JP2013170718A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013170718A
JP2013170718A JP2012033503A JP2012033503A JP2013170718A JP 2013170718 A JP2013170718 A JP 2013170718A JP 2012033503 A JP2012033503 A JP 2012033503A JP 2012033503 A JP2012033503 A JP 2012033503A JP 2013170718 A JP2013170718 A JP 2013170718A
Authority
JP
Japan
Prior art keywords
pressure
indoor
refrigerant
pipe
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012033503A
Other languages
Japanese (ja)
Other versions
JP5845957B2 (en
Inventor
Keito Kawai
圭人 川合
Hideya Tamura
秀哉 田村
Takahiro Matsunaga
隆廣 松永
Masatoshi Watanabe
真寿 渡邊
Takashi Kimura
隆志 木村
Kotaro Toya
廣太郎 戸矢
Yasuhiro Oka
康弘 岡
Takeshi Nakajima
健 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012033503A priority Critical patent/JP5845957B2/en
Publication of JP2013170718A publication Critical patent/JP2013170718A/en
Application granted granted Critical
Publication of JP5845957B2 publication Critical patent/JP5845957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which can perform proper pressure equalization control according to a refrigeration cycle state.SOLUTION: For switching from a reverse defrosting operation to a heating-dominant operation in an air conditioner 1, outdoor units 2a-2c stop compressors 21a-21c, open electromagnetic valves 44a-44c for bypass, and switch four-way valves 22a-22c. According to a pressure difference between a discharge pressure detected by a high pressure sensor 50 and an inlet pressure detected by a low pressure sensor 51 in the outdoor units 2a-2c, pressure increase control by switching units 6a, 6b corresponding to indoor units 8a, 8b for performing heating operations and pressure decrease control by switching units 6c, 6d corresponding to the indoor units 8c, 8d for performing cooling operations are canceled or disabled.

Description

本発明は、少なくとも1台の室外機に複数の室内機が冷媒配管で接続され、室内機毎に冷房運転と暖房運転とを選択して行える空気調和装置に関する。   The present invention relates to an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by refrigerant piping, and a cooling operation and a heating operation can be selected for each indoor unit.

従来、少なくとも1台の室外機に複数の室内機が冷媒配管で接続され、室内機毎に冷房運転と暖房運転とを選択して行える、所謂冷暖房フリー運転を行うことができる空気調和装置が提案されている。例えば、特許文献1に記載の空気調和装置は、圧縮機と流路切換手段と室外熱交換器と室外膨張弁とを備えた1台の室外機と、室内熱交換器と室内膨張弁とを備えた3台の室内機と、高圧側室内切換弁と低圧側室内膨張弁とを備えた分流ユニットとを有しており、これらが高圧ガス管と低圧ガス管と液管とで相互に接続されて空気調和装置の冷媒回路が形成されている。   Conventionally, there has been proposed an air conditioner capable of performing a so-called cooling / heating-free operation in which a plurality of indoor units are connected to at least one outdoor unit by refrigerant piping, and a cooling operation and a heating operation can be selected for each indoor unit. Has been. For example, an air conditioner described in Patent Literature 1 includes a single outdoor unit including a compressor, a flow path switching unit, an outdoor heat exchanger, and an outdoor expansion valve, an indoor heat exchanger, and an indoor expansion valve. It has three indoor units and a shunt unit with a high-pressure side indoor switching valve and a low-pressure side indoor expansion valve, which are connected to each other by a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe Thus, a refrigerant circuit of the air conditioner is formed.

分流ユニットに備えられた高圧側室内切換弁は、一端が高圧ガス管に冷媒配管で接続されており、他端が室内熱交換器に冷媒配管で接続されている。また、低圧側室内切換弁は、一端が低圧ガス管に冷媒配管で接続されており、他端が室内熱交換器に冷媒配管で接続されている。これら2種類の室内側切換弁を開閉することによって、室内熱交換器と高圧ガス管とを連通させる、あるいは、室内熱交換器と低圧ガス管とを連通させることができ、室内熱交換器と高圧ガス管とを連通させれば室内熱交換器が凝縮器として機能して暖房運転が行え、室内熱交換器と低圧ガス管とを連通させれば室内熱交換器が蒸発器として機能して冷房運転が行える。従って、分流ユニットの各室内切換弁を操作することによって、室内機毎に暖房運転あるいは冷房運転を選択して行える。   One end of the high-pressure side indoor switching valve provided in the diversion unit is connected to the high-pressure gas pipe by a refrigerant pipe, and the other end is connected to the indoor heat exchanger by a refrigerant pipe. Moreover, one end of the low-pressure side indoor switching valve is connected to the low-pressure gas pipe by a refrigerant pipe, and the other end is connected to the indoor heat exchanger by a refrigerant pipe. By opening and closing these two types of indoor side switching valves, the indoor heat exchanger and the high pressure gas pipe can be communicated with each other, or the indoor heat exchanger and the low pressure gas pipe can be communicated with each other. If the high-pressure gas pipe is connected, the indoor heat exchanger functions as a condenser and heating operation can be performed. If the indoor heat exchanger and the low-pressure gas pipe are connected, the indoor heat exchanger functions as an evaporator. Cooling operation can be performed. Therefore, by operating each indoor switching valve of the diversion unit, heating operation or cooling operation can be selected for each indoor unit.

上記のような空気調和装置では、室内機を暖房運転から冷房運転に切り換える場合、あるいは、冷房運転から暖房運転に切り換える場合は、室内熱交換器と分流ユニットとを接続する冷媒配管における冷媒圧力が急激に変化し、これに起因して冷媒が高圧側室内切換弁や低圧側室内切換弁を急激に流れる虞がある。そして、冷媒が高圧側室内切換弁や低圧側室内切換弁を急激に流れることで異音(冷媒の流れ音)が発生する虞があり、使用者に不快感を与える虞がある。   In the air conditioner as described above, when the indoor unit is switched from the heating operation to the cooling operation, or when the indoor unit is switched from the cooling operation to the heating operation, the refrigerant pressure in the refrigerant pipe connecting the indoor heat exchanger and the flow dividing unit is reduced. There is a risk that the refrigerant changes suddenly, and as a result, the refrigerant flows rapidly through the high-pressure side indoor switching valve and the low-pressure side indoor switching valve. Then, when the refrigerant suddenly flows through the high-pressure side indoor switching valve and the low-pressure side indoor switching valve, there is a possibility that an abnormal noise (refrigerant flow sound) may occur, which may cause discomfort to the user.

そこで、上記の空気調和装置では、高圧側室内切換弁に並列接続され高圧側電磁弁が組み込まれた高圧側バイパス管と、低圧側室内切換弁に並列接続され低圧側電磁弁が組み込まれた低圧側バイパス管とを分流ユニットに備え、これらを用いて以下に説明する均圧制御を行っている。室内機を暖房運転から冷房運転に切り換える場合は、高圧側室内切換弁および室内膨張弁を閉とするとともに、低圧側電磁弁を開として所定時間放置する。これにより、低圧側室内切換弁の低圧ガス管側と室内熱交換器側とが低圧側バイパス管で連通されて、低圧側室内切換弁の室内熱交換器側の冷媒圧力が低下するので、冷房運転を開始するために低圧側室内切換弁を開いたときに、低圧側室内切換弁の低圧ガス管側と室内熱交換器側との冷媒圧力の差に起因する異音の発生を抑制できる。   Therefore, in the above air conditioner, the high-pressure side bypass pipe connected in parallel to the high-pressure side indoor switching valve and incorporating the high-pressure side solenoid valve, and the low-pressure side connected in parallel to the low-pressure side indoor switching valve and built-in the low-pressure side solenoid valve A side bypass pipe is provided in the shunt unit, and pressure equalization control described below is performed using these. When the indoor unit is switched from the heating operation to the cooling operation, the high pressure side indoor switching valve and the indoor expansion valve are closed, and the low pressure side electromagnetic valve is opened and left for a predetermined time. Thereby, the low pressure gas pipe side of the low pressure side indoor switching valve and the indoor heat exchanger side are communicated with each other by the low pressure side bypass pipe, and the refrigerant pressure on the indoor heat exchanger side of the low pressure side indoor switching valve is reduced. When the low-pressure side indoor switching valve is opened to start operation, it is possible to suppress the generation of noise due to the difference in refrigerant pressure between the low-pressure gas pipe side and the indoor heat exchanger side of the low-pressure side indoor switching valve.

また、室内機を冷房運転から暖房運転に切り換える場合は、低圧側室内切換弁および室内膨張弁を閉とするとともに、高圧側電磁弁を開として所定時間放置する。これにより、高圧側室内切換弁の高圧ガス管側と室内熱交換器側とが高圧側バイパス管で連通されて、高圧側室内切換弁の室内熱交換器側の冷媒圧力が上昇するので、暖房運転を開始するために高圧側室内切換弁を開いたときに、高圧側室内切換弁の高圧ガス管側と室内熱交換器側との冷媒圧力の差に起因する異音の発生を抑制できる。   When the indoor unit is switched from the cooling operation to the heating operation, the low pressure side indoor switching valve and the indoor expansion valve are closed, and the high pressure side electromagnetic valve is opened and left for a predetermined time. Thereby, the high pressure gas pipe side of the high pressure side indoor switching valve and the indoor heat exchanger side are communicated with each other by the high pressure side bypass pipe, and the refrigerant pressure on the indoor heat exchanger side of the high pressure side indoor switching valve is increased. When the high pressure side indoor switching valve is opened to start the operation, it is possible to suppress the generation of noise due to the difference in refrigerant pressure between the high pressure gas pipe side of the high pressure side indoor switching valve and the indoor heat exchanger side.

特開平5−203275号公報(第3〜4頁、第1図)Japanese Patent Laid-Open No. 5-203275 (pages 3-4, FIG. 1)

上述した均圧制御を行うときは、室内機の高圧側室内切換弁あるいは低圧側室内切換弁と室内膨張弁運転とを閉じるので、均圧制御を行っている間は室内機の運転は停止することとなり、室内機が設置された部屋の空調は行われない。従って、均圧制御はなるべく短い時間で終了させることが望ましい。   When performing the pressure equalization control described above, the high-pressure side indoor switching valve or the low-pressure side indoor switching valve and the indoor expansion valve operation of the indoor unit are closed, so that the operation of the indoor unit is stopped during the pressure equalization control. As a result, the room where the indoor unit is installed is not air-conditioned. Therefore, it is desirable to finish the pressure equalization control in as short a time as possible.

一方、上述したような空気調和装置では、圧縮機を停止して冷凍サイクルを切り換えることができる場合、例えば、室外熱交換器を凝縮器として機能させるとともに全ての室内機の室内熱交換器を蒸発器として機能させて行うリバース除霜運転やリバース油回収運転から、室外熱交換器を蒸発器として機能させて行う暖房運転に切り換える場合、がある。この場合、例えば、圧縮機の高圧側と低圧側とをバイパスするバイパス管に組み込まれている電磁弁を開くことによって、圧縮機の高圧側と低圧側とを連通させることができ、圧縮機の高圧側と低圧側とを連通させれば、圧縮機を運転している場合に比べて均圧制御を短い時間で終了させることができる。このように圧縮機を停止して冷凍サイクルを切り換えることができるときに、圧縮機が運転しているときと同様の均圧制御を行うと、必要以上に長い時間室内機が停止することとなり、使用者の快適性を損なう虞があった。   On the other hand, in the air conditioner as described above, when the compressor can be stopped and the refrigeration cycle can be switched, for example, the outdoor heat exchanger functions as a condenser and the indoor heat exchangers of all indoor units are evaporated. In some cases, the reverse defrosting operation or reverse oil recovery operation performed by functioning as an evaporator is switched to the heating operation performed by functioning an outdoor heat exchanger as an evaporator. In this case, for example, by opening an electromagnetic valve incorporated in a bypass pipe that bypasses the high pressure side and the low pressure side of the compressor, the high pressure side and the low pressure side of the compressor can be communicated with each other. If the high-pressure side and the low-pressure side are communicated, the pressure equalization control can be completed in a shorter time than when the compressor is operating. In this way, when the compressor can be stopped and the refrigeration cycle can be switched, if the same pressure equalization control as when the compressor is operating is performed, the indoor unit will be stopped for a longer time than necessary, There was a risk of impairing the user's comfort.

本発明は以上述べた問題点を解決するものであって、冷凍サイクルの状態に応じた適切な均圧制御が行える空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide an air conditioner that can perform appropriate pressure equalization control according to the state of the refrigeration cycle.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と室外熱交換器と外気温度を検出する外気温度検出手段と圧縮機から吐出される冷媒の吐出圧力を検出する高圧検出手段と圧縮機に吸入される冷媒の吸入圧力を検出する低圧検出手段とを有する少なくとも1台の室外機と、室内熱交換器と室内機減圧手段とを有する複数の室内機と、複数の室内機に対応して設けられて室内熱交換器における冷媒の流れ方向を切り換える複数の切換ユニットとを備えたものであって、室外機と複数の切換ユニットとが高圧ガス管および低圧ガス管で接続され、複数の室内機は少なくとも1台の室外機と液管で接続され、対応する複数の室内機と複数の切換ユニットとが冷媒配管で接続されている。また、切換ユニットは、対応する前記室内機の指示により室内機に備えられた室内熱交換器における冷媒圧力を昇圧あるいは降圧する均圧処理を行う均圧手段を備えている。そして、室外熱交換器を凝縮器として機能させて除霜運転や油回収運転を行っている状態から室外熱交換器を蒸発器として機能させる状態に切り換えるときに、高圧検出手段で検出した吐出圧力と低圧検出手段で検出した吸入圧力との圧力差が所定値以下であれば、均圧手段による均圧処理は行わないものである。また、均圧処理を行っているときに吐出圧力と吸入圧力との圧力差が所定値以下となれば、行っている均圧処理を停止するものである。   In order to solve the above-described problems, an air conditioner of the present invention includes a compressor, an outdoor heat exchanger, an outside air temperature detecting means for detecting the outside air temperature, and a high pressure detection for detecting the discharge pressure of the refrigerant discharged from the compressor. And a plurality of indoor units having an indoor heat exchanger and an indoor unit pressure-reducing means, and a plurality of indoor units having a low-pressure detecting means for detecting the suction pressure of the refrigerant sucked into the compressor and the refrigerant Provided with a plurality of switching units provided corresponding to the units and switching the flow direction of the refrigerant in the indoor heat exchanger, wherein the outdoor unit and the plurality of switching units are connected by a high-pressure gas pipe and a low-pressure gas pipe. The plurality of indoor units are connected to at least one outdoor unit by a liquid pipe, and the corresponding plurality of indoor units and a plurality of switching units are connected by a refrigerant pipe. In addition, the switching unit includes a pressure equalizing unit that performs a pressure equalizing process for increasing or decreasing the refrigerant pressure in the indoor heat exchanger provided in the indoor unit in accordance with an instruction from the corresponding indoor unit. The discharge pressure detected by the high pressure detecting means when switching from the state where the outdoor heat exchanger functions as a condenser to perform the defrosting operation or oil recovery operation to the state where the outdoor heat exchanger functions as an evaporator is performed. If the pressure difference between the suction pressure detected by the low pressure detection means is equal to or less than a predetermined value, the pressure equalization processing by the pressure equalization means is not performed. In addition, if the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value during the pressure equalization process, the pressure equalization process is stopped.

上記のように構成した本発明の空気調和装置は、吐出圧力と吸入圧力との圧力差が所定値以下であれば、均圧処理を行わない。また、均圧処理を行っているときに、吐出圧力と吸入圧力との圧力差が所定値以下となれば、均圧処理を停止する。従って、均圧処理を行う時間を短縮することができ、除霜運転や油回収運転から空調運転への復帰を早くすることができる。   The air conditioner of the present invention configured as described above does not perform pressure equalization processing if the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value. If the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value during the pressure equalization process, the pressure equalization process is stopped. Therefore, the time for performing the pressure equalization process can be shortened, and the return from the defrosting operation or the oil recovery operation to the air conditioning operation can be accelerated.

本発明の実施例における、暖房主体運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant in the case of performing heating main operation in the example of the present invention. 本発明の実施例における、切換ユニットの構成説明図である。FIG. 3 is a configuration explanatory diagram of a switching unit in the embodiment of the present invention. 本発明の実施例における、切換ユニットに備えられた各弁の動作を定めた切換ユニット動作テーブルである。It is the switching unit operation | movement table which defined operation | movement of each valve with which the switching unit was provided in the Example of this invention. 本発明の実施例における、除霜運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant in the case of performing the defrost operation in the example of the present invention. 本発明の実施例における、除霜運転から暖房主体運転に復帰する際の冷媒回路図である。It is a refrigerant circuit figure at the time of returning from a defrost operation to a heating main operation in the Example of this invention. 本発明の実施例における、除霜運転を行う際の室外機での処理を説明するフローチャートであり、(A)は除霜運転開始条件が成立した室外機における処理を説明するもの、(B)は除霜運転開始条件が成立した室外機からの指示により制御を行う室外機における処理を説明するものである。It is a flowchart explaining the process in the outdoor unit at the time of performing a defrost operation in the Example of this invention, (A) demonstrates the process in the outdoor unit in which the defrost operation start conditions were satisfied, (B) Fig. 4 illustrates processing in the outdoor unit that performs control according to an instruction from the outdoor unit in which the defrosting operation start condition is satisfied. 本発明の実施例における、除霜運転を行う際の室内機での処理を説明するフローチャートである。It is a flowchart explaining the process in the indoor unit at the time of performing the defrost operation in the Example of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施例としては、3台の室外機と4台の室内機とが相互に冷媒配管で接続され、室内機毎に冷房運転と暖房運転とを選択して運転できる、所謂冷暖房フリーの運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, three outdoor units and four indoor units are connected to each other by refrigerant piping, and a so-called cooling / heating-free operation can be performed in which a cooling operation and a heating operation can be selected for each indoor unit. An air conditioning apparatus will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1に示すように、本実施例における空気調和装置1は、3台の室外機2a〜2cと、4台の室内機8a〜8dと、4台の切換ユニット6a〜6dと、分岐器70、71、72とを備えている。これら室外機2a〜2cと室内機8a〜8dと切換ユニット6a〜6dと分岐器70、71、72とが、高圧ガス管30と、高圧ガス分管30a〜30cと、低圧ガス管31と、低圧ガス分管31a〜31cと、液管32と、液分管32a〜32cとで相互に接続されることによって、空気調和装置1の冷媒回路が構成される。   As shown in FIG. 1, the air conditioner 1 according to the present embodiment includes three outdoor units 2a to 2c, four indoor units 8a to 8d, four switching units 6a to 6d, and a branching unit 70. , 71, 72. The outdoor units 2a to 2c, the indoor units 8a to 8d, the switching units 6a to 6d, the branching units 70, 71 and 72, the high pressure gas pipe 30, the high pressure gas distribution pipes 30a to 30c, the low pressure gas pipe 31, and the low pressure The refrigerant circuit of the air conditioner 1 is comprised by mutually connecting with the gas distribution pipes 31a-31c, the liquid pipe 32, and the liquid distribution pipes 32a-32c.

