機のための周辺機器として、膨張弁7の駆
動制御部34、流量調整弁25、5A、5Bの駆動制御
部48、圧力センサ8、11A、11Bのための圧力変
換器37、コンプレッサ1のためのインバータ回路32
が接続されている。
FIG. 2 shows a control device for the indoor air conditioner and the outdoor air conditioner. The control device consists of a microcomputer and its peripherals. That is, the air conditioner control unit 31 includes, as peripheral devices for the external air conditioner, the drive control unit 34 for the expansion valve 7, the drive control unit 48 for the flow rate adjusting valves 25, 5A, 5B, and the pressure sensors 8, 11A, 11B. Pressure converter 37 for, inverter circuit 32 for compressor 1
Is connected.

【0021】一方、室内空調機50Aのための制御機器
として、膨張弁15Aの駆動制御部39A、流量調整弁
14A、13A、23Aの駆動制御部41A、圧力セン
サ16Aのための圧力変換器43Aが空調機制御部31
に接続されている。室内空調機50Bのための制御機器
についても室内空調機50Aのための制御機器と同様の
ものが接続され、それぞれ参照番号にBを付して示す。
空調機制御部31は、上記室内空調機50A、50Bの
負荷量を演算し、コンプレッサ1を駆動する。
On the other hand, as control devices for the indoor air conditioner 50A, a drive control unit 39A for the expansion valve 15A, a drive control unit 41A for the flow rate adjusting valves 14A, 13A, 23A, and a pressure converter 43A for the pressure sensor 16A are provided. Air conditioner controller 31
It is connected to the. As for the control device for the indoor air conditioner 50B, the same control device as the control device for the indoor air conditioner 50A is connected, and B is attached to each reference number.
The air conditioner control unit 31 calculates the load amount of the indoor air conditioners 50A and 50B and drives the compressor 1.

【0022】つぎに、上記構成における作動について説
明する。図3は、全ての室内空調機が冷房運転される全
冷房運転時の冷媒の流れを示す。全ての室内空調機が冷
房運転されるときには、外調機においては流量調整弁5
Bが全開状態、流量調整弁5Aが全閉状態となり、分岐
ユニットにおいては流量調整弁13A、13Bがそれぞ
れ全開状態、23A、23Bが全閉状態となるよう制御
される。外調機の熱交換器6は凝縮器、各室内空調機の
熱交換器18A、18Bは蒸発器として作用する。
Next, the operation of the above configuration will be described. FIG. 3 shows the flow of the refrigerant during the cooling only operation in which all the indoor air conditioners are cooled. When all indoor air conditioners are in cooling operation, the flow rate adjustment valve 5
B is in a fully open state, the flow rate adjusting valve 5A is in a fully closed state, and in the branch unit, the flow rate adjusting valves 13A and 13B are in a fully open state and 23A and 23B are in a fully closed state. The heat exchanger 6 of the external air conditioner acts as a condenser, and the heat exchangers 18A and 18B of each indoor air conditioner act as evaporators.

【0023】すなわち、外調機30において、コンプレ
ッサ1からの高圧ガス冷媒は、矢示のように流量調整弁
5Bを通り、熱交換器6で液化する。それから液タンク
27、冷媒配管R1、分岐ユニット40を経て冷媒は分
岐配管より分岐され、各流量調整弁14A、14Bに並
列に入り、続いて膨張弁15A、15Bにより減圧され
て、低温の気液混合状態になる。つぎに、冷媒は熱交換
器18A、18Bにおいて還気と熱交換され、ガス状の
冷媒となる。そして、流量調整弁13A、13Bを経
て、冷媒配管R2、アキュムレータ3を経てコンプレッ
サ1に戻る。流量調整弁5A、5Bが発明の第1の接続
手段を構成し、流量調整弁13A、13B、23A、2
3Bが第2の接続手段を構成している。
That is, in the external conditioner 30, the high-pressure gas refrigerant from the compressor 1 passes through the flow rate adjusting valve 5B as shown by the arrow and is liquefied in the heat exchanger 6. Then, the refrigerant is branched from the branch pipe through the liquid tank 27, the refrigerant pipe R1, and the branch unit 40, enters the flow rate adjusting valves 14A and 14B in parallel, and is subsequently decompressed by the expansion valves 15A and 15B, so that the low temperature gas-liquid is obtained. It becomes a mixed state. Next, the refrigerant is heat-exchanged with the return air in the heat exchangers 18A and 18B to become a gaseous refrigerant. Then, the flow returns to the compressor 1 via the flow rate adjusting valves 13A and 13B, the refrigerant pipe R2 and the accumulator 3. The flow rate adjusting valves 5A, 5B constitute the first connecting means of the invention, and the flow rate adjusting valves 13A, 13B, 23A, 2
3B constitutes the second connecting means.

【0024】この間における外調機30の膨張弁7、流
量調整弁25、各室内空調機50A、50Bの流量調整
弁14A、14B、膨張弁15A、15Bの制御は以下
のように行われる。まず、空調機制御部31により膨張
弁7は全開状態に保持される。流量調整弁25は室内空
調機50A、50Bの負荷状態により開度を制御され
る。また、流量調整弁14A、14Bは室内空調機50
A、50Bの給気温度により開度を制御される。膨張弁
15A、15Bは熱交換器18A、18Bの過熱度によ
り制御される。つまり、流量調整弁14A、14Bが室
内空調機50A、50Bの容量制御を行っている。
During this time, the expansion valve 7, the flow rate adjusting valve 25 of the external air conditioner 30, the flow rate adjusting valves 14A, 14B and the expansion valves 15A, 15B of the indoor air conditioners 50A, 50B are controlled as follows. First, the expansion valve 7 is held in the fully opened state by the air conditioner control unit 31. The opening of the flow rate adjusting valve 25 is controlled by the load states of the indoor air conditioners 50A and 50B. Further, the flow rate adjusting valves 14A and 14B are used for the indoor air conditioner 50.
The opening is controlled by the supply air temperatures of A and 50B. The expansion valves 15A and 15B are controlled by the degree of superheat of the heat exchangers 18A and 18B. That is, the flow rate adjusting valves 14A and 14B control the capacity of the indoor air conditioners 50A and 50B.

【0025】つぎに、全ての室内空調機が暖房運転され
る全暖房運転時の冷媒の流れを図4を参照して説明す
る。全ての室内空調機が暖房運転されるときには、外調
機においては流量調整弁5Aが全開状態、流量調整弁5
Bが全閉状態となり、分岐ユニット40においては流量
調整弁23A、23Bが全開状態、流量調整弁13A、
13Bが全閉状態となるよう制御される。外調機30の
熱交換器6は蒸発器、各室内空調機の熱交換器18A、
18Bが凝縮器として作用する。
Next, the flow of the refrigerant during the heating only operation in which all the indoor air conditioners are heated will be described with reference to FIG. When all the indoor air conditioners are operated for heating, the flow rate adjusting valve 5A is fully opened in the external air conditioner.
B is in the fully closed state, in the branch unit 40, the flow rate adjusting valves 23A and 23B are in the fully open state, and the flow rate adjusting valve 13A and
13B is controlled so as to be fully closed. The heat exchanger 6 of the external air conditioner 30 is an evaporator, the heat exchanger 18A of each indoor air conditioner,
18B acts as a condenser.

【0026】すなわち、外調機30のコンプレッサ1か
らの高圧ガス冷媒は、冷媒配管R3を経て、分岐ユニッ
ト40に入る。冷媒はここで分岐され、流量調整弁23
A、23Bを通って、各室内空調機50A、50Bの熱
交換器18A、18Bに入って液化される。このあと、
膨張弁15A、15B、流量調整弁14A、14Bを経
たあと分岐ユニット40、冷媒配管R1を通り外調機3
0の液タンク27に入る。さらに、液タンク27を出た
冷媒は流量調整弁25を経て膨張弁7に入り減圧され、
低温の気液混合状態になり熱交換器6に入る。冷媒は熱
交換器6で外気と熱交換されてガス状となり、流量調整
弁5Aを経てアキュムレータ3に入り、コンプレッサ1
に戻る。
That is, the high-pressure gas refrigerant from the compressor 1 of the external conditioner 30 enters the branch unit 40 via the refrigerant pipe R3. The refrigerant is branched here, and the flow rate adjusting valve 23
After passing through A and 23B, they enter the heat exchangers 18A and 18B of the indoor air conditioners 50A and 50B and are liquefied. after this,
After passing through the expansion valves 15A and 15B and the flow rate adjusting valves 14A and 14B, the branch unit 40 and the refrigerant pipe R1 are passed and the external conditioner 3
The liquid tank 27 of 0 enters. Further, the refrigerant discharged from the liquid tank 27 enters the expansion valve 7 via the flow rate adjusting valve 25 and is decompressed,
A low-temperature gas-liquid mixed state is established and the heat exchanger 6 is entered. The refrigerant exchanges heat with the outside air in the heat exchanger 6 to become a gas, enters the accumulator 3 via the flow rate adjusting valve 5A, and enters the compressor 1
Return to

【0027】この間における流量調整弁14A、14
B、膨張弁15A、15B、流量調整弁25、膨張弁7
の制御は以下のように行われる。まず、空調機制御部3
1により、流量調整弁14A、14Bは室内空調機50
A、50Bの給気温により開度が制御される。膨張弁1
5A、15Bは全開に保持される。また、流量調整弁2
5は室内空調機50A、50Bの給気温により開度を制
御される。そして、膨張弁7は熱交換器6の過熱度によ
り制御される。
During this time, the flow rate adjusting valves 14A, 14
B, expansion valves 15A and 15B, flow rate adjusting valve 25, expansion valve 7
Is controlled as follows. First, the air conditioner control unit 3
1, the flow rate adjusting valves 14A and 14B are connected to the indoor air conditioner 50.
The opening degree is controlled by the supply air temperatures of A and 50B. Expansion valve 1
5A and 15B are held fully open. In addition, the flow rate adjustment valve 2
The opening 5 is controlled by the temperature of the indoor air conditioners 50A and 50B. The expansion valve 7 is controlled by the degree of superheat of the heat exchanger 6.

【0028】つぎに、冷房運転と暖房運転が平行して行
われる場合の制御は、冷房運転の室内空調機の流量調整
弁、膨張弁は全冷房運転の室内空調機の制御と同様で、
暖房運転の室内空調機の流量調整弁、膨張弁は全暖房運
転の室内空調機の制御と同様である。そして、外調機の
流量調整弁、膨張弁の制御は、室内空調機の冷房負荷が
暖房負荷より大きい場合は、外調機の熱交換器が凝縮器
として作用するため全冷房運転のときの外調機と同様に
なり、室内空調機の暖房負荷が冷房負荷より大きい場合
は、外調機の熱交換器が蒸発器として作用するため全暖
房運転のときの外調機と同様となる。
Next, the control in the case where the cooling operation and the heating operation are performed in parallel is the same as the control of the flow rate adjusting valve and the expansion valve of the indoor air conditioner in the cooling operation,
The flow control valve and expansion valve of the indoor air conditioner in the heating operation are the same as the control of the indoor air conditioner in the heating only operation. Then, when the cooling load of the indoor air conditioner is larger than the heating load, the heat exchanger of the external air conditioner acts as a condenser so that the flow control valve of the external air conditioner and the expansion valve are controlled. When the heating load of the indoor air conditioner is larger than the cooling load, the heat exchanger of the external air conditioner acts as an evaporator, so that it becomes the same as the external air conditioner during the heating only operation.

【0029】つぎに室内空調機が冷房運転から暖房運転
に変更される場合の作動について説明する。まず室内空
調機50Aが冷房運転されているときは、図3の室内空
調機50Aに矢示で示すように冷媒が流れている。ここ
で室内空調機50Aが暖房運転に切り換わるべき条件に
なると、空調機制御部31はまず流量調整弁14A、1
3Aを全閉にする。また、膨張弁15Aを全開にする。
つぎに流量調整弁23Aを中間開度だけ開いて熱交換器
18Aや室内空調機50Aの配管内に冷媒配管R3から
冷媒を導くと、熱交換器18Aの圧力が上昇する。ここ
で空調機制御部31は圧力センサ16Aと11Aより流
量調整弁23A前後の圧力を検出し、差圧を演算する。
そして予め定められた値以下になるまでこの状態を保持
する。換言すれば、流量調整弁23Aが中間開度に抑さ
えられる結果流れが制限され、熱交換器18A内の圧力
と高圧ガス管である冷媒配管R3の圧力が所定の圧力差
以上に保持され、徐々に均圧方向へ向かい自然に圧力差
が小さくなるまでこの状態が続く。
Next, the operation when the indoor air conditioner is changed from the cooling operation to the heating operation will be described. First, when the indoor air conditioner 50A is in the cooling operation, the refrigerant flows through the indoor air conditioner 50A in FIG. 3 as indicated by the arrow. Here, when the indoor air conditioner 50A becomes a condition for switching to the heating operation, the air conditioner control unit 31 first determines the flow rate adjusting valves 14A, 1
Fully close 3A. Further, the expansion valve 15A is fully opened.
Next, when the flow rate adjusting valve 23A is opened by an intermediate opening degree to introduce the refrigerant from the refrigerant pipe R3 into the pipes of the heat exchanger 18A and the indoor air conditioner 50A, the pressure of the heat exchanger 18A rises. Here, the air conditioner control unit 31 detects the pressure around the flow rate adjusting valve 23A from the pressure sensors 16A and 11A, and calculates the differential pressure.
Then, this state is maintained until it becomes less than or equal to a predetermined value. In other words, the flow rate is restricted as a result of the flow control valve 23A being suppressed to the intermediate opening degree, the flow is restricted, and the pressure in the heat exchanger 18A and the pressure in the refrigerant pipe R3, which is a high-pressure gas pipe, are maintained at a predetermined pressure difference or more, This state continues until the pressure difference gradually decreases toward the pressure equalizing direction.

【0030】つぎに、差圧が定められた値以下になれ
ば、流量調整弁23Aを全開にする。さらに、予め定め
られた時間だけ流量調整弁14Aをほぼ全開まで開く。
このとき、熱交換器18A内や膨張弁15A前後に溜ま
ったフラッシュガスを冷媒配管R1へ逃がすことができ
る。つぎに、流量調整弁14Aを閉じ方向に駆動し、そ
の後流量調整弁14Aは室内空調機50Aの給気温度に
より制御され、室内空調機50Aは暖房運転を始める。
このときの冷媒の流れは図4の室内空調機50Aのよう
に流れる。
Next, when the differential pressure becomes equal to or lower than a predetermined value, the flow rate adjusting valve 23A is fully opened. Further, the flow rate adjusting valve 14A is opened to almost full opening for a predetermined time.
At this time, the flash gas accumulated in the heat exchanger 18A and before and after the expansion valve 15A can be released to the refrigerant pipe R1. Next, the flow rate adjusting valve 14A is driven in the closing direction, after which the flow rate adjusting valve 14A is controlled by the supply air temperature of the indoor air conditioner 50A, and the indoor air conditioner 50A starts heating operation.
The flow of the refrigerant at this time flows like the indoor air conditioner 50A in FIG.