この空気調和装置1では、室外機2a〜2cや切換ユニット6a〜6dに備えられた各種弁類を開閉したり切り換えたりすることによって、暖房運転(全ての室内機が暖房運転)、暖房主体運転(暖房運転を行っている室内機で要求される能力全体が冷房運転を行っている室内機で要求される能力全体を上回る場合)、冷房運転(全ての室内機が冷房運転)、冷房主体運転(冷房運転を行っている室内機で要求される能力全体が暖房運転を行っている室内機で要求される能力全体を上回る場合)等、様々な運転動作が可能である。   In this air conditioner 1, heating operation (all indoor units are in heating operation), heating main operation is performed by opening and closing and switching various valves provided in the outdoor units 2a to 2c and the switching units 6a to 6d. (When the overall capacity required for an indoor unit performing heating operation exceeds the total capacity required for an indoor unit performing cooling operation), cooling operation (all indoor units are cooling operation), cooling-dominated operation Various operation operations are possible, such as when the entire capacity required for the indoor unit performing the cooling operation exceeds the total capacity required for the indoor unit performing the heating operation.

図1は、これら運転動作の中から暖房主体運転を行っている場合の冷媒回路を示している。まずは、図1を用いて、室外機2a〜2cの構成について説明するが、室外機2a〜2cの構成は全て同じであるため、以下の説明では室外機2aの構成についてのみ説明を行い、室外機2bと室外機2cとについては詳細な説明は省略する。   FIG. 1 shows a refrigerant circuit in the case where a heating main operation is performed from among these operation operations. First, the configuration of the outdoor units 2a to 2c will be described with reference to FIG. 1, but since the configurations of the outdoor units 2a to 2c are all the same, only the configuration of the outdoor unit 2a will be described in the following description. Detailed description of the unit 2b and the outdoor unit 2c is omitted.

図1に示すように、室外機2aは、圧縮機21aと、四方弁22aと、室外熱交換器23aと、室外ファン24aと、アキュムレータ25aと、室外機高圧ガス管33aと、室外機低圧ガス管34aと、室外機液管35aと、ホットガスバイパス管36aと、冷媒配管37a、38a、39aと、閉鎖弁40a、41a、42aと、室外膨張弁43aと、室外機開閉手段であるバイパス用電磁弁44aとを備えている。   As shown in FIG. 1, the outdoor unit 2a includes a compressor 21a, a four-way valve 22a, an outdoor heat exchanger 23a, an outdoor fan 24a, an accumulator 25a, an outdoor unit high-pressure gas pipe 33a, and an outdoor unit low-pressure gas. Pipe 34a, outdoor unit liquid pipe 35a, hot gas bypass pipe 36a, refrigerant pipes 37a, 38a, 39a, closing valves 40a, 41a, 42a, outdoor expansion valve 43a, and bypass unit as an outdoor unit opening / closing means And an electromagnetic valve 44a.

圧縮機21aは、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる容量可変型圧縮機である。圧縮機21aの吐出側は、室外機高圧ガス管33aで閉鎖弁40aに接続されている。また、圧縮機21aの吸入側は、アキュムレータ25aの流出側に冷媒配管39aで接続されており、アキュムレータ25aの流入側は、室外機低圧ガス管34aで閉鎖弁41aに接続されている。   The compressor 21a is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The discharge side of the compressor 21a is connected to the closing valve 40a by the outdoor unit high-pressure gas pipe 33a. The suction side of the compressor 21a is connected to the outflow side of the accumulator 25a by a refrigerant pipe 39a, and the inflow side of the accumulator 25a is connected to the closing valve 41a by an outdoor unit low-pressure gas pipe 34a.

四方弁22aは、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaには、室外機高圧ガス管33aと接続点Aで接続する冷媒配管が接続されている。また、ポートbと室外熱交換器23aとが冷媒配管37aで接続され、ポートcに接続された冷媒配管38aは接続点Bで室外機低圧ガス管34aに接続されている。尚、ポートdは封止されている。   The four-way valve 22a is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. A refrigerant pipe connected to the outdoor unit high-pressure gas pipe 33a at the connection point A is connected to the port a. The port b and the outdoor heat exchanger 23a are connected by a refrigerant pipe 37a, and the refrigerant pipe 38a connected to the port c is connected to the outdoor unit low-pressure gas pipe 34a at a connection point B. The port d is sealed.

室外熱交換器23aは、冷媒と後述する室外ファン24aにより室外機2a内部に取り込まれた外気とを熱交換させるものであり、室外熱交換器23aの一端は、上述したように四方弁22aのポートbに冷媒配管37aで接続され、他端は室外膨張弁43aの一方のポートに冷媒配管で接続されている。尚、室外膨張弁43aの他方のポートは、閉鎖弁42aと室外機液管35aで接続されている。室外熱交換器23aは、空気調和装置1が冷房/冷房主体運転を行う場合は凝縮器として機能し、暖房/暖房主体運転を行う場合は蒸発器として機能する。   The outdoor heat exchanger 23a exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2a by an outdoor fan 24a described later, and one end of the outdoor heat exchanger 23a is connected to the four-way valve 22a as described above. The port b is connected by a refrigerant pipe 37a, and the other end is connected by a refrigerant pipe to one port of the outdoor expansion valve 43a. The other port of the outdoor expansion valve 43a is connected to the closing valve 42a by an outdoor unit liquid pipe 35a. The outdoor heat exchanger 23a functions as a condenser when the air-conditioning apparatus 1 performs cooling / cooling main operation, and functions as an evaporator when performing heating / heating main operation.

室外ファン24aは、室外熱交換器23aの近傍に配置される樹脂材で形成されたプロペラファンであり、図示しないファンモータによって回転することで、室外機2a内に外気を取り込み、室外熱交換器23aにおいて冷媒と外気とを熱交換させた後、熱交換した外気を室外機2a外部へ放出する。   The outdoor fan 24a is a propeller fan formed of a resin material disposed in the vicinity of the outdoor heat exchanger 23a. The outdoor fan 24a is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2a, and the outdoor heat exchanger After the refrigerant and the outside air are heat-exchanged in 23a, the heat-exchanged outside air is discharged to the outside of the outdoor unit 2a.

アキュムレータ25aは、流入側が室外機低圧ガス管34aに接続され、流出側が圧縮機21aの吸入側と冷媒配管39aで接続されている。アキュムレータ25aは、流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機21aに吸入させる。   The accumulator 25a has an inflow side connected to the outdoor unit low-pressure gas pipe 34a, and an outflow side connected to the suction side of the compressor 21a through a refrigerant pipe 39a. The accumulator 25a separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant, and causes only the gas refrigerant to be sucked into the compressor 21a.

ホットガスバイパス管36aは、一端が室外機高圧ガス管33aに接続点Cで接続され、他端が室外機低圧ガス管34aに接続点Dで接続されている。ホットガスバイパス管36aには、バイパス用電磁弁44aが組み込まれており、バイパス用電磁弁44aを開閉することによってホットガスバイパス管36aを冷媒が流れるあるいは流れないようにする。   One end of the hot gas bypass pipe 36a is connected to the outdoor unit high pressure gas pipe 33a at a connection point C, and the other end is connected to the outdoor unit low pressure gas pipe 34a at a connection point D. A bypass electromagnetic valve 44a is incorporated in the hot gas bypass pipe 36a, and the refrigerant flows or does not flow through the hot gas bypass pipe 36a by opening and closing the bypass electromagnetic valve 44a.

以上説明した構成の他に、室外機2aには各種のセンサが設けられている。図1に示すように、室外機高圧ガス管33aにおける圧縮機21aの吐出口と接続点Cとの間には、圧縮機21aから吐出される冷媒の吐出圧力を検出する高圧検出手段である高圧センサ50aと、圧縮機21aから吐出される冷媒の温度を検出する吐出温度センサ53aとが設けられている。また、室外機低圧ガス管34aにおける接続点Dとアキュムレータ25aの流入口との間には、圧縮機21aに吸入される冷媒の吸入圧力を検出する低圧検出手段である低圧センサ51aと、圧縮機21aに吸入される冷媒の温度を検出する吸入温度センサ54aとが設けられている。また、室外機液管35aにおける室外膨張弁43aと閉鎖弁42aとの間には、室外機液管35aを流れる冷媒の圧力を検出する中間圧センサ52aと、室外機液管35aを流れる冷媒の温度を検出する冷媒温度センサ55aとが設けられている。   In addition to the configuration described above, the outdoor unit 2a is provided with various sensors. As shown in FIG. 1, between the discharge port of the compressor 21a and the connection point C in the outdoor unit high-pressure gas pipe 33a, high pressure is high pressure detection means for detecting the discharge pressure of the refrigerant discharged from the compressor 21a. A sensor 50a and a discharge temperature sensor 53a for detecting the temperature of the refrigerant discharged from the compressor 21a are provided. Further, between the connection point D in the outdoor unit low-pressure gas pipe 34a and the inlet of the accumulator 25a, a low-pressure sensor 51a which is a low-pressure detection means for detecting the suction pressure of the refrigerant sucked into the compressor 21a, and the compressor A suction temperature sensor 54a for detecting the temperature of the refrigerant sucked into 21a is provided. Further, between the outdoor expansion valve 43a and the closing valve 42a in the outdoor unit liquid pipe 35a, an intermediate pressure sensor 52a that detects the pressure of the refrigerant flowing through the outdoor unit liquid pipe 35a, and the refrigerant flowing through the outdoor unit liquid pipe 35a. A refrigerant temperature sensor 55a for detecting the temperature is provided.

冷媒配管37aには、室外熱交換器23aから流出あるいは室外熱交換器23aへ流入する冷媒の温度を検出する熱交温度センサ56aが設けられている。また、室外機2aの図示しない外気の吸込口付近には、室外機2a内に流入する外気の温度、すなわち外気温度を検出する外気温度検出手段である外気温度センサ57aが備えられている。   The refrigerant pipe 37a is provided with a heat exchange temperature sensor 56a for detecting the temperature of the refrigerant flowing out of the outdoor heat exchanger 23a or flowing into the outdoor heat exchanger 23a. Also, an outdoor air temperature sensor 57a, which is an outdoor air temperature detecting means for detecting the temperature of the outdoor air flowing into the outdoor unit 2a, that is, the outdoor air temperature, is provided in the vicinity of the outside air inlet (not shown) of the outdoor unit 2a.

室外機2aには、制御部100aが備えられている。制御部100aは、室外機2aの図示しない電装品箱に格納されている制御基板に搭載されており、CPU110aと、記憶部120aと、通信部130aとを備えている。CPU110aは、室外機2aの上述した各センサからの検出信号を取り込むとともに、各室内機8a〜8dから出力される制御信号を通信部130aを介して取り込む。CPU110aは、取り込んだ検出信号や制御信号に基づいて圧縮機21aや室外ファン24aの回転制御、四方弁22aの切り換え制御、室外膨張弁43aの開度制御、といった室外機2aの運転に関する様々な制御を行う。   The outdoor unit 2a is provided with a control unit 100a. The control unit 100a is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2a, and includes a CPU 110a, a storage unit 120a, and a communication unit 130a. CPU110a takes in the detection signal from each sensor mentioned above of outdoor unit 2a, and takes in the control signal outputted from each indoor unit 8a-8d via communication part 130a. The CPU 110a performs various controls related to the operation of the outdoor unit 2a such as rotation control of the compressor 21a and the outdoor fan 24a, switching control of the four-way valve 22a, and opening degree control of the outdoor expansion valve 43a based on the detected detection signal and control signal. I do.

記憶部120aは、ROMやRAMで構成されており、室外機2aの制御プログラムや各センサからの検出信号に対応した検出値を記憶する。通信部130aは、室外機2aと室内機8a〜8dとの通信を仲介するインターフェイスである。   The storage unit 120a is composed of a ROM and a RAM, and stores detection values corresponding to control programs for the outdoor unit 2a and detection signals from each sensor. The communication unit 130a is an interface that mediates communication between the outdoor unit 2a and the indoor units 8a to 8d.

以上、室外機2aの構成について説明したが、室外機2bおよび室外機2cの構成は室外機2aと同じであり、室外機2aの構成要素(装置や部材)に付与した番号の末尾をaからbもしくはcに変更したものが、室外機2aの構成要素と対応する室外機2bおよび室外機2cの構成要素となる。但し、四方弁の各ポートおよび冷媒配管の接続点については、室外機2aと室外機2bおよび室外機2cとで記号を異ならせており、室外機2aの四方弁22aにおけるポートa、b、c、dに対応するものを室外機2bの四方弁22bではそれぞれポートe、f、g、hとし、室外機2cの四方弁22cではそれぞれポートj、k、m、nとしている。また、室外機2aにおける接続点A、B、C、Dに対応するものを、室外機2bではそれぞれ接続点E、F、G、H、室外機2cではそれぞれ接続点J、K、M、Nとしている。   As mentioned above, although the structure of the outdoor unit 2a was demonstrated, the structure of the outdoor unit 2b and the outdoor unit 2c is the same as the outdoor unit 2a, and the end of the number given to the component (apparatus and member) of the outdoor unit 2a from a What changed into b or c becomes the component of the outdoor unit 2b and the outdoor unit 2c corresponding to the component of the outdoor unit 2a. However, the symbols of the outdoor unit 2a, the outdoor unit 2b, and the outdoor unit 2c are different for the connection points of the four-way valve ports and the refrigerant pipes, and the ports a, b, c in the four-way valve 22a of the outdoor unit 2a are different. , D are ports e, f, g, h for the four-way valve 22b of the outdoor unit 2b, and ports j, k, m, n for the four-way valve 22c of the outdoor unit 2c. Further, in the outdoor unit 2b, the connection points E, F, G, H corresponding to the connection points A, B, C, and D in the outdoor unit 2a, and the connection points J, K, M, and N in the outdoor unit 2c, respectively. It is said.

次に、4台の室内機8a〜8dの構成について、図1を用いて説明する。尚、室内機8a〜8dの構成は全て同じであるため、以下の説明では、室内機8aの構成についてのみ説明を行い、その他の室内機8b〜8dについては説明を省略する。   Next, the configuration of the four indoor units 8a to 8d will be described with reference to FIG. Since the configurations of the indoor units 8a to 8d are all the same, in the following description, only the configuration of the indoor unit 8a will be described, and description of the other indoor units 8b to 8d will be omitted.

室内機8aは、室内熱交換器81aと、室内機減圧手段である室内膨張弁82aと、室内ファン83aと、冷媒配管87a、88aと、閉鎖弁44aおよび45aとを備えている。室内熱交換器81aは、一端が室内膨張弁82aの一方のポートに冷媒配管で接続され、他端が冷媒配管で閉鎖弁45aに接続されている。室内熱交換器81aは、室内機8aが冷房運転を行う場合は蒸発器として機能し、室内機8aが暖房運転を行う場合は凝縮器として機能する。   The indoor unit 8a includes an indoor heat exchanger 81a, an indoor expansion valve 82a that is an indoor unit decompression unit, an indoor fan 83a, refrigerant pipes 87a and 88a, and closing valves 44a and 45a. One end of the indoor heat exchanger 81a is connected to one port of the indoor expansion valve 82a by a refrigerant pipe, and the other end is connected to the closing valve 45a by a refrigerant pipe. The indoor heat exchanger 81a functions as an evaporator when the indoor unit 8a performs a cooling operation, and functions as a condenser when the indoor unit 8a performs a heating operation.

室内膨張弁82aは、一方のポートが上述したように室内熱交換器81aに冷媒配管で接続され、他方のポートが冷媒配管87aで閉鎖弁44aの一方のポートに接続されている。尚、閉鎖弁44aの他方のポートには、冷媒配管88aの一端が接続されている。室内膨張弁82aは、室内熱交換器81aが蒸発器として機能する場合は、その開度が要求される冷房能力に応じて調整され、室内熱交換器81aが凝縮器として機能する場合は、その開度が要求される暖房能力に応じて調整される。   As described above, the indoor expansion valve 82a has one port connected to the indoor heat exchanger 81a via the refrigerant pipe, and the other port connected to one port of the closing valve 44a via the refrigerant pipe 87a. One end of the refrigerant pipe 88a is connected to the other port of the closing valve 44a. When the indoor heat exchanger 81a functions as an evaporator, the indoor expansion valve 82a is adjusted according to the required cooling capacity, and when the indoor heat exchanger 81a functions as a condenser, The opening is adjusted according to the required heating capacity.

室内ファン83aは、樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、室内機8a内に室内空気を取り込み、室内熱交換器81aにおいて冷媒と室内空気とを熱交換させた後、熱交換した空気を室内へ供給する。   The indoor fan 83a is a cross-flow fan formed of a resin material, and is rotated by a fan motor (not shown) to take indoor air into the indoor unit 8a and heat the refrigerant and indoor air in the indoor heat exchanger 81a. After the exchange, the heat exchanged air is supplied to the room.

以上説明した構成の他に、室内機8aには各種のセンサが設けられている。室内熱交換器81aの室内膨張弁82a側の冷媒配管には、室内熱交換器81aに流入または室内熱交換器81aから流出する冷媒の温度を検出する冷媒温度センサ84aが設けられている。また、室内熱交換器81aの閉鎖弁45a側の冷媒配管には、室内熱交換器81aに流入または室内熱交換器81aから流出する冷媒の温度を検出する冷媒温度センサ85aが設けられている。さらには、室内機8aの図示しない室内空気の吸込口付近には、室内機8a内に流入する室内空気の温度、すなわち室内温度を検出する室温センサ86aが備えられている。   In addition to the configuration described above, the indoor unit 8a is provided with various sensors. The refrigerant pipe on the indoor expansion valve 82a side of the indoor heat exchanger 81a is provided with a refrigerant temperature sensor 84a that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 81a. In addition, a refrigerant temperature sensor 85a for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 81a is provided in the refrigerant pipe on the closing valve 45a side of the indoor heat exchanger 81a. Furthermore, a room temperature sensor 86a for detecting the temperature of the indoor air flowing into the indoor unit 8a, that is, the room temperature, is provided in the vicinity of the indoor air inlet (not shown) of the indoor unit 8a.

室内機8aには、制御部800aが備えられている。制御部800aは、室内機8aの図示しない電装品箱に格納されている制御基板に搭載されており、CPU810aと、記憶部820aと、通信部830aとを備えている。CPU810aは、室内機8aの上述した各センサからの検出信号を取り込むとともに、各室外機2a〜2dから出力される制御信号を通信部830aを介して取り込む。CPU810aは、取り込んだ検出信号や制御信号に基づいて室内ファン83aの回転制御や室内膨張弁82aの開度制御等といった室内機8aの運転に関する様々な制御を行う。   The indoor unit 8a includes a control unit 800a. The control unit 800a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 8a, and includes a CPU 810a, a storage unit 820a, and a communication unit 830a. The CPU 810a captures detection signals from the above-described sensors of the indoor unit 8a and captures control signals output from the outdoor units 2a to 2d via the communication unit 830a. The CPU 810a performs various controls related to the operation of the indoor unit 8a, such as rotation control of the indoor fan 83a and opening control of the indoor expansion valve 82a, based on the acquired detection signal and control signal.

記憶部820aは、ROMやRAMで構成されており、室内機8aの制御プログラムや各センサからの検出信号に対応した検出値を記憶する。通信部830aは、室内機8aと室外機2a〜2cとの通信を仲介するインターフェイスである。
尚、室外機2a〜2cの制御部100a〜100cと、室内機8a〜8dの制御部800a〜800dとは、通信部130a〜130cおよび通信部830a〜830dを介して相互に通信可能に接続されている。
The storage unit 820a includes a ROM and a RAM, and stores detection values corresponding to control programs for the indoor unit 8a and detection signals from the sensors. The communication unit 830a is an interface that mediates communication between the indoor unit 8a and the outdoor units 2a to 2c.
The control units 100a to 100c of the outdoor units 2a to 2c and the control units 800a to 800d of the indoor units 8a to 8d are connected to each other via the communication units 130a to 130c and the communication units 830a to 830d. ing.