【0031】つぎに室内空調機が暖房運転から冷房運転
に変更される場合の作動について説明する。まず室内空
調機50Aが暖房運転されているときは、図4の室内空
調機50Aに矢示で示すように冷媒が流れている。ここ
で室内空調機50Aが冷房運転に切り換わるべき条件に
なると、空調機制御部31はまず流量調整弁14A、2
3Aを全閉にする。つぎに流量調整弁13Aを中間開度
だけ開いて熱交換器18Aや室内空調機50A内の配管
の冷媒を冷媒配管R2へ逃がすと、熱交換器18A内の
圧力が下降する。ここで空調機制御部31は圧力センサ
16Aと11Bより流量調整弁13A前後の圧力を検出
し、差圧を演算する。そして予め定められた値以下にな
るまでこの状態を保持する。換言すれば、流量調整弁1
3Aが中間開度に抑さえられる結果流れが制限され、熱
交換器18A内の圧力と低圧ガス管である冷媒配管R2
の圧力が所定の圧力差以上に保持され、徐々に均圧方向
へ向かい自然に圧力差が小さくなるまでこの状態が続
く。
Next, the operation when the indoor air conditioner is changed from the heating operation to the cooling operation will be described. First, when the indoor air conditioner 50A is in the heating operation, the refrigerant flows in the indoor air conditioner 50A in FIG. 4 as shown by the arrow. Here, when the indoor air conditioner 50A becomes a condition for switching to the cooling operation, the air conditioner controller 31 first causes the flow rate adjusting valves 14A, 2
Fully close 3A. Next, when the flow rate adjusting valve 13A is opened by an intermediate opening degree and the refrigerant in the pipes inside the heat exchanger 18A and the indoor air conditioner 50A is released to the refrigerant pipe R2, the pressure inside the heat exchanger 18A drops. Here, the air conditioner control unit 31 detects the pressure around the flow rate adjusting valve 13A from the pressure sensors 16A and 11B, and calculates the differential pressure. Then, this state is maintained until it becomes less than or equal to a predetermined value. In other words, the flow control valve 1
As a result of 3A being suppressed to an intermediate opening degree, the flow is restricted, and the pressure in the heat exchanger 18A and the refrigerant pipe R2 which is a low pressure gas pipe
Is maintained above a predetermined pressure difference, and this state continues until the pressure difference gradually decreases toward the pressure equalizing direction.

【0032】つぎに、差圧が定められた値以下になれ
ば、流量調整弁13Aを全開にする。さらに、予め定め
られた時間だけ流量調整弁14Aを全開、および膨張弁
15Aをほぼ全開にする。この時、膨張弁15Aと流量
調整弁14Aの間に溜まったフラッシュガスを熱交換器
18Aへ逃がすことができる。つぎに、膨張弁15Aと
流量調整弁14Aを閉じ方向に駆動し、その後膨張弁1
5Aは熱交換器18Aの過熱度により制御され、流量調
整弁14Aは室内空調機50Aの給気温度により制御さ
れて、室内空調機は冷房運転を始める。このときの冷媒
の流れは図3の室内空調機50Aのように流れる。
Next, when the differential pressure becomes equal to or lower than a predetermined value, the flow rate adjusting valve 13A is fully opened. Further, the flow rate adjusting valve 14A is fully opened and the expansion valve 15A is almost fully opened for a predetermined time. At this time, the flash gas accumulated between the expansion valve 15A and the flow rate adjusting valve 14A can be released to the heat exchanger 18A. Next, the expansion valve 15A and the flow control valve 14A are driven in the closing direction, and then the expansion valve 1
5A is controlled by the degree of superheat of the heat exchanger 18A, the flow rate adjusting valve 14A is controlled by the supply air temperature of the indoor air conditioner 50A, and the indoor air conditioner starts cooling operation. The flow of the refrigerant at this time flows like the indoor air conditioner 50A in FIG.

【0033】つぎに外調機30の熱交換器6が蒸発モー
ドから凝縮モードに変更される場合の作動について説明
する。まず外調機30の熱交換器6が蒸発モードで運転
されているときは、図4の外調機30に矢示で示すよう
に冷媒が流れている。ここで外調機30の熱交換器6が
凝縮モードに切り換わるべき条件になると、空調機制御
部31はまず流量調整弁25、5Aを全閉にする。ま
た、膨張弁7を全開にする。つぎに流量調整弁5Bを中
間開度だけ開くと、熱交換器6内に冷媒配管R3から冷
媒が導かれ熱交換器6内の圧力が上昇する。ここで空調
機制御部31は圧力センサ8と11Aより流量調整弁5
B前後の圧力を検出し、差圧を演算する。そして予め定
められた値以下になるまでこの状態を保持する。換言す
れば、流量調整弁5Bが中間開度に抑さえられる結果流
れが制限され、熱交換器6内の圧力と高圧ガス管である
冷媒配管R3の圧力が所定の圧力差以上に保持され、徐
々に均圧方向へ向かい自然に圧力差が小さくなるまでこ
の状態が続く。
Next, the operation when the heat exchanger 6 of the external conditioner 30 is changed from the evaporation mode to the condensation mode will be described. First, when the heat exchanger 6 of the external conditioner 30 is operated in the evaporation mode, the refrigerant flows in the external conditioner 30 of FIG. 4 as indicated by the arrow. When the heat exchanger 6 of the external air conditioner 30 is in a condition where the heat exchanger 6 should be switched to the condensation mode, the air conditioner controller 31 first fully closes the flow rate adjusting valves 25 and 5A. Further, the expansion valve 7 is fully opened. Next, when the flow rate adjusting valve 5B is opened by an intermediate opening degree, the refrigerant is introduced into the heat exchanger 6 from the refrigerant pipe R3, and the pressure in the heat exchanger 6 rises. Here, the air conditioner control unit 31 controls the flow rate adjusting valve 5 from the pressure sensors 8 and 11A.
The pressure before and after B is detected, and the differential pressure is calculated. Then, this state is maintained until it becomes less than or equal to a predetermined value. In other words, the flow is restricted as a result of the flow rate control valve 5B being suppressed to the intermediate opening degree, the flow is restricted, and the pressure in the heat exchanger 6 and the pressure in the refrigerant pipe R3, which is a high-pressure gas pipe, are maintained at a predetermined pressure difference or more, This state continues until the pressure difference gradually decreases toward the pressure equalizing direction.

【0034】つぎに、差圧が定められた値以下になれ
ば、流量調整弁5Bを全開にする。さらに、予め定めら
れた時間だけ流量調整弁25をほぼ全開まで開く。この
とき、熱交換器6内や膨張弁7前後に溜まったフラッシ
ュガスを冷媒配管R1へ逃がすことができる。つぎに、
流量調整弁25が閉じ方向に駆動された後、室内空調機
50A、50Bの負荷により制御され、外調機30の熱
交換器6は凝縮モードで運転を始める。このときの冷媒
の流れは図3の外調機30のように流れる。
Next, when the differential pressure becomes equal to or lower than a predetermined value, the flow rate adjusting valve 5B is fully opened. Further, the flow rate adjusting valve 25 is opened to almost full opening for a predetermined time. At this time, the flash gas accumulated in the heat exchanger 6 and around the expansion valve 7 can be released to the refrigerant pipe R1. Next,
After the flow rate adjusting valve 25 is driven in the closing direction, it is controlled by the loads of the indoor air conditioners 50A and 50B, and the heat exchanger 6 of the external air conditioner 30 starts operating in the condensation mode. The flow of the refrigerant at this time flows like the external air conditioner 30 in FIG.

【0035】つぎに外調機30の熱交換器6が凝縮モー
ドから蒸発モードに変更される場合の作動について説明
する。まず外調機30の熱交換器6が凝縮モードで運転
されているときは、図3の外調機30に矢示で示すよう
に冷媒が流れている。ここで外調機30の熱交換器6が
蒸発モードに切り換わるべき条件になると、空調機制御
部31はまず流量調整弁25、5Bを全閉にする。つぎ
に流量調整弁5Aを中間開度だけ開くと、熱交換器6内
の冷媒が冷媒配管R2へ逃げ圧力が下降する。ここで、
空調機制御部31は圧力センサ8と11Bより流量調整
弁5A前後の圧力を検出し、差圧を演算する。そして予
め定められた値以下になるまでこの状態を保持する。換
言すれば、流量調整弁5Aが中間開度に抑さえられる結
果流れが制限され、熱交換器6内の圧力と低圧ガス管で
ある冷媒配管R2の圧力が所定の圧力差以上に保持さ
れ、徐々に均圧方向へ向かい自然に圧力差が小さくなる
までこの状態が続く。
Next, the operation when the heat exchanger 6 of the external conditioner 30 is changed from the condensation mode to the evaporation mode will be described. First, when the heat exchanger 6 of the external conditioner 30 is operated in the condensation mode, the refrigerant flows in the external conditioner 30 of FIG. 3 as indicated by the arrow. Here, when the heat exchanger 6 of the external air conditioner 30 becomes a condition for switching to the evaporation mode, the air conditioner control unit 31 first fully closes the flow rate adjusting valves 25, 5B. Next, when the flow rate adjusting valve 5A is opened by the intermediate opening degree, the refrigerant in the heat exchanger 6 escapes to the refrigerant pipe R2 and the pressure falls. here,
The air conditioner control unit 31 detects the pressure around the flow rate adjusting valve 5A from the pressure sensors 8 and 11B, and calculates the differential pressure. Then, this state is maintained until it becomes less than or equal to a predetermined value. In other words, the flow is restricted as a result of the flow rate control valve 5A being suppressed to the intermediate opening degree, and the pressure inside the heat exchanger 6 and the pressure in the refrigerant pipe R2, which is a low-pressure gas pipe, are maintained at a predetermined pressure difference or more, This state continues until the pressure difference gradually decreases toward the pressure equalizing direction.

【0036】つぎに、差圧が定められた値以下になれば
流量調整弁5Aを全開にする。さらに、予め定められた
時間だけ流量調整弁25を全開、および膨張弁7を全開
にする。この時、膨張弁7と流量調整弁25の間に溜ま
ったフラッシュガスを熱交換器6へ逃がすことができ
る。つぎに、膨張弁7と流量調整弁25を閉じ方向に駆
動し、その後膨張弁7は熱交換器6の過熱度により制御
され、流量調整弁25は室内空調機50A、50Bの負
荷により制御されて、外調機30の熱交換器6は蒸発モ
ードで運転を始める。
Next, when the differential pressure becomes equal to or lower than a predetermined value, the flow rate adjusting valve 5A is fully opened. Further, the flow rate adjusting valve 25 is fully opened and the expansion valve 7 is fully opened for a predetermined time. At this time, the flash gas accumulated between the expansion valve 7 and the flow rate adjusting valve 25 can be released to the heat exchanger 6. Next, the expansion valve 7 and the flow rate adjusting valve 25 are driven in the closing direction, after which the expansion valve 7 is controlled by the superheat degree of the heat exchanger 6, and the flow rate adjusting valve 25 is controlled by the load of the indoor air conditioners 50A and 50B. Then, the heat exchanger 6 of the external air conditioner 30 starts to operate in the evaporation mode.

【0037】上述した空調機制御部31における室内空
調機および外調機のモード変更時における制御の流れが
図5、図6、および図7、図8に簡潔に示される。図5
は室内空調機における冷房運転から暖房運転への変更時
の流れを示す。まずステップ100で通常の冷房運転が
行なわれており、つぎのステップ101で室内空調機を
暖房運転に変更すべきかどうかのモード判断が行なわれ
る。ここで冷房運転が継続されるべき場合にはステップ
100に戻る。また、暖房運転に変更されるべき場合
は、ステップ102へ進む。
The control flow when the mode of the indoor air conditioner and the external air conditioner in the air conditioner control section 31 is changed is briefly shown in FIGS. 5, 6 and 7 and 8. FIG.
Shows the flow when changing from cooling operation to heating operation in the indoor air conditioner. First, in step 100, a normal cooling operation is performed, and in the next step 101, a mode determination is made as to whether or not the indoor air conditioner should be changed to heating operation. If the cooling operation should be continued, the process returns to step 100. When the heating operation should be changed, the process proceeds to step 102.

【0038】ステップ102ではまず流量調整弁14
A、13Aを全閉にし、膨張弁15Aを全開にし、また
流量調整弁23Aを中間開度だけ開いて熱交換器18A
内の圧力を昇圧させる。つぎのステップ103では、圧
力センサ16A、11Aよりそれぞれの圧力を検出し、
ステップ104でその差圧を予め設定された所定値と比
較して、差圧が所定値より小さくなるのを待ってステッ
プ105へ進む。
In step 102, first the flow rate adjusting valve 14
A and 13A are fully closed, the expansion valve 15A is fully opened, and the flow rate adjustment valve 23A is opened by an intermediate opening degree, and the heat exchanger 18A is opened.
Increase the internal pressure. In the next step 103, the respective pressures are detected by the pressure sensors 16A and 11A,
In step 104, the differential pressure is compared with a predetermined value set in advance, and after waiting until the differential pressure becomes smaller than the predetermined value, the process proceeds to step 105.

【0039】ステップ105では、流量調整弁23Aを
全開にし、流量調整弁14Aをほぼ全開にする。そし
て、ステップ106でステップ105の状態が所定時間
保持されたことを確認した後、ステップ107へ進む。
ステップ107では流量調整弁14Aの開度を閉方向に
制御駆動して、ステップ108の暖房運転の制御に移
る。
In step 105, the flow rate adjusting valve 23A is fully opened and the flow rate adjusting valve 14A is almost fully opened. Then, in step 106, after confirming that the state of step 105 is maintained for a predetermined time, the process proceeds to step 107.
In step 107, the opening degree of the flow rate adjusting valve 14A is controlled and driven in the closing direction, and then the heating operation is controlled in step 108.

【0040】次に、図6は室内空調機における暖房運転
から冷房運転への変更時の流れを示す。まずステップ1
10で通常の暖房運転が行なわれており、つぎのステッ
プ111で室内空調機を冷房運転に変更すべきかどうか
のモード判断が行なわれる。ここで暖房運転が継続され
るべき場合にはステップ110に戻る。また、冷房運転
に変更されるべき場合には、ステップ112へ進む。ス
テップ112ではまず流量調整弁14A、23Aを全閉
にし、膨張弁15Aを全開にし、流量調整弁13Aを中
間開度だけ開いて熱交換器18A内の圧力を減圧させ
る。
Next, FIG. 6 shows the flow when the heating operation in the indoor air conditioner is changed to the cooling operation. First step 1
In 10 the normal heating operation is performed, and in the next step 111, a mode determination is made as to whether or not the indoor air conditioner should be changed to the cooling operation. If the heating operation should be continued, the process returns to step 110. If the cooling operation should be performed, the process proceeds to step 112. In step 112, first, the flow rate adjusting valves 14A and 23A are fully closed, the expansion valve 15A is fully opened, and the flow rate adjusting valve 13A is opened by an intermediate opening degree to reduce the pressure in the heat exchanger 18A.

【0041】つぎのステップ113では、圧力センサ1
6A、11Bよりそれぞれの圧力を検出し、ステップ1
14でその差圧を予め設定された所定値と比較して、差
圧が所定値より小さくなるのを待ってステップ115へ
進む。ステップ115では、流量調整弁13Aを全開に
し、流量調整弁14Aと膨張弁15Aをほぼ全開にす
る。そして、ステップ116でステップ115の状態が
所定時間保持されたことを確認した後、ステップ117
へ進む。ステップ117では流量調整弁14Aと膨張弁
15Aの開度を閉方向に制御駆動して、ステップ118
の冷房運転の制御に移る。
In the next step 113, the pressure sensor 1
Detect each pressure from 6A and 11B, and step 1
In step 14, the differential pressure is compared with a predetermined value set in advance, and after waiting until the differential pressure becomes smaller than the predetermined value, the routine proceeds to step 115. In step 115, the flow rate adjusting valve 13A is fully opened, and the flow rate adjusting valve 14A and the expansion valve 15A are almost fully opened. Then, in step 116, after confirming that the state of step 115 is maintained for a predetermined time, step 117
Proceed to. In step 117, the opening amounts of the flow rate adjusting valve 14A and the expansion valve 15A are controlled and driven in the closing direction, and step 118
Move on to control of air conditioning operation.