以上、室内機8aの構成について説明したが、室内機8b〜8dの構成は室内機8aと同じであり、室内機8aの構成要素(装置や部材)に付与した番号の末尾をaからb、c、およびdにそれぞれ変更したものが、室外機8aの構成要素と対応する室内機8b〜8dの構成要素となる。   Although the configuration of the indoor unit 8a has been described above, the configuration of the indoor units 8b to 8d is the same as that of the indoor unit 8a, and the end of the numbers assigned to the components (devices and members) of the indoor unit 8a are a to b, The components changed to c and d are the components of the indoor units 8b to 8d corresponding to the components of the outdoor unit 8a.

次に、4台の切換ユニット6a〜6dの構成について、図1および図2を用いて説明する。空気調和装置1には、4台の室内機8a〜8dに対応して4台の切換ユニット6a〜6dが備えられている。尚、切換ユニット6a〜6dの構成は全て同じであるため、以下の説明では、切換ユニット6aの構成についてのみ説明を行い、その他の切換ユニット6b〜6dについては説明を省略する。   Next, the configuration of the four switching units 6a to 6d will be described with reference to FIGS. The air conditioner 1 includes four switching units 6a to 6d corresponding to the four indoor units 8a to 8d. In addition, since all the structures of switching unit 6a-6d are the same, in the following description, only the structure of switching unit 6a is demonstrated, and description is abbreviate | omitted about the other switching units 6b-6d.

切換ユニット6aは、第1開閉手段61aと、第2開閉手段62aと、第3開閉手段63aと、第4開閉手段64aと、流量制限手段である第1キャピラリーチューブ65aと、第2キャピラリーチューブ66aと、閉鎖弁67a、68a、69aと、第1分流管91aと、第2分流管92aと、第3分流管93aと、第4分流管94aと、第5分流管95aと、バイパス管96aと、冷媒配管97aとを備えている。   The switching unit 6a includes a first opening / closing means 61a, a second opening / closing means 62a, a third opening / closing means 63a, a fourth opening / closing means 64a, a first capillary tube 65a serving as a flow restricting means, and a second capillary tube 66a. Closing valves 67a, 68a, 69a, a first branch pipe 91a, a second branch pipe 92a, a third branch pipe 93a, a fourth branch pipe 94a, a fifth branch pipe 95a, and a bypass pipe 96a And a refrigerant pipe 97a.

第1分流管91aの一端は閉鎖弁67aの一方のポートに接続されており、第2分流管92aの一端は閉鎖弁68aの一方のポートに接続されている。また、第1分流管91aの他端と第2分流管92aの他端とは接続点Taで相互に接続されている。また、閉鎖弁69aの一方のポートには冷媒配管97aの一端が接続されており、冷媒配管97aの他端は、第1分流管91aの他端および第2分流管92aの他端と接続点Taで接続されている。尚、閉鎖弁67aの他方のポートには、高圧ガス管30が、閉鎖弁68aの他方のポートには、低圧ガス管31が、閉鎖弁69aの他方のポートには、冷媒配管88aの他端が、それぞれ接続されている。   One end of the first branch pipe 91a is connected to one port of the closing valve 67a, and one end of the second branch pipe 92a is connected to one port of the closing valve 68a. Further, the other end of the first branch pipe 91a and the other end of the second branch pipe 92a are connected to each other at a connection point Ta. One end of the refrigerant pipe 97a is connected to one port of the closing valve 69a, and the other end of the refrigerant pipe 97a is connected to the other end of the first branch pipe 91a and the other end of the second branch pipe 92a. Connected with Ta. The other port of the closing valve 67a has a high-pressure gas pipe 30, the other port of the closing valve 68a has a low-pressure gas pipe 31, and the other port of the closing valve 69a has the other end of the refrigerant pipe 88a. Are connected to each other.

第3分流管93aの一端は接続点Qaで第1分流管91aに接続されており、第4分流管94aの一端は接続点Saで第2分流管92aに接続されている。また、第3分流管93aの他端と第4分流管94aの他端とは接続点Raで相互に接続されている。   One end of the third branch pipe 93a is connected to the first branch pipe 91a at the connection point Qa, and one end of the fourth branch pipe 94a is connected to the second branch pipe 92a at the connection point Sa. Further, the other end of the third branch pipe 93a and the other end of the fourth branch pipe 94a are connected to each other at a connection point Ra.

第5分流管95aは、一端が接続点Raで第3分流管93aおよび第4分流管94aに接続され、他端が接続点Taで第1分流管91a、第2分流管92aおよび冷媒配管97aに接続されている。また、バイパス管96aは、一端が接続点Paで第1分流管91aに接続されており、他端が接続点Raで第3分流管93a、第4分流管94aおよび第5分流管95aに接続されている。   The fifth branch pipe 95a has one end connected to the third branch pipe 93a and the fourth branch pipe 94a at the connection point Ra, and the other end connected to the first branch pipe 91a, the second branch pipe 92a, and the refrigerant pipe 97a at the connection point Ta. It is connected to the. The bypass pipe 96a has one end connected to the first branch pipe 91a at the connection point Pa and the other end connected to the third branch pipe 93a, the fourth branch pipe 94a, and the fifth branch pipe 95a at the connection point Ra. Has been.

第1分流管91aには第1開閉手段61aが、第2分流管92aには第2開閉手段62aが、それぞれ組み込まれている。第1開閉手段61aおよび第2開閉手段62aは、例えば電磁弁で構成される。第1開閉手段61aを開き第2開閉手段62aを閉じると、切換ユニット6aに対応する室内機8aの室内熱交換器81aが、圧縮機21の吐出側(高圧ガス管30側)に接続されるようになり、室内熱交換器81aが凝縮器として機能する。また、第2開閉手段62aを開き第1開閉手段61aを閉じると、切換ユニット6aに対応する室内機8aの室内熱交換器81aが、圧縮機21の吸入側(低圧ガス管31側)に接続されるようになり、室内熱交換器81aが蒸発器として機能する。   A first opening / closing means 61a is incorporated in the first branch pipe 91a, and a second opening / closing means 62a is incorporated in the second branch pipe 92a. The first opening / closing means 61a and the second opening / closing means 62a are constituted by, for example, electromagnetic valves. When the first opening / closing means 61a is opened and the second opening / closing means 62a is closed, the indoor heat exchanger 81a of the indoor unit 8a corresponding to the switching unit 6a is connected to the discharge side (high-pressure gas pipe 30 side) of the compressor 21. Thus, the indoor heat exchanger 81a functions as a condenser. When the second opening / closing means 62a is opened and the first opening / closing means 61a is closed, the indoor heat exchanger 81a of the indoor unit 8a corresponding to the switching unit 6a is connected to the suction side (low-pressure gas pipe 31 side) of the compressor 21. The indoor heat exchanger 81a functions as an evaporator.

第3分流管93aには第3開閉手段63aが、第4分流管94aには第4開閉手段64aが、第5分流管95aには第1キャピラリーチューブ65aが、バイパス管96aには第2キャピラリーチューブ66aが、それぞれ組み込まれている。第3開閉手段63aおよび第4開閉手段64aは、例えば電磁弁で構成される。第3開閉手段63aを開けることにより、第1分流管91aと冷媒配管97aとが、第3分流管93aおよび第5分流管95aによって連通する。また、第4開閉手段64aを開けることにより、第2分流管92aと冷媒配管97aとが、第4分流管94aおよび第5分流管95aによって連通する。   The third branch pipe 93a has a third opening / closing means 63a, the fourth branch pipe 94a has a fourth opening / closing means 64a, the fifth branch pipe 95a has a first capillary tube 65a, and the bypass pipe 96a has a second capillary. Tubes 66a are respectively incorporated. The third opening / closing means 63a and the fourth opening / closing means 64a are constituted by, for example, electromagnetic valves. By opening the third opening / closing means 63a, the first branch pipe 91a and the refrigerant pipe 97a communicate with each other through the third branch pipe 93a and the fifth branch pipe 95a. Further, by opening the fourth opening / closing means 64a, the second branch pipe 92a and the refrigerant pipe 97a communicate with each other through the fourth branch pipe 94a and the fifth branch pipe 95a.

以上、切換ユニット6aについて説明したが、切換ユニット6b〜6dの構成は切換ユニット6aと同じであり、切換ユニット6aの構成要素(装置や部材)に付与した番号の末尾をaからb、c、およびdにそれぞれ変更したものが、切換ユニット6aの構成要素と対応する切換ユニット6b〜6dの構成要素となる。また、第3開閉手段63a〜63dと、第4開閉手段64a〜64dと、第1キャピラリーチューブ65a〜65dと、第3分流管93a〜93dと、第4分流管94a〜94dと、第5分流管95a〜95dとで、本発明の均圧手段が構成される。   The switching unit 6a has been described above, but the configuration of the switching units 6b to 6d is the same as that of the switching unit 6a, and the numbers given to the components (devices and members) of the switching unit 6a are suffixed with a, b, c, The components changed to d and d are components of the switching units 6b to 6d corresponding to the components of the switching unit 6a. The third opening / closing means 63a to 63d, the fourth opening / closing means 64a to 64d, the first capillary tubes 65a to 65d, the third branch pipes 93a to 93d, the fourth branch pipes 94a to 94d, and the fifth branch stream. The pipes 95a to 95d constitute the pressure equalizing means of the present invention.

次に、以上説明した室外機2a〜2c、室内機8a〜8dおよび切換ユニット6a〜6dと、高圧ガス管30、高圧ガス分管30a〜30c、低圧ガス管31、低圧ガス分管31a〜31c、液管32、液分管32a〜32c、および、分岐器70、71、72との接続状態を、図1を用いて説明する。室外機2a〜2cの閉鎖弁40a〜40cには高圧ガス分管30a〜30cの一端がそれぞれ接続され、高圧ガス分管30a〜30cの他端は全て分岐器70に接続される。この分岐器70に高圧ガス管30の一端が接続され、高圧ガス管30の他端は分岐して切換ユニット6a〜6dの閉鎖弁67a〜67dに接続される。   Next, the outdoor units 2a to 2c, the indoor units 8a to 8d and the switching units 6a to 6d described above, the high pressure gas pipe 30, the high pressure gas distribution pipes 30a to 30c, the low pressure gas pipe 31, the low pressure gas distribution pipes 31a to 31c, the liquid The connection state with the pipe | tube 32, the liquid distribution pipes 32a-32c, and the branch devices 70, 71, and 72 is demonstrated using FIG. One ends of the high-pressure gas branch pipes 30a to 30c are connected to the shutoff valves 40a to 40c of the outdoor units 2a to 2c, respectively, and the other ends of the high-pressure gas branch pipes 30a to 30c are all connected to the branching device 70. One end of the high-pressure gas pipe 30 is connected to the branching device 70, and the other end of the high-pressure gas pipe 30 is branched and connected to the closing valves 67a to 67d of the switching units 6a to 6d.

室外機2a〜2cの閉鎖弁41a〜41cには低圧ガス分管31a〜31cの一端がそれぞれ接続され、低圧ガス分管31a〜31cの他端は全て分岐器71に接続される。この分岐器71に低圧ガス管31の一端が接続され、低圧ガス管31の他端は分岐して切換ユニット6a〜6dの閉鎖弁68a〜68dに接続される。   One end of each of the low pressure gas distribution pipes 31a to 31c is connected to each of the closing valves 41a to 41c of the outdoor units 2a to 2c, and the other end of each of the low pressure gas distribution pipes 31a to 31c is connected to the branching device 71. One end of the low-pressure gas pipe 31 is connected to the branching device 71, and the other end of the low-pressure gas pipe 31 is branched and connected to the closing valves 68a to 68d of the switching units 6a to 6d.

室外機2a〜2cの閉鎖弁42a〜42cには液分管32a〜32cの一端がそれぞれ接続され、液分管32a〜32cの他端は全て分岐器72に接続される。この分岐器72に液管32の一端が接続され、液管32の他端は分岐してそれぞれ室内機8a〜8dの閉鎖弁44a〜44dに接続される。また、室内機8a〜8dの閉鎖弁45a〜45dと、これに対応する切換ユニット6a〜6dの閉鎖弁69a〜69dとは、冷媒配管88a〜88dで接続される。
以上説明した接続によって、空気調和装置1の冷媒回路が構成され、冷媒回路に冷媒を流すことによって冷凍サイクルが成立する。
One ends of the liquid pipes 32a to 32c are connected to the closing valves 42a to 42c of the outdoor units 2a to 2c, respectively, and the other ends of the liquid pipes 32a to 32c are all connected to the branching device 72. One end of the liquid pipe 32 is connected to the branching device 72, and the other end of the liquid pipe 32 is branched and connected to the closing valves 44a to 44d of the indoor units 8a to 8d, respectively. Further, the closing valves 45a to 45d of the indoor units 8a to 8d and the corresponding closing valves 69a to 69d of the switching units 6a to 6d are connected by refrigerant pipes 88a to 88d.
With the connection described above, the refrigerant circuit of the air conditioner 1 is configured, and the refrigeration cycle is established by flowing the refrigerant through the refrigerant circuit.

次に、本実施例における空気調和装置1の運転動作について、図1を用いて説明する。尚、以下の説明では、室外機2a〜2cや室内機8a〜8dに備えられた各熱交換器が凝縮器となる場合はハッチングを付し、蒸発器となる場合は白抜きで図示する。また、室外機2a〜2cに備えられたバイパス用電磁弁44a〜44cや、切換ユニット6a〜6dに備えられた第1開閉手段61a〜61d、第2開閉手段62a〜62d、第3開閉手段63a〜63dおよび第4開閉手段64a〜64dの開閉状態については、閉じている場合を黒塗りで、開いている場合を白抜きで図示する。また、矢印は冷媒の流れを示している。   Next, the operation | movement operation | movement of the air conditioning apparatus 1 in a present Example is demonstrated using FIG. In the following description, hatching is given when each heat exchanger provided in the outdoor units 2a to 2c and the indoor units 8a to 8d is a condenser, and white is illustrated when the heat exchanger is an evaporator. The bypass solenoid valves 44a to 44c provided in the outdoor units 2a to 2c, the first opening / closing means 61a to 61d, the second opening / closing means 62a to 62d, and the third opening / closing means 63a provided to the switching units 6a to 6d. ˜63d and the open / closed states of the fourth opening / closing means 64a to 64d are shown in black when they are closed and white when they are open. Moreover, the arrow has shown the flow of the refrigerant | coolant.

図1に示すように、4台の室内機8a〜8dのうち、2台の室内機8a、8bが暖房運転を行い、残りの室内機8c、8dが冷房運転を行っているときに、暖房運転を行っている2台の室内機8a、8bで要求される能力全体が、冷房運転を行っている室内機8c、8dで要求される能力全体を上回る場合は、空気調和装置1は暖房主体運転となる。尚、以下の説明では、室内機8a〜8dで要求される運転能力全体が大きいため、全ての室外機2a〜2cを運転する場合について説明する。   As shown in FIG. 1, heating is performed when two indoor units 8a and 8b perform heating operation and the remaining indoor units 8c and 8d perform cooling operation among the four indoor units 8a to 8d. If the overall capacity required by the two indoor units 8a and 8b that are in operation exceeds the overall capacity required by the indoor units 8c and 8d that are performing the cooling operation, the air conditioner 1 is the heating main It becomes driving. In addition, in the following description, since the whole driving | operation capability requested | required with indoor unit 8a-8d is large, the case where all the outdoor units 2a-2c are drive | operated is demonstrated.

具体的には、室外機2aのCPU110aは、ポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するように四方弁22aを切り換える。これにより、冷媒配管37aが冷媒配管38aを介して室外機低圧ガス管34aに接続されて室外熱交換器23aが圧縮機21aの吸入側に接続され、室外熱交換器23aが蒸発器として機能するようになる。同様に、室外機2bのCPU110bは、ポートeとポートhとが連通するよう、また、ポートfとポートgとが連通するように四方弁22bを切り換えて、室外熱交換器23bが蒸発器として機能するようにし、室外機2cのCPU110cは、ポートjとポートnとが連通するよう、また、ポートkとポートmとが連通するように四方弁22cを切り換えて、室外熱交換器23cが蒸発器として機能するようにする。   Specifically, the CPU 110a of the outdoor unit 2a switches the four-way valve 22a so that the port a and the port d communicate with each other and the port b and the port c communicate with each other. As a result, the refrigerant pipe 37a is connected to the outdoor unit low-pressure gas pipe 34a via the refrigerant pipe 38a, the outdoor heat exchanger 23a is connected to the suction side of the compressor 21a, and the outdoor heat exchanger 23a functions as an evaporator. It becomes like this. Similarly, the CPU 110b of the outdoor unit 2b switches the four-way valve 22b so that the port e and the port h communicate with each other and the port f and the port g communicate with each other, and the outdoor heat exchanger 23b serves as an evaporator. The CPU 110c of the outdoor unit 2c switches the four-way valve 22c so that the port j and the port n communicate with each other and the port k and the port m communicate with each other, and the outdoor heat exchanger 23c evaporates. To function as a container.

暖房運転を行う室内機8a、8bのCPU810a,810bは、各々に対応する切換ユニット6a、6bの第1開閉手段61a、61bおよび第3開閉手段63a、63bを開いて、第1分流管91a、91bおよび第3分流管93a、93bを冷媒が流れるようにするとともに、第2開閉手段62a、62bおよび第4開閉手段64a、64bを閉じて第2分流管92a、92bおよび第4分流管94a、94bを冷媒が流れないようにする。これにより、切換ユニット6a、6bの閉鎖弁67a、67bと閉鎖弁69a、69bとの間が連通し、室内機8a、8bの室内熱交換器81a、81bが凝縮器として機能する。   The CPUs 810a, 810b of the indoor units 8a, 8b that perform the heating operation open the first opening / closing means 61a, 61b and the third opening / closing means 63a, 63b of the corresponding switching units 6a, 6b, respectively, and the first branch pipe 91a, 91b and the third branch pipes 93a and 93b are allowed to flow the refrigerant, and the second opening and closing means 62a and 62b and the fourth opening and closing means 64a and 64b are closed to make the second branch pipes 92a and 92b and the fourth branch pipe 94a, The refrigerant is prevented from flowing through 94b. Thereby, the closing valves 67a and 67b of the switching units 6a and 6b communicate with the closing valves 69a and 69b, and the indoor heat exchangers 81a and 81b of the indoor units 8a and 8b function as a condenser.

一方、冷房運転を行う室内機8c、8dのCPU810c,dは、各々に対応する切換ユニット6c、6dの第1開閉手段61c、61dおよび第3開閉手段63c、63dを閉じて、第1分流管91c、91dおよび第3分流管93c、93dを冷媒が流れないようにするとともに、第2開閉手段62c、62dおよび第4開閉手段64c、64dを開いて第2分流管92c、92dおよび第4分流管94c、94dを冷媒が流れるようにする。これにより、切換ユニット6c、6dの閉鎖弁68c、68dと閉鎖弁69c、69dとの間が連通し、室内機8c、8dの室内熱交換器81c、81dが蒸発器として機能するようになる。   On the other hand, the CPUs 810c, d of the indoor units 8c, 8d performing the cooling operation close the first opening / closing means 61c, 61d and the third opening / closing means 63c, 63d of the switching units 6c, 6d, respectively, The refrigerant is prevented from flowing through the 91c, 91d and the third branch pipes 93c, 93d, and the second opening / closing means 62c, 62d and the fourth opening / closing means 64c, 64d are opened to open the second branch pipes 92c, 92d and the fourth branch flow. The refrigerant is allowed to flow through the tubes 94c and 94d. Thereby, the closing valves 68c and 68d of the switching units 6c and 6d communicate with the closing valves 69c and 69d, and the indoor heat exchangers 81c and 81d of the indoor units 8c and 8d function as an evaporator.