【0042】上記図5、図6に示された室内空調機にお
ける暖房運転と冷房運転の相互間の切り替え制御は空気
調和装置の運転中継続的に実行され、図5におけるステ
ップ108は図6におけるステップ110となり、図6
におけるステップ118は図5におけるステップ100
となる。
The switching control between the heating operation and the cooling operation in the indoor air conditioner shown in FIGS. 5 and 6 is continuously executed during the operation of the air conditioner, and step 108 in FIG. 5 corresponds to step 108 in FIG. Step 110 is reached, and FIG.
Step 118 in FIG.
Becomes

【0043】図7は外調機における凝縮モードから蒸発
モードへの変更時の流れを示す。まずステップ200で
通常の凝縮モードの運転が行なわれており、つぎのステ
ップ201で外調機を蒸発モードに変更すべきかどうか
のモード判断が行なわれる。ここで、凝縮モード運転が
継続されるべき場合にはステップ200に戻る。また、
蒸発モード運転に変更されるべき場合には、ステップ2
02へ進む。ステップ202では、まず流量調整弁2
5、5Bを全閉にし、膨張弁7を全開にし、流量調整弁
5Aを中間開度だけ開いて熱交換器6内の圧力を減圧さ
せる。
FIG. 7 shows the flow at the time of changing from the condensation mode to the evaporation mode in the external air conditioner. First, in step 200, a normal condensation mode operation is performed, and in the next step 201, a mode determination is made as to whether or not the external air conditioner should be changed to the evaporation mode. Here, if the condensed mode operation should be continued, the process returns to step 200. Also,
If it should be changed to evaporation mode operation, step 2
Go to 02. In step 202, first, the flow rate adjusting valve 2
5, 5B are fully closed, the expansion valve 7 is fully opened, and the flow rate adjustment valve 5A is opened by an intermediate opening degree to reduce the pressure in the heat exchanger 6.

【0044】つぎのステップ203では、圧力センサ
8、11Bよりそれぞれの圧力を検出し、ステップ20
4でその差圧を予め設定された所定値と比較して、差圧
が所定値より小さくなるのを待ってステップ205へ進
む。ステップ205では流量調整弁5Bを全開にし、流
量調整弁25と膨張弁7をほぼ全開にする。そして、ス
テップ206でステップ205の状態が所定時間保持さ
れたことを確認した後、ステップ207へ進む。ステッ
プ207では流量調整弁25と膨張弁7の開度を閉方向
に制御して、ステップ208の蒸発モード運転に移る。
In the next step 203, the respective pressures are detected by the pressure sensors 8 and 11B, and step 20
In step 4, the differential pressure is compared with a predetermined value set in advance, and after waiting until the differential pressure becomes smaller than the predetermined value, the routine proceeds to step 205. In step 205, the flow rate adjusting valve 5B is fully opened, and the flow rate adjusting valve 25 and the expansion valve 7 are almost fully opened. Then, in step 206, after confirming that the state of step 205 is maintained for a predetermined time, the process proceeds to step 207. In step 207, the opening degrees of the flow rate adjusting valve 25 and the expansion valve 7 are controlled in the closing direction, and the evaporation mode operation of step 208 is started.

【0045】次に、図8は外調機における蒸発モードか
ら凝縮モードへの変更時の流れを示す。まずステップ2
10で通常の蒸発モードの運転が行なわれており、つぎ
のステップ211で外調機を凝縮モードに変更すべきか
どうかのモード判断が行なわれる。ここで、蒸発モード
運転が継続されるべき場合にはステップ210に戻る。
また、凝縮モード運転に変更されるべき場合には、ステ
ップ212へ進む。ステップ212では、まず流量調整
弁25、5Aを全閉にし、膨張弁7を全開にし、流量調
整弁5Bを中間開度だけ開いて熱交換器6内の圧力を昇
圧させる。
Next, FIG. 8 shows a flow at the time of changing from the evaporation mode to the condensation mode in the external air conditioner. First step 2
In step 10, the normal evaporation mode operation is performed, and in the next step 211, a mode determination is made as to whether or not the external air conditioner should be changed to the condensation mode. Here, if the evaporation mode operation is to be continued, the process returns to step 210.
If the operation should be changed to the condensed mode operation, the process proceeds to step 212. In step 212, first, the flow rate adjusting valves 25 and 5A are fully closed, the expansion valve 7 is fully opened, and the flow rate adjusting valve 5B is opened by an intermediate opening degree to increase the pressure in the heat exchanger 6.

【0046】つぎのステップ213では、圧力センサ
8、11Aよりそれぞれの圧力を検出し、ステップ21
4でその差圧を予め設定された所定値と比較して、差圧
が所定値より小さくなるのを待ってステップ215へ進
む。ステップ215では、流量調整弁5Bを全開にし、
流量調整弁25をほぼ全開にする。そして、ステップ2
16でステップ215の状態が所定時間保持されたこと
を確認した後、ステップ217へ進む。ステップ217
では流量調整弁25を閉方向に制御駆動して、ステップ
218の凝縮モード運転に移る。
At the next step 213, the respective pressures are detected by the pressure sensors 8 and 11A, and step 21
In step 4, the differential pressure is compared with a predetermined value set in advance, and after the differential pressure becomes smaller than the predetermined value, the process proceeds to step 215. In step 215, the flow rate adjusting valve 5B is fully opened,
The flow rate adjusting valve 25 is almost fully opened. And step 2
After confirming in step 16 that the state of step 215 is held for a predetermined time, the process proceeds to step 217. Step 217
Then, the flow rate adjusting valve 25 is controlled and driven in the closing direction, and the condensation mode operation of step 218 is started.

【0047】上記図7、図8に示された外調機における
凝縮モードと蒸発モードの運転相互間の切り換え制御は
空気調和装置の運転中継続的に実行され、図7における
ステップ208は図8におけるステップ210となり、
図8におけるステップ218は図7におけるステップ2
00となる。
The switching control between the operation of the condensation mode and the operation of the evaporation mode in the air conditioner shown in FIGS. 7 and 8 is continuously executed during the operation of the air conditioner, and step 208 in FIG. Step 210 in
Step 218 in FIG. 8 corresponds to step 2 in FIG.
00.

【0048】本実施例は以上のように構成され、外調機
と複数の室内空調機が並列に接続され、外調機と各室内
空調機の熱交換器のガス管を高圧ガス管または低圧ガス
管との間をそれぞれ流量調整弁で接続した空気調和装置
において、外調機の凝縮モードと蒸発モードの運転相互
間、室内空調機の冷房運転と暖房運転の相互間の切り替
えに際して、まず流量調整弁を中間開度だけ開き熱交換
器内の冷媒圧力を減圧または昇圧し、熱交換器内の冷媒
圧力を高圧ガス管または低圧ガス管との圧力差を所定値
以下にしたあと流量調整弁を全開するようにした。これ
により、冷凍サイクルの運転状況に応じて最小時間で切
り換えができる。
This embodiment is configured as described above, the external air conditioner and a plurality of indoor air conditioners are connected in parallel, and the gas pipes of the heat exchangers of the external air conditioner and each indoor air conditioner are either high pressure gas pipes or low pressure gas pipes. In an air conditioner that connects the gas pipes with flow rate adjustment valves, when switching between the condensation mode and evaporation mode operations of the external air conditioner and between the cooling operation and the heating operation of the indoor air conditioner, After opening the adjustment valve by an intermediate opening, the pressure of the refrigerant in the heat exchanger is reduced or increased, and the pressure difference between the refrigerant pressure in the heat exchanger and the high-pressure gas pipe or the low-pressure gas pipe is set below a specified value. I tried to open it fully. As a result, the switching can be performed in the minimum time according to the operating condition of the refrigeration cycle.

【0049】また切り換え時の流量調整弁前後の圧力差
が緩和され、冷媒が急激に流れることがないため、異音
の発生もない。さらに、膨張弁と冷媒流量制御用の流量
調整弁を所定時間だけ開くことにより両弁間に溜まった
フラッシュガスを除去するようにしているので、流量調
整弁や膨張弁の制御性を損なうことがなく、切り替え後
の立ち上がり特性が向上する。
Further, since the pressure difference before and after the flow rate adjusting valve at the time of switching is relaxed and the refrigerant does not suddenly flow, no abnormal noise is generated. Further, since the flash gas accumulated between the expansion valve and the flow rate adjusting valve for controlling the refrigerant flow rate is opened for a predetermined time to remove the flash gas, the controllability of the flow rate adjusting valve and the expansion valve may be impaired. Instead, the rising characteristics after switching are improved.

【0050】図9は本発明の第2の実施例を示す。この
実施例は、上述の第1の実施例の冷媒回路に対して、外
調機内の流量調整弁5A、5B、そして分岐ユニット内
の流量調整弁13A、13B、23A、23Bのかわり
に、それぞれ主電磁弁で切り換えができるようにすると
ともに、さらに開閉可能の副電磁弁と減圧用のキャピラ
リを直列に接続したバイパス回路を各主電磁弁に並列に
接続したものである。
FIG. 9 shows a second embodiment of the present invention. This embodiment differs from the refrigerant circuit of the first embodiment described above in that the flow rate adjusting valves 5A and 5B in the external regulator and the flow rate adjusting valves 13A, 13B, 23A, and 23B in the branch unit are respectively replaced. The main solenoid valve allows switching, and a bypass circuit in which a sub solenoid valve that can be opened and closed and a pressure reducing capillary are connected in series is connected in parallel to each main solenoid valve.

【0051】すなわち、分岐ユニット40’内には主電
磁弁63A、63B、66A、66Bが備えられ、主電
磁弁63A、63Bはそれぞれ室内空調機50A、50
Bを冷媒配管R2に連通可能とし、主電磁弁66A、6
6Bはそれぞれ室内空調機50A、50Bを冷媒配管R
3に連通可能とする。また、主電磁弁63A、63B、
66A、66Bにはそれぞれ並列にバイパス回路が接続
され、バイパス回路には減圧用のキャピラリ65A、6
5B、68A、68Bと副電磁弁64A、64B、67
A、67Bがそれぞれ直列に設けられている。
That is, the main unit solenoid valves 63A, 63B, 66A, 66B are provided in the branch unit 40 ', and the main solenoid valves 63A, 63B are respectively used for the indoor air conditioners 50A, 50.
B can be communicated with the refrigerant pipe R2, and main solenoid valves 66A, 6
6B is a refrigerant pipe R for the indoor air conditioners 50A and 50B, respectively.
Communication with 3 is possible. In addition, the main solenoid valves 63A, 63B,
Bypass circuits are connected in parallel to 66A and 66B, respectively, and depressurizing capillaries 65A and 6 are provided in the bypass circuits.
5B, 68A, 68B and auxiliary solenoid valves 64A, 64B, 67
A and 67B are respectively provided in series.

【0052】外調機30’でも、熱交換器6のガス管側
の冷媒配管を主電磁弁60Aを介して冷媒配管R2と接
続し、主電磁弁60Bを介して冷媒配管R3に接続して
いる。また、上記主電磁弁60A、60Bにはそれぞれ
バイパス回路が接続され、バイパス回路には減圧用のキ
ャピラリ62A、62Bと副電磁弁61A、61Bがそ
れぞれ直列に設けられている。その他の構成は第1の実
施例と同じである。また各運転モードにおける冷媒の流
れも第1の実施例と同じである。
Also in the external conditioner 30 ', the refrigerant pipe on the gas pipe side of the heat exchanger 6 is connected to the refrigerant pipe R2 via the main solenoid valve 60A, and is connected to the refrigerant pipe R3 via the main solenoid valve 60B. There is. A bypass circuit is connected to each of the main solenoid valves 60A and 60B, and capillaries 62A and 62B for pressure reduction and sub solenoid valves 61A and 61B are provided in series in the bypass circuits. Other configurations are the same as those of the first embodiment. The flow of the refrigerant in each operation mode is also the same as in the first embodiment.

【0053】そして、運転モードの変更にあたっては、
新たに接続すべき配管側について、まず主電磁弁が閉じ
られた状態で、バイパス回路の副電磁弁を開く。これに
より、冷媒はキャピラリにより制限され減圧されて導通
される。その前後の圧力差が所定値以下になると主電磁
弁が開かれるとともに副電磁弁が閉じられる。
When changing the operation mode,
For the piping side to be newly connected, first open the bypass solenoid valve of the bypass circuit with the main solenoid valve closed. As a result, the refrigerant is restricted by the capillaries, reduced in pressure, and conducted. When the pressure difference before and after that falls below a predetermined value, the main solenoid valve is opened and the sub solenoid valve is closed.

【0054】この実施例では、主電磁弁60A、60B
およびこれらにそれぞれ付設されたキャピラリ62A、
62Bと副電磁弁61A、61Bを備えるバイパス回路
が発明の第1の接続手段を構成し、主電磁弁63A、6
3B、66A、66Bおよびこれらにそれぞれ付設され
たキャピラリ65A、65B、68A、68Bと副電磁
弁64A、64B、67A、67Bを備えるバイパス回
路が第2の接続手段を構成している。
In this embodiment, the main solenoid valves 60A and 60B are
And capillaries 62A respectively attached to these,
The bypass circuit including 62B and the auxiliary solenoid valves 61A and 61B constitutes the first connecting means of the invention, and the main solenoid valves 63A and 6A are provided.
A bypass circuit including 3B, 66A, 66B and capillaries 65A, 65B, 68A, 68B respectively attached thereto and sub solenoid valves 64A, 64B, 67A, 67B constitutes the second connecting means.

【0055】この実施例では、室内空調機あるいは外調
機の熱交換器が運転モードの切り換えに際して、第1の
実施例で流量調整弁を中間開度に開くべきとき、これに
代えてバイパス回路を通じさせることにより、そのキャ
ピラリの減圧効果により徐々に連通するので同様の機能
を得ることができる。またその後のフラッシュガスの除
去については第1の実施例と同じである。この実施例に
よれば、第1の実施例と同じ効果を発揮するとともに、
特殊な流量調整弁を使用しないでも安価に販売されてい
る汎用部品により構成することができ、公知の冷媒回路
であるので設計も容易であるという利点がある。
In this embodiment, when the heat exchanger of the indoor air conditioner or the external air conditioner is switched between the operation modes, when the flow rate adjusting valve should be opened to the intermediate opening in the first embodiment, the bypass circuit is used instead. By passing through the capillaries, the capillaries gradually communicate due to the pressure reducing effect of the capillaries, so that the same function can be obtained. The subsequent removal of the flash gas is the same as in the first embodiment. According to this embodiment, the same effect as that of the first embodiment is exerted, and
It can be configured by general-purpose components that are sold at a low cost without using a special flow rate adjusting valve, and since it is a known refrigerant circuit, there is an advantage that the design is easy.

【0056】なお、上記各実施例では室内空調機が2台
接続されたものを示したが、室内空調機の台数はこれに
限定されることなく、3台以上でも同様に実施可能であ
り、また第1の実施例と第2の実施例を組み合わせて実
施してもよい。さらに、分岐ユニットについても必ず設
置する必要はなく、分岐ユニットを廃止して第2の接続
手段としての流量調整弁、あるいは電磁弁とバイパス回
路を各室内空調機に設置することもできる。
In each of the above embodiments, two indoor air conditioners are connected, but the number of indoor air conditioners is not limited to this, and three or more indoor air conditioners can be similarly implemented. Moreover, you may implement combining 1st Example and 2nd Example. Further, the branch unit does not necessarily have to be installed, and the branch unit can be eliminated and a flow rate adjusting valve or a solenoid valve and a bypass circuit as the second connecting means can be installed in each indoor air conditioner.