圧縮機21a〜21cから吐出された高圧の冷媒は、室外機高圧ガス管33a〜33cを流れ、閉鎖弁40a〜40cを介して高圧ガス分管30a〜30cに流入する。このとき、バイパス用電磁弁44a〜44cは閉じられているので、圧縮機21a〜21cから吐出された冷媒が、室外機高圧ガス管33a〜33cからホットガスバイパス管36a〜36cを介して室外機低圧ガス管34a〜34cに流れることはない。   The high-pressure refrigerant discharged from the compressors 21a to 21c flows through the outdoor unit high-pressure gas pipes 33a to 33c, and flows into the high-pressure gas branch pipes 30a to 30c through the closing valves 40a to 40c. At this time, since the bypass solenoid valves 44a to 44c are closed, the refrigerant discharged from the compressors 21a to 21c flows from the outdoor unit high pressure gas pipes 33a to 33c through the hot gas bypass pipes 36a to 36c. It does not flow into the low pressure gas pipes 34a to 34c.

高圧ガス分管30a〜30cに流入した冷媒は、分岐器70で合流して高圧ガス管30に流入し高圧ガス管30から切換ユニット6a、6bに流入する。切換ユニット6a、6bに流入した冷媒は、開となっている第1開閉手段61a、61bが備えられた第1分流管91a、91bを流れて切換ユニット6a、6bから流出し、冷媒配管88a,88bを流れて室内機8a、8bに流入する。このとき、第1分流管91a、91bから接続点Pa,Pbを介してバイパス管96a、96bに流入する冷媒量は、第2キャピラリーチューブ66a、66bの存在により、第1分流管91a、91bを流れる冷媒量と比べてごくわずかとなる。また、第3開閉手段93a、93bが開、第4開閉手段94a、94bが閉となっているため、接続点Qa,Qbと接続点Ta、Tbとの間は連通した状態となっているが、この間には第1キャピラリーチューブ95a,95bが存在するため、第1分流管91a、91bから接続点Qa,Qbを介して第3分流管93a,93bに流入する冷媒量は、第1分流管91a、91bを流れる冷媒量と比べてごくわずかとなる。   The refrigerant that has flowed into the high-pressure gas branch pipes 30a to 30c merges at the branching device 70, flows into the high-pressure gas pipe 30, and flows from the high-pressure gas pipe 30 into the switching units 6a and 6b. The refrigerant flowing into the switching units 6a and 6b flows through the first branch pipes 91a and 91b provided with the first opening / closing means 61a and 61b that are open, flows out of the switching units 6a and 6b, and flows into the refrigerant pipes 88a and 88b. It flows through the indoor units 8a and 8b through 88b. At this time, the amount of refrigerant flowing into the bypass pipes 96a and 96b from the first branch pipes 91a and 91b via the connection points Pa and Pb is reduced in the first branch pipes 91a and 91b due to the presence of the second capillary tubes 66a and 66b. The amount of refrigerant flowing is very small. Further, since the third opening / closing means 93a, 93b are open and the fourth opening / closing means 94a, 94b are closed, the connection points Qa, Qb and the connection points Ta, Tb are in communication with each other. Since the first capillary tubes 95a and 95b exist between them, the amount of refrigerant flowing into the third branch pipes 93a and 93b from the first branch pipes 91a and 91b through the connection points Qa and Qb is the first branch pipe. The amount of refrigerant flowing through 91a and 91b is negligible.

室内機8a、8bに流入した冷媒は、室内熱交換器81a、81bに流入して室内空気と熱交換を行って凝縮し、これにより室内機8a、8bが設置された室内の暖房が行われる。室内熱交換器81a、81bから流出した冷媒は、冷媒配管87a,87bに組み込まれた室内膨張弁82a、82bを通過して減圧され中間圧の冷媒となる。尚、室内機8a、8bのCPU810a、810bは、冷媒温度センサ84a、84bで検出した冷媒温度および室外機2a〜2cから受信した高圧飽和温度から、凝縮器である室内熱交換器81a、81bでの冷媒過冷却度を求め、これに応じて室内膨張弁82a、82bの開度を決定している。   The refrigerant that has flowed into the indoor units 8a and 8b flows into the indoor heat exchangers 81a and 81b, exchanges heat with indoor air, and condenses, thereby heating the room in which the indoor units 8a and 8b are installed. . The refrigerant that has flowed out of the indoor heat exchangers 81a and 81b passes through the indoor expansion valves 82a and 82b incorporated in the refrigerant pipes 87a and 87b, and is reduced in pressure to become an intermediate pressure refrigerant. The CPUs 810a and 810b of the indoor units 8a and 8b are the indoor heat exchangers 81a and 81b, which are condensers, from the refrigerant temperature detected by the refrigerant temperature sensors 84a and 84b and the high-pressure saturation temperature received from the outdoor units 2a to 2c. The degree of refrigerant supercooling is determined, and the opening degrees of the indoor expansion valves 82a and 82b are determined accordingly.

室内膨張弁82a、82bを通過し、冷媒配管87a,87bを流れて室内機8a、8bから流出した冷媒は、液管32に流入する。液管32に流入した冷媒は、一部が分岐器72に流入し、残りは液管32を流れて室内機8c,8dに流入する。分岐器72に流入した冷媒は、液分管32a〜32cに分流し、閉鎖弁42a〜42cを介して室外機2a〜2cに流入する。   The refrigerant that passes through the indoor expansion valves 82a and 82b, flows through the refrigerant pipes 87a and 87b, and flows out of the indoor units 8a and 8b flows into the liquid pipe 32. A part of the refrigerant flowing into the liquid pipe 32 flows into the branching device 72, and the rest flows through the liquid pipe 32 into the indoor units 8c and 8d. The refrigerant that has flowed into the branching device 72 is divided into the liquid distribution pipes 32a to 32c, and flows into the outdoor units 2a to 2c via the closing valves 42a to 42c.

室外機2a〜2cに流入した冷媒は、室外膨張弁43a〜43cを通過する際に減圧されて低圧の冷媒となり、室外熱交換器23a〜23cに流入して外気と熱交換を行って蒸発する。室外熱交換器23a〜23cから流出した冷媒は、四方弁22a〜22cを通過して冷媒配管38a〜38cに流入し、接続点B、F、Kから室外機低圧ガス管34a〜34cに流入する。室外機低圧ガス管34a〜34cに流入した冷媒は、アキュムレータ25a〜25cを介して冷媒配管39a〜39cを流れて圧縮機21a〜21cに吸入されて再び圧縮される。   The refrigerant flowing into the outdoor units 2a to 2c is reduced in pressure when passing through the outdoor expansion valves 43a to 43c, becomes a low-pressure refrigerant, flows into the outdoor heat exchangers 23a to 23c, exchanges heat with the outside air, and evaporates. . The refrigerant flowing out of the outdoor heat exchangers 23a-23c passes through the four-way valves 22a-22c, flows into the refrigerant pipes 38a-38c, and flows into the outdoor unit low-pressure gas pipes 34a-34c from the connection points B, F, K. . The refrigerant that has flowed into the outdoor unit low-pressure gas pipes 34a to 34c flows through the refrigerant pipes 39a to 39c through the accumulators 25a to 25c, is sucked into the compressors 21a to 21c, and is compressed again.

一方、室内機8a、8bから流出し液管32を流れて室内機8c,8dに流入した中間圧の冷媒は、冷媒配管87c,87dに組み込まれた室内膨張弁82c、82dを通過して減圧されて低圧の冷媒となり、室内熱交換器81c、81dに流入する。室内熱交換器81c、81dに流入した冷媒は、室内空気と熱交換を行って蒸発する。これにより、室内機8c、8dが設置された室内の冷房が行われる。尚、室内機8c、8dのCPU810c、810dは、冷媒温度センサ84c、84dで検出した冷媒温度および冷媒温度センサ85c、85dで検出した冷媒温度から、蒸発器である室内熱交換器81c、81dでの冷媒過熱度を求め、これに応じて室内膨張弁82c、82dの開度を決定している。   On the other hand, the intermediate-pressure refrigerant that flows out of the indoor units 8a and 8b, flows through the liquid pipe 32, and flows into the indoor units 8c and 8d passes through the indoor expansion valves 82c and 82d incorporated in the refrigerant pipes 87c and 87d, and is decompressed. Thus, the refrigerant becomes a low-pressure refrigerant and flows into the indoor heat exchangers 81c and 81d. The refrigerant that has flowed into the indoor heat exchangers 81c and 81d evaporates by exchanging heat with the indoor air. Thereby, cooling of the room in which the indoor units 8c and 8d are installed is performed. Note that the CPUs 810c and 810d of the indoor units 8c and 8d use the indoor heat exchangers 81c and 81d, which are evaporators, based on the refrigerant temperature detected by the refrigerant temperature sensors 84c and 84d and the refrigerant temperature detected by the refrigerant temperature sensors 85c and 85d. The degree of refrigerant superheat is obtained, and the opening degree of the indoor expansion valves 82c and 82d is determined accordingly.

室内熱交換器81c、81dから流出した冷媒は、冷媒配管88c、88dを流れて切換ユニット6c,6dに流入し、接続点Tc,Tdを介して、開となっている第2開閉手段62c、62dが備えられた第2分流管92c、92dを流れる。そして、切換ユニット6c、6dから流出し、低圧ガス管31に流入する。このとき、接続点Tc,Tdから第5分流管95c、95dに流入し接続点Rc、Rdを介して第4分流管94c、94dに流入する冷媒量は、第5分流管95c、95dに第1キャピラリーチューブ65c,65dが組み込まれているためにごくわずかとなる。また、接続点Pc、Pdでの冷媒圧力の方が接続点Rc、Rdでの冷媒圧力より高いため、接続点Rc、Rdからバイパス管96c、96dへは冷媒は流れない。   The refrigerant that has flowed out of the indoor heat exchangers 81c and 81d flows through the refrigerant pipes 88c and 88d, flows into the switching units 6c and 6d, and is opened via the connection points Tc and Td. It flows through the second branch pipes 92c and 92d provided with 62d. Then, it flows out from the switching units 6 c and 6 d and flows into the low pressure gas pipe 31. At this time, the refrigerant amount flowing into the fifth branch pipes 95c and 95d from the connection points Tc and Td and flowing into the fourth branch pipes 94c and 94d through the connection points Rc and Rd is supplied to the fifth branch pipes 95c and 95d. Since one capillary tube 65c, 65d is incorporated, it becomes very small. Further, since the refrigerant pressure at the connection points Pc and Pd is higher than the refrigerant pressure at the connection points Rc and Rd, the refrigerant does not flow from the connection points Rc and Rd to the bypass pipes 96c and 96d.

低圧ガス管31に流入した冷媒は分岐器71に流入し、分岐器71から低圧ガス分管31a〜31cに分流する。低圧ガス分管31a〜31cを流れて室外機2a〜2cに流入した冷媒は、室外機低圧ガス管34a〜34cから接続点B、F、Kおよびアキュムレータ25a〜25cを介して冷媒配管39a〜39cを流れ、圧縮機21a〜21cに吸入されて再び圧縮される。   The refrigerant that has flowed into the low-pressure gas pipe 31 flows into the branching device 71, and is branched from the branching device 71 to the low-pressure gas distribution pipes 31a to 31c. The refrigerant flowing through the low pressure gas distribution pipes 31a to 31c and flowing into the outdoor units 2a to 2c passes through the refrigerant pipes 39a to 39c from the outdoor unit low pressure gas pipes 34a to 34c via the connection points B, F, K and the accumulators 25a to 25c. The flow is sucked into the compressors 21a to 21c and compressed again.

次に、図1乃至図5を用いて、本実施例の空気調和装置1における均圧処理制御について説明する。室内機8a〜8dの制御部800a〜800dの記憶部820a〜820dには、図3に示す切換ユニット動作テーブル200が、予め記憶されている。この切換ユニット動作テーブル200は、室内機8a〜8dの状態による、室内機8a〜8dに対応する切換ユニット6a〜6dの各弁の開閉状態を定めたものである。   Next, pressure equalization processing control in the air-conditioning apparatus 1 of the present embodiment will be described with reference to FIGS. 1 to 5. The switching unit operation table 200 shown in FIG. 3 is stored in advance in the storage units 820a to 820d of the control units 800a to 800d of the indoor units 8a to 8d. This switching unit operation table 200 defines the open / close states of the valves of the switching units 6a to 6d corresponding to the indoor units 8a to 8d according to the states of the indoor units 8a to 8d.

室内機の状態の項目は、室内機8a〜8dが暖房運転を行っている場合と冷房運転を行っている場合とに分かれている。暖房運転では、通常の暖房運転を行っている場合を通常時としており、冷房運転から暖房運転に切り換える際を昇圧時としている。また、冷房運転では、通常の冷房運転を行っている場合を通常時としており、暖房運転から冷房運転に切り換える際を降圧時としている。   The item of the state of the indoor unit is divided into a case where the indoor units 8a to 8d are performing a heating operation and a case where a cooling operation is being performed. In the heating operation, the normal heating operation is performed during normal time, and the switching from the cooling operation to the heating operation is performed during pressure increase. In the cooling operation, the normal cooling operation is set as normal time, and the switching from the heating operation to the cooling operation is set as the step-down time.

切換ユニット動作テーブル200において、暖房運転における通常時では、第1開閉手段61a〜61dおよび第3開閉手段63a〜63dは開、第2開閉手段62a〜62dおよび第4開閉手段64a〜64dは閉としている。また、昇圧時では、第3開閉手段63a〜63dのみを開とし、第1開閉手段61a〜61d、第2開閉手段62a〜62dおよび第4開閉手段64a〜64dは閉としている。   In the switching unit operation table 200, the first opening / closing means 61a to 61d and the third opening / closing means 63a to 63d are opened, and the second opening / closing means 62a to 62d and the fourth opening / closing means 64a to 64d are closed during the normal heating operation. Yes. At the time of boosting, only the third opening / closing means 63a to 63d are opened, and the first opening / closing means 61a to 61d, the second opening / closing means 62a to 62d, and the fourth opening / closing means 64a to 64d are closed.

また、冷房運転における通常時では、第2開閉手段62a〜62dおよび第4開閉手段64a〜64dは開とし、第1開閉手段61a〜61dおよび第3開閉手段63a〜63dは閉としている。また、降圧時では、第4開閉手段64a〜64dのみを開とし、第1開閉手段61a〜61d、第2開閉手段62a〜62dおよび第3開閉手段63a〜63dは閉としている。   In the normal operation in the cooling operation, the second opening / closing means 62a to 62d and the fourth opening / closing means 64a to 64d are opened, and the first opening / closing means 61a to 61d and the third opening / closing means 63a to 63d are closed. At the time of step-down, only the fourth opening / closing means 64a to 64d are opened, and the first opening / closing means 61a to 61d, the second opening / closing means 62a to 62d, and the third opening / closing means 63a to 63d are closed.

次に、この切換ユニット動作テーブル200を使用した切換ユニット6a〜6dの各弁の制御について説明する。図1に示す室内機8a、8bのように、暖房運転を行っている室内機では、CPU810a、810bは、切換ユニット動作テーブル200の暖房運転の通常時の項目を参照し、第1開閉手段61a、61bおよび第3開閉手段63a、63bを開とすることで、前述したように高圧ガス管30から切換ユニット6a、6bに流入した冷媒を室内機8a、8bの室内熱交換器81a、81bに流して室内熱交換器81a、81bを凝縮器として機能させる。   Next, control of each valve of the switching units 6a to 6d using the switching unit operation table 200 will be described. In an indoor unit that is performing a heating operation, such as the indoor units 8a and 8b illustrated in FIG. 1, the CPUs 810a and 810b refer to the normal items of the heating operation in the switching unit operation table 200, and the first opening / closing means 61a. 61b and the third opening / closing means 63a, 63b are opened, so that the refrigerant flowing into the switching units 6a, 6b from the high-pressure gas pipe 30 is transferred to the indoor heat exchangers 81a, 81b of the indoor units 8a, 8b as described above. The indoor heat exchangers 81a and 81b are caused to function as condensers.

また、図1に示す室内機8c、8dのように、冷房運転を行っている室内機では、CPU810c、810dは、切換ユニット動作テーブル200の冷房運転の通常時の項目を参照し、第2開閉手段62c、62dおよび第4開閉手段64c、64dを開とすることで、前述したように液管32から室内機8c、8dの室内熱交換器81c、81dに冷媒を流して室内熱交換器81c、81dを蒸発器として機能させる。   Further, in the indoor units that are performing the cooling operation, such as the indoor units 8c and 8d illustrated in FIG. 1, the CPUs 810c and 810d refer to the items in the normal cooling operation of the switching unit operation table 200 and perform the second opening / closing. By opening the means 62c, 62d and the fourth opening / closing means 64c, 64d, as described above, the refrigerant flows from the liquid pipe 32 to the indoor heat exchangers 81c, 81d of the indoor units 8c, 8d, so that the indoor heat exchanger 81c , 81d function as an evaporator.

室内機8a〜8dにおいて、暖房運転から冷房運転に切り換える場合、あるいは、冷房運転から暖房運転に切り換える場合(以下、必要な場合を除き運転モードを切り換える場合、と記載する)は、制御部800a〜800dのCPU810a〜810dは、切換ユニット動作テーブル200を参照して切換ユニット6a〜6dの各弁を制御し、以下に説明するような均圧処理制御を行う。   In the indoor units 8a to 8d, when switching from the heating operation to the cooling operation, or when switching from the cooling operation to the heating operation (hereinafter, described as switching the operation mode except when necessary), the control units 800a to 800a The 800d CPUs 810a to 810d refer to the switching unit operation table 200 to control the valves of the switching units 6a to 6d, and perform pressure equalization processing control as described below.

例えば、暖房運転を行っている室内機8aを冷房運転に切り換える場合は、CPU810aは、室内膨張弁82aを全閉とし室内機8aの運転を停止する。また、CPU810aは、切換ユニット動作テーブル200の冷房運転の降圧時の項目を参照して、第1開閉手段61a、第2開閉手段62aおよび第3開閉手段63aを閉じ第4開閉手段64aのみを開とする。   For example, when switching the indoor unit 8a performing the heating operation to the cooling operation, the CPU 810a fully closes the indoor expansion valve 82a and stops the operation of the indoor unit 8a. Further, the CPU 810a refers to the item at the time of step-down of the cooling operation of the switching unit operation table 200, closes the first opening / closing means 61a, the second opening / closing means 62a and the third opening / closing means 63a, and opens only the fourth opening / closing means 64a. And

室内機8aを暖房運転から冷房運転に切り換えるときに第4開閉手段64aのみを開とするのは、以下の理由による。室内機8aが暖房運転を行っているとき、閉じている第2開閉手段62aの室内機8a側(接続点Ta側)の冷媒圧力、つまり、室内熱交換器81aでの冷媒圧力は、第2開閉手段62aの低圧ガス管31側(接続点Sa側)の冷媒圧力に比べて高くなっている。この状態で、冷房運転を行うために第2開閉手段62aを開くと、第2開閉手段62aの両端での圧力差によって第2開閉手段62aを冷媒が勢いよく流れこれに起因する騒音が発生する虞がある。   The reason why only the fourth opening / closing means 64a is opened when the indoor unit 8a is switched from the heating operation to the cooling operation is as follows. When the indoor unit 8a is performing the heating operation, the refrigerant pressure on the indoor unit 8a side (connection point Ta side) of the closed second opening / closing means 62a, that is, the refrigerant pressure in the indoor heat exchanger 81a is the second. It is higher than the refrigerant pressure on the low-pressure gas pipe 31 side (connection point Sa side) of the opening / closing means 62a. In this state, when the second opening / closing means 62a is opened in order to perform the cooling operation, the refrigerant vigorously flows through the second opening / closing means 62a due to the pressure difference between both ends of the second opening / closing means 62a, and noise due to this is generated. There is a fear.

そこで、室内機8aを暖房運転から冷房運転に切り換えるときは、開いている第1開閉手段61aと第3開閉手段63aとを閉とするとともに第4開閉手段64aを開とする。第4開閉手段64aを開とすることによって、接続点Saと接続点Taとの間が第4分流管94aおよび第5分流管95aで連通し、接続点Taでの冷媒圧力が第1キャピラリーチューブ65aにより徐々に下降(降圧)する。   Therefore, when switching the indoor unit 8a from the heating operation to the cooling operation, the opened first opening / closing means 61a and the third opening / closing means 63a are closed and the fourth opening / closing means 64a is opened. By opening the fourth opening / closing means 64a, the connection point Sa and the connection point Ta communicate with each other through the fourth branch pipe 94a and the fifth branch pipe 95a, and the refrigerant pressure at the connection point Ta is changed to the first capillary tube. Gradually descends (decreases pressure) by 65a.

CPU810aは、第4開閉手段64aのみを開とする状態を所定時間(例えば、10分間)継続し、第2開閉手段62aの両端での圧力差を所定値(例えば、0.3MPa)以下とする。尚、上記圧力差の所定値は、予め試験等によって求められているものであり、冷媒が急激に流れないことが確認できている圧力差である。また、上記所定時間は、予め試験等によって求められて記憶部820aに記憶されているものであり、第4開閉手段64aのみを開としたときに第2開閉手段62aの両端での圧力差が所定値以下となるのに必要な時間である。   The CPU 810a continues the state in which only the fourth opening / closing means 64a is opened for a predetermined time (for example, 10 minutes), and sets the pressure difference between both ends of the second opening / closing means 62a to a predetermined value (for example, 0.3 MPa) or less. . The predetermined value of the pressure difference is a pressure difference that has been obtained in advance by a test or the like and that has confirmed that the refrigerant does not flow rapidly. The predetermined time is obtained in advance by a test or the like and stored in the storage unit 820a. When only the fourth opening / closing means 64a is opened, the pressure difference between both ends of the second opening / closing means 62a is This is the time required to become a predetermined value or less.

CPU810aは、所定時間が経過すれば第2開閉手段62aを開くとともに室内膨張弁82aを要求される運転能力に応じた開度で開く。以上のように切換ユニット6aの第4開閉手段64aや第2開閉手段62aの開閉制御を行えば、第2開閉手段62aを開くときには第2開閉手段62aの両端での圧力差が所定値以下となっているので、第2開閉手段62aを開いても冷媒が急激に流れることはなくなり、第2開閉手段62aを冷媒が流れることに起因する騒音の発生を低減することができる。尚、室内機を暖房運転から冷房運転に切り換えるときの均圧処理制御を、以下の説明では降圧処理制御とする。   When the predetermined time has elapsed, the CPU 810a opens the second opening / closing means 62a and opens the indoor expansion valve 82a at an opening degree corresponding to the required driving ability. As described above, when the opening / closing control of the fourth opening / closing means 64a and the second opening / closing means 62a of the switching unit 6a is performed, when the second opening / closing means 62a is opened, the pressure difference between both ends of the second opening / closing means 62a is less than a predetermined value. Therefore, even if the second opening / closing means 62a is opened, the refrigerant does not flow rapidly, and the generation of noise due to the refrigerant flowing through the second opening / closing means 62a can be reduced. The pressure equalization process control when switching the indoor unit from the heating operation to the cooling operation will be referred to as a pressure reduction process control in the following description.

また、例えば、冷房運転を行っている室内機8cを暖房運転に切り換える場合は、CPU810cは、室内膨張弁82cを全閉とし室内機8cの運転を停止する。また、CPU810cは、切換ユニット動作テーブル200の暖房運転の昇圧時の項目を参照して、第1開閉手段61a、第2開閉手段62aおよび第4開閉手段64aを閉じ第3開閉手段63aのみを開とする。   For example, when switching the indoor unit 8c that is performing the cooling operation to the heating operation, the CPU 810c fully closes the indoor expansion valve 82c and stops the operation of the indoor unit 8c. Further, the CPU 810c refers to the item at the time of boosting the heating operation of the switching unit operation table 200, closes the first opening / closing means 61a, the second opening / closing means 62a, and the fourth opening / closing means 64a, and opens only the third opening / closing means 63a. And

室内機8cが冷房運転を行っているとき、閉じている第1開閉手段61cの室内機8c側(接続点Tc側)の冷媒圧力、つまり、室内熱交換器81cでの冷媒圧力は、第1開閉手段61cの高圧ガス管30側(接続点Qc側)の冷媒圧力に比べて低くなっている。この状態で、暖房運転を行うために第1開閉手段61cを開くと、第1開閉手段61cの両端での圧力差によって第1開閉手段61cを冷媒が勢いよく流れこれに起因する騒音が発生する虞がある。   When the indoor unit 8c is performing a cooling operation, the refrigerant pressure on the indoor unit 8c side (connection point Tc side) of the closed first opening / closing means 61c, that is, the refrigerant pressure in the indoor heat exchanger 81c is the first. It is lower than the refrigerant pressure on the high-pressure gas pipe 30 side (connection point Qc side) of the opening / closing means 61c. In this state, when the first opening / closing means 61c is opened to perform the heating operation, the refrigerant vigorously flows through the first opening / closing means 61c due to the pressure difference between the both ends of the first opening / closing means 61c, and noise resulting therefrom is generated. There is a fear.

そこで、室内機8cを冷房運転から暖房運転に切り換えるときは、開いている第2開閉手段62cと第4開閉手段64cとを閉じるとともに第3開閉手段63cを開とする。第3開閉手段63cを開とすることによって、接続点Qcと接続点Tcとの間が第3分流管93cおよび第5分流管95cで連通するので、接続点Tbでの冷媒圧力が第1キャピラリーチューブ65cにより徐々に上昇(昇圧)する。   Therefore, when the indoor unit 8c is switched from the cooling operation to the heating operation, the opened second opening / closing means 62c and the fourth opening / closing means 64c are closed and the third opening / closing means 63c is opened. By opening the third opening / closing means 63c, the connection point Qc and the connection point Tc communicate with each other through the third branch pipe 93c and the fifth branch pipe 95c, so that the refrigerant pressure at the connection point Tb is changed to the first capillary. The tube 65c gradually increases (pressure-increase).

CPU810cは、第3開閉手段63cのみを開とする状態を所定時間(例えば、10分間)継続し、第1開閉手段61cの両端での圧力差を所定値(例えば、0.3MPa)以下とする。尚、上記圧力差の所定値は、前述した室内機8aを暖房運転から冷房運転に切り換える場合と同様に定められたものである。また、上記所定時間は、予め試験等によって求められて記憶部820cに記憶されているものであり、第3開閉手段63cのみを開としたときに第1開閉手段61cの両端での圧力差が所定値以下となるのに必要な時間である。   The CPU 810c continues the state in which only the third opening / closing means 63c is opened for a predetermined time (for example, 10 minutes), and sets the pressure difference between both ends of the first opening / closing means 61c to a predetermined value (for example, 0.3 MPa) or less. . The predetermined value of the pressure difference is determined in the same manner as when the indoor unit 8a is switched from the heating operation to the cooling operation. The predetermined time is obtained in advance by a test or the like and stored in the storage unit 820c. When only the third opening / closing means 63c is opened, the pressure difference between both ends of the first opening / closing means 61c is reduced. This is the time required to become a predetermined value or less.

CPU810cは、所定時間が経過すれば第1開閉手段61cを開くとともに室内膨張弁82cを要求される運転能力に応じた開度で開く。以上のように切換ユニット6cの第3開閉手段63cや第1開閉手段61cの開閉制御を行えば、第1開閉手段61cを開くときには第1開閉手段61cの両端での圧力差が所定値以下となっているので、第1開閉手段61cを開いても冷媒が急激に流れることはなくなり、第1開閉手段61cを冷媒が流れることに起因する騒音の発生を低減することができる。尚、室内機を冷房運転から暖房運転に切り換えるときの均圧処理制御を、以下の説明では昇圧処理制御とする。   When the predetermined time elapses, the CPU 810c opens the first opening / closing means 61c and opens the indoor expansion valve 82c at an opening corresponding to the required driving ability. As described above, when the opening / closing control of the third opening / closing means 63c and the first opening / closing means 61c of the switching unit 6c is performed, the pressure difference between both ends of the first opening / closing means 61c is less than a predetermined value when the first opening / closing means 61c is opened. Therefore, even if the first opening / closing means 61c is opened, the refrigerant does not flow rapidly, and the generation of noise due to the refrigerant flowing through the first opening / closing means 61c can be reduced. In the following description, the pressure equalization process control when the indoor unit is switched from the cooling operation to the heating operation is referred to as a pressure increase process control.

以上説明したように、室内機8a〜8dにおいて、運転モードを切り換える場合は、各々に対応する切換ユニット6a〜6dにおいて昇圧処理制御や降圧処理制御を行うことによって、第1開閉手段61a〜61dや第2開閉手段62a〜62dの両端での圧力差に起因する騒音の発生を低減して室内機8a〜8dの運転モードを切り換えることができる。しかし、前述したように、運転モードを切り換える場合は、昇圧処理制御や降圧処理制御を所定時間行う必要があり、この間は運転モードを切り換える室内機8a〜8dでは運転を停止することとなる。   As described above, in the indoor units 8a to 8d, when the operation mode is switched, the first opening / closing means 61a to 61d and the like are performed by performing the pressure increasing process control and the pressure decreasing process control in the corresponding switching units 6a to 6d. It is possible to switch the operation mode of the indoor units 8a to 8d by reducing the generation of noise due to the pressure difference between both ends of the second opening / closing means 62a to 62d. However, as described above, when switching the operation mode, it is necessary to perform the pressure increasing process control and the pressure decreasing process control for a predetermined time, and during this period, the indoor units 8a to 8d that switch the operation mode are stopped.

一方、空気調和装置1は、前述した暖房/暖房主体運転や冷房/冷房主体運転の他に、室外熱交換器23a〜23cで発生した霜を除去するための除霜運転や、圧縮機21a〜21cから冷媒とともに吐出された冷凍機油を圧縮機21a〜21cに回収するための油回収運転といった運転動作が行えるようになっている。   On the other hand, in addition to the heating / heating main operation and the cooling / cooling main operation described above, the air conditioner 1 performs a defrosting operation for removing frost generated in the outdoor heat exchangers 23a to 23c, and the compressors 21a to 21a. An operation such as an oil recovery operation for recovering refrigeration oil discharged together with the refrigerant from 21c to the compressors 21a to 21c can be performed.

除霜運転や油回収運転を行う方法の一つとして、空気調和装置1の冷凍サイクルにおいて、室外熱交換器23a〜23cを凝縮器として機能させるとともに室内機8a〜8dの室内熱交換器81a〜81d全てを蒸発器として機能させて行うリバース除霜運転やリバース油回収運転がある。空気調和装置1が暖房運転あるいは暖房主体運転を行っているときにリバース除霜運転やリバース油回収運転に移行し、リバース除霜運転やリバース油回収運転を終了した後、暖房運転あるいは暖房主体運転に復帰する場合は、室外熱交換器23a〜23cを蒸発器として機能させるとともに室内機8a〜8dでは運転モードに応じて室内熱交換器81a〜81dを蒸発器あるいは凝縮器として機能させるよう、空気調和装置1の冷凍サイクルを切り換える必要がある。   As one of the methods for performing the defrosting operation and the oil recovery operation, in the refrigeration cycle of the air conditioner 1, the outdoor heat exchangers 23a to 23c function as a condenser and the indoor heat exchangers 81a to 81a of the indoor units 8a to 8d. There are a reverse defrosting operation and a reverse oil recovery operation which are performed by causing all 81d to function as an evaporator. When the air conditioner 1 is performing the heating operation or the heating-main operation, the operation moves to the reverse defrosting operation or the reverse oil recovery operation, and after the reverse defrosting operation or the reverse oil recovery operation is finished, the heating operation or the heating main operation is performed. When the outdoor heat exchangers 23a to 23c function as evaporators, the indoor units 8a to 8d operate the indoor heat exchangers 81a to 81d as evaporators or condensers according to the operation mode. It is necessary to switch the refrigeration cycle of the harmony device 1.

室外熱交換器23a〜23cを凝縮器として機能させる状態から蒸発器として機能させる状態に切り換えるときは、CPU110a〜110cは、圧縮機21a〜21cを停止して四方弁22a〜22cを切り換えるとともに、バイパス用電磁弁44a〜44cを開いてホットガスバイパス管36a〜36cに冷媒を流すようにする。   When switching from the state in which the outdoor heat exchangers 23a to 23c function as a condenser to the state in which the outdoor heat exchangers 23a to 23c function as an evaporator, the CPUs 110a to 110c stop the compressors 21a to 21c, switch the four-way valves 22a to 22c, and bypass The electromagnetic valves 44a to 44c are opened so that the refrigerant flows through the hot gas bypass pipes 36a to 36c.

図1に示すように、ホットガスバイパス管36a〜36cに冷媒を流すことによって、室外機高圧ガス管33a〜33cと室外機低圧ガス管34a〜34cとがホットガスバイパス管36a〜36cでバイパスされるので、高圧ガス管30での冷媒圧力と低圧ガス管31での冷媒圧力とが均圧される。従って、一の室内機で運転モードを切り換える場合に比べて、本実施例におけるリバース除霜運転やリバース油回収運転から暖房運転あるいは暖房主体運転に切り換える場合のように、圧縮機21a〜21cを停止して冷媒回路を切り換えるときに、ホットガスバイパス管36a〜36cに冷媒を流せるようにして高圧ガス管30での冷媒圧力と低圧ガス管31での冷媒圧力とを均圧させる機会がある場合には、室内機8a〜8dで均圧処理制御を行う時間を短縮することができる。   As shown in FIG. 1, the outdoor unit high-pressure gas pipes 33a to 33c and the outdoor unit low-pressure gas pipes 34a to 34c are bypassed by the hot gas bypass pipes 36a to 36c by flowing the refrigerant through the hot gas bypass pipes 36a to 36c. Therefore, the refrigerant pressure in the high pressure gas pipe 30 and the refrigerant pressure in the low pressure gas pipe 31 are equalized. Therefore, the compressors 21a to 21c are stopped as in the case of switching from the reverse defrosting operation or the reverse oil recovery operation to the heating operation or the heating main operation in this embodiment, compared to the case of switching the operation mode with one indoor unit. When the refrigerant circuit is switched, there is an opportunity to equalize the refrigerant pressure in the high pressure gas pipe 30 and the refrigerant pressure in the low pressure gas pipe 31 so that the refrigerant can flow through the hot gas bypass pipes 36a to 36c. Can shorten the time for performing pressure equalization processing control in the indoor units 8a to 8d.

以下に、リバース除霜運転やリバース油回収運転から暖房運転あるいは暖房主体運転に切り換える場合の均圧処理制御について、具体的に説明する。尚、以下の説明では、空気調和装置1が図1に示す暖房主体運転を行っているときに、室外機2aで除霜運転を開始する条件が成立してリバース除霜運転を行い、再び図1の暖房主体運転に戻る場合を例に挙げて説明する。   Hereinafter, the pressure equalization process control when switching from the reverse defrosting operation or the reverse oil recovery operation to the heating operation or the heating main operation will be specifically described. In the following description, when the air-conditioning apparatus 1 performs the heating main operation shown in FIG. 1, the condition for starting the defrosting operation is established in the outdoor unit 2a, and the reverse defrosting operation is performed. The case of returning to the heating-main operation of 1 will be described as an example.

空気調和装置1が図1に示す暖房主体運転を行っているときに、室外機2aにおいて除霜運転開始条件が成立すると、CPU110aは、通信部130aを介して他の室外機2b、2cおよび室内機8a〜8dに除霜運転準備信号を送信し、リバース除霜運転を行うための制御を開始する。ここで、除霜運転開始条件とは、室外熱交換器23aで着霜が発生していると考えられる条件であり、例えば、外気温度センサ57aで検出した外気温度が0℃以下である状態が30分以上継続した場合や、熱交温度センサ56aで検出した冷媒温度が−5℃以下である場合、等である。CPU110aは、外気温度センサ57aで検出した外気温度や熱交温度センサ56aで検出した冷媒温度を定期的に取り込み、除霜運転開始条件の成立/不成立を判断している。   When the air-conditioning apparatus 1 performs the heating-main operation shown in FIG. 1, when the defrosting operation start condition is established in the outdoor unit 2a, the CPU 110a transmits the other outdoor units 2b and 2c and the indoors via the communication unit 130a. The defrosting operation preparation signal is transmitted to the machines 8a to 8d, and the control for performing the reverse defrosting operation is started. Here, the defrosting operation start condition is a condition that frost formation is considered to have occurred in the outdoor heat exchanger 23a. For example, a state where the outside air temperature detected by the outside air temperature sensor 57a is 0 ° C. or less. This is the case when it continues for 30 minutes or more, or when the refrigerant temperature detected by the heat exchanger temperature sensor 56a is −5 ° C. or lower. The CPU 110a periodically takes in the outside air temperature detected by the outside air temperature sensor 57a and the refrigerant temperature detected by the heat exchange temperature sensor 56a, and determines whether the defrosting operation start condition is satisfied or not.

CPU110aは、除霜運転開始条件が成立すれば、室外機2aの冷媒回路をリバース除霜運転が行えるように切り替える除霜運転準備処理を行う。具体的には、CPU110aは、圧縮機21aを停止するとともに、バイパス用電磁弁44aを開いてホットガスバイパス管36aを冷媒が流れるようにする。また、ポートaとポートbとが連通するよう、そして、ポートcとポートdとが連通するように四方弁22aを切り換えて室外熱交換器23aが凝縮器として機能するようにする。室外機2aのCPU110aは、除霜運転準備処理を開始してからの時間を計測し、除霜運転準備処理を開始してから所定時間(例えば、3分)が経過するまで待機する。この所定時間は、室外機2a〜2cでホットガスバイパス管36a〜36cを冷媒が流れるようにして、暖房運転を行っていた室内機8a、8bの室内熱交換器81a、81bにおける圧力が所定値以下となるまでに必要な時間であり、予め試験等により求められて記憶部120aに記憶されているものである。   When the defrosting operation start condition is satisfied, the CPU 110a performs a defrosting operation preparation process for switching the refrigerant circuit of the outdoor unit 2a so that the reverse defrosting operation can be performed. Specifically, the CPU 110a stops the compressor 21a and opens the bypass electromagnetic valve 44a so that the refrigerant flows through the hot gas bypass pipe 36a. In addition, the outdoor heat exchanger 23a functions as a condenser by switching the four-way valve 22a so that the port a and the port b communicate with each other and the port c and the port d communicate with each other. The CPU 110a of the outdoor unit 2a measures the time after the start of the defrosting operation preparation process, and waits until a predetermined time (for example, 3 minutes) elapses after the start of the defrosting operation preparation process. During the predetermined time, the pressures in the indoor heat exchangers 81a and 81b of the indoor units 8a and 8b that have been performing the heating operation so that the refrigerant flows through the hot gas bypass pipes 36a to 36c in the outdoor units 2a to 2c are predetermined values. This is the time required until the following, which is obtained in advance by a test or the like and stored in the storage unit 120a.

また、除霜運転準備信号を通信部130bを介して受信したCPU110bは、室外機2bの除霜運転準備処理を行う。具体的には、CPU110bは、圧縮機21bを停止するとともに、バイパス用電磁弁44bを開いてホットガスバイパス管36bを冷媒が流れるようにする。また、ポートeとポートfとが連通するよう、そして、ポートgとポートhとが連通するように四方弁22bを切り換えて、室外熱交換器23bが凝縮器として機能するようにする。同様に、除霜運転準備信号を通信部130cを介して受信したCPU110cは、室外機2cの除霜運転準備処理を行う。除霜運転開始処理では、CPU110cは、圧縮機21cを停止するとともに、バイパス用電磁弁44cを開いてホットガスバイパス管36cを冷媒が流れるようにする。また、ポートjとポートkとが連通するよう、そして、ポートmとポートnとが連通するように四方弁22cを切り換えて、室外熱交換器23cが凝縮器として機能するようにする。室外機2b、2cの除霜運転準備処理を行ったCPU110b、110cは、室外機2aのCPU110aからの指示を待つ。   Moreover, CPU110b which received the defrost operation preparation signal via the communication part 130b performs the defrost operation preparation process of the outdoor unit 2b. Specifically, the CPU 110b stops the compressor 21b and opens the bypass solenoid valve 44b so that the refrigerant flows through the hot gas bypass pipe 36b. Further, the four-way valve 22b is switched so that the port e and the port f communicate with each other and the port g and the port h communicate with each other so that the outdoor heat exchanger 23b functions as a condenser. Similarly, CPU110c which received the defrosting operation preparation signal via the communication part 130c performs the defrosting operation preparation process of the outdoor unit 2c. In the defrosting operation start process, the CPU 110c stops the compressor 21c and opens the bypass solenoid valve 44c so that the refrigerant flows through the hot gas bypass pipe 36c. Further, the four-way valve 22c is switched so that the port j and the port k communicate with each other and the port m and the port n communicate with each other so that the outdoor heat exchanger 23c functions as a condenser. CPU110b, 110c which performed the defrosting operation preparation process of the outdoor units 2b and 2c waits for the instruction | indication from CPU110a of the outdoor unit 2a.

一方、CPU810a〜810dは、除霜運転準備信号を通信部830a〜dを介して受信すれば、室内機8a〜8dの除霜運転準備処理を行う。除霜運転準備処理では、CPU810a〜810dは、室内膨張弁82a〜82dを全閉とする。また、各々に対応する切換ユニット6a〜6dの第1開閉手段61a〜61dおよび第3開閉手段63a〜63dを閉じて、第1分流管91a〜91dおよび第3分流管93a〜93dを冷媒が流れないようにするとともに、第2開閉手段62a〜62dおよび第4開閉手段64a〜64dを開いて第2分流管92a〜92dおよび第4分流管94a〜94dを冷媒が流れるようにする。切換ユニット6a〜6dの各弁の開閉制御により、室内機8a〜8dの室内熱交換器81a〜81dは蒸発器として機能するようになる。室内機8a〜8dの除霜運転準備処理を行ったCPU810a〜810dは、室外機2aのCPU110aからの指示を待つ。   On the other hand, if CPU 810a-810d receives a defrost operation preparation signal via communication part 830a-d, it will perform the defrost operation preparation process of indoor unit 8a-8d. In the defrosting operation preparation process, the CPUs 810a to 810d fully close the indoor expansion valves 82a to 82d. Further, the first opening / closing means 61a to 61d and the third opening / closing means 63a to 63d of the switching units 6a to 6d corresponding thereto are closed, and the refrigerant flows through the first branch pipes 91a to 91d and the third branch pipes 93a to 93d. In addition, the second opening / closing means 62a to 62d and the fourth opening / closing means 64a to 64d are opened so that the refrigerant flows through the second branch pipes 92a to 92d and the fourth branch pipes 94a to 94d. The indoor heat exchangers 81a to 81d of the indoor units 8a to 8d function as evaporators by opening / closing control of the valves of the switching units 6a to 6d. The CPUs 810a to 810d that have performed the defrosting operation preparation processing of the indoor units 8a to 8d wait for an instruction from the CPU 110a of the outdoor unit 2a.

CPU110aは、所定時間が経過すれば、除霜運転開始信号を通信部130aを介して他の室外機2b、2cおよび室内機8a〜8dに送信する。そして、CPU110aは、バイパス弁44aを閉じるとともに圧縮機21aを所定回転数(例えば、80rps)で駆動して、リバース除霜運転を開始する。また、除霜運転開始信号を通信部130b、130cを介して受信したCPU110b、110cも、CPU110aと同様に、バイパス弁44b、44cを閉じるとともに圧縮機21b、21cを所定回転数で駆動して、リバース除霜運転を開始する。尚、リバース除霜運転を行うときは、室外ファン24a〜24cは停止している。   When the predetermined time has elapsed, the CPU 110a transmits a defrosting operation start signal to the other outdoor units 2b and 2c and the indoor units 8a to 8d via the communication unit 130a. Then, the CPU 110a closes the bypass valve 44a and drives the compressor 21a at a predetermined rotation speed (for example, 80 rps) to start the reverse defrosting operation. Further, the CPUs 110b and 110c that have received the defrosting operation start signal via the communication units 130b and 130c also close the bypass valves 44b and 44c and drive the compressors 21b and 21c at a predetermined rotational speed, similarly to the CPU 110a. Start reverse defrosting operation. In addition, when performing reverse defrost operation, outdoor fan 24a-24c has stopped.

また、CPU810a〜810dは、除霜運転開始信号を通信部830a〜dを介して受信すれば、室内膨張弁82a〜82dを所定開度とする。これにより、図4に示すリバース除霜運転時の冷媒回路が形成される。尚、リバース除霜運転を行うときは、室内ファン83a〜83dは停止している。   Moreover, if CPU810a-810d receives a defrost operation start signal via communication part 830a-d, it will make indoor expansion valve 82a-82d predetermined opening. Thereby, the refrigerant circuit at the time of reverse defrost operation shown in FIG. 4 is formed. Note that the indoor fans 83a to 83d are stopped when the reverse defrosting operation is performed.

圧縮機21a〜21cから吐出された高温高圧の冷媒は、室外機高圧ガス管33a〜33cを流れ、四方弁22a〜22cから冷媒配管37a〜37cを流れて室外熱交換器23a〜23cに流入する。室外熱交換器23a〜23cに流入した冷媒は、室外熱交換器23a〜23cで発生した霜を融解して凝縮する。室外熱交換器23a〜23cから流出した冷媒は、室外膨張弁43a〜43cを通過する際に減圧されて中間圧の冷媒となり、室外機液管35a〜35cから閉鎖弁42a〜42cを介して液分管32a〜32cに流入し、分岐器72で合流する。   The high-temperature and high-pressure refrigerant discharged from the compressors 21a to 21c flows through the outdoor unit high-pressure gas pipes 33a to 33c, flows from the four-way valves 22a to 22c to the refrigerant pipes 37a to 37c, and flows into the outdoor heat exchangers 23a to 23c. . The refrigerant flowing into the outdoor heat exchangers 23a to 23c melts and condenses the frost generated in the outdoor heat exchangers 23a to 23c. The refrigerant that has flowed out of the outdoor heat exchangers 23a to 23c is reduced in pressure when passing through the outdoor expansion valves 43a to 43c, becomes an intermediate pressure refrigerant, and is liquidated from the outdoor unit liquid pipes 35a to 35c through the closing valves 42a to 42c. It flows into the branch pipes 32 a to 32 c and joins at the branching device 72.

分岐器72から液管32に流入した冷媒は室内機8a〜8dに流入し、所定の開度とされた室内膨張弁82a〜82dを通過して減圧されて低圧の冷媒となり、室内熱交換器81a〜81dに流入する。室内熱交換器81a〜81dに流入した冷媒は蒸発して室内熱交換器81a〜81dから流出し、冷媒配管88a〜88dを流れて切換ユニット6a〜6dに流入する。   The refrigerant flowing into the liquid pipe 32 from the branching device 72 flows into the indoor units 8a to 8d, passes through the indoor expansion valves 82a to 82d having a predetermined opening degree, is reduced in pressure, and becomes a low-pressure refrigerant. It flows into 81a-81d. The refrigerant flowing into the indoor heat exchangers 81a to 81d evaporates and flows out of the indoor heat exchangers 81a to 81d, flows through the refrigerant pipes 88a to 88d, and flows into the switching units 6a to 6d.

切換ユニット6a〜6dに流入した冷媒は、接続点Ta〜Tdを介して、開となっている第2開閉手段62a〜62dが組み込まれた第2分流管92a〜92dを流れる。そして、切換ユニット6a〜6dから流出し低圧ガス管31に流入した冷媒は分岐器71に流入し、分岐器71から低圧ガス分管31a〜31cに分流する。低圧ガス分管31a〜31cを流れて室外機2a〜2cに流入した冷媒は、室外機低圧ガス管34a〜34cから接続点B、F、Kおよびアキュムレータ25a〜25cを介して冷媒配管39a〜39cを流れ、圧縮機21a〜21cに吸入されて再び圧縮される。   The refrigerant that has flowed into the switching units 6a to 6d flows through the second branch pipes 92a to 92d in which the opened second opening / closing means 62a to 62d are incorporated via the connection points Ta to Td. Then, the refrigerant flowing out of the switching units 6a to 6d and flowing into the low pressure gas pipe 31 flows into the branching device 71, and is branched from the branching device 71 into the low pressure gas distribution tubes 31a to 31c. The refrigerant flowing through the low pressure gas distribution pipes 31a to 31c and flowing into the outdoor units 2a to 2c passes through the refrigerant pipes 39a to 39c from the outdoor unit low pressure gas pipes 34a to 34c via the connection points B, F, K and the accumulators 25a to 25c. The flow is sucked into the compressors 21a to 21c and compressed again.

以上説明したリバース除霜運転を行っているときに、全ての室外機2a〜2cにおいて除霜運転終了条件が成立すると、CPU110aは、通信部130aを介して他の室外機2b、2cおよび室内機8a〜8dに除霜運転終了信号を送信し、リバース除霜運転を終了して暖房主体運転に復帰するための制御を開始する。ここで、除霜運転終了条件とは、室外熱交換器23a〜23cでの除霜が終了したと考えられる条件であり、例えば、リバース除霜運転を開始してから所定時間(例えば15分)経過した場合や、冷媒温度センサ55a〜55c各々で検出した冷媒温度が5℃以上である場合、等である。尚、CPU110b、CPU110cは、室外機2b、2cにおいて除霜運転終了条件が成立すれば、その旨を含めた信号(終了条件成立信号)を通信部130b、130cを介して室外機2aに送信し、この信号を通信部130aを介して受信したCPU110aは、室外機2b、2cにおいて除霜運転終了条件が成立したことを認識する。   When the defrosting operation end condition is satisfied in all the outdoor units 2a to 2c during the reverse defrosting operation described above, the CPU 110a causes the other outdoor units 2b and 2c and the indoor units to be connected via the communication unit 130a. The defrosting operation end signal is transmitted to 8a to 8d, and the control for ending the reverse defrosting operation and returning to the heating main operation is started. Here, the defrosting operation end condition is a condition that the defrosting in the outdoor heat exchangers 23a to 23c is considered to have ended. For example, a predetermined time (for example, 15 minutes) after the start of the reverse defrosting operation. This is the case when it has elapsed, or when the refrigerant temperature detected by each of the refrigerant temperature sensors 55a to 55c is 5 ° C. or higher. In addition, if the defrosting operation completion conditions are satisfied in the outdoor units 2b and 2c, the CPU 110b and the CPU 110c transmit a signal including the fact (end condition establishment signal) to the outdoor unit 2a via the communication units 130b and 130c. The CPU 110a that has received this signal via the communication unit 130a recognizes that the defrosting operation termination condition has been established in the outdoor units 2b and 2c.

図5に示すように、CPU110aは、除霜運転終了条件が成立すれば、室外機2aの除霜運転終了処理を行う。除霜運転終了処理では、CPU110aは、圧縮機21aを停止するとともに、バイパス用電磁弁44aを開いてホットガスバイパス管36aを冷媒が流れるようにする。また、ポートaとポートdとが連通するよう、そして、ポートbとポートcとが連通するように四方弁22aを切り換えて、室外熱交換器23aが蒸発器として機能するようにする。そして、CPU110aは、高圧センサ50aで検出した冷媒の吐出圧力と低圧センサ51aで検出した冷媒の吸入圧力とを取り込み、これらの圧力差を算出する。この圧力差が所定値(例えば、0.3MPa)よりも高い場合は、CPU110aは、室内機8a〜8dに均圧処理実行信号を送信する。そして、CPU110aは均圧処理実行信号の送信後は、定期的に取り込む吐出圧力と吸入圧力との圧力差が所定値以下となるまで待機する。   As shown in FIG. 5, the CPU 110a performs a defrosting operation end process for the outdoor unit 2a when the defrosting operation end condition is satisfied. In the defrosting operation end process, the CPU 110a stops the compressor 21a and opens the bypass electromagnetic valve 44a so that the refrigerant flows through the hot gas bypass pipe 36a. Further, the four-way valve 22a is switched so that the port a and the port d communicate with each other and the port b and the port c communicate with each other, so that the outdoor heat exchanger 23a functions as an evaporator. Then, the CPU 110a takes in the refrigerant discharge pressure detected by the high-pressure sensor 50a and the refrigerant suction pressure detected by the low-pressure sensor 51a, and calculates the pressure difference between them. When this pressure difference is higher than a predetermined value (for example, 0.3 MPa), the CPU 110a transmits a pressure equalization process execution signal to the indoor units 8a to 8d. Then, after transmitting the pressure equalization processing execution signal, the CPU 110a waits until the pressure difference between the discharge pressure and the suction pressure taken in periodically becomes a predetermined value or less.

また、除霜運転終了信号を通信部130bを介して受信したCPU110bは、室外機2bの除霜運転終了処理を行う。除霜運転終了処理では、CPU110bは、圧縮機21bを停止するとともに、バイパス用電磁弁44bを開いてホットガスバイパス管36bを冷媒が流れるようにする。また、ポートeとポートhとが連通するよう、そして、ポートfとポートgとが連通するように四方弁22bを切り換えて、室外熱交換器23bが凝縮器として機能するようにする。同様に、除霜運転準備信号を通信部130cを介して受信したCPU110cは、室外機2cの除霜運転終了処理を行う。除霜運転終了処理では、CPU110cは、圧縮機21cを停止するとともに、バイパス用電磁弁44cを開いてホットガスバイパス管36cを冷媒が流れるようにする。また、ポートjとポートnとが連通するよう、そして、ポートkとポートmとが連通するように四方弁22cを切り換えて、室外熱交換器23cが凝縮器として機能するようにする。室外機2b、2cの除霜運転終了処理を行ったCPU110b、110cは、室外機2aのCPU110aからの指示を待つ。   Moreover, CPU110b which received the defrosting operation completion signal via the communication part 130b performs the defrosting operation completion process of the outdoor unit 2b. In the defrosting operation end process, the CPU 110b stops the compressor 21b and opens the bypass electromagnetic valve 44b so that the refrigerant flows through the hot gas bypass pipe 36b. Further, the four-way valve 22b is switched so that the port e and the port h communicate with each other and the port f and the port g communicate with each other so that the outdoor heat exchanger 23b functions as a condenser. Similarly, CPU110c which received the defrost operation preparation signal via the communication part 130c performs the defrost operation completion | finish process of the outdoor unit 2c. In the defrosting operation end process, the CPU 110c stops the compressor 21c and opens the bypass electromagnetic valve 44c so that the refrigerant flows through the hot gas bypass pipe 36c. Further, the four-way valve 22c is switched so that the port j and the port n communicate with each other and the port k and the port m communicate with each other so that the outdoor heat exchanger 23c functions as a condenser. CPU110b, 110c which performed the defrost operation completion | finish process of outdoor unit 2b, 2c waits for the instruction | indication from CPU110a of the outdoor unit 2a.

吐出圧力と吸入圧力との圧力差が所定値以下となれば、CPU110aは、通信部130aを介して他の室外機2b、2cおよび室内機8a〜8dに運転再開信号を送信し、バイパス用電磁弁44aを閉じるとともに圧縮機21aを要求される運転負荷に応じた回転数で起動する。また、運転再開信号を通信部130b、130cを介して受信したCPU110b、110cも、CPU110aと同様に、バイパス用電磁弁44b、44cを閉じるとともに圧縮機21b、21cを要求される運転負荷に応じた回転数で起動する。   When the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value, the CPU 110a transmits an operation restart signal to the other outdoor units 2b and 2c and the indoor units 8a to 8d via the communication unit 130a, and bypass electromagnetic The valve 44a is closed and the compressor 21a is started at a rotational speed corresponding to the required operating load. Similarly to the CPU 110a, the CPUs 110b and 110c that have received the operation resumption signal via the communication units 130b and 130c close the bypass solenoid valves 44b and 44c and respond to the operation load required for the compressors 21b and 21c. Start at the number of revolutions.

一方、図5に示すように、CPU810a〜810dは、除霜運転終了信号を通信部830a〜830dを介して受信すれば、室内膨張弁82a〜82dを全閉とする。この状態で、室外機2aから均圧処理実行信号を受信した場合は、暖房運転で運転を再開する室内機8a、8bのCPU810a,810bは、切換ユニット動作テーブル200を参照し、各々に対応する切換ユニット6a、6bの第1開閉手段61a、61bと第2開閉手段62a、62bと第4開閉手段64a、64bとを閉じて、第1分流管91a、91bと第2分流管92a、92bと第4分流管94a、94bとを冷媒が流れない状態にするとともに、第3開閉手段63a、63bを開いて第3分流管93a、93bのみ冷媒が流れる状態とする昇圧処理制御を実行する。   On the other hand, as shown in FIG. 5, the CPUs 810 a to 810 d fully close the indoor expansion valves 82 a to 82 d when receiving the defrosting operation end signal via the communication units 830 a to 830 d. In this state, when a pressure equalization processing execution signal is received from the outdoor unit 2a, the CPUs 810a and 810b of the indoor units 8a and 8b that resume operation in the heating operation refer to the switching unit operation table 200 and correspond to each. The first opening / closing means 61a, 61b, the second opening / closing means 62a, 62b and the fourth opening / closing means 64a, 64b of the switching unit 6a, 6b are closed, and the first branch pipes 91a, 91b and the second branch pipes 92a, 92b While the refrigerant does not flow through the fourth branch pipes 94a and 94b, the pressure increasing process control is executed so that the third opening / closing means 63a and 63b are opened and the refrigerant flows only through the third branch pipes 93a and 93b.

また、冷房運転で運転を再開する室内機8c、8dのCPU810c,810dは、切換ユニット動作テーブル200を参照し、各々に対応する切換ユニット6c、6dの第1開閉手段61c、61dと第2開閉手段62c、62dと第3開閉手段63c、63dとを閉じて、第1分流管91a、91bと第2分流管92a、92bと第3分流管93a、93bとを冷媒が流れない状態にするとともに、第4開閉手段64c、64dを開いて第4分流管94c、94dのみ冷媒が流れる状態とする降圧処理制御を実行する。
昇圧処理制御や降圧処理制御を実行したCPU810a〜810dは、室外機2aから運転再開信号が送信されてくるまで待機する。
Further, the CPUs 810c and 810d of the indoor units 8c and 8d that restart the operation by the cooling operation refer to the switching unit operation table 200, and the first opening and closing means 61c and 61d and the second opening and closing of the switching units 6c and 6d corresponding to each of them. The means 62c, 62d and the third opening / closing means 63c, 63d are closed so that the refrigerant does not flow through the first branch pipes 91a, 91b, the second branch pipes 92a, 92b, and the third branch pipes 93a, 93b. Then, the fourth opening / closing means 64c, 64d is opened, and the pressure reduction processing control is performed so that the refrigerant flows only in the fourth branch pipes 94c, 94d.
The CPUs 810a to 810d that have executed the step-up process control and the step-down process control stand by until an operation restart signal is transmitted from the outdoor unit 2a.

そして、CPU810a〜810dは、運転再開信号を通信部830a〜830dを介して受信すれば、室内膨張弁82a〜82dを室内熱交換器81a〜81dにおける冷媒過熱度や冷媒過冷却度に応じた所定の開度とするとともに、切換ユニット動作テーブル200を参照し、暖房運転を行う室内機8a、8bや冷房運転を行う室内機8c、8dに応じた切換ユニット6a〜6dの各弁の開閉制御を行い、図1を用いて説明した暖房主体運転時の冷媒回路とする。   Then, if the CPUs 810a to 810d receive the operation restart signal via the communication units 830a to 830d, the indoor expansion valves 82a to 82d are set in accordance with the refrigerant superheat degree and the refrigerant subcool degree in the indoor heat exchangers 81a to 81d. And opening / closing control of each valve of the switching units 6a to 6d according to the indoor units 8a and 8b that perform the heating operation and the indoor units 8c and 8d that perform the cooling operation with reference to the switching unit operation table 200. This is the refrigerant circuit during the heating main operation described with reference to FIG.

以上説明したように、リバース除霜運転から暖房主体運転に切り換えるときは、吐出圧力と吸入圧力との圧力差を算出し、圧力差が所定値以下となれば均圧処理制御を終了するので、暖房運転を行う室内機に対応する切換ユニットでの昇圧処理制御や冷房運転を行う室内機に対応する切換ユニットでの降圧処理制御を行う時間を短縮することができる。   As described above, when switching from the reverse defrosting operation to the heating main operation, the pressure difference between the discharge pressure and the suction pressure is calculated, and if the pressure difference is equal to or less than a predetermined value, the pressure equalization processing control is terminated. It is possible to shorten the time for performing the pressure increasing process control in the switching unit corresponding to the indoor unit performing the heating operation and the pressure decreasing process control in the switching unit corresponding to the indoor unit performing the cooling operation.

尚、以上説明した実施例では、室外機2aの室外熱交換器23aで着霜が発生し室内機2aのCPU110aが、リバース除霜運転への切り換えや均圧処理制御に関する他の機器への指示を行う場合について説明したが、他の室外機で着霜発生を検知した場合は、当該室外機のCPUがリバース除霜運転への切り換えや均圧処理制御に関する他の機器への指示を行う。また、リバース除霜運転を行う場合を例に挙げて説明したが、リバース油回収運転を行う場合の冷媒回路もリバース除霜運転を行う場合の冷媒回路と同じであるため、リバース油回収運転から暖房主体運転に切り換えるときの均圧処理制御も、上述したリバース除霜運転から暖房主体運転に切り換える場合と同様に行うことができる。   In the embodiment described above, frost formation occurs in the outdoor heat exchanger 23a of the outdoor unit 2a, and the CPU 110a of the indoor unit 2a instructs other devices regarding switching to reverse defrosting operation and pressure equalization processing control. However, when frost formation is detected in another outdoor unit, the CPU of the outdoor unit gives instructions to other devices regarding switching to reverse defrosting operation and pressure equalization processing control. Further, the case where the reverse defrosting operation is performed has been described as an example, but the refrigerant circuit in the case of performing the reverse oil recovery operation is the same as the refrigerant circuit in the case of performing the reverse defrosting operation. The pressure equalization control when switching to the heating main operation can be performed in the same manner as when switching from the reverse defrosting operation to the heating main operation.

また、切換ユニット6a〜6dに備えられた均圧手段を構成するものとして第1キャピラリーチューブ65a〜65dが第5分流管95a〜95bに組み込まれている場合を説明したが、第1キャピラリーチューブ65a〜65dを設ける代わりに、第1開閉手段61a〜61dや第2開閉手段62a〜62dに比べて通過させることができる冷媒量が少なくなる第3開閉手段63a〜63dや第4開閉手段64a〜64dを選択して、第3分流管93a〜93dや第4分流管94a〜94dに組み込んでもよい。   Moreover, although the case where the 1st capillary tube 65a-65d was integrated in the 5th branch pipe 95a-95b as what comprises the pressure equalization means with which switching unit 6a-6d was comprised was demonstrated, the 1st capillary tube 65a The third opening / closing means 63a-63d and the fourth opening / closing means 64a-64d can reduce the amount of refrigerant that can be passed as compared to the first opening / closing means 61a-61d and the second opening / closing means 62a-62d. May be selected and incorporated into the third branch pipes 93a to 93d and the fourth branch pipes 94a to 94d.

次に、図6および図7に示すフローチャートを用いて、本実施例における空気調和装置1での処理の流れについて説明する。図6に示すフローチャートは、均圧処理制御に関する室外機2a〜2cの制御部100a〜100cにおける処理の流れを示すものであり、(A)は除霜運転開始条件が成立した室外機のCPUにおけるリバース除霜運転を行う際の処理の流れを示すもの、(B)は除霜運転開始条件が成立した室外機からの指示により制御を行う室外機のCPUにおけるリバース除霜運転を行う際の処理を示すものである。また、図7に示すフローチャートは、均圧処理制御に関する室内機8a〜8dの制御部800a〜800dにおける処理の流れを示すものである。いずれのフローチャートにおいても、STはステップを表しこれに続く数字はステップ番号を表している。   Next, the flow of processing in the air conditioner 1 in the present embodiment will be described using the flowcharts shown in FIGS. 6 and 7. The flowchart shown in FIG. 6 shows the flow of processing in the control units 100a to 100c of the outdoor units 2a to 2c related to pressure equalization processing control, and (A) is in the CPU of the outdoor unit that satisfies the defrosting operation start condition. The flow of the process at the time of performing a reverse defrost operation, (B) is the process at the time of performing the reverse defrost operation in CPU of the outdoor unit which performs control by the instruction | indication from the outdoor unit in which the defrost operation start conditions were satisfied Is shown. Moreover, the flowchart shown in FIG. 7 shows the flow of processing in the control units 800a to 800d of the indoor units 8a to 8d related to pressure equalization processing control. In any flowchart, ST represents a step, and the number following this represents a step number.

尚、図6や図7では、本発明に関わる処理を中心に説明しており、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路の制御といった、空調運転に関わる一般的な処理の流れについては説明を省略する。また、以下の説明では、実施例と同様に空気調和装置1が暖房主体運転を行っているときに室外機2aで除霜運転開始条件が成立してリバース除霜運転に移行し、リバース除霜運転終了後に暖房主体運転に復帰する場合、を例に挙げて処理の流れを説明する。   6 and 7 mainly describe the processes related to the present invention. For example, the processes related to the air conditioning operation such as the control of the refrigerant circuit corresponding to the operating conditions such as the set temperature and the air volume instructed by the user are described. Description of the general processing flow is omitted. Moreover, in the following description, when the air-conditioning apparatus 1 is performing the heating main operation as in the embodiment, the defrosting operation start condition is established in the outdoor unit 2a, and the reverse defrosting operation is performed. The flow of processing will be described by taking as an example the case of returning to the heating-main operation after the operation is completed.

まず、図6(A)を用いて、除霜運転開始条件が成立した室外機2aにおける、制御部100aのCPU110aでの処理について説明する。空気調和装置1が暖房主体運転を行っているとき、CPU110aは、除霜運転開始条件が成立したか否かを判断する(ST1)。除霜運転開始条件が成立していなければ(ST1−No)、CPU110aは、現在行っている暖房主体運転を継続し(ST14)、ST1に処理を戻す。   First, the processing in the CPU 110a of the control unit 100a in the outdoor unit 2a in which the defrosting operation start condition is satisfied will be described with reference to FIG. When the air conditioner 1 is performing the heating main operation, the CPU 110a determines whether or not the defrosting operation start condition is satisfied (ST1). If the defrosting operation start condition is not satisfied (ST1-No), the CPU 110a continues the current heating main operation (ST14), and returns the process to ST1.

除霜運転開始条件が成立していれば(ST1−Yes)、CPU110aは、除霜運転準備信号を他の室外機2b、2cや室内機8a〜8dに送信する(ST2)。次に、CPU110aは、室外機2aの除霜運転準備処理を実行する(ST3)。   If the defrosting operation start condition is satisfied (ST1-Yes), the CPU 110a transmits a defrosting operation preparation signal to the other outdoor units 2b and 2c and the indoor units 8a to 8d (ST2). Next, the CPU 110a executes a defrosting operation preparation process for the outdoor unit 2a (ST3).

次に、CPU110aは、タイマー計測を開始する(ST4)。そして、CPU110aは、所定時間が経過したか否かを判断し(ST5)、所定時間が経過していなければ(ST5−No)処理をST5に戻し、所定時間が経過していれば(ST5−Yes)、ST6に処理を進める。   Next, the CPU 110a starts timer measurement (ST4). Then, the CPU 110a determines whether or not a predetermined time has elapsed (ST5). If the predetermined time has not elapsed (ST5-No), the process returns to ST5, and if the predetermined time has elapsed (ST5-). Yes), the process proceeds to ST6.

ST6において、CPU110aは、除霜運転開始信号を他の室外機2b、2cや室内機8a〜8dに送信する。次に、CPU110aは、バイパス用電磁弁44aを閉じるとともに圧縮機21aを起動してリバース除霜運転を開始する(ST7)。   In ST6, the CPU 110a transmits a defrosting operation start signal to the other outdoor units 2b and 2c and the indoor units 8a to 8d. Next, the CPU 110a closes the bypass solenoid valve 44a and activates the compressor 21a to start the reverse defrosting operation (ST7).

次に、CPU110aは、全ての室外機2a〜2cで除霜運転終了条件が成立しているか否かを判断する(ST8)。除霜運転終了条件が成立していなければ(ST8−No)、CPU110aは、ST7に処理を戻してリバース除霜運転を継続する。除霜運転終了条件が成立していれば(ST8−Yes)、CPU110aは、除霜運転終了信号を他の室外機2b、2cや室内機8a〜8dに送信する(ST9)。そして、CPU110aは、除霜運転終了処理を行う(ST10)。   Next, the CPU 110a determines whether or not the defrosting operation end condition is satisfied in all the outdoor units 2a to 2c (ST8). If the defrosting operation end condition is not satisfied (ST8-No), the CPU 110a returns the process to ST7 and continues the reverse defrosting operation. If the defrosting operation end condition is satisfied (ST8-Yes), the CPU 110a transmits a defrosting operation end signal to the other outdoor units 2b and 2c and the indoor units 8a to 8d (ST9). Then, the CPU 110a performs a defrosting operation end process (ST10).

次に、CPU110aは、高圧センサ50で検出した吐出圧力と低圧センサ51で検出した吸入圧力との圧力差が所定値以下であるか否かを判断する(ST11)。圧力差が所定値以下でなければ(ST11−No)、CPU110aは、均圧処理実行信号を室内機8a〜8dに送信し(ST15)、ST11に処理を戻す。   Next, the CPU 110a determines whether or not the pressure difference between the discharge pressure detected by the high pressure sensor 50 and the suction pressure detected by the low pressure sensor 51 is equal to or less than a predetermined value (ST11). If the pressure difference is not less than or equal to the predetermined value (ST11-No), the CPU 110a transmits a pressure equalization process execution signal to the indoor units 8a to 8d (ST15), and returns the process to ST11.

圧力差が所定値以下であれば(ST11−Yes)、CPU110aは、運転再開信号を他の室外機2b、2cや室内機8a〜8dに送信する(ST12)。そして、CPU110aは、バイパス用電磁弁44aを閉じるとともに圧縮機21aを起動して暖房主体運転を再開し(ST13)、ST1に処理を戻す。   If the pressure difference is equal to or less than the predetermined value (ST11-Yes), the CPU 110a transmits an operation resumption signal to the other outdoor units 2b, 2c and the indoor units 8a-8d (ST12). Then, the CPU 110a closes the bypass solenoid valve 44a and activates the compressor 21a to restart the heating main operation (ST13), and returns the process to ST1.

次に、図6(B)を用いて、除霜運転開始条件が成立した室外機2aからの指示を受けてリバース除霜運転を行う室外機2b、2cにおける、制御部100b、100cのCPU110b、110cでの処理について説明する。空気調和装置1が暖房主体運転を行っているとき、CPU110b、110cは、室外機2aから除霜運転準備信号を受信したか否かを判断する(ST41)。除霜運転準備信号を受信していなければ(ST41−No)、CPU110b、110cは、現在行っている暖房主体運転を継続し(ST51)、ST41に処理を戻す。   Next, referring to FIG. 6B, the CPUs 110b of the control units 100b and 100c in the outdoor units 2b and 2c that perform the reverse defrosting operation in response to an instruction from the outdoor unit 2a that satisfies the defrosting operation start condition, The processing at 110c will be described. When the air conditioner 1 performs the heating main operation, the CPUs 110b and 110c determine whether or not a defrosting operation preparation signal has been received from the outdoor unit 2a (ST41). If the defrosting operation preparation signal has not been received (ST41-No), the CPUs 110b and 110c continue the heating-main operation currently being performed (ST51) and return the process to ST41.

除霜運転準備信号を受信していれば(ST41−Yes)、CPU110b、110cは、室外機2b、2cそれぞれの除霜運転準備処理を実行する(ST42)。   If the defrosting operation preparation signal is received (ST41-Yes), CPU110b, 110c will perform the defrosting operation preparation process of each outdoor unit 2b, 2c (ST42).

次に、CPU110b、110cは、室外機2aから除霜運転開始信号を受信したか否かを判断する(ST43)。除霜運転開始信号を受信していなければ(ST43−No)、CPU110b、110cは、ST43に処理を戻す。   Next, CPU110b, 110c judges whether the defrost operation start signal was received from the outdoor unit 2a (ST43). If the defrosting operation start signal has not been received (ST43-No), the CPUs 110b and 110c return the process to ST43.

除霜運転開始信号を受信していれば(ST43−Yes)、CPU110b、110cは、バイパス用電磁弁44b、44cそれぞれ閉じるとともに圧縮機21b、21cをそれぞれ起動してリバース除霜運転を開始する(ST44)。   If the defrosting operation start signal has been received (ST43-Yes), the CPUs 110b and 110c close the bypass solenoid valves 44b and 44c, respectively, start the compressors 21b and 21c, respectively, and start the reverse defrosting operation ( ST44).

次に、CPU110b、110cは、室外機2b、2cで除霜運転終了条件が成立しているか否かを判断する(ST45)。除霜運転終了条件が成立していなければ(ST45−No)、CPU110b、110cは、ST44に処理を戻してリバース除霜運転を継続する。除霜運転終了条件が成立していれば(ST45−Yes)、CPU110b、110cは、終了条件成立信号を室外機2aに送信する(ST46)。   Next, the CPUs 110b and 110c determine whether or not the defrosting operation end condition is satisfied in the outdoor units 2b and 2c (ST45). If the defrosting operation termination condition is not satisfied (ST45-No), the CPUs 110b and 110c return the process to ST44 and continue the reverse defrosting operation. If the defrosting operation end condition is satisfied (ST45-Yes), the CPUs 110b and 110c transmit an end condition satisfaction signal to the outdoor unit 2a (ST46).

次に、CPU110b、110cは、室外機2aから除霜運転終了信号を受信しているか否かを判断する(ST47)。除霜運転終了信号を受信していなければ(ST47−No)、CPU110b、110cは、ST47に処理を戻す。除霜運転終了信号を受信していれば(ST47−Yes)、CPU110b、110cは、除霜運転終了処理を行う(ST48)。   Next, the CPUs 110b and 110c determine whether or not a defrosting operation end signal is received from the outdoor unit 2a (ST47). If the defrosting operation end signal has not been received (ST47-No), the CPUs 110b and 110c return the process to ST47. If the defrosting operation end signal is received (ST47-Yes), the CPUs 110b and 110c perform a defrosting operation end process (ST48).

次に、CPU110b、110cは、室外機2aから運転再開信号を受信しているか否かを判断する(ST49)。運転再開信号を受信していなければ(ST49−No)、CPU110b、110cは、ST49に処理を戻す。運転再開信号を受信していれば(ST49−Yes)、CPU110b、110cは、バイパス用電磁弁44b、44cをそれぞれ閉じるとともに圧縮機21b、21cをそれぞれ起動して暖房主体運転を再開し(ST50)、ST41に処理を戻す。   Next, the CPUs 110b and 110c determine whether or not an operation resumption signal is received from the outdoor unit 2a (ST49). If the operation restart signal has not been received (ST49-No), the CPUs 110b and 110c return the process to ST49. If the operation resumption signal has been received (ST49-Yes), the CPUs 110b and 110c close the bypass solenoid valves 44b and 44c, respectively, start the compressors 21b and 21c, respectively, and resume the heating main operation (ST50). , The process returns to ST41.

次に、図7を用いて、制御部800a〜800dのCPU810a〜810dでの処理について説明する。室内機8a〜8dが暖房運転もしくは冷房運転を行っているとき、CPU810a〜810dは、室外機2a〜2cから除霜運転準備信号を受信したか否かを判断する(ST21)。   Next, processing in the CPUs 810a to 810d of the control units 800a to 800d will be described with reference to FIG. When the indoor units 8a to 8d are performing the heating operation or the cooling operation, the CPUs 810a to 810d determine whether or not the defrosting operation preparation signals are received from the outdoor units 2a to 2c (ST21).

除霜運転準備信号を受信していなければ(ST21−No)、CPU810a〜810dは、現在行っている暖房運転や冷房運転を継続し(ST32)、ST21に処理を戻す。除霜運転準備信号を受信していれば(ST21−Yes)、CPU810a〜810dは、室内機8a〜8dの除霜運転準備処理を実行する(ST22)。   If the defrosting operation preparation signal has not been received (ST21-No), the CPUs 810a to 810d continue the current heating operation and cooling operation (ST32), and return the processing to ST21. If the defrosting operation preparation signal is received (ST21-Yes), CPU810a-810d will perform the defrosting operation preparation process of indoor unit 8a-8d (ST22).

次に、CPU810a〜810dは、室外機2a〜2cから除霜運転開始信号を受信したか否かを判断する(ST23)。CPU810a〜810dは、除霜運転開始信号を受信していなければ(ST23−No)、ST23に処理を戻し、除霜運転開始信号を受信していれば(ST23−Yes)、ST24に処理を進める。   Next, the CPUs 810a to 810d determine whether or not defrosting operation start signals have been received from the outdoor units 2a to 2c (ST23). If CPUs 810a to 810d have not received the defrosting operation start signal (ST23-No), the process returns to ST23, and if the defrosting operation start signal has been received (ST23-Yes), the process proceeds to ST24. .

ST24において、CPU810a〜810dは、切換ユニット動作テーブル200を参照し、対応する切換ユニット6a〜6dの各弁の開閉を行う。次に、CPU810a〜810dは、室内膨張弁82a〜82dの開度を所定開度とする(ST25)。   In ST24, the CPUs 810a to 810d refer to the switching unit operation table 200 and open and close the valves of the corresponding switching units 6a to 6d. Next, the CPUs 810a to 810d set the opening degree of the indoor expansion valves 82a to 82d to a predetermined opening degree (ST25).

次に、CPU810a〜810dは、室外機2a〜2cから除霜運転終了信号を受信したか否かを判断する(ST26)。CPU810a〜810dは、除霜運転終了信号を受信していなければ(ST26−No)、ST26に処理を戻し、除霜運転終了信号を受信していれば(ST26−Yes)、ST27に処理を進める。   Next, CPUs 810a to 810d determine whether or not a defrosting operation end signal has been received from outdoor units 2a to 2c (ST26). If CPUs 810a to 810d have not received the defrosting operation end signal (ST26-No), the process returns to ST26, and if the defrosting operation end signal has been received (ST26-Yes), the process proceeds to ST27. .

ST27において、CPU810a〜810dは、室内膨張弁82a〜82dを全閉とする。次に、CPU810a〜810dは、室外機2a〜2cから均圧処理実行信号を受信したか否かを判断する(ST28)。   In ST27, the CPUs 810a to 810d fully close the indoor expansion valves 82a to 82d. Next, CPUs 810a to 810d determine whether or not pressure equalization processing execution signals have been received from outdoor units 2a to 2c (ST28).

均圧処理実行信号を受信していれば(ST28−Yes)、CPU810a〜810dは、切換ユニット動作テーブル200を参照し、暖房運転を行う室内機に対応する切換ユニットでは昇圧処理制御を行い、冷房運転を行う室内機に対応する切換ユニットでは降圧処理制御を行う、つまりは、切換ユニットでの均圧処理制御を行う(ST33)。均圧処理制御を行ったCPU810a〜810dは、ST28に処理を戻す。   If the pressure equalization processing execution signal has been received (ST28-Yes), the CPUs 810a to 810d refer to the switching unit operation table 200 and perform the pressure increase processing control in the switching unit corresponding to the indoor unit that performs the heating operation. The switching unit corresponding to the indoor unit to be operated performs the pressure reduction processing control, that is, the pressure equalization processing control in the switching unit is performed (ST33). The CPUs 810a to 810d that have performed the pressure equalization process control return the process to ST28.

ST28において、均圧処理実行信号を受信していなければ(ST28−No)、CPU810a〜810dは、運転再開信号を受信したか否かを判断する(ST29)。CPU810a〜810dは、運転再開信号を受信していなければ(ST29−No)、ST29に処理を戻し、運転再開信号を受信していれば(ST29−Yes)、ST30に処理を進める。   In ST28, if a pressure equalization process execution signal has not been received (ST28-No), CPUs 810a to 810d determine whether or not an operation resumption signal has been received (ST29). CPUs 810a to 810d return the process to ST29 if no operation resumption signal has been received (ST29-No), and proceed to ST30 if an operation resumption signal has been received (ST29-Yes).

ST30において、CPU810a〜810dは、切換ユニット動作テーブル200を参照し、対応する切換ユニット6a〜6dの各弁の開閉を行う。そして、CPU810a〜810dは、室内膨張弁82a〜82dの開度を、対応する室内熱交換器81a〜81dで要求される冷媒過熱度や冷媒過冷却度に応じた開度とし(ST31)、ST1に処理を戻す。   In ST30, the CPUs 810a to 810d refer to the switching unit operation table 200 and open and close the valves of the corresponding switching units 6a to 6d. Then, the CPUs 810a to 810d set the opening degree of the indoor expansion valves 82a to 82d to the opening degree corresponding to the degree of refrigerant superheat and the degree of refrigerant subcooling required in the corresponding indoor heat exchangers 81a to 81d (ST31), and ST1. Return processing to.

以上説明したように、本発明の空気調和装置は、吐出圧力と吸入圧力との圧力差が所定値以下であれば、均圧処理を行わない。また、均圧処理を行っているときに、吐出圧力と吸入圧力との圧力差が所定値以下となれば、均圧処理を停止する。従って、均圧処理を行う時間を短縮することができ、除霜運転や油回収運転から空調運転への復帰を早くすることができる。   As described above, the air conditioner of the present invention does not perform pressure equalization processing if the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value. If the pressure difference between the discharge pressure and the suction pressure is equal to or less than a predetermined value during the pressure equalization process, the pressure equalization process is stopped. Therefore, the time for performing the pressure equalization process can be shortened, and the return from the defrosting operation or the oil recovery operation to the air conditioning operation can be accelerated.

1 空気調和装置
2a〜2c 室外機
6a〜6d 切換ユニット
8a〜8d 室内機
21a〜21c 圧縮機
22a〜22c 四方弁
23a〜23c 室外熱交換器
30 高圧ガス管
30a〜30c 高圧ガス分管
31 低圧ガス管
31a〜31c 低圧ガス分管
32 液管
32a〜32c 液分管
33a〜33c 室外機高圧ガス管
34a〜34c 室外機低圧ガス管
35a〜35c 室外機液管
36a〜36c ホットガスバイパス管
37a〜37c 冷媒配管
43a〜43c 室外膨張弁
44a〜44c バイパス用電磁弁
50a〜50c 高圧センサ
51a〜51c 低圧センサ
52a〜52c 中間圧センサ
55a〜55c 冷媒温度センサ
56a〜56c 熱交温度センサ
57a〜57c 外気温度センサ
61a〜61d 第1開閉手段
62a〜62d 第2開閉手段
63a〜63d 第3開閉手段
64a〜64d 第4開閉手段
65a〜65d 第1キャピラリーチューブ
66a〜66d 第2キャピラリーチューブ
81a〜81d 室内熱交換器
82a〜82d 室内膨張弁
91a〜91d 第1分流管
92a〜92d 第2分流管
93a〜93d 第3分流管
94a〜94d 第4分流管
95a〜95d 第5分流管
96a〜96d バイパス管
100a〜100c 室外機制御手段
110a〜110c CPU
120a〜120c 記憶部
130a〜130c 通信部
200 切換ユニット動作テーブル
800a〜800d 室内機制御手段
810a〜810d CPU
820a〜820d 記憶部
830a〜830d 通信部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2a-2c Outdoor unit 6a-6d Switching unit 8a-8d Indoor unit 21a-21c Compressor 22a-22c Four way valve 23a-23c Outdoor heat exchanger 30 High pressure gas pipe 30a-30c High pressure gas branch pipe 31 Low pressure gas pipe 31a-31c Low pressure gas distribution pipe 32 Liquid pipe 32a-32c Liquid distribution pipe 33a-33c Outdoor unit high pressure gas pipe 34a-34c Outdoor unit low pressure gas pipe 35a-35c Outdoor unit liquid pipe 36a-36c Hot gas bypass pipe 37a-37c Refrigerant piping 43a ˜43c Outdoor expansion valve 44a˜44c Bypass solenoid valve 50a˜50c High pressure sensor 51a˜51c Low pressure sensor 52a˜52c Intermediate pressure sensor 55a˜55c Refrigerant temperature sensor 56a˜56c Heat exchanger temperature sensor 57a˜57c Outside air temperature sensor 61a˜61d First opening / closing means 62a-6 d Second opening / closing means 63a to 63d Third opening / closing means 64a to 64d Fourth opening / closing means 65a to 65d First capillary tubes 66a to 66d Second capillary tubes 81a to 81d Indoor heat exchangers 82a to 82d Indoor expansion valves 91a to 91d First 1 branch pipe 92a-92d 2nd branch pipe 93a-93d 3rd branch pipe 94a-94d 4th branch pipe 95a-95d 5th branch pipe 96a-96d bypass pipe 100a-100c Outdoor unit control means 110a-110c CPU
120a to 120c Storage unit 130a to 130c Communication unit 200 Switching unit operation table 800a to 800d Indoor unit control means 810a to 810d CPU
820a to 820d storage unit 830a to 830d communication unit

Claims (3)

圧縮機と、室外熱交換器と、外気温度を検出する外気温度検出手段と、前記圧縮機から吐出される冷媒の吐出圧力を検出する高圧検出手段と、前記圧縮機に吸入される冷媒の吸入圧力を検出する低圧検出手段と、を有する少なくとも1台の室外機と、
室内熱交換器と、室内機減圧手段とを有する複数の室内機と、
複数の前記室内機に対応して設けられて前記室内熱交換器における冷媒の流れ方向を切り換える複数の切換ユニットと、を備え、
前記室外機と複数の前記切換ユニットとが高圧ガス管および低圧ガス管で接続され、複数の前記室内機は少なくとも1台の前記室外機と液管で接続され、対応する複数の前記室内機と複数の前記切換ユニットとが冷媒配管で接続された空気調和装置において、
前記切換ユニットは、対応する前記室内機の指示により同室内機に備えられた前記室内熱交換器における冷媒圧力を昇圧あるいは降圧する均圧処理を行う均圧手段を備え、
前記室外熱交換器を凝縮器として機能させて除霜運転や油回収運転を行っている状態から前記室外熱交換器を蒸発器として機能させる状態に切り換えるときに、前記高圧検出手段で検出した吐出圧力と前記低圧検出手段で検出した吸入圧力との圧力差が所定値以下であれば、前記均圧手段による前記均圧処理は行わないことを特徴とする空気調和装置。
A compressor, an outdoor heat exchanger, an outside air temperature detecting means for detecting the outside air temperature, a high pressure detecting means for detecting a discharge pressure of the refrigerant discharged from the compressor, and a suction of the refrigerant sucked into the compressor Low pressure detecting means for detecting pressure, at least one outdoor unit,
A plurality of indoor units having an indoor heat exchanger and an indoor unit decompression means;
A plurality of switching units provided corresponding to the plurality of indoor units and switching the flow direction of the refrigerant in the indoor heat exchanger,
The outdoor unit and the plurality of switching units are connected by a high-pressure gas pipe and a low-pressure gas pipe, the plurality of indoor units are connected by at least one of the outdoor units and a liquid pipe, and the corresponding plurality of indoor units In the air conditioner in which the plurality of switching units are connected by refrigerant piping,
The switching unit includes pressure equalizing means for performing pressure equalization processing for increasing or decreasing the refrigerant pressure in the indoor heat exchanger provided in the indoor unit according to an instruction of the corresponding indoor unit,
The discharge detected by the high-pressure detection means when switching from a state where the outdoor heat exchanger functions as a condenser to perform a defrosting operation or an oil recovery operation to a state where the outdoor heat exchanger functions as an evaporator If the pressure difference between the pressure and the suction pressure detected by the low pressure detecting means is less than or equal to a predetermined value, the pressure equalizing process by the pressure equalizing means is not performed.
前記室外機は、室外機開閉手段を有し前記圧縮機の冷媒吐出口に接続された冷媒配管と冷媒吸入口に接続された冷媒配管とに接続するホットガスバイパス管を備え、
前記室外熱交換器を凝縮器として機能させて除霜運転や油回収運転を行っている状態から前記室外熱交換器を蒸発器として機能させる状態に切り換えるときは、室外機開閉手段を開いてホットガスバイパス管を冷媒が流れるようにし、前記室外機開閉手段を開いているときに前記高圧検出手段で検出した吐出圧力と前記低圧検出手段で検出した吸入圧力との圧力差が所定値以下となれば、前記均圧手段による前記均圧処理を停止することを特徴とする請求項1に記載の空気調和装置。
The outdoor unit includes an outdoor unit opening / closing means and a hot gas bypass pipe connected to a refrigerant pipe connected to a refrigerant discharge port of the compressor and a refrigerant pipe connected to a refrigerant suction port,
When switching from the state in which the outdoor heat exchanger functions as a condenser to perform the defrosting operation or the oil recovery operation to the state in which the outdoor heat exchanger functions as an evaporator, open the outdoor unit opening / closing means to When the refrigerant flows through the gas bypass pipe and the outdoor unit opening / closing means is opened, the pressure difference between the discharge pressure detected by the high pressure detection means and the suction pressure detected by the low pressure detection means becomes less than a predetermined value. The air conditioning apparatus according to claim 1, wherein the pressure equalization process by the pressure equalizing unit is stopped.
前記切換ユニットは、第1開閉手段を有し一端が前記高圧ガス管に接続された第1分流管と、第2開閉手段を有し一端が前記低圧ガス管に接続された第2分流管とを備え、
前記均圧手段は、第3開閉手段を有し一端が前記第1分流管に接続された第3分流管と、第4開閉手段を有し一端が前記第2分流管に接続された第4分流管と、流量制限手段を有する第5分流管とから構成され、
前記第1分流管の他端と前記第2分流管の他端とが接続されて前記室内機と冷媒配管で接続され、前記第3分流管の他端と前記第4分流管の他端とが接続され、前記第5分流管の一端が前記第1分流管と前記第2分流管との接続部に接続されるとともに前記第5分流管の他端が前記第3分流管の他端と前記第4分流管との接続部に接続され、
前記室外熱交換器を凝縮器として機能させて除霜運転や油回収運転を行っている状態から前記室外熱交換器を蒸発器として機能させる状態に切り換えるときに、前記圧力差が所定値以下であれば、前記室内熱交換器を凝縮器として機能させる前記室内機に対応する前記切換ユニットでは少なくとも前記第1開閉手段を開とし、前記室内熱交換器を蒸発器として機能させる前記室内機に対応する前記切換ユニットでは少なくとも前記第2開閉手段を開とすることを特徴とする請求項1または請求項2に記載の空気調和装置。
The switching unit includes a first branch pipe having a first opening / closing means and one end connected to the high-pressure gas pipe; and a second branch pipe having a second opening / closing means and one end connected to the low-pressure gas pipe; With
The pressure equalizing means includes a third shunt pipe having a third opening / closing means and one end connected to the first shunt pipe, and a fourth shunt having a fourth opening / closing means and one end connected to the second shunt pipe. It is composed of a shunt pipe and a fifth shunt pipe having flow rate limiting means,
The other end of the first shunt pipe and the other end of the second shunt pipe are connected and connected to the indoor unit by a refrigerant pipe, and the other end of the third shunt pipe and the other end of the fourth shunt pipe And one end of the fifth shunt pipe is connected to a connection portion between the first shunt pipe and the second shunt pipe, and the other end of the fifth shunt pipe is connected to the other end of the third shunt pipe. Connected to the connection with the fourth shunt pipe,
When switching from a state where the outdoor heat exchanger functions as a condenser to perform a defrosting operation or an oil recovery operation to a state where the outdoor heat exchanger functions as an evaporator, the pressure difference is less than a predetermined value. If present, the switching unit corresponding to the indoor unit that causes the indoor heat exchanger to function as a condenser corresponds to the indoor unit that opens at least the first opening / closing means and causes the indoor heat exchanger to function as an evaporator. The air conditioner according to claim 1 or 2, wherein at least the second opening / closing means is opened in the switching unit.
JP2012033503A 2012-02-20 2012-02-20 Air conditioner Active JP5845957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033503A JP5845957B2 (en) 2012-02-20 2012-02-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033503A JP5845957B2 (en) 2012-02-20 2012-02-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013170718A true JP2013170718A (en) 2013-09-02
JP5845957B2 JP5845957B2 (en) 2016-01-20

Family

ID=49264783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033503A Active JP5845957B2 (en) 2012-02-20 2012-02-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP5845957B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207221A (en) * 2016-05-16 2017-11-24 東芝キヤリア株式会社 Air conditioner
CN111237982A (en) * 2020-01-14 2020-06-05 广东美的暖通设备有限公司 Air conditioner, control method and device thereof, electronic equipment and storage medium
EP3859237A1 (en) * 2020-02-03 2021-08-04 LG Electronics, Inc. Air conditioning apparatus
US11725855B2 (en) 2019-12-30 2023-08-15 Lg Electronics Inc. Air conditioning apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122156A (en) * 1984-07-06 1986-01-30 ダイキン工業株式会社 Controller for refrigerator
JPH0571822A (en) * 1991-09-10 1993-03-23 Toshiba Corp Air-conditioner
JPH0673667U (en) * 1993-03-17 1994-10-18 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air conditioning type heat pump system
JPH0752046B2 (en) * 1989-11-10 1995-06-05 ダイキン工業株式会社 Operation control device for air conditioner
JPH09269160A (en) * 1996-03-29 1997-10-14 Toupure Kk Air conditioner
JP2000055484A (en) * 1998-08-06 2000-02-25 Calsonic Corp Air conditioner
JP2006177619A (en) * 2004-12-22 2006-07-06 Mitsubishi Heavy Ind Ltd Air conditioner, and its operation method
EP2006615A2 (en) * 2007-06-22 2008-12-24 Samsung Electronics Co., Ltd. Multi air-conditioner for simultaneously cooling/heating room air and method for controlling the same
JP2009210139A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Multiple-type air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122156A (en) * 1984-07-06 1986-01-30 ダイキン工業株式会社 Controller for refrigerator
JPH0752046B2 (en) * 1989-11-10 1995-06-05 ダイキン工業株式会社 Operation control device for air conditioner
JPH0571822A (en) * 1991-09-10 1993-03-23 Toshiba Corp Air-conditioner
JPH0673667U (en) * 1993-03-17 1994-10-18 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air conditioning type heat pump system
JPH09269160A (en) * 1996-03-29 1997-10-14 Toupure Kk Air conditioner
JP2000055484A (en) * 1998-08-06 2000-02-25 Calsonic Corp Air conditioner
JP2006177619A (en) * 2004-12-22 2006-07-06 Mitsubishi Heavy Ind Ltd Air conditioner, and its operation method
EP2006615A2 (en) * 2007-06-22 2008-12-24 Samsung Electronics Co., Ltd. Multi air-conditioner for simultaneously cooling/heating room air and method for controlling the same
JP2009210139A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Multiple-type air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207221A (en) * 2016-05-16 2017-11-24 東芝キヤリア株式会社 Air conditioner
US11725855B2 (en) 2019-12-30 2023-08-15 Lg Electronics Inc. Air conditioning apparatus
CN111237982A (en) * 2020-01-14 2020-06-05 广东美的暖通设备有限公司 Air conditioner, control method and device thereof, electronic equipment and storage medium
EP3859237A1 (en) * 2020-02-03 2021-08-04 LG Electronics, Inc. Air conditioning apparatus
US11512881B2 (en) 2020-02-03 2022-11-29 Lg Electronics Inc. Air conditioning apparatus

Also Published As

Publication number Publication date
JP5845957B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP2013181695A (en) Air conditioning device
AU2013200309B2 (en) Air conditioning apparatus
JP5845957B2 (en) Air conditioner
JP6138711B2 (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP2011208928A (en) Air conditioner
JP5166915B2 (en) Multi-type air conditioner
JP6628911B1 (en) Refrigeration cycle device
JP2006071137A (en) Refrigeration unit
JP2013170717A (en) Air conditioner
JP2005321194A (en) Air conditioner
JP2017150678A (en) Air conditioner
EP2354728A2 (en) Refrigerant system
JP6459800B2 (en) Air conditioner
JP2012197959A (en) Air conditioning apparatus
JP2013044512A (en) Air conditioning system
JP2019113246A (en) Air conditioner
JP5445494B2 (en) Air conditioner
JP5199713B2 (en) Multi-type air conditioner, indoor unit indoor electronic expansion valve operation confirmation method, computer program, and fault diagnosis apparatus
JP2018173198A (en) Refrigeration device
JPH08200868A (en) Refrigerator
JP3097468B2 (en) Control device for air conditioner
JP5573741B2 (en) Air conditioner
JP7375490B2 (en) air conditioner
JP2014070835A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R151 Written notification of patent or utility model registration

Ref document number: 5845957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151