【0057】[0057]

【発明の効果】以上のとおり、本発明は、外調機と複数
の室内空調機が並列に接続された空気調和装置におい
て、外調機と各室内空調機の熱交換器のガス管と高圧ガ
ス管または低圧ガス管との間をそれぞれ流量調整可能な
第1、第2の接続手段で接続したので、外調機または室
内空調機の熱交換器が運転モードを変更するに際して、
接続切り換え時の冷媒の流量を制限することにより、熱
交換器内の冷媒圧力が減圧または昇圧されて、異音の発
生が防止される。
As described above, according to the present invention, in an air conditioner in which an external air conditioner and a plurality of indoor air conditioners are connected in parallel, a gas pipe and a high pressure of a heat exchanger of the external air conditioner and each indoor air conditioner are provided. Since the gas pipe or the low-pressure gas pipe is connected by the first and second connecting means capable of adjusting the flow rate, respectively, when the heat exchanger of the outdoor air conditioner or the indoor air conditioner changes the operation mode,
By limiting the flow rate of the refrigerant at the time of switching the connection, the pressure of the refrigerant in the heat exchanger is reduced or increased to prevent abnormal noise.

【0058】またとくに、接続手段の前後の圧力差が予
め定められた値以下になったとき全開連通させることに
より、切り換えに要する時間が必要最小限で新たなモー
ドでの運転が開始されるという効果が得られる。したが
ってまた装置を一端停止することなく負荷の変化に迅速
に対応して運転継続できて、冷房から暖房まで任意の温
度で給気の可能な空気調和装置が提供でき、モード変更
を要しない室内空調機に影響を及ぼすこともない。
Further, in particular, when the pressure difference before and after the connecting means becomes equal to or less than a predetermined value, the communication is fully opened so that the operation in a new mode is started with the minimum required time for switching. The effect is obtained. Therefore, it is possible to provide an air conditioner that can continue operation by quickly responding to changes in load without stopping the device and can supply air at any temperature from cooling to heating, and indoor air conditioning that does not require mode changes. It does not affect the opportunity.

【0059】さらに、外調機や室内空調機の流量調整弁
を新たなモードの運転開始にあたって所定時間だけ所定
開度まで開くことにより、膨張弁と流量調整弁の間など
膨張弁近傍に溜まったフラッシュガスを除去するので、
膨張弁や流量調整弁の制御性を損なうことなく新しい運
転モードの立ち上がり特性が向上する。
Further, by opening the flow control valve of the external air conditioner or the indoor air conditioner to a predetermined opening for a predetermined time when starting the operation in the new mode, the flow control valve is accumulated near the expansion valve such as between the expansion valve and the flow control valve. Removes flash gas, so
The rising characteristic of the new operation mode is improved without impairing the controllability of the expansion valve and the flow rate adjusting valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の冷媒回路を示す図であ
る。
FIG. 1 is a diagram showing a refrigerant circuit according to a first embodiment of the present invention.

【図2】実施例における室内空調機および外調機の制御
装置を示すブロック図である。
FIG. 2 is a block diagram showing a control device for an indoor air conditioner and an outdoor air conditioner in the embodiment.

【図3】全冷房運転時の冷媒の流れを示す図である。FIG. 3 is a diagram showing a flow of a refrigerant during a cooling only operation.

【図4】全暖房運転時の冷媒の流れを示す図である。FIG. 4 is a diagram showing a refrigerant flow during a heating only operation.

【図5】室内空調機における冷房運転から暖房運転への
変更時の制御の流れを示すフローチャートである。
FIG. 5 is a flowchart showing a control flow when changing from cooling operation to heating operation in the indoor air conditioner.

【図6】室内空調機における暖房運転から冷房運転への
変更時の制御の流れを示すフローチャートである。
FIG. 6 is a flowchart showing a control flow when the heating operation in the indoor air conditioner is changed to the cooling operation.

【図7】外調機における凝縮モードから蒸発モードへの
変更時の制御の流れを示すフローチャートである。
FIG. 7 is a flowchart showing the flow of control when changing from the condensation mode to the evaporation mode in the external air conditioner.

【図8】外調機における蒸発モードから凝縮モードへの
変更時の制御の流れを示すフローチャートである。
FIG. 8 is a flowchart showing a control flow when changing from the evaporation mode to the condensation mode in the external air conditioner.

【図9】第2の実施例の冷媒回路を示す図である。FIG. 9 is a diagram showing a refrigerant circuit according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 3 アキュムレータ 5A、5B 流量調整弁 6 熱交換器 7 膨張弁 8、11A、11B 圧力センサ 13A、13B、23A、23B 流量調整弁 14A、14B 流量調整弁 15A、15B 膨張弁 16A、16B 圧力センサ 18A、18B 熱交換器 21、24A、24B 送風機 25 流量調整弁 27 液タンク 30、30’ 外調機 31 空調機制御部 32 インバータ回路 34、48、39A、39B、41A、41B 駆
動制御部 37 圧力変換器 40、40’ 分岐ユニット 43A、43B 圧力変換器 50A、50B 室内空調機 60A、60B、63A、63B、66A、66B
主電磁弁 62A、62B、65A、65B、68A、68B
キャピラリ 61A、61B、64A、64B、67A、67B
副電磁弁 R1、R2、R3 冷媒配管
1 Compressor 3 Accumulator 5A, 5B Flow rate adjusting valve 6 Heat exchanger 7 Expansion valve 8, 11A, 11B Pressure sensor 13A, 13B, 23A, 23B Flow rate adjusting valve 14A, 14B Flow rate adjusting valve 15A, 15B Expansion valve 16A, 16B Pressure sensor 18A, 18B Heat exchanger 21, 24A, 24B Blower 25 Flow rate adjusting valve 27 Liquid tank 30, 30 'Outer air conditioner 31 Air conditioner controller 32 Inverter circuit 34, 48, 39A, 39B, 41A, 41B Drive controller 37 Pressure Converter 40, 40 'Branch unit 43A, 43B Pressure converter 50A, 50B Indoor air conditioner 60A, 60B, 63A, 63B, 66A, 66B
Main solenoid valve 62A, 62B, 65A, 65B, 68A, 68B
Capillary 61A, 61B, 64A, 64B, 67A, 67B
Sub solenoid valves R1, R2, R3 Refrigerant piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 康洋 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内 (72)発明者 新町 拓正 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内 (72)発明者 吉本 周平 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Kojima 3-2-25 Minamihashimoto, Sagamihara City, Kanagawa Prefecture Inside the Toray Co., Ltd. Sagamihara Office (72) Inventor Takumasa Shinmachi 3-2-25 Minamihashimoto, Sagamihara City, Kanagawa Prefecture (72) Inventor Shuhei Yoshimoto 3-2-25 Minamihashimoto, Sagamihara City, Kanagawa Prefecture Inside the Topre Co., Ltd. Sagamihara Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器、該熱交換器に付設された膨張
弁、該膨張弁と直列に設けられた流量調整弁を備える外
調機と、それぞれ熱交換器、該熱交換器に付設された膨
張弁、該膨張弁と直列に設けられた流量調整弁を備え、
冷凍サイクルの液管と高圧ガス管と低圧ガス管を形成す
る冷媒配管により前記外調機に並列に接続された複数の
室内空調機とからなり、それぞれの室内空調機が個別に
冷房運転または暖房運転に選択的に制御される空気調和
装置において、前記外調機の熱交換器に接続されたガス
管と前記高圧ガス管または低圧ガス管との間を流量調整
可能な第1の接続手段で接続し、前記室内空調機の熱交
換器に接続されたガス管と前記高圧ガス管または低圧ガ
ス管との間を流量調整可能な第2の接続手段で接続した
ことを特徴とする空気調和装置。
1. An external regulator equipped with a heat exchanger, an expansion valve attached to the heat exchanger, and a flow rate adjusting valve provided in series with the expansion valve, and a heat exchanger and an attachment to the heat exchanger, respectively. Expansion valve, and a flow rate adjustment valve provided in series with the expansion valve,
It is composed of a plurality of indoor air conditioners connected in parallel to the external air conditioner by refrigerant pipes forming a liquid pipe of a refrigeration cycle, a high pressure gas pipe, and a low pressure gas pipe, and each indoor air conditioner individually performs cooling operation or heating. In an air conditioner selectively controlled for operation, a first connecting means capable of adjusting a flow rate between a gas pipe connected to a heat exchanger of the external controller and the high-pressure gas pipe or the low-pressure gas pipe. An air conditioner characterized in that the gas pipe connected to the heat exchanger of the indoor air conditioner and the high-pressure gas pipe or the low-pressure gas pipe are connected by second connecting means capable of adjusting the flow rate. .
【請求項2】 前記第1の接続手段は、外調機の熱交換
器が蒸発モードから凝縮モードに変更になるとき該外調
機の熱交換器内の圧力と前記高圧ガス管の圧力が所定の
圧力差以上に保持されるよう制限しながら高圧ガス管か
ら冷媒を導通させ、外調機の熱交換器が凝縮モードから
蒸発モードに変更になるとき該外調機の熱交換器内の圧
力と前記低圧ガス管の圧力が所定の圧力差以上に保持さ
れるよう制限しながら低圧ガス管に冷媒を導通させ、そ
れぞれ圧力差が所定値より小さくなったとき全開連通す
るように構成され、前記第2の接続手段は、室内空調機
の熱交換器が暖房運転から冷房運転に変更になるとき該
室内空調機の熱交換器内の圧力と前記低圧ガス管の圧力
が所定の圧力差以上に保持されるよう制限しながら低圧
ガス管に冷媒を導通させ、室内空調機の熱交換器が冷房
運転から暖房運転に変更になるとき該室内空調機の熱交
換器内の圧力と前記高圧ガス管の圧力が所定の圧力差以
上に保持されるよう制限しながら高圧ガス管から冷媒を
導通させ、それぞれ圧力差が所定値より小さくなったと
き全開連通するように構成されていることを特徴とする
請求項1記載の空気調和装置。
2. When the heat exchanger of the external conditioner is changed from the evaporation mode to the condensation mode, the pressure in the heat exchanger of the external conditioner and the pressure of the high-pressure gas pipe are controlled by the first connecting means. Refrigerant is conducted from the high-pressure gas pipe while being restricted so as to be maintained at a predetermined pressure difference or more, and when the heat exchanger of the external controller changes from the condensation mode to the evaporation mode, The pressure and the pressure of the low-pressure gas pipe are made to pass through the low-pressure gas pipe while limiting so as to be maintained at a predetermined pressure difference or more, and when the pressure difference becomes smaller than a predetermined value, they are configured to be in full-open communication. When the heat exchanger of the indoor air conditioner is changed from a heating operation to a cooling operation, the pressure in the heat exchanger of the indoor air conditioner and the pressure of the low pressure gas pipe are equal to or more than a predetermined pressure difference. Refrigerant is conducted to the low-pressure gas pipe while being restricted to be held at When the heat exchanger of the indoor air conditioner is changed from the cooling operation to the heating operation, the pressure inside the heat exchanger of the indoor air conditioner and the pressure of the high-pressure gas pipe are limited to be maintained at a predetermined pressure difference or more. The air conditioner according to claim 1, wherein the refrigerant is made to flow from the high-pressure gas pipe, and when the pressure difference becomes smaller than a predetermined value, the refrigerant is fully opened.
【請求項3】 前記外調機の流量調整弁は、前記蒸発モ
ードから凝縮モードへの変更または凝縮モードから蒸発
モードへの変更に際して閉じられ、前記第1の接続手段
による制限された導通のあと所定時間だけ所定開度まで
開かれて外調機の膨張弁近傍のガス状冷媒を除去するこ
とを特徴とする請求項2記載の空気調和装置。
3. The flow control valve of the external regulator is closed when the evaporation mode is changed to the condensation mode or when the condensation mode is changed to the evaporation mode, and after the limited conduction by the first connecting means. The air conditioner according to claim 2, wherein the gaseous refrigerant in the vicinity of the expansion valve of the external air conditioner is removed by opening it to a predetermined opening for a predetermined time.
【請求項4】 前記室内空調機の流量調整弁は、前記暖
房運転から冷房運転への変更または冷房運転から暖房運
転への変更に際して閉じられ、前記第2の接続手段によ
る制限された導通のあと所定時間だけ所定開度まで開か
れて室内空調機の膨張弁近傍のガス状冷媒を除去するこ
とを特徴とする請求項2記載の空気調和装置。
4. The flow control valve of the indoor air conditioner is closed when the heating operation is changed to the cooling operation or when the cooling operation is changed to the heating operation, and after the limited conduction by the second connecting means. The air conditioner according to claim 2, wherein the gaseous refrigerant in the vicinity of the expansion valve of the indoor air conditioner is removed by being opened to a predetermined opening for a predetermined time.
【請求項5】 前記第1の接続手段または第2の接続手
段が、その開度を制御される電子式流量調整弁で構成さ
れることを特徴とする請求項1、2、3または4記載の
空気調和装置。
5. The electronic device according to claim 1, wherein the first connecting means or the second connecting means is an electronic flow rate control valve whose opening is controlled. Air conditioner.
【請求項6】 前記第1の接続手段または第2の接続手
段が、主電磁弁と、副電磁弁およびキャピラリを直列に
接続し前記主電磁弁に並列に接続されたバイパス回路で
構成され、前記主電磁弁を閉じバイパス回路を開くこと
により前記制限された導通を行ない、その後主電磁弁に
よる接続に移行するものであることを特徴とする請求項
1、2、3または4記載の空気調和装置。
6. The first connecting means or the second connecting means comprises a main solenoid valve, and a bypass circuit in which a sub solenoid valve and a capillary are connected in series and are connected in parallel to the main solenoid valve, 5. The air conditioner according to claim 1, wherein the main solenoid valve is closed and a bypass circuit is opened to perform the limited conduction, and then the main solenoid valve is connected. apparatus.
JP10380996A 1996-03-29 1996-03-29 Air conditioner Expired - Fee Related JP3748620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10380996A JP3748620B2 (en) 1996-03-29 1996-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10380996A JP3748620B2 (en) 1996-03-29 1996-03-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09269160A true JPH09269160A (en) 1997-10-14
JP3748620B2 JP3748620B2 (en) 2006-02-22

Family

ID=14363736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10380996A Expired - Fee Related JP3748620B2 (en) 1996-03-29 1996-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP3748620B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177658A (en) * 2004-12-21 2006-07-06 Lg Electronics Inc Air conditioner
JP2013170718A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
CN108344128A (en) * 2018-02-11 2018-07-31 四川虹美智能科技有限公司 The loading method of multi-online air-conditioning system and its outdoor unit modules, managing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177658A (en) * 2004-12-21 2006-07-06 Lg Electronics Inc Air conditioner
JP2013170718A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
CN108344128A (en) * 2018-02-11 2018-07-31 四川虹美智能科技有限公司 The loading method of multi-online air-conditioning system and its outdoor unit modules, managing device

Also Published As

Publication number Publication date
JP3748620B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
KR100463548B1 (en) Air conditioner
JP4383801B2 (en) Multi-air conditioner and operation method thereof
KR100437804B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR100499506B1 (en) Multi type air conditioner
KR20040064455A (en) Bypass device for multi type air conditioner
KR20190088692A (en) Method for controlling multi-type air conditioner
KR101045451B1 (en) A multi type air conditioner and method of controlling the same
KR19990081638A (en) Multi type air conditioner and control method
JP3643162B2 (en) Air conditioner
JP3748620B2 (en) Air conditioner
JP2000055444A (en) Air conditioner
JPH1038413A (en) Air conditioner
JP3511161B2 (en) Air conditioner
JPH08121902A (en) Air conditioning device
KR20080084482A (en) Controlling method for air conditioner
CN114812017B (en) Enhanced vapor injection system and method of operating the same
KR100480139B1 (en) Method for controlling linear expansion valve of muti-type heat pump
KR100389555B1 (en) Cooling circuit of multi-air conditioner using capillary tube
KR100469288B1 (en) Multi-type air conditioner for cooling/heating the same time
KR100463549B1 (en) Multi-type air conditioner for cooling/heating the same time
JP3301828B2 (en) Air conditioner
KR100199813B1 (en) A refrigerant cycle of multi-type airconditioner
JPH1038391A (en) Freezer
JPH08105667A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees