JP5573741B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5573741B2
JP5573741B2 JP2011060807A JP2011060807A JP5573741B2 JP 5573741 B2 JP5573741 B2 JP 5573741B2 JP 2011060807 A JP2011060807 A JP 2011060807A JP 2011060807 A JP2011060807 A JP 2011060807A JP 5573741 B2 JP5573741 B2 JP 5573741B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
indoor
pipe
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011060807A
Other languages
Japanese (ja)
Other versions
JP2012197958A (en
Inventor
秀哉 田村
隆廣 松永
貴光 黒川
圭人 川合
廣太郎 戸矢
康弘 岡
勝紀 荒井
久仁子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011060807A priority Critical patent/JP5573741B2/en
Publication of JP2012197958A publication Critical patent/JP2012197958A/en
Application granted granted Critical
Publication of JP5573741B2 publication Critical patent/JP5573741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、少なくとも1台の室外機に複数の室内機が接続される空気調和装置に係わり、より詳細には、各室内機の冷媒循環量を適切に確保できる空気調和装置に関する。   The present invention relates to an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit, and more particularly to an air conditioner that can appropriately ensure the amount of refrigerant circulation in each indoor unit.

従来、少なくとも1台の室外機に複数の室内機が並列に冷媒配管接続され、各室内機において冷房運転と暖房運転とを同時に行える、所謂冷暖房フリーの空気調和装置が知られている。この空気調和装置は、例えば、複数の室内機が各々異なる部屋に設置されており、ある室内機では冷房運転を行う一方、他の室内機では暖房運転を行うことができるよう構成されている。   2. Description of the Related Art Conventionally, a so-called air-conditioning-free air conditioning apparatus is known in which a plurality of indoor units are connected to at least one outdoor unit in parallel by refrigerant piping, and each indoor unit can perform a cooling operation and a heating operation simultaneously. In this air conditioner, for example, a plurality of indoor units are installed in different rooms, and a certain indoor unit performs a cooling operation, while another indoor unit can perform a heating operation.

この種の空気調和装置は、圧縮機と室外熱交換器と四方弁と室外膨張弁とを備えた室外機と、室内熱交換器と室内膨張弁とを備えた複数の室内機と、複数の室内機に対応して備えられて室内機内を流れる冷媒の方向を切り替える複数の分流ユニットとが、高圧ガス管と低圧ガス管と液管とで相互に接続されている。   This type of air conditioner includes an outdoor unit including a compressor, an outdoor heat exchanger, a four-way valve, and an outdoor expansion valve, a plurality of indoor units including an indoor heat exchanger and an indoor expansion valve, and a plurality of A plurality of shunt units that are provided corresponding to the indoor unit and switch the direction of the refrigerant flowing in the indoor unit are connected to each other by a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe.

この空気調和装置は、冷暖房フリーの運転を行う場合、冷房運転を行っている室内機の運転負荷が暖房運転を行っている室内機の運転負荷よりも大きくなる場合は、室外熱交換器が凝縮器となるように、四方弁を切り替える(以下、この状態での運転を冷房主体運転と記載する)。逆に暖房運転を行っている室内機の運転が冷房運転を行っている室内機の運転負荷よりも大きくなった場合は、室外熱交換器が蒸発器となるように四方弁を切り替える(以下、この状態での運転を暖房主体運転と記載する)。また、冷房運転を行う室内機の室内熱交換器を蒸発器とし、暖房運転を行う室内機の室内熱交換器を凝縮器とするよう、分流ユニットを切り替える。   In this air conditioner, when the cooling / heating-free operation is performed, the outdoor heat exchanger is condensed when the operation load of the indoor unit that is performing the cooling operation is larger than the operation load of the indoor unit that is performing the heating operation. The four-way valve is switched so as to be a cooler (hereinafter, the operation in this state is referred to as cooling main operation). Conversely, when the operation of the indoor unit performing the heating operation becomes larger than the operation load of the indoor unit performing the cooling operation, the four-way valve is switched so that the outdoor heat exchanger becomes an evaporator (hereinafter, The operation in this state is referred to as heating-main operation). Further, the shunt unit is switched so that the indoor heat exchanger of the indoor unit performing the cooling operation is an evaporator and the indoor heat exchanger of the indoor unit performing the heating operation is a condenser.

冷房主体運転を行う場合、例えば、圧縮機から吐出された高圧の冷媒の一部は、四方弁を介して室外熱交換器に流入して外気と熱交換を行って凝縮し、室外膨張弁で減圧されて中間圧の冷媒となって、液管を介して冷房運転を行う室内機に流入する。室内機に流入した中間圧の冷媒は、室内膨張弁で減圧されて低圧の冷媒となる。低圧の冷媒は、室内熱交換器で室内空気と熱交換を行って蒸発し、分流ユニット、低圧ガス管を介して圧縮機に吸入される。   When performing cooling-dominated operation, for example, a part of the high-pressure refrigerant discharged from the compressor flows into the outdoor heat exchanger via the four-way valve, condenses by exchanging heat with the outside air, and is condensed by the outdoor expansion valve. The refrigerant is reduced in pressure to become an intermediate pressure refrigerant and flows into the indoor unit that performs the cooling operation through the liquid pipe. The intermediate-pressure refrigerant flowing into the indoor unit is decompressed by the indoor expansion valve to become a low-pressure refrigerant. The low-pressure refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchanger, and is sucked into the compressor through the diversion unit and the low-pressure gas pipe.

圧縮機から吐出された高圧の冷媒の残部は、高圧ガス管を通り分流ユニットを介して暖房運転を行う室内機に流入する。室内機に流入した高圧の冷媒は、室内熱交換器で室内空気と熱交換を行って凝縮し、室内膨張弁で減圧されて中間圧の冷媒となって、液管を通って冷房運転を行っている室内機に流入する中間圧の冷媒と合流する。   The remainder of the high-pressure refrigerant discharged from the compressor flows through the high-pressure gas pipe and into the indoor unit that performs the heating operation via the branch unit. The high-pressure refrigerant flowing into the indoor unit is condensed by exchanging heat with the indoor air in the indoor heat exchanger, and is reduced in pressure by the indoor expansion valve to become an intermediate-pressure refrigerant, and is cooled through the liquid pipe. It merges with the medium-pressure refrigerant flowing into the indoor unit.

暖房主体運転を行う場合、圧縮機から吐出された高圧の冷媒は、高圧ガス管を通り分流ユニットを介して暖房運転を行う室内機に流入する。室内機に流入した高圧の冷媒は、室内熱交換器で室内空気と熱交換を行って凝縮し、室内膨張弁で減圧されて中間圧の冷媒となる。室内膨張弁で減圧された中間圧の冷媒は室内機から液管へ流入し、室外熱交換器側と冷房運転を行っている室内機側へ分流する。室内機に流入した中間圧の冷媒は、室内膨張弁で減圧されて低圧の冷媒となる。低圧の冷媒は、室内熱交換器で室内空気と熱交換を行って蒸発し、分流ユニット、低圧ガス管を介して圧縮機に吸入される。一方、室外熱交換器に流入した中間圧の冷媒は、外気と熱交換を行って蒸発して低圧の冷媒となり、四方弁、低圧ガス管を通って圧縮機に吸入される。   When performing the heating main operation, the high-pressure refrigerant discharged from the compressor flows through the high-pressure gas pipe and into the indoor unit that performs the heating operation through the branch unit. The high-pressure refrigerant that has flowed into the indoor unit is condensed by exchanging heat with indoor air in the indoor heat exchanger, and is reduced in pressure by the indoor expansion valve to become an intermediate-pressure refrigerant. The intermediate-pressure refrigerant depressurized by the indoor expansion valve flows from the indoor unit into the liquid pipe, and is divided into the outdoor heat exchanger side and the indoor unit side performing the cooling operation. The intermediate-pressure refrigerant flowing into the indoor unit is decompressed by the indoor expansion valve to become a low-pressure refrigerant. The low-pressure refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchanger, and is sucked into the compressor through the diversion unit and the low-pressure gas pipe. On the other hand, the intermediate pressure refrigerant flowing into the outdoor heat exchanger exchanges heat with the outside air and evaporates to become a low pressure refrigerant, and is sucked into the compressor through the four-way valve and the low pressure gas pipe.

以上のように、この空気調和装置では、各室内機の室内熱交換器が個別に凝縮器や蒸発器となるよう分流ユニットを切り替えて冷凍サイクル運転を行うことによって、冷暖房フリーの運転を実現している。   As described above, in this air conditioner, air-conditioning-free operation is realized by switching refrigeration units and switching refrigeration units so that the indoor heat exchanger of each indoor unit individually becomes a condenser or an evaporator. ing.

ところが、このような空気調和装置では、冷暖房フリーの運転を行っている際に、各室内機に備えられた室内膨張弁の液管側と高圧ガス管側あるいは低圧ガス管側とにおける冷媒の圧力差が小さくなることがあり、冷房運転を行っている室内機もしくは暖房運転を行っている室内機での冷媒循環量が不足し信頼性のある空調運転が行えない虞があった。   However, in such an air conditioner, the refrigerant pressure on the liquid pipe side and the high-pressure gas pipe side or the low-pressure gas pipe side of the indoor expansion valve provided in each indoor unit when performing an air-conditioning-free operation. The difference may be reduced, and there is a possibility that a reliable air conditioning operation cannot be performed due to a shortage of refrigerant circulation in the indoor unit performing the cooling operation or the indoor unit performing the heating operation.

例えば、冷房主体運転を行っており(室外熱交換器が凝縮器とされている)、液管を流れる冷媒の圧力が高い(高圧ガス管を流れる冷媒との圧力差が小さい)場合は、暖房運転を行っている室内機において暖房能力が不足するので、当該室内機の室内熱交換器における冷媒流量を増加させようとして室内膨張弁の開度を大きくする。室内膨張弁の開度が大きくなると、室内膨張弁の液管側と高圧ガス管側との圧力差がますます小さくなって室内膨張弁を冷媒が流れにくくなる。このような状態では、暖房運転を行っている室内機で冷媒循環量が低下する虞があった。   For example, when the cooling main operation is performed (the outdoor heat exchanger is a condenser) and the pressure of the refrigerant flowing through the liquid pipe is high (the pressure difference with the refrigerant flowing through the high-pressure gas pipe is small) Since the indoor unit in operation has insufficient heating capacity, the opening of the indoor expansion valve is increased in order to increase the refrigerant flow rate in the indoor heat exchanger of the indoor unit. As the opening of the indoor expansion valve increases, the pressure difference between the liquid pipe side and the high-pressure gas pipe side of the indoor expansion valve becomes smaller and the refrigerant hardly flows through the indoor expansion valve. In such a state, there is a possibility that the refrigerant circulation amount may decrease in the indoor unit performing the heating operation.

上記のような問題を解決するために、室外膨張弁の開度を調整して液管を流れる冷媒の圧力を調整することによって、室内膨張弁の液管側と高圧ガス管側あるいは低圧ガス管側との圧力差が所定値以上となるよう制御を行うことで、冷暖房フリーの運転を行っている場合でも冷房運転あるいは暖房運転を行っている室内機における冷媒循環量を確保し、冷媒循環量の低下に起因して冷房運転あるいは暖房運転を行っている室内機の冷房能力あるいは暖房能力が不足しないようにする空気調和装置が提案されている(例えば、特許文献1参照)   In order to solve the above-described problems, the opening of the outdoor expansion valve is adjusted to adjust the pressure of the refrigerant flowing through the liquid pipe, so that the liquid pipe side and the high-pressure gas pipe side or the low-pressure gas pipe of the indoor expansion valve are adjusted. By controlling so that the pressure difference from the side becomes equal to or greater than a predetermined value, the refrigerant circulation amount is secured in the indoor unit that is performing the cooling operation or the heating operation even when the cooling-free operation is performed. There has been proposed an air conditioner that prevents a cooling capacity or heating capacity of an indoor unit that is performing a cooling operation or a heating operation due to a decrease in temperature (for example, see Patent Document 1).

特開2008−138954号公報(第12〜15頁、第4図、第5図)JP 2008-138954 A (pages 12 to 15, FIGS. 4 and 5)

しかしながら、上記特許文献1では、冷房主体運転を行う場合は室外熱交換器を凝縮器として使用するため、室外膨張弁の開度を調整して液管を流れる冷媒の圧力を調整することができるが、暖房主体運転を行う場合は室外熱交換器を蒸発器として使用することとなり、室外膨張弁は冷媒の過熱度に応じて開度を調整することとなるため、室外膨張弁で液管を流れる冷媒の圧力を調整することができない。従って、暖房主体運転を行う場合(室外熱交換器が蒸発器である場合)は、室内膨張弁の液管側と高圧ガス管側あるいは低圧ガス管側との圧力差の制御が行えなくなり、冷房運転あるいは暖房運転を行っている室内機における冷媒循環量が低下し冷房能力あるいは暖房能力が不足する虞があった。   However, since the outdoor heat exchanger is used as a condenser in the above-described Patent Document 1 when the cooling-main operation is performed, the pressure of the refrigerant flowing through the liquid pipe can be adjusted by adjusting the opening of the outdoor expansion valve. However, when heating-based operation is performed, an outdoor heat exchanger is used as an evaporator, and the outdoor expansion valve adjusts the opening according to the degree of superheat of the refrigerant. The pressure of the flowing refrigerant cannot be adjusted. Therefore, when heating-dominated operation is performed (when the outdoor heat exchanger is an evaporator), it becomes impossible to control the pressure difference between the liquid pipe side of the indoor expansion valve and the high-pressure gas pipe side or the low-pressure gas pipe side. There is a possibility that the amount of refrigerant circulating in the indoor unit performing the operation or the heating operation is reduced and the cooling capacity or the heating capacity is insufficient.

本発明は以上述べた問題点を解決するものであって、室外機に備えられた室外熱交換器を蒸発器として使用する場合でも、室内膨張弁の液管側と高圧ガス管側あるいは低圧ガス管側との圧力差が所定値以上となるよう、液管を流れる冷媒の圧力を調整することで、冷房運転あるいは暖房運転を行っている室内機での冷媒循環量の低下を抑制することを特徴とする。   The present invention solves the problems described above, and even when an outdoor heat exchanger provided in an outdoor unit is used as an evaporator, the liquid pipe side and the high-pressure gas pipe side or low-pressure gas of the indoor expansion valve are used. By adjusting the pressure of the refrigerant flowing through the liquid pipe so that the pressure difference from the pipe side is equal to or greater than a predetermined value, it is possible to suppress a decrease in the refrigerant circulation amount in the indoor unit that is performing the cooling operation or the heating operation. Features.

上記した課題を解決するために、本発明の空気調和装置では、圧縮機と室外熱交換器と室外膨張弁とを備えた少なくとも1台の室外機と、室内熱交換器を備えた複数の室内機と、室内機に対応して設けられた複数の分流ユニットと、室外機と複数の室内機と複数の分流ユニットとを相互に接続するための高圧ガス管と低圧ガス管と液管とを備えている。また、液管と低圧ガス管に並列に配管接続された冷媒調整器が設けられている。さらには、液管と冷媒調整器とを接続する配管には流入電磁弁が、低圧ガス管と冷媒調整器とを接続する配管には流出電磁弁が、各々設けられている。この空気調和装置で冷暖房フリーの運転が行われている際に、冷房運転あるいは暖房運転を行っている室内機に備えられた室内膨張弁の前後の圧力差が所定値より小さくなった場合は、流入電磁弁を開いて液管から冷媒調整器へ冷媒を流入させる、あるいは、流出電磁弁を開いて冷媒調整器から低圧ガス管へ冷媒を流出させることによって、液管を流れる冷媒量を増減させ液管を流れる冷媒の圧力を調整するようにしている。   In order to solve the above-described problems, in the air conditioner of the present invention, a plurality of indoor units including at least one outdoor unit including a compressor, an outdoor heat exchanger, and an outdoor expansion valve, and an indoor heat exchanger are provided. A high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe for connecting the outdoor unit, the plurality of indoor units, and the plurality of diversion units to each other. I have. A refrigerant regulator connected in parallel to the liquid pipe and the low-pressure gas pipe is provided. Furthermore, an inflow solenoid valve is provided in a pipe connecting the liquid pipe and the refrigerant regulator, and an outflow electromagnetic valve is provided in a pipe connecting the low-pressure gas pipe and the refrigerant regulator. When air-conditioning-free operation is performed with this air conditioner, when the pressure difference before and after the indoor expansion valve provided in the indoor unit that is performing cooling operation or heating operation is smaller than a predetermined value, Open or close the inflow solenoid valve to allow the refrigerant to flow from the liquid pipe to the refrigerant regulator, or open the outflow electromagnetic valve to cause the refrigerant to flow out from the refrigerant regulator to the low-pressure gas pipe, thereby increasing or decreasing the amount of refrigerant flowing through the liquid pipe. The pressure of the refrigerant flowing through the liquid pipe is adjusted.

上記のように構成した本発明の空気調和装置によれば、冷媒調整器によって液管を流れる冷媒量を増減させることで液管を流れる冷媒の圧力を調整する。これにより、室外熱交換器を蒸発器として使用している場合でも、高い運転能力が要求された室内機に備えられた室内膨張弁の液管側と高圧ガス管側あるいは低圧ガス管側との圧力差を調整することができるため、各室内機間での冷媒循環量の低下を防ぎ、各室内機間で冷媒循環量の低下に起因する運転能力の不足を抑制することができる。   According to the air conditioner of the present invention configured as described above, the pressure of the refrigerant flowing through the liquid pipe is adjusted by increasing or decreasing the amount of refrigerant flowing through the liquid pipe by the refrigerant regulator. As a result, even when an outdoor heat exchanger is used as an evaporator, the liquid pipe side and the high-pressure gas pipe side or the low-pressure gas pipe side of the indoor expansion valve provided in the indoor unit for which high operating capacity is required. Since the pressure difference can be adjusted, it is possible to prevent a decrease in the refrigerant circulation amount between the indoor units, and to suppress a deficiency in operation capability due to a decrease in the refrigerant circulation amount between the indoor units.

本発明の実施例である空気調和装置における、全ての室内機が冷房運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant in the case where all the indoor units perform air_conditionaing | cooling operation in the air conditioning apparatus which is an Example of this invention. 本発明の実施例である空気調和装置における、全ての室内機が暖房運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of a refrigerant in case all the indoor units perform heating operation in the air harmony device which is an example of the present invention. 本発明の実施例である空気調和装置における、冷房主体運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant in the case of performing the cooling main operation in the air harmony device which is an example of the present invention. 本発明の実施例である空気調和装置における、暖房主体運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant in the case of performing heating main operation in the air harmony device which is an example of the present invention. 本発明の実施例である空気調和装置における、室外熱交換器が凝縮器である場合の、液管冷媒圧力の上昇/下降を説明する冷媒回路図である。It is a refrigerant circuit figure explaining the raise / lower of a liquid pipe refrigerant pressure in case the outdoor heat exchanger is a condenser in the air conditioning apparatus which is an Example of this invention. 本発明の実施例である空気調和装置における、室外熱交換器が蒸発器である場合の、液管冷媒圧力を上昇/下降を説明する冷媒回路図である。It is a refrigerant circuit figure explaining rise / fall of a liquid pipe refrigerant pressure in case an outdoor heat exchanger is an evaporator in an air harmony device which is an example of the present invention. 本発明の実施例である空気調和装置における、液管冷媒圧力の制御を説明するフローチャートである。It is a flowchart explaining control of a liquid pipe refrigerant pressure in the air conditioning apparatus which is an Example of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施例としては、1台の室外機に5台の室内機が並列に接続され冷暖房フリーの運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner will be described as an example in which five indoor units are connected in parallel to one outdoor unit and can be operated free of air conditioning. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1乃至図4は、本実施例における空気調和装置1の各運転状態での冷媒の流れを説明する冷媒回路図であり、図1は全ての室内機が冷房運転を行っている場合、図2は全ての室内機が暖房運転を行っている場合、図3は冷房主体運転を行っている場合、図4は暖房主体運転を行っている場合、をそれぞれ示している。尚、以下の説明では、運転状態に関わらない、冷媒回路に共通の構成を説明する場合は、図1を代表図として説明することとする。   FIG. 1 to FIG. 4 are refrigerant circuit diagrams for explaining the refrigerant flow in each operation state of the air-conditioning apparatus 1 in this embodiment. FIG. 1 is a diagram when all the indoor units are performing a cooling operation. 2 shows a case where all the indoor units are performing the heating operation, FIG. 3 shows a case where the cooling main operation is performed, and FIG. 4 shows a case where the heating main operation is performed. In the following description, when a configuration common to the refrigerant circuit is described regardless of the operation state, FIG. 1 will be described as a representative diagram.

図1に示すように、本実施例における空気調和装置1は、1台の室外機2と、5台の室内機8a〜8eと、5台の分流ユニット6a〜6eと、高圧ガス管30と、低圧ガス管31と、液管32と、制御部100とを備えている。室外機2と室内機8a〜8eと分流ユニット6a〜6eとが、高圧ガス管30と低圧ガス管31と液管32とで相互に接続されることによって、冷媒回路が構成される。   As shown in FIG. 1, the air conditioner 1 in the present embodiment includes one outdoor unit 2, five indoor units 8 a to 8 e, five branch units 6 a to 6 e, and a high-pressure gas pipe 30. The low-pressure gas pipe 31, the liquid pipe 32, and the control unit 100 are provided. The outdoor unit 2, the indoor units 8a to 8e, and the diversion units 6a to 6e are connected to each other by the high pressure gas pipe 30, the low pressure gas pipe 31, and the liquid pipe 32, thereby forming a refrigerant circuit.

室外機2は、主として、圧縮機21と、四方弁22と、室外熱交換器23と、アキュムレータ24と、オイルセパレータ25と、室外ファン26と、冷媒調整器27と、冷媒流入管33と、冷媒流出管34と、室外膨張弁40と、流入電磁弁41と、流出電磁弁42と、圧力調整器46とを備えている。   The outdoor unit 2 mainly includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an accumulator 24, an oil separator 25, an outdoor fan 26, a refrigerant regulator 27, a refrigerant inflow pipe 33, A refrigerant outflow pipe 34, an outdoor expansion valve 40, an inflow electromagnetic valve 41, an outflow electromagnetic valve 42, and a pressure regulator 46 are provided.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。図1に示すように、圧縮機21の吐出側は、オイルセパレータ25を介して閉鎖弁43に接続されており、オイルセパレータ25と閉鎖弁43との間から分岐した配管が四方弁22に接続されている。また、圧縮機21の吸入側は、アキュムレータ24を介して閉鎖弁45に接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotational speed is controlled by an inverter. As shown in FIG. 1, the discharge side of the compressor 21 is connected to a closing valve 43 via an oil separator 25, and a pipe branched from between the oil separator 25 and the closing valve 43 is connected to the four-way valve 22. Has been. The suction side of the compressor 21 is connected to the closing valve 45 via the accumulator 24.

四方弁22は、冷媒の流れる方向を切り替えるための弁であり、図1に示すように、a〜dの4つのポートを備えている。この四方弁22では、ポートaが上述したように圧縮機21の吐出側と、ポートbが室外熱交換器23と、ポートcがアキュムレータ24と閉鎖弁45とを接続する配管と、それぞれ接続されている。尚、ポートdは封止されている。また、室外熱交換器23の他方は室外膨張弁40を介して閉鎖弁44に接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a to d as shown in FIG. In this four-way valve 22, the port a is connected to the discharge side of the compressor 21 as described above, the port b is connected to the outdoor heat exchanger 23, and the port c is connected to piping connecting the accumulator 24 and the closing valve 45. ing. The port d is sealed. The other of the outdoor heat exchangers 23 is connected to the closing valve 44 via the outdoor expansion valve 40.

空気調和装置1において、図1および図3に示すように、室内機8a〜8eが全て冷房運転を行う場合や冷房主体運転(冷房運転を行っている室内機で要求される負荷が、暖房運転を行っている室内機で要求される負荷よりも大きい状態での空気調和装置1の運転)を行う場合は、四方弁22のポートaとポートbとを連通すると同時にポートcとポートdとを連通するよう切り替えて、室外熱交換器23を凝縮器として機能させる。   In the air conditioner 1, as shown in FIGS. 1 and 3, when the indoor units 8a to 8e are all performing the cooling operation, the cooling main operation (the load required for the indoor unit performing the cooling operation is the heating operation). When the air conditioner 1 is operated in a state that is larger than the load required by the indoor unit that performs the operation, the port a and the port b of the four-way valve 22 are simultaneously communicated with each other. It switches so that it may connect, and the outdoor heat exchanger 23 is functioned as a condenser.

また、図2および図4に示すように、室内機8a〜8eが全て暖房運転を行う場合や暖房主体運転(暖房運転を行っている室内機で要求される負荷が、冷房運転を行っている室内機で要求される負荷よりも大きい状態での空気調和装置1の運転)を行う場合は、四方弁22のポートaとポートdとを連通すると同時にポートbとポートcとを連通するよう切り替えて、室外熱交換器23を蒸発器として機能させる。
尚、図1〜図4では、四方弁22の連通しているポート間は実線で示し、連通していないポート間は破線で示している。
Further, as shown in FIGS. 2 and 4, when all the indoor units 8 a to 8 e perform the heating operation, the heating main operation (the load required by the indoor unit performing the heating operation is performing the cooling operation). When the air conditioner 1 is operated in a state larger than the load required by the indoor unit), the port a and the port d of the four-way valve 22 are communicated and at the same time the port b and the port c are switched. Thus, the outdoor heat exchanger 23 functions as an evaporator.
1 to 4, the ports that communicate with the four-way valve 22 are indicated by solid lines, and the ports that do not communicate are indicated by broken lines.

アキュムレータ24は、上述したように、圧縮機21の吸入側と閉鎖弁45との間に介設されている。アキュムレータ24は、流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機21に吸入させる。   As described above, the accumulator 24 is interposed between the suction side of the compressor 21 and the closing valve 45. The accumulator 24 separates the refrigerant that has flowed into gas refrigerant and liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

オイルセパレータ25は、圧縮機21の吐出側に接続されており、圧縮機21から吐出されたガス冷媒に混入している冷凍機油をガス冷媒から分離して圧縮機21へ戻す。室外ファン26は、図示しないファンモータによって回転することで、室外機2に外気を取り込み、室外熱交換器23において冷媒と外気とを熱交換させた後室外機2の外へ熱交換後の外気を排出する。   The oil separator 25 is connected to the discharge side of the compressor 21, separates the refrigeration oil mixed in the gas refrigerant discharged from the compressor 21 from the gas refrigerant, and returns it to the compressor 21. The outdoor fan 26 is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2, and after the heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 23, the outdoor air after heat exchange to the outside of the outdoor unit 2. Is discharged.

室外膨張弁40は、室外熱交換器23と閉鎖弁44との間に介設されている。室外膨張弁40は、室外熱交換器23が凝縮器として機能する場合は、その開度が全開状態とされるか、高圧センサ50で検出した圧縮機21の吐出圧力と中間圧センサ57で検出した液圧との差に応じて調整される。また、室外熱交換器23が蒸発器として機能する場合は、その開度が室外熱交換器23における冷媒の過熱度(低圧センサ51で検出した吸入圧力から算出した低圧飽和温度と、室外熱交換器23の四方弁22側に設けられた図示しない熱交出口温度センサで検出した冷媒出口温度との差)に応じて調整される。   The outdoor expansion valve 40 is interposed between the outdoor heat exchanger 23 and the closing valve 44. When the outdoor heat exchanger 23 functions as a condenser, the outdoor expansion valve 40 is fully opened or detected by the discharge pressure of the compressor 21 detected by the high pressure sensor 50 and the intermediate pressure sensor 57. It is adjusted according to the difference from the hydraulic pressure. Further, when the outdoor heat exchanger 23 functions as an evaporator, the degree of opening of the outdoor heat exchanger 23 is the degree of superheat of the refrigerant in the outdoor heat exchanger 23 (the low-pressure saturation temperature calculated from the suction pressure detected by the low-pressure sensor 51 and the outdoor heat exchange). And the refrigerant outlet temperature detected by a heat exchange outlet temperature sensor (not shown) provided on the four-way valve 22 side of the vessel 23).

冷媒調整器27は液冷媒を貯留することができる容器であり、筐体の上部と下部とにそれぞれ図示しない開口部を有している。上部開口部は、流入電磁弁41を備えた冷媒流入管33の一端と接続されており、冷媒流入管33の他端は、室外膨張弁40と閉鎖弁44とを接続する配管に接続されている。また、下部開口部は、流出電磁弁42とキャピラリーチューブ等の圧力調整器46とを備えた冷媒流出管34の一端と接続されており、冷媒流出管34の他端は、アキュムレータ24と閉鎖弁45とを接続する配管に接続されている。   The refrigerant regulator 27 is a container that can store liquid refrigerant, and has openings not shown in the upper and lower parts of the casing. The upper opening is connected to one end of a refrigerant inflow pipe 33 having an inflow electromagnetic valve 41, and the other end of the refrigerant inflow pipe 33 is connected to a pipe connecting the outdoor expansion valve 40 and the closing valve 44. Yes. The lower opening is connected to one end of a refrigerant outflow pipe 34 having an outflow electromagnetic valve 42 and a pressure regulator 46 such as a capillary tube. The other end of the refrigerant outflow pipe 34 is connected to the accumulator 24 and a closing valve. 45 is connected to a pipe connecting the

流入電磁弁41を開閉することによって、冷媒流入管33を連通あるいは遮断する。冷媒調整器27に冷媒を流入させたい場合は、流入電磁弁41を開いて冷媒流入管33を連通させることで、液管32を流れる液冷媒を冷媒調整器27に流入させることができる。また、流出電磁弁42を開閉することによって、冷媒流出管34を連通あるいは遮断する。冷媒調整器27から冷媒を流出させたい場合は、流出電磁弁42を開いて冷媒流出管34を連通させることで、液冷媒を冷媒調整器27から低圧ガス管31へ流出させることができる。尚、流出電磁弁42を通過した液冷媒は、圧力調整器46で減圧されて気化し低圧のガス冷媒となって低圧ガス管31へ流出する。   By opening and closing the inflow electromagnetic valve 41, the refrigerant inflow pipe 33 is communicated or blocked. When it is desired to cause the refrigerant to flow into the refrigerant regulator 27, the liquid refrigerant flowing through the liquid pipe 32 can be caused to flow into the refrigerant regulator 27 by opening the inflow electromagnetic valve 41 and connecting the refrigerant inflow pipe 33. Further, the refrigerant outflow pipe 34 is communicated or blocked by opening and closing the outflow electromagnetic valve 42. When it is desired to cause the refrigerant to flow out from the refrigerant regulator 27, the liquid refrigerant can flow out from the refrigerant regulator 27 to the low-pressure gas pipe 31 by opening the outflow electromagnetic valve 42 and connecting the refrigerant outflow pipe 34. The liquid refrigerant that has passed through the outflow electromagnetic valve 42 is depressurized by the pressure regulator 46 and vaporized to become a low-pressure gas refrigerant and flows out to the low-pressure gas pipe 31.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1に示すように、室外機2は、圧縮機21の吐出側と閉鎖弁43とを接続する配管に、この配管内を流れる高圧のガス冷媒の圧力を検出する高圧冷媒圧力検出手段である高圧センサ50と、圧縮機21の吐出側付近の配管に、圧縮機21から吐出される高圧のガス冷媒の温度を検出する吐出温度センサ52とを備えている。また、圧縮機21の吸入側と閉鎖弁45とを接続する配管に、この配管内を流れる低圧のガス冷媒の圧力を検出する低圧冷媒圧力検出手段である低圧センサ51と、圧縮機21の吸入側付近の配管に、圧縮機21に吸入される低圧ガス冷媒の温度を検出する吸入温度センサ53とを備えている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1, the outdoor unit 2 is a high-pressure refrigerant pressure detection unit that detects the pressure of a high-pressure gas refrigerant flowing through the pipe connected to the discharge side of the compressor 21 and the closing valve 43. The high-pressure sensor 50 and a discharge temperature sensor 52 that detects the temperature of the high-pressure gas refrigerant discharged from the compressor 21 are provided in a pipe near the discharge side of the compressor 21. In addition, a low-pressure sensor 51 serving as a low-pressure refrigerant pressure detecting means for detecting the pressure of a low-pressure gas refrigerant flowing in the pipe is connected to a pipe connecting the suction side of the compressor 21 and the closing valve 45, and a suction of the compressor 21. A pipe near the side is provided with a suction temperature sensor 53 that detects the temperature of the low-pressure gas refrigerant sucked into the compressor 21.

また、室外熱交換器23には、室外熱交換器23内を流れる冷媒の温度を検出する熱交温度センサ55が備えられている。また、室外膨張弁40と閉鎖弁44とを接続する配管には、液管32を流れる冷媒の圧力を検出する液管冷媒圧力検出手段である中間圧センサ57と液管32を流れる冷媒の温度を検出する冷媒温度センサ54とが備えられている。さらには、室外機2の図示しない外気の吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ56が備えられている。   Further, the outdoor heat exchanger 23 is provided with a heat exchange temperature sensor 55 that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23. The pipe connecting the outdoor expansion valve 40 and the closing valve 44 includes an intermediate pressure sensor 57 that is a liquid pipe refrigerant pressure detecting means for detecting the pressure of the refrigerant flowing through the liquid pipe 32 and the temperature of the refrigerant flowing through the liquid pipe 32. And a refrigerant temperature sensor 54 for detecting. Further, an outdoor air temperature sensor 56 for detecting the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the outside air inlet (not shown) of the outdoor unit 2.

5台の室内機8a〜8eは、主に、室内熱交換器81a〜81eと、室内膨張弁82a〜82eと、室内ファン83a〜83eとを備えている。尚、室内機8a〜8eの構成は全て同じであるため、以下の説明では、室内機8aの構成についてのみ説明を行い、その他の室内機8b〜8eについては説明を省略する。   The five indoor units 8a to 8e mainly include indoor heat exchangers 81a to 81e, indoor expansion valves 82a to 82e, and indoor fans 83a to 83e. In addition, since the structure of all the indoor units 8a-8e is the same, in the following description, only the structure of the indoor unit 8a is demonstrated, and description is abbreviate | omitted about the other indoor units 8b-8e.

室内熱交換器81aは、一方が室内膨張弁82aを介して液管32に、他方が後述する分流ユニット6aに、それぞれ冷媒配管で接続されている。室内熱交換器81aは、室内機8aが冷房運転を行う場合は蒸発器として機能し、室内機8aが暖房運転を行う場合は凝縮器として機能する。   One of the indoor heat exchangers 81a is connected to the liquid pipe 32 via the indoor expansion valve 82a, and the other is connected to a branching unit 6a described later by refrigerant piping. The indoor heat exchanger 81a functions as an evaporator when the indoor unit 8a performs a cooling operation, and functions as a condenser when the indoor unit 8a performs a heating operation.

室内膨張弁82aは、上述したように室内熱交換器81aの液管32側に介設されている。室内膨張弁82aは、室内熱交換器81aが蒸発器として機能する場合は、その開度が要求される冷房能力に応じて調整され、室内熱交換器81aが凝縮器として機能する場合は、その開度が要求される暖房能力に応じて調整される。
室内ファン83aは、図示しないファンモータによって回転することで、室内機8a内に室内空気を取り込み、室内熱交換器81aにおいて冷媒と室内空気とを熱交換させた後、室内へ供給する。
As described above, the indoor expansion valve 82a is interposed on the liquid pipe 32 side of the indoor heat exchanger 81a. When the indoor heat exchanger 81a functions as an evaporator, the indoor expansion valve 82a is adjusted according to the required cooling capacity, and when the indoor heat exchanger 81a functions as a condenser, The opening is adjusted according to the required heating capacity.
The indoor fan 83a is rotated by a fan motor (not shown), thereby taking in indoor air into the indoor unit 8a, exchanging heat between the refrigerant and the indoor air in the indoor heat exchanger 81a, and supplying the indoor air to the room.

以上説明した構成の他に、室内機8aには各種のセンサが設けられている。図1に示すように、室内熱交換器81aの室内膨張弁82a側の配管には冷媒の温度を検出する液側温度センサ84aが、また、室内熱交換器81aの分流ユニット6a側の配管には冷媒の温度を検出するガス側温度センサ85aが、それぞれ備えられている。また、室内機8aの図示しない室内空気の吸込口付近には、室内機8a内に流入する室内空気の温度、すなわち室内温度を検出する室温センサ86aが備えられている。   In addition to the configuration described above, the indoor unit 8a is provided with various sensors. As shown in FIG. 1, a liquid side temperature sensor 84a for detecting the temperature of the refrigerant is provided in a pipe on the indoor expansion valve 82a side of the indoor heat exchanger 81a, and a pipe on the diversion unit 6a side of the indoor heat exchanger 81a. Are respectively provided with gas side temperature sensors 85a for detecting the temperature of the refrigerant. Further, a room temperature sensor 86a for detecting the temperature of the indoor air flowing into the indoor unit 8a, that is, the room temperature is provided in the vicinity of the indoor air suction port (not shown) of the indoor unit 8a.

空気調和装置1には、上述した5台の室内機8a〜8eに対応する5台の分流ユニット6a〜6eが備えられている。分流ユニット6a〜6eは、主として、第1電磁弁61a〜61eと、第2電磁弁62a〜62eと、第1分流管63a〜63eと、第2分流管64a〜64eとを備えている。尚、分流ユニット6a〜6eの構成は全て同じであるため、以下の説明では、分流ユニット6aの構成についてのみ説明を行い、その他の分流ユニット6b〜6eについては説明を省略する。   The air conditioner 1 includes five branch units 6a to 6e corresponding to the five indoor units 8a to 8e described above. The diversion units 6a to 6e mainly include first electromagnetic valves 61a to 61e, second electromagnetic valves 62a to 62e, first diversion pipes 63a to 63e, and second diversion pipes 64a to 64e. In addition, since all the structures of the flow dividing units 6a-6e are the same, in the following description, only the structure of the flow dividing unit 6a is demonstrated and description is abbreviate | omitted about the other flow dividing units 6b-6e.

図1に示すように、第1分流管63aの一端は高圧ガス管30に接続されており、第2分流管64aの一端は低圧ガス管31に接続されている。また、第1分流管63aの他端および第2分流管64aの他端と液管32とが相互に室内熱交換器81aに接続されている。第1分流管63aには第1電磁弁61aが、また、第2分流管64aには第2電磁弁62aが、それぞれ設けられており、第1電磁弁61aおよび第2電磁弁62aをそれぞれ開閉することによって、分流ユニット6aに対応する室内機8aの室内熱交換器81aが圧縮機21の吐出側(高圧ガス管30側)または吸入側(低圧ガス管31側)に接続されるよう、冷媒回路における冷媒の流路を切り替えることができる。   As shown in FIG. 1, one end of the first branch pipe 63 a is connected to the high pressure gas pipe 30, and one end of the second branch pipe 64 a is connected to the low pressure gas pipe 31. The other end of the first branch pipe 63a, the other end of the second branch pipe 64a, and the liquid pipe 32 are connected to the indoor heat exchanger 81a. The first solenoid valve 61a is provided in the first branch pipe 63a, and the second solenoid valve 62a is provided in the second branch pipe 64a. The first solenoid valve 61a and the second solenoid valve 62a are opened and closed, respectively. As a result, the indoor heat exchanger 81a of the indoor unit 8a corresponding to the flow dividing unit 6a is connected to the discharge side (high pressure gas pipe 30 side) or the suction side (low pressure gas pipe 31 side) of the compressor 21. The flow path of the refrigerant in the circuit can be switched.

以上説明した室外機2、室内機8a〜8eおよび分流ユニット6a〜6eと、高圧ガス管30、低圧ガス管31および液管32との接続状態は以下の通りである。室外機2の閉鎖弁43には高圧ガス管30の一端が接続され、高圧ガス管30の他端は分岐して分流ユニット6a〜6eの第1分流管63a〜63eに接続される。室外機2の閉鎖弁45には低圧ガス管31の一端が接続され、低圧ガス管31の他端は分岐して分流ユニット6a〜6eの第2分流管64a〜64eに接続される。   The connection state of the outdoor unit 2, the indoor units 8a to 8e and the diversion units 6a to 6e described above with the high pressure gas pipe 30, the low pressure gas pipe 31, and the liquid pipe 32 is as follows. One end of the high-pressure gas pipe 30 is connected to the closing valve 43 of the outdoor unit 2, and the other end of the high-pressure gas pipe 30 is branched and connected to the first branch pipes 63a to 63e of the branch units 6a to 6e. One end of the low pressure gas pipe 31 is connected to the closing valve 45 of the outdoor unit 2, and the other end of the low pressure gas pipe 31 is branched and connected to the second branch pipes 64a to 64e of the branch units 6a to 6e.

室外機2の閉鎖弁44には液管32の一端が接続され、液管32の他端は分岐して室内機8a〜8eの室内膨張弁82a〜82e側に接続される。また、対応する室内機8a〜8eの室内熱交換器81a〜81e側と分流ユニット6a〜6eとが冷媒配管で各々接続される。
以上説明した接続によって、空気調和装置1の冷媒回路が構成され、冷媒回路に冷媒を流すことによって冷凍サイクルが成立する。
One end of the liquid pipe 32 is connected to the closing valve 44 of the outdoor unit 2, and the other end of the liquid pipe 32 is branched and connected to the indoor expansion valves 82a to 82e side of the indoor units 8a to 8e. In addition, the indoor heat exchangers 81a to 81e side of the corresponding indoor units 8a to 8e and the diversion units 6a to 6e are respectively connected by refrigerant pipes.
With the connection described above, the refrigerant circuit of the air conditioner 1 is configured, and the refrigeration cycle is established by flowing the refrigerant through the refrigerant circuit.

また、空気調和装置1の室外機2には、制御部100が備えられている。制御部100は、主として、CPU110と、記憶部120と、通信部130とから構成される。CPU100は、室外機2の各センサからの検出信号を取り込むとともに、各室内機8a〜8eから出力される制御信号を通信部130を介して取り込む。CPU110は、取り込んだ検出信号や制御信号に基づいて圧縮機21、四方弁22、室外膨張弁40、流入電磁弁41および流出電磁弁42の制御を行う。   Further, the outdoor unit 2 of the air conditioner 1 is provided with a control unit 100. The control unit 100 mainly includes a CPU 110, a storage unit 120, and a communication unit 130. The CPU 100 captures detection signals from the sensors of the outdoor unit 2 and captures control signals output from the indoor units 8 a to 8 e via the communication unit 130. The CPU 110 controls the compressor 21, the four-way valve 22, the outdoor expansion valve 40, the inflow electromagnetic valve 41, and the outflow electromagnetic valve 42 based on the detected detection signal and control signal.

記憶部120は、EEPROMやRAMで構成されており、室外機2の制御プログラムや各センサからの検出信号に対応した検出値を記憶する。通信部130は、室内機8a〜8eとの通信を行うインターフェイスである。   The storage unit 120 includes an EEPROM and a RAM, and stores detection values corresponding to control programs for the outdoor unit 2 and detection signals from each sensor. The communication unit 130 is an interface that performs communication with the indoor units 8a to 8e.

尚、図示は省略するが、各室内機8a〜8eにも制御部が備えられている。室内機8a〜8eの制御部は、室内機8a〜8eの各センサからの検出信号を入力するとともに、図示しない空気調和装置1のリモートコントローラからの制御信号を入力し、これらに基づいて室内機8a〜8eの制御を行う。また、室内機8a〜8eの運転モード(冷房運転/暖房運転)に応じて、対応する分流ユニット6a〜6eの第1電磁弁61aおよび第2電磁弁62aをそれぞれ開閉する。
以上説明した制御部100と室内機8a〜8eに備えられた各制御部とで、空気調和機装置1の制御手段が構成されている。
In addition, although illustration is abbreviate | omitted, each indoor unit 8a-8e is also equipped with the control part. The control units of the indoor units 8a to 8e receive detection signals from the sensors of the indoor units 8a to 8e and also input control signals from a remote controller of the air conditioner 1 (not shown). Controls 8a to 8e are performed. Moreover, according to the operation mode (cooling operation / heating operation) of the indoor units 8a to 8e, the first electromagnetic valve 61a and the second electromagnetic valve 62a of the corresponding flow dividing units 6a to 6e are opened and closed, respectively.
The control unit 100 described above and the control units provided in the indoor units 8a to 8e constitute a control unit of the air conditioner apparatus 1.

次に、本実施例における空気調和装置1の運転動作について説明する。空気調和装置1では、室外機2に備えられた四方弁22の設定(ポートa〜dの接続状態)や分流ユニット6a〜6eに備えられた第1電磁弁61a〜61eおよび第2電磁弁62a〜62eの開閉状態に応じて、様々な運転動作が可能である。以下の説明では、これら運転動作の中から代表的な運転動作を例に挙げて説明する。   Next, the operation | movement operation | movement of the air conditioning apparatus 1 in a present Example is demonstrated. In the air conditioner 1, the setting of the four-way valve 22 provided in the outdoor unit 2 (connection state of the ports a to d) and the first electromagnetic valves 61a to 61e and the second electromagnetic valve 62a provided to the flow dividing units 6a to 6e. Various driving operations are possible depending on the open / close state of .about.62e. In the following description, a typical driving operation is taken as an example from these driving operations.

尚、以下の説明では、室外熱交換器23や室内熱交換器81a〜81eが凝縮器となる場合はハッチングを付し、蒸発器となる場合は白抜きで図示する。また、分流ユニット6a〜6eにおける第1電磁弁61a〜61eおよび第2電磁弁62a〜62eの開閉状態については、閉じている場合を黒塗りで、開いている場合を白抜きで図示する。また、流入電磁弁41および流出電磁弁42はいずれも閉じているものとして説明する。   In the following description, the outdoor heat exchanger 23 and the indoor heat exchangers 81a to 81e are hatched when they are condensers, and are illustrated with white when they are evaporators. The open / closed states of the first electromagnetic valves 61a to 61e and the second electromagnetic valves 62a to 62e in the flow dividing units 6a to 6e are illustrated in black when they are closed, and are illustrated in white when they are open. In addition, description will be made assuming that both the inflow electromagnetic valve 41 and the outflow electromagnetic valve 42 are closed.

まずは、室内機8a〜8eが全て冷房運転を行う場合について、図1を用いて説明する。図1に示すように、この運転で制御部100は、四方弁22のポートaとポートbとを連通させるとともにポートcとポートdとを連通させる状態に設定する。また、各室内機8a〜8eの制御部は、対応する分流ユニット6a〜6eの第1電磁弁61a〜61eを閉じるとともに第2電磁弁62a〜62eを開く。これにより、室外熱交換器23が凝縮器となり、各室内機8a〜8eの室内熱交換器81a〜81eは全て蒸発器となる。   First, the case where all the indoor units 8a to 8e perform the cooling operation will be described with reference to FIG. As shown in FIG. 1, in this operation, the control unit 100 sets the port a and the port b of the four-way valve 22 to communicate with each other and the port c and the port d to communicate with each other. Moreover, the control part of each indoor unit 8a-8e closes the 1st electromagnetic valve 61a-61e of corresponding branch unit 6a-6e, and opens 2nd electromagnetic valve 62a-62e. Thereby, the outdoor heat exchanger 23 becomes a condenser, and all the indoor heat exchangers 81a to 81e of the indoor units 8a to 8e become evaporators.

圧縮機21から吐出された高圧の冷媒は、四方弁22を通過した後室外熱交換器23に流入する。室外熱交換器23に流入した高圧の冷媒は、外気と熱交換を行って凝縮する。室外熱交換器23で凝縮した冷媒は、制御部100により全開状態とされた室外膨張弁40を通過し、液管32を流れて各室内機8a〜8eへ分かれて流入する。   The high-pressure refrigerant discharged from the compressor 21 flows into the rear outdoor heat exchanger 23 after passing through the four-way valve 22. The high-pressure refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air. The refrigerant condensed in the outdoor heat exchanger 23 passes through the outdoor expansion valve 40 that is fully opened by the control unit 100, flows through the liquid pipe 32, and flows into each of the indoor units 8a to 8e.

室内機8a〜8eへ流入した中間圧の冷媒は、室内膨張弁82a〜82eで減圧されて低圧の冷媒となり室内熱交換器81a〜81eに流入する。室内熱交換器81a〜81eに流入した低圧の冷媒は、室内空気と熱交換を行って蒸発し、これにより室内機8a〜8eが設置された室内の冷房が行われる。ここで、室内膨張弁82a〜82eは、室内機8a〜8eの制御部が、液側温度センサ84a〜84eで検出した冷媒温度およびガス側温度センサ85a〜85eで検出した冷媒温度から、蒸発器である室内熱交換器81a〜81e出口での冷媒過熱度を求め、これに応じて開度を決定している。   The intermediate-pressure refrigerant that has flowed into the indoor units 8a to 8e is decompressed by the indoor expansion valves 82a to 82e, becomes low-pressure refrigerant, and flows into the indoor heat exchangers 81a to 81e. The low-pressure refrigerant that has flowed into the indoor heat exchangers 81a to 81e exchanges heat with room air and evaporates, thereby cooling the room where the indoor units 8a to 8e are installed. Here, the indoor expansion valves 82a to 82e are the evaporators based on the refrigerant temperature detected by the liquid side temperature sensors 84a to 84e and the refrigerant temperature detected by the gas side temperature sensors 85a to 85e by the control unit of the indoor units 8a to 8e. The degree of refrigerant superheat at the outlets of the indoor heat exchangers 81a to 81e is obtained, and the opening degree is determined accordingly.

具体的には、室内機8a〜8eで要求された冷房能力の大きさに対して冷媒流量が少なく、これに伴って室内熱交換器81a〜81e出口における冷媒の過熱度が大きくなるような場合では、室内機8a〜8eの制御部は、室内膨張弁82a〜82eの開度を大きくして冷媒の流量を増加させる。また、室内機8a〜8eで要求された冷房能力の大きさに対して冷媒流量が多く、これに伴って室内熱交換器81a〜81e出口における冷媒の過熱度が小さくなるような場合では、室内機8a〜8eの制御部は、室内膨張弁82a〜82eの開度を小さくして冷媒の流量を減少させる。   Specifically, the refrigerant flow rate is small with respect to the size of the cooling capacity required by the indoor units 8a to 8e, and the superheat degree of the refrigerant at the outlets of the indoor heat exchangers 81a to 81e increases accordingly. Then, the control part of indoor unit 8a-8e enlarges the opening degree of indoor expansion valve 82a-82e, and increases the flow volume of a refrigerant | coolant. In addition, in the case where the refrigerant flow rate is large with respect to the size of the cooling capacity required by the indoor units 8a to 8e, and accordingly the degree of superheat of the refrigerant at the outlets of the indoor heat exchangers 81a to 81e is small, The control units of the machines 8a to 8e reduce the flow rates of the refrigerant by reducing the openings of the indoor expansion valves 82a to 82e.

室内熱交換器81a〜81eから流出した低圧の冷媒は分流ユニット6a〜6eに流入し、開となっている第2電磁弁62a〜62eが備えられた第2分流管64a〜64eを流れて低圧ガス管31に流入する。そして、各分流ユニット6a〜6eから低圧ガス管31に流入し低圧ガス管31内で合流した低圧の冷媒は室外機2に流入し、アキュムレータ24を通過して圧縮機21に吸入されて再び圧縮される。   The low-pressure refrigerant that has flowed out of the indoor heat exchangers 81a to 81e flows into the diversion units 6a to 6e, and flows through the second diversion pipes 64a to 64e provided with the open second electromagnetic valves 62a to 62e to low pressure. It flows into the gas pipe 31. Then, the low-pressure refrigerant that flows into the low-pressure gas pipe 31 from each of the branch units 6a to 6e and merges in the low-pressure gas pipe 31 flows into the outdoor unit 2, passes through the accumulator 24, is sucked into the compressor 21, and is compressed again. Is done.

次に、室内機8a〜8eが全て暖房運転を行う場合について、図2を用いて説明する。図2に示すように、この運転で制御部100は、四方弁22のポートaとポートdとを連通させるとともにポートbとポートcとを連通させる状態に設定する。また、各室内機8a〜8eの制御部は、対応する分流ユニット6a〜6eの第1電磁弁61a〜61eを開くとともに第2電磁弁62a〜62eを閉じる。これにより、室外熱交換器23が蒸発器となり、各室内機8a〜8eの室内熱交換器81a〜81eは全て凝縮器となる。   Next, the case where all the indoor units 8a to 8e perform the heating operation will be described with reference to FIG. As shown in FIG. 2, in this operation, the control unit 100 sets the port a and the port d of the four-way valve 22 to communicate with each other and the port b and the port c to communicate with each other. The control units of the indoor units 8a to 8e open the first electromagnetic valves 61a to 61e of the corresponding flow dividing units 6a to 6e and close the second electromagnetic valves 62a to 62e. Thereby, the outdoor heat exchanger 23 becomes an evaporator, and all the indoor heat exchangers 81a to 81e of the indoor units 8a to 8e become condensers.

圧縮機21から吐出された高圧の冷媒は、高圧ガス管30を流れて分流ユニット6a〜6eに分かれて流入する。分流ユニット6a〜6eに流入した高圧の冷媒は、開となっている第1電磁弁61a〜61eが備えられた第1分流管63a〜63eを流れて分流ユニット6a〜6eから流出し、対応する室内機8a〜8eに流入する。   The high-pressure refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 30 and flows into the diversion units 6a to 6e. The high-pressure refrigerant that has flowed into the diversion units 6a to 6e flows through the first diversion pipes 63a to 63e provided with the open first electromagnetic valves 61a to 61e, and flows out from the diversion units 6a to 6e. It flows into the indoor units 8a to 8e.

室内機8a〜8eに流入した高圧の冷媒は、室内熱交換器81a〜81eに流入して室内空気と熱交換を行って凝縮し、これにより室内機8a〜8eが設置された室内の暖房が行われる。室内熱交換器81a〜81eから流出した高圧の冷媒は、室内膨張弁82a〜82eを通過して減圧される。ここで、室内膨張弁82a〜82eは、室内機8a〜8eの制御部が、液側温度センサ84a〜84eで検出した冷媒温度および室外機2から得た高圧飽和温度(室外機2の高圧センサ50で検出した冷媒の圧力から算出したもので、室内熱交換器81a〜81e内の凝縮温度に相当する温度)から、凝縮器である室内熱交換器81a〜81e出口での冷媒過冷却度を求め、これに応じて開度が決定されている。   The high-pressure refrigerant that has flowed into the indoor units 8a to 8e flows into the indoor heat exchangers 81a to 81e, exchanges heat with the indoor air, and condenses, thereby heating the room in which the indoor units 8a to 8e are installed. Done. The high-pressure refrigerant that has flowed out of the indoor heat exchangers 81a to 81e passes through the indoor expansion valves 82a to 82e and is depressurized. Here, the indoor expansion valves 82a to 82e are the refrigerant temperature detected by the liquid side temperature sensors 84a to 84e and the high pressure saturation temperature obtained from the outdoor unit 2 (the high pressure sensor of the outdoor unit 2). Calculated from the pressure of the refrigerant detected at 50, the temperature corresponding to the condensation temperature in the indoor heat exchangers 81a to 81e), and the degree of refrigerant subcooling at the outlets of the indoor heat exchangers 81a to 81e that are condensers. The opening is determined according to this.

具体的には、室内機8a〜8eで要求された暖房能力の大きさに対して冷媒流量が少なく、室内熱交換器81a〜81e出口における冷媒の過冷却度が大きくなるような場合では、室内機8a〜8eの制御部は、室内膨張弁82a〜82eの開度を大きくして冷媒の流量を増加させる。また、室内機8a〜8eで要求された暖房能力の大きさに対して冷媒流量が多く、これに伴って室内熱交換器81a〜81e出口における冷媒の過冷却度が小さくなるような場合では、室内機8a〜8eの制御部は、室内膨張弁82a〜82eの開度を小さくして冷媒の流量を減少させる。   Specifically, in the case where the refrigerant flow rate is small with respect to the size of the heating capacity requested by the indoor units 8a to 8e and the degree of supercooling of the refrigerant at the outlets of the indoor heat exchangers 81a to 81e is large, The control units of the machines 8a to 8e increase the flow rates of the refrigerant by increasing the openings of the indoor expansion valves 82a to 82e. Further, in the case where the refrigerant flow rate is large with respect to the size of the heating capacity requested by the indoor units 8a to 8e, and accordingly, the degree of supercooling of the refrigerant at the outlets of the indoor heat exchangers 81a to 81e is small, The control units of the indoor units 8a to 8e reduce the flow rate of the refrigerant by reducing the opening degrees of the indoor expansion valves 82a to 82e.

室内機8a〜8eから流出した中間圧の冷媒は液管32に流入する。そして、閉鎖弁44を介して室外機2に流入した中間圧の冷媒は、室外熱交換器23出口での過熱度に応じた開度とされた室外膨張弁40を通過する際に減圧されて低圧の冷媒となり、室外熱交換器23に流入する。室外熱交換器23に流入した低圧の冷媒は、外気と熱交換を行って蒸発する。そして、室外熱交換器23から流出した低圧の冷媒は、四方弁22を通過した後アキュムレータ24を通過して圧縮機21に吸入されて再び圧縮される。   The intermediate-pressure refrigerant that has flowed out of the indoor units 8 a to 8 e flows into the liquid pipe 32. The intermediate-pressure refrigerant that has flowed into the outdoor unit 2 through the closing valve 44 is reduced in pressure when passing through the outdoor expansion valve 40 having an opening degree corresponding to the degree of superheat at the outlet of the outdoor heat exchanger 23. It becomes a low-pressure refrigerant and flows into the outdoor heat exchanger 23. The low-pressure refrigerant that has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air. Then, the low-pressure refrigerant that has flowed out of the outdoor heat exchanger 23 passes through the four-way valve 22, then passes through the accumulator 24, is sucked into the compressor 21, and is compressed again.

次に、冷暖房フリーの運転を行う場合について説明する。以下の冷暖房フリーの運転説明では、冷房主体運転を行う場合としては、図3に示すように、冷房運転を行っている3台の室内機8a〜8cで要求される負荷が、暖房運転を行っている2台の室内機8d,8eで要求される負荷よりも大きい場合を例に挙げて説明する。また、暖房主体運転を行う場合としては、図4に示すように、暖房運転を行っている3台の室内機8a〜8cで要求される負荷が、冷房運転を行っている2台の室内機8d,8eで要求される負荷よりも大きい場合を例に挙げて説明する。   Next, the case where the cooling / heating-free operation is performed will be described. In the following description of the air-conditioning-free operation, as shown in FIG. 3, the load required by the three indoor units 8 a to 8 c performing the air-cooling operation performs the air-warming operation. A case where the load is larger than that required by the two indoor units 8d and 8e will be described as an example. Further, in the case of performing the heating main operation, as shown in FIG. 4, the loads required by the three indoor units 8 a to 8 c performing the heating operation are the two indoor units performing the cooling operation. A case where the load is larger than the load required in 8d and 8e will be described as an example.

まずは、冷房主体運転を行う場合について、図3を用いて説明する。尚、図3において、矢印は冷媒の流れを示している。図3に示すように、この運転で制御部100は、四方弁22のポートaとポートbとを連通させるとともにポートcとポートdとを連通させる状態に設定する。これにより、室外熱交換器23は凝縮器となる。   First, the case where the cooling main operation is performed will be described with reference to FIG. In FIG. 3, the arrow indicates the flow of the refrigerant. As shown in FIG. 3, in this operation, the control unit 100 sets the port a and the port b of the four-way valve 22 to communicate with each other and the port c and the port d to communicate with each other. Thereby, the outdoor heat exchanger 23 becomes a condenser.

また、冷房運転を行う3台の室内機8a〜8cの制御部は、対応する3台の分流ユニット6a〜6cの第1電磁弁61a〜61cを閉じて第1分流管63a〜63cを遮断するとともに、第2電磁弁62a〜62cを開いて第2分流管64a〜64cを連通する。これにより、3台の室内機8a〜8cの室内熱交換器81a〜81cは蒸発器となる。   Further, the control units of the three indoor units 8a to 8c that perform the cooling operation close the first electromagnetic valves 61a to 61c of the corresponding three branch units 6a to 6c to shut off the first branch pipes 63a to 63c. At the same time, the second electromagnetic valves 62a to 62c are opened to connect the second branch pipes 64a to 64c. Thereby, the indoor heat exchangers 81a to 81c of the three indoor units 8a to 8c are evaporators.

一方、暖房運転を行う2台の室内機8d,8eの制御部は、対応する2台の分流ユニット6d、6eの第1電磁弁61d、61eを開いて第1分流管63d,63eを連通するとともに、第2電磁弁62d、62eを閉じて第2分流管64d,64eを遮断する。これにより、2台の室内機8d、8eの室内熱交換器81d、81eは凝縮器となる。   On the other hand, the control units of the two indoor units 8d and 8e that perform the heating operation open the first electromagnetic valves 61d and 61e of the corresponding two branch units 6d and 6e to communicate the first branch pipes 63d and 63e. At the same time, the second electromagnetic valves 62d and 62e are closed to shut off the second branch pipes 64d and 64e. Thereby, the indoor heat exchangers 81d and 81e of the two indoor units 8d and 8e become condensers.

圧縮機21から吐出された高圧の冷媒は、四方弁22側と高圧ガス管30側へ分流する。四方弁22を通過した高圧の冷媒は、室外熱交換器23に流入し外気と熱交換を行って凝縮する。室外熱交換器23で凝縮した冷媒は、制御部100により、取り込んだ圧縮機21の吐出圧力と液圧との差に応じた開度とされた室外膨張弁40を通過して中間圧の冷媒となり、液管32を流れて室内機8a〜8cへ分かれて流入する。   The high-pressure refrigerant discharged from the compressor 21 is divided into the four-way valve 22 side and the high-pressure gas pipe 30 side. The high-pressure refrigerant that has passed through the four-way valve 22 flows into the outdoor heat exchanger 23 and exchanges heat with the outside air to condense. The refrigerant condensed in the outdoor heat exchanger 23 passes through the outdoor expansion valve 40 having an opening degree corresponding to the difference between the discharge pressure and the hydraulic pressure of the compressor 21 taken in by the control unit 100, and is an intermediate pressure refrigerant. Then, the liquid flows through the liquid pipe 32 and flows into the indoor units 8a to 8c.

室内機8a〜8cへ流入した中間圧の冷媒は、室内膨張弁82a〜82cで減圧され低圧の冷媒となって室内熱交換器81a〜81cに流入する。室内熱交換器81a〜81cに流入した低圧の冷媒は、室内空気と熱交換を行って蒸発し、これにより室内機8a〜8cが設置された室内の冷房が行われる。ここで、室内膨張弁82a〜82cは、室内機8a〜8cの制御部が、液側温度センサ84a〜84cで検出した冷媒温度およびガス側温度センサ85a〜85cで検出した冷媒温度から、蒸発器である室内熱交換器81a〜81cでの冷媒過熱度を求め、これに応じて開度が決定されている。尚、過熱度と室内膨張弁82a〜82cの開度との関係については、上述した全て冷房運転を行う場合で説明した内容と同じであるため、説明は省略する。   The intermediate-pressure refrigerant that has flowed into the indoor units 8a to 8c is decompressed by the indoor expansion valves 82a to 82c, becomes low-pressure refrigerant, and flows into the indoor heat exchangers 81a to 81c. The low-pressure refrigerant that has flowed into the indoor heat exchangers 81a to 81c evaporates by exchanging heat with room air, thereby cooling the room where the indoor units 8a to 8c are installed. Here, the indoor expansion valves 82a to 82c are the evaporators based on the refrigerant temperature detected by the liquid side temperature sensors 84a to 84c and the refrigerant temperature detected by the gas side temperature sensors 85a to 85c by the control unit of the indoor units 8a to 8c. The degree of superheat of the refrigerant in the indoor heat exchangers 81a to 81c is obtained, and the opening degree is determined accordingly. Since the relationship between the degree of superheat and the opening degree of the indoor expansion valves 82a to 82c is the same as that described in the case of performing the cooling operation, the description thereof is omitted.

室内熱交換器81a〜81cから流出した低圧の冷媒は分流ユニット6a〜6cに流入し、開となっている第2電磁弁62a〜62cが備えられた第2分流管64a〜64cを流れて低圧ガス管31に流入する。そして、各分流ユニット6a〜6cから低圧ガス管31に流入した低圧の冷媒は、低圧ガス管31内で合流後、室外機2に流入し、アキュムレータ24を通過して圧縮機21に吸入されて再び圧縮される。   The low-pressure refrigerant that has flowed out of the indoor heat exchangers 81a to 81c flows into the diversion units 6a to 6c, and flows through the second diversion pipes 64a to 64c provided with the open second electromagnetic valves 62a to 62c to low pressure. It flows into the gas pipe 31. The low-pressure refrigerant that has flowed into the low-pressure gas pipe 31 from each of the diversion units 6a to 6c merges in the low-pressure gas pipe 31, and then flows into the outdoor unit 2, passes through the accumulator 24, and is sucked into the compressor 21. It is compressed again.

一方、高圧ガス管30を流れて分流ユニット6d,6eに流入した高圧の冷媒は、開となっている第1電磁弁61d,61eが備えられた第1分流管63d,63eを流れて室内機8d、8eに流入する。室内機8d、8eに流入した高圧の冷媒は、室内熱交換器81d、81eに流入して室内空気と熱交換を行って凝縮し、これにより室内機8d、8eが設置された室内の暖房が行われる。室内熱交換器81d、81eから流出した高圧の冷媒は、室内膨張弁82d、82eを通過して減圧され中間圧の冷媒となる。   On the other hand, the high-pressure refrigerant flowing through the high-pressure gas pipe 30 and flowing into the diversion units 6d and 6e flows through the first diversion pipes 63d and 63e provided with the first electromagnetic valves 61d and 61e that are open, and passes through the indoor unit. It flows into 8d and 8e. The high-pressure refrigerant that has flowed into the indoor units 8d and 8e flows into the indoor heat exchangers 81d and 81e, exchanges heat with the indoor air, and condenses, thereby heating the room in which the indoor units 8d and 8e are installed. Done. The high-pressure refrigerant that has flowed out of the indoor heat exchangers 81d and 81e passes through the indoor expansion valves 82d and 82e and is reduced in pressure to become an intermediate-pressure refrigerant.

ここで、室内膨張弁82d、82eは、室内機8d、8eの制御部が、液側温度センサ84d、84eで検出した冷媒温度および室外機2から得た高圧飽和温度から、凝縮器である室内熱交換器81d、81eでの冷媒過冷却度を求め、これに応じて開度が決定されている。尚、過冷却度と室内膨張弁82d、82eの開度との関係については、上述した全て暖房運転を行う場合で説明した内容と同じであるため、説明は省略する。   Here, the indoor expansion valves 82d and 82e are indoor units that are condensers based on the refrigerant temperature detected by the liquid side temperature sensors 84d and 84e and the high-pressure saturation temperature obtained from the outdoor unit 2 by the control unit of the indoor units 8d and 8e. The degree of refrigerant supercooling in the heat exchangers 81d and 81e is obtained, and the opening degree is determined accordingly. Since the relationship between the degree of supercooling and the opening degree of the indoor expansion valves 82d and 82e is the same as that described in the case of performing the heating operation, the description thereof is omitted.

そして、室内機8d、8eから流出し液管32で合流した中間圧の冷媒は、室外熱交換器23で凝縮し室外膨張弁で減圧されて室外機2から液管32へ流出する。   The intermediate-pressure refrigerant that has flowed out of the indoor units 8d and 8e and merged in the liquid pipe 32 is condensed in the outdoor heat exchanger 23, depressurized by the outdoor expansion valve, and flows out of the outdoor unit 2 to the liquid pipe 32.

次に、暖房主体運転を行う場合について、図4を用いて説明する。尚、図4において、矢印は冷媒の流れを示している。図4に示すように、この運転で制御部100は、四方弁22のポートaとポートdとを連通させるとともにポートbとポートcとを連通させる状態に設定する。これにより、室外熱交換器23は蒸発器となる。   Next, the case where the heating main operation is performed will be described with reference to FIG. In FIG. 4, the arrows indicate the flow of the refrigerant. As shown in FIG. 4, in this operation, the control unit 100 sets the port a and the port d of the four-way valve 22 to communicate with each other and the port b and the port c to communicate with each other. Thereby, the outdoor heat exchanger 23 becomes an evaporator.

また、暖房運転を行う3台の室内機8a〜8cの制御部は、対応する3台の分流ユニット6a〜6cの第1電磁弁61a〜61cを開いて第1分流管63a〜63cを連通するとともに、第2電磁弁62a〜62cを閉じて第2分流管64a〜64cを遮断する。これにより、3台の室内機8a〜8cの室内熱交換器81a〜81cは凝縮器となる。   Further, the control units of the three indoor units 8a to 8c that perform the heating operation open the first electromagnetic valves 61a to 61c of the corresponding three branch units 6a to 6c to communicate the first branch pipes 63a to 63c. At the same time, the second solenoid valves 62a to 62c are closed to shut off the second branch pipes 64a to 64c. Thereby, the indoor heat exchangers 81a to 81c of the three indoor units 8a to 8c become condensers.

一方、冷房運転を行う2台の室内機8d,8eの制御部は、対応する2台の分流ユニット6d、6eの第1電磁弁61d、61eを閉じて第1分流管63d,63eを遮断するとともに、第2電磁弁62d、62eを開いて第2分流管64d,64eを連通する。これにより、2台の室内機8d、8eの室内熱交換器81d、81eは蒸発器となる。   On the other hand, the control units of the two indoor units 8d and 8e that perform the cooling operation close the first electromagnetic valves 61d and 61e of the corresponding two branch units 6d and 6e, and shut off the first branch pipes 63d and 63e. At the same time, the second electromagnetic valves 62d and 62e are opened to communicate the second branch pipes 64d and 64e. Thereby, the indoor heat exchangers 81d and 81e of the two indoor units 8d and 8e become evaporators.

圧縮機21から吐出された高圧の冷媒は、高圧ガス管30を流れて分流ユニット6a〜6cに分かれて流入する。分流ユニット6a〜6cに流入した高圧の冷媒は、開となっている第1電磁弁61a〜61cが備えられた第1分流管63a〜63cを流れて分流ユニット6a〜6cから流出し、対応する室内機8a〜8cに流入する。   The high-pressure refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 30 and flows into the diversion units 6a to 6c. The high-pressure refrigerant that has flowed into the diversion units 6a to 6c flows through the first diversion pipes 63a to 63c provided with the open first electromagnetic valves 61a to 61c, and flows out from the diversion units 6a to 6c. It flows into the indoor units 8a to 8c.

室内機8a〜8cに流入した高圧の冷媒は、室内熱交換器81a〜81cに流入して室内空気と熱交換を行って凝縮し、これにより室内機8a〜8cが設置された室内の暖房が行われる。室内熱交換器81a〜81cで凝縮した高圧の冷媒は、室内膨張弁82a〜82cを通過して減圧されて中間圧の冷媒となる。ここで、室内膨張弁82a〜82cは、室内機8a〜8cの制御部が、液側温度センサ84a〜84cで検出した冷媒温度および室外機2から得た高圧飽和温度から、凝縮器である室内熱交換器81a〜81cでの冷媒過冷却度を求め、これに応じて開度が決定されている。尚、過冷却度と室内膨張弁82a〜82cの開度との関係については、上述した全て暖房運転を行う場合で説明した内容と同じであるため、説明は省略する。   The high-pressure refrigerant flowing into the indoor units 8a to 8c flows into the indoor heat exchangers 81a to 81c, exchanges heat with the indoor air, and condenses, thereby heating the room where the indoor units 8a to 8c are installed. Done. The high-pressure refrigerant condensed in the indoor heat exchangers 81a to 81c passes through the indoor expansion valves 82a to 82c and is reduced in pressure to become an intermediate-pressure refrigerant. Here, the indoor expansion valves 82 a to 82 c are indoors that are condensers from the refrigerant temperature detected by the liquid side temperature sensors 84 a to 84 c and the high-pressure saturation temperature obtained from the outdoor unit 2 by the control units of the indoor units 8 a to 8 c. The degree of refrigerant supercooling in the heat exchangers 81a to 81c is obtained, and the opening degree is determined accordingly. The relationship between the degree of supercooling and the openings of the indoor expansion valves 82a to 82c is the same as that described in the case of performing the heating operation as described above, and thus the description thereof is omitted.

室内機8a〜8cから流出した中間圧の冷媒は、液管32に流入する。そして、液管32内で合流した中間圧の冷媒は、一部が室外機2に流入し、残りは液管32を流れて室内機8d,8eに流入する。室外機2に流入した中間圧の冷媒は、室外熱交換器23の過熱度に応じた開度とされた室外膨張弁40を通過する際に減圧して低圧の冷媒となり、室外熱交換器23に流入する。室外熱交換器23に流入した低圧の冷媒は、外気と熱交換を行って蒸発する。そして、室外熱交換器23から流出した低圧の冷媒は、四方弁22を通過した後アキュムレータ24を通過して圧縮機21に吸入されて再び圧縮される。   The intermediate-pressure refrigerant that has flowed out of the indoor units 8 a to 8 c flows into the liquid pipe 32. Then, a part of the intermediate-pressure refrigerant merged in the liquid pipe 32 flows into the outdoor unit 2, and the rest flows through the liquid pipe 32 and flows into the indoor units 8d and 8e. The intermediate-pressure refrigerant flowing into the outdoor unit 2 is reduced in pressure when passing through the outdoor expansion valve 40 having an opening degree corresponding to the degree of superheat of the outdoor heat exchanger 23 to become a low-pressure refrigerant. Flow into. The low-pressure refrigerant that has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air. Then, the low-pressure refrigerant that has flowed out of the outdoor heat exchanger 23 passes through the four-way valve 22, then passes through the accumulator 24, is sucked into the compressor 21, and is compressed again.

一方、室内機8d,8eに流入した中間圧の冷媒は、室内膨張弁82d、82eで減圧されて低圧の冷媒となり室内熱交換器81d、81eに流入する。室内熱交換器81d、81eに流入した低圧の冷媒は、室内空気と熱交換を行って蒸発し、これにより室内機8d、8eが設置された室内の冷房が行われる。ここで、室内膨張弁82d、82eは、室内機8d、8eの制御部が、液側温度センサ84d、84eで検出した冷媒温度およびガス側温度センサ85d、85eで検出した冷媒温度から、蒸発器である室内熱交換器81d、81eでの冷媒過熱度を求め、これに応じて開度が決定されている。尚、過熱度と室内膨張弁82d、82eの開度との関係については、上述した全て冷房運転を行う場合で説明した内容と同じであるため、説明は省略する。   On the other hand, the intermediate-pressure refrigerant flowing into the indoor units 8d and 8e is decompressed by the indoor expansion valves 82d and 82e to become a low-pressure refrigerant and flows into the indoor heat exchangers 81d and 81e. The low-pressure refrigerant that has flowed into the indoor heat exchangers 81d and 81e exchanges heat with the indoor air and evaporates, thereby cooling the room in which the indoor units 8d and 8e are installed. Here, the indoor expansion valves 82d and 82e are evaporators based on the refrigerant temperature detected by the liquid side temperature sensors 84d and 84e and the refrigerant temperature detected by the gas side temperature sensors 85d and 85e by the control unit of the indoor units 8d and 8e. The degree of superheat of the refrigerant in the indoor heat exchangers 81d and 81e is obtained, and the opening degree is determined accordingly. Since the relationship between the degree of superheat and the opening degree of the indoor expansion valves 82d and 82e is the same as that described in the case of performing the cooling operation, the description thereof is omitted.

室内熱交換器81d、81eから流出した低圧の冷媒は分流ユニット6d、6eに流入し、開となっている第2電磁弁62d、62eが備えられた第2分流管64d、64eを流れて低圧ガス管31に流入する。そして、各分流ユニット6d、6eから低圧ガス管31に流入した低圧の冷媒は、低圧ガス管31内で合流後、室外機2に流入し、アキュムレータ24を通過して圧縮機21に吸入されて再び圧縮される。   The low-pressure refrigerant that has flowed out of the indoor heat exchangers 81d and 81e flows into the diversion units 6d and 6e, and flows through the second diversion pipes 64d and 64e provided with the open second electromagnetic valves 62d and 62e to low pressure. It flows into the gas pipe 31. The low-pressure refrigerant flowing into the low-pressure gas pipe 31 from each of the branch units 6d and 6e joins in the low-pressure gas pipe 31, and then flows into the outdoor unit 2, passes through the accumulator 24, and is sucked into the compressor 21. It is compressed again.

次に、図5および図6を用いて、本実施例における空気調和装置1で冷暖房フリーの運転を行っている際に、液管32を流れる冷媒の圧力を制御することによって、液管32を流れる冷媒の圧力と高圧ガス管30あるいは低圧ガス管31を流れる冷媒の圧力との圧力差を確保し、冷房運転あるいは暖房運転を行っている室内機での冷媒循環量の低下を防ぐ方法について、具体的に説明する。   Next, using FIG. 5 and FIG. 6, the liquid pipe 32 is controlled by controlling the pressure of the refrigerant flowing through the liquid pipe 32 when the air-conditioning apparatus 1 according to the present embodiment performs the cooling and heating-free operation. About a method of ensuring a pressure difference between the pressure of the flowing refrigerant and the pressure of the refrigerant flowing through the high-pressure gas pipe 30 or the low-pressure gas pipe 31, and preventing a decrease in the amount of refrigerant circulation in the indoor unit performing the cooling operation or the heating operation. This will be specifically described.

まずは、空気調和装置1で冷暖房フリーの運転を行っている際に、室外熱交換器23が凝縮器となっている場合について、図5を用いて説明する。尚、図5は図3で説明した冷房主体運転時の冷媒回路と同じ構成であるため、詳細な説明は省略し、液管32を流れる冷媒の圧力制御に関する説明のみを行うこととする。また、以下の説明では、冷房運転を行っている3台の室内機8a〜8cのうち室内機8aで高い冷房能力が要求され、液管32を流れる冷媒の圧力(以下、液圧と記載)と低圧ガス管31を流れる冷媒の圧力(以下、低圧と記載)との圧力差が小さくなる場合と、暖房運転を行っている2台の室内機8d,8eのうち室内機8dで高い暖房能力が要求され、高圧ガス管30を流れる冷媒の圧力(以下、高圧と記載)と液圧との圧力差が小さくなる場合について説明する。また、各室内膨張弁の前後と記載している場合は、各室内膨張弁に冷媒が流入する側を各室内膨張弁の前側、各室内膨張弁から冷媒が流出する側を各室内膨張弁の後側、としている。   First, the case where the outdoor heat exchanger 23 is a condenser when the air-conditioning apparatus 1 performs an air-conditioning-free operation will be described with reference to FIG. Note that FIG. 5 has the same configuration as the refrigerant circuit during the cooling main operation described in FIG. 3, and thus detailed description thereof will be omitted, and only an explanation regarding the pressure control of the refrigerant flowing through the liquid pipe 32 will be given. Moreover, in the following description, high cooling capacity is required in the indoor unit 8a among the three indoor units 8a to 8c performing the cooling operation, and the pressure of the refrigerant flowing through the liquid pipe 32 (hereinafter referred to as liquid pressure). And when the pressure difference between the refrigerant flowing through the low pressure gas pipe 31 (hereinafter referred to as “low pressure”) becomes small and the heating capacity of the indoor unit 8d out of the two indoor units 8d and 8e performing the heating operation is high. Is described, and the pressure difference between the pressure of the refrigerant flowing through the high-pressure gas pipe 30 (hereinafter referred to as “high pressure”) and the liquid pressure is reduced. In addition, when the front and rear of each indoor expansion valve are described, the side where the refrigerant flows into each indoor expansion valve is the front side of each indoor expansion valve, and the side where the refrigerant flows out from each indoor expansion valve is the side of each indoor expansion valve. The back side, and so on.

まず、室内機8aで高い冷房能力が要求され、液圧と低圧との圧力差が小さくなる場合について説明する。図5に示す冷媒回路の状態で、冷房運転を行っている室内機8aにおいて高い冷房能力が要求された場合、室内機8aの制御部は要求される冷房能力に応じて室内熱交換器81aに流れる冷媒量を増加させるために室内膨張弁82aの開度を大きくするよう制御する。   First, the case where a high cooling capacity is required in the indoor unit 8a and the pressure difference between the hydraulic pressure and the low pressure becomes small will be described. In the state of the refrigerant circuit shown in FIG. 5, when a high cooling capacity is required in the indoor unit 8a that is performing the cooling operation, the control unit of the indoor unit 8a sends the indoor heat exchanger 81a to the indoor heat exchanger 81a according to the required cooling capacity. In order to increase the amount of refrigerant flowing, control is performed to increase the opening of the indoor expansion valve 82a.

室内膨張弁82aの開度が大きくなると、液圧と低圧との圧力差、つまり、室内膨張弁82aの液管32側(室内膨張弁82aの前側)と低圧ガス管31側(室内膨張弁82aの後側)との圧力差が小さくなる。この液圧(中間圧)と低圧との圧力差が所定値(例えば、0.5MPa)より小さくなると、室内熱交換器81aを流れる冷媒量が減少する。冷房運転を行っている他の室内機8b,8cは、室内機8aと並列に配管接続されており、また、室内機8a〜8cは低圧ガス管31にそれぞれ接続されているため、室内膨張弁82aの前後の圧力差が所定値より小さくなると、室内機8b,8cの室内熱交換器81b,81cを流れる冷媒量も減少する。   When the opening of the indoor expansion valve 82a increases, the pressure difference between the hydraulic pressure and the low pressure, that is, the liquid pipe 32 side (front side of the indoor expansion valve 82a) and the low pressure gas pipe 31 side (indoor expansion valve 82a) of the indoor expansion valve 82a. The pressure difference from the rear side becomes smaller. When the pressure difference between the hydraulic pressure (intermediate pressure) and the low pressure becomes smaller than a predetermined value (for example, 0.5 MPa), the amount of refrigerant flowing through the indoor heat exchanger 81a decreases. The other indoor units 8b and 8c performing the cooling operation are connected by pipes in parallel with the indoor unit 8a, and the indoor units 8a to 8c are connected to the low-pressure gas pipe 31, respectively. When the pressure difference before and after 82a becomes smaller than a predetermined value, the amount of refrigerant flowing through the indoor heat exchangers 81b and 81c of the indoor units 8b and 8c also decreases.

一方、上述したように室内膨張弁82aの前後の圧力差が所定値より小さくなる、つまり、液圧と低圧との圧力差が所定値より小さくなると、室内機8a〜8cでの冷媒循環量が低下し、室内機8a〜8cでの冷媒循環量を確保することができなくなるため、冷房運転を行っている室内機8a〜8cで要求された冷房能力を発揮できない虞がある。   On the other hand, as described above, when the pressure difference before and after the indoor expansion valve 82a is smaller than a predetermined value, that is, when the pressure difference between the hydraulic pressure and the low pressure is smaller than the predetermined value, the refrigerant circulation amount in the indoor units 8a to 8c is increased. The amount of refrigerant circulating in the indoor units 8a to 8c cannot be ensured, and there is a possibility that the cooling capacity required for the indoor units 8a to 8c performing the cooling operation cannot be exhibited.

上記のような状態となった場合、制御部100は、流入電磁弁41を閉じたままとするとともに流出電磁弁42を開くことによって冷媒調整器27から低圧ガス管31へ冷媒を流出させて液圧を上昇させ、液圧と低圧との圧力差を所定値以上とすることで、室内機8a〜8cでの冷媒循環量を確保できるよう制御を行う。   In such a state, the control unit 100 keeps the inflow electromagnetic valve 41 closed and opens the outflow electromagnetic valve 42 to cause the refrigerant to flow out from the refrigerant regulator 27 to the low-pressure gas pipe 31 to be liquid. By increasing the pressure and setting the pressure difference between the hydraulic pressure and the low pressure to a predetermined value or more, control is performed so that the refrigerant circulation amount in the indoor units 8a to 8c can be secured.

具体的には、制御部100のCPU110は、中間圧センサ57で検出した室内膨張弁82a前の液圧である液管冷媒圧力と、低圧センサ51で検出した室内膨張弁82a後の低圧である低圧冷媒圧力とを定期的に取り込んで記憶部120に記憶している。CPU110は、記憶した液管冷媒圧力と低圧冷媒圧力との圧力差を算出する。CPU110は、この圧力差が所定値より小さい場合は、流入電磁弁41を閉じたままとして冷媒流入管33を遮断するとともに、流出電磁弁42を開いて冷媒流出管34を連通させる。   Specifically, the CPU 110 of the control unit 100 is the liquid refrigerant pressure that is the liquid pressure before the indoor expansion valve 82 a detected by the intermediate pressure sensor 57 and the low pressure after the indoor expansion valve 82 a that is detected by the low pressure sensor 51. The low-pressure refrigerant pressure is taken in periodically and stored in the storage unit 120. The CPU 110 calculates a pressure difference between the stored liquid pipe refrigerant pressure and the low pressure refrigerant pressure. When this pressure difference is smaller than a predetermined value, the CPU 110 keeps the inflow electromagnetic valve 41 closed, shuts off the refrigerant inflow pipe 33, and opens the outflow electromagnetic valve 42 to connect the refrigerant outflow pipe 34.

流出電磁弁42を開いて冷媒流出管34を連通させることによって、図5の矢印Aで示すように、冷媒調整器27に貯留されていた冷媒が冷媒流出管34へ流れる。この冷媒は、流出電磁弁42を通り圧力調整器46で減圧されて低圧の冷媒となって低圧ガス管31へ流入する。これにより、冷媒回路を流れる冷媒量が増加し、ひいては液圧が上昇するので、液圧と低圧との圧力差を所定値以上とすることができる。従って、室内機8a〜8cでの冷媒循環量を確保することができ、冷房運転を行っている室内機8a〜8cで冷房能力の不足を抑制することができる。   By opening the outflow electromagnetic valve 42 and connecting the refrigerant outflow pipe 34, the refrigerant stored in the refrigerant regulator 27 flows into the refrigerant outflow pipe 34, as indicated by an arrow A in FIG. 5. This refrigerant passes through the outflow electromagnetic valve 42, is reduced in pressure by the pressure regulator 46, becomes a low-pressure refrigerant, and flows into the low-pressure gas pipe 31. As a result, the amount of refrigerant flowing through the refrigerant circuit increases, and as a result, the hydraulic pressure rises, so that the pressure difference between the hydraulic pressure and the low pressure can be made a predetermined value or more. Therefore, the refrigerant circulation amount in the indoor units 8a to 8c can be secured, and the shortage of the cooling capacity can be suppressed in the indoor units 8a to 8c performing the cooling operation.

次に、室内機8dで高い暖房能力が要求され、高圧と液圧との圧力差が小さくなる場合について説明する。図5に示す冷媒回路の状態で、暖房運転を行っている室内機8dにおいて高い暖房能力が要求された場合、室内機8dの制御部は要求される暖房能力に応じて室内熱交換器81dに流れる冷媒量を増加させるために室内膨張弁82dの開度を大きくするよう制御する。   Next, the case where high heating capacity is required in the indoor unit 8d and the pressure difference between the high pressure and the hydraulic pressure is reduced will be described. In the state of the refrigerant circuit shown in FIG. 5, when a high heating capacity is required in the indoor unit 8d that is performing the heating operation, the control unit of the indoor unit 8d sends the indoor heat exchanger 81d to the indoor heat exchanger 81d according to the required heating capacity. In order to increase the amount of refrigerant flowing, control is performed to increase the opening of the indoor expansion valve 82d.

室内膨張弁82dの開度が大きくなると、高圧と液圧との圧力差、つまり、室内膨張弁82dの高圧ガス管30側(室内膨張弁82dの前側)と液管32側(室内膨張弁82dの後側)との圧力差が小さくなる。この高圧と液圧(中間圧)との圧力差が所定値(例えば、0.5MPa)より小さくなると、室内熱交換器81dを流れる冷媒量が減少する。暖房運転を行っている他の室内機8eは、室内機8dと並列に配管接続されており、また、室内機8d,8eは高圧ガス管30にそれぞれ接続されているため、室内膨張弁82dの前後の圧力差が所定値より小さくなると、室内機8eの室内熱交換器81eを流れる冷媒量も減少する。   When the opening of the indoor expansion valve 82d increases, the pressure difference between the high pressure and the hydraulic pressure, that is, the high-pressure gas pipe 30 side of the indoor expansion valve 82d (the front side of the indoor expansion valve 82d) and the liquid pipe 32 side (the indoor expansion valve 82d). The pressure difference from the rear side becomes smaller. When the pressure difference between the high pressure and the fluid pressure (intermediate pressure) becomes smaller than a predetermined value (for example, 0.5 MPa), the amount of refrigerant flowing through the indoor heat exchanger 81d decreases. The other indoor unit 8e that performs the heating operation is connected to the indoor unit 8d in parallel, and the indoor units 8d and 8e are connected to the high-pressure gas pipe 30, respectively. If the pressure difference before and after becomes smaller than a predetermined value, the amount of refrigerant flowing through the indoor heat exchanger 81e of the indoor unit 8e also decreases.

一方、上述したように室内膨張弁82dの前後の圧力差が所定値より小さくなる、つまり、高圧と液圧との圧力差が所定値より小さくなると、室内機8d,8eでの冷媒循環量が低下し、室内機8d,8eでの冷媒循環量を確保できなくなるため、暖房運転を行っている室内機8d,8eで要求された暖房能力を発揮できない虞がある。   On the other hand, as described above, when the pressure difference before and after the indoor expansion valve 82d is smaller than a predetermined value, that is, when the pressure difference between the high pressure and the hydraulic pressure is smaller than the predetermined value, the refrigerant circulation amount in the indoor units 8d and 8e is increased. The amount of refrigerant circulating in the indoor units 8d and 8e cannot be ensured, and there is a possibility that the heating capacity required by the indoor units 8d and 8e that are performing the heating operation cannot be exhibited.

上記のような状態となった場合、制御部100は、流出電磁弁42を閉じたままとするとともに流入電磁弁41を開くことによって液管32から冷媒調整器27へ冷媒を流入させて液圧を下降させ、高圧と液圧との圧力差を所定値以上とすることで、室内機8d,8eでの冷媒循環量を確保できるよう制御を行う。   When the above state is reached, the control unit 100 keeps the outflow electromagnetic valve 42 closed and opens the inflow electromagnetic valve 41 to cause the refrigerant to flow from the liquid pipe 32 to the refrigerant regulator 27 so that the liquid pressure is increased. Is controlled so that the refrigerant circulation amount in the indoor units 8d and 8e can be secured by setting the pressure difference between the high pressure and the hydraulic pressure to a predetermined value or more.

具体的には、制御部100のCPU110は、高圧センサ50で検出した室内膨張弁82d前の高圧である高圧冷媒圧力と、中間圧センサ57で検出した室内膨張弁82a後の液圧である液管冷媒圧力とを定期的に取り込んで記憶部120に記憶している。CPU110は、記憶した高圧冷媒圧力と液管冷媒圧力との圧力差を算出する。CPU110は、この圧力差が所定値より小さい場合は、流出電磁弁42を閉じたままとして冷媒流出管34を遮断するとともに、流入電磁弁41を開いて冷媒流入管33を連通させる。   Specifically, the CPU 110 of the control unit 100 detects the high pressure refrigerant pressure detected by the high pressure sensor 50 before the indoor expansion valve 82d and the liquid pressure detected by the intermediate pressure sensor 57 after the indoor expansion valve 82a. The pipe refrigerant pressure is periodically taken in and stored in the storage unit 120. The CPU 110 calculates the pressure difference between the stored high-pressure refrigerant pressure and the liquid pipe refrigerant pressure. When the pressure difference is smaller than the predetermined value, the CPU 110 blocks the refrigerant outflow pipe 34 while keeping the outflow electromagnetic valve 42 closed, and opens the inflow electromagnetic valve 41 to connect the refrigerant inflow pipe 33.

流入電磁弁41を開いて冷媒流入管33を連通させることによって、図5の矢印Bで示すように、液管32を流れる冷媒が冷媒流入管33へ流入する。この冷媒は、流入電磁弁41を通って冷媒調整器27へ流入して貯留される。これにより、冷媒回路を流れる冷媒量が減少し、ひいては液圧が下降するので、高圧と液圧との圧力差を所定値以上とすることができる。従って、室内機8d,8eでの冷媒循環量を確保することができ、暖房運転を行っている室内機8d、8eで暖房能力の不足を抑制することができる。   By opening the inflow electromagnetic valve 41 and connecting the refrigerant inflow pipe 33, the refrigerant flowing through the liquid pipe 32 flows into the refrigerant inflow pipe 33 as indicated by an arrow B in FIG. 5. This refrigerant flows into the refrigerant regulator 27 through the inflow electromagnetic valve 41 and is stored. As a result, the amount of refrigerant flowing through the refrigerant circuit is reduced, and as a result, the hydraulic pressure is lowered, so that the pressure difference between the high pressure and the hydraulic pressure can be set to a predetermined value or more. Therefore, the refrigerant circulation amount in the indoor units 8d and 8e can be secured, and the shortage of the heating capacity can be suppressed in the indoor units 8d and 8e performing the heating operation.

次に、空気調和装置1で冷暖房フリーの運転を行っている際に、室外熱交換器23が蒸発器となっている場合について、図6を用いて説明する。尚、図6は図4で説明した暖房主体運転時の冷媒回路と同じ構成であるため、詳細な説明は省略し、液管32を流れる冷媒の圧力制御に関する説明のみを行うこととする。また、以下の説明では、暖房運転を行っている3台の室内機8a〜8cのうち室内機8aで高い暖房能力が要求され、高圧と液圧との圧力差が小さくなる場合と、冷房運転を行っている2台の室内機8d,8eのうち室内機8dで高い冷房能力が要求され、液圧と低圧との圧力差が小さくなる場合について説明する。また、図5での説明と同様に、各室内膨張弁の前後と記載している場合は、各室内膨張弁に冷媒が流入する側を各室内膨張弁の前側、各室内膨張弁から冷媒が流出する側を各室内膨張弁の後側、としている。   Next, the case where the outdoor heat exchanger 23 is an evaporator when the air-conditioning apparatus 1 performs an air-conditioning-free operation will be described with reference to FIG. 6 has the same configuration as that of the refrigerant circuit during the heating-main operation described in FIG. 4, detailed description thereof will be omitted, and only description of pressure control of the refrigerant flowing through the liquid pipe 32 will be given. Moreover, in the following description, when the indoor unit 8a requires a high heating capacity among the three indoor units 8a to 8c performing the heating operation, and the pressure difference between the high pressure and the hydraulic pressure is small, the cooling operation A case will be described in which a high cooling capacity is required in the indoor unit 8d out of the two indoor units 8d and 8e, and the pressure difference between the hydraulic pressure and the low pressure becomes small. Similarly to the description in FIG. 5, when it is described before and after each indoor expansion valve, the side into which the refrigerant flows into each indoor expansion valve is the front side of each indoor expansion valve, and the refrigerant flows from each indoor expansion valve. The outflow side is the rear side of each indoor expansion valve.

まず、室内機8aで高い暖房能力が要求され、高圧と液圧との圧力差が小さくなる場合について説明する。図6に示す冷媒回路の状態で、暖房運転を行っている室内機8aにおいて高い暖房能力が要求された場合、室内機8aの制御部は要求される暖房能力に応じて室内熱交換器81aに流れる冷媒量を増加させるために室内膨張弁82aの開度を大きくするよう制御する。   First, the case where high heating capacity is required in the indoor unit 8a and the pressure difference between the high pressure and the hydraulic pressure is reduced will be described. In the state of the refrigerant circuit shown in FIG. 6, when a high heating capacity is required in the indoor unit 8a that is performing the heating operation, the control unit of the indoor unit 8a sends the indoor heat exchanger 81a to the indoor heat exchanger 81a according to the required heating capacity. In order to increase the amount of refrigerant flowing, control is performed to increase the opening of the indoor expansion valve 82a.

室内膨張弁82aの開度が大きくなると、高圧と液圧との圧力差、つまり、室内膨張弁82aの高圧ガス管30側(室内膨張弁82aの前側)と液管32側(室内膨張弁82aの後側)との圧力差が小さくなる。この高圧と液圧(中間圧)との圧力差が所定値(例えば、0.5MPa)より小さくなると、室内熱交換器81aを流れる冷媒量が減少する。暖房運転を行っている他の室内機8b,8cは、室内機8aと並列に配管接続されており、また、室内機8a〜8cは高圧ガス管30にそれぞれ接続されているため、室内膨張弁82aの前後の圧力差が所定値より小さくなると、室内機8b,8cの室内熱交換器81b,81cを流れる冷媒量も減少する。   When the opening of the indoor expansion valve 82a increases, the pressure difference between the high pressure and the hydraulic pressure, that is, the high-pressure gas pipe 30 side of the indoor expansion valve 82a (the front side of the indoor expansion valve 82a) and the liquid pipe 32 side (the indoor expansion valve 82a). The pressure difference from the rear side becomes smaller. When the pressure difference between the high pressure and the hydraulic pressure (intermediate pressure) becomes smaller than a predetermined value (for example, 0.5 MPa), the amount of refrigerant flowing through the indoor heat exchanger 81a decreases. The other indoor units 8b and 8c performing the heating operation are connected to the indoor unit 8a in parallel, and the indoor units 8a to 8c are connected to the high-pressure gas pipe 30, respectively. When the pressure difference before and after 82a becomes smaller than a predetermined value, the amount of refrigerant flowing through the indoor heat exchangers 81b and 81c of the indoor units 8b and 8c also decreases.

一方、上述したように室内膨張弁82aの前後の圧力差が所定値より小さくなる、つまり、高圧と液圧との圧力差が所定値より小さくなると、室内機8a〜8cでの冷媒循環量が低下し、室内機8a〜8cでの冷媒循環量を確保することができなくなるため、暖房運転を行っている室内機8a〜8cで要求される暖房能力を発揮できない虞がある。   On the other hand, as described above, when the pressure difference before and after the indoor expansion valve 82a is smaller than a predetermined value, that is, when the pressure difference between the high pressure and the hydraulic pressure is smaller than the predetermined value, the refrigerant circulation amount in the indoor units 8a to 8c is increased. The amount of refrigerant circulating in the indoor units 8a to 8c cannot be ensured, and the heating capacity required for the indoor units 8a to 8c performing the heating operation may not be exhibited.

上記のような状態となった場合、制御部100は、流出電磁弁42を閉じたままとするとともに流入電磁弁41を開くことによって液管32から冷媒調整器27へ冷媒を流入させて液圧を下降させ、高圧と液圧との圧力差が所定値以上とすることで、室内機8a〜8cでの冷媒循環量を確保できるよう制御を行う。   When the above state is reached, the control unit 100 keeps the outflow electromagnetic valve 42 closed and opens the inflow electromagnetic valve 41 to cause the refrigerant to flow from the liquid pipe 32 to the refrigerant regulator 27 so that the liquid pressure is increased. Is controlled so that the refrigerant circulation amount in the indoor units 8a to 8c can be ensured by setting the pressure difference between the high pressure and the hydraulic pressure to a predetermined value or more.

具体的には、制御部100のCPU110は、高圧センサ50で検出した室内膨張弁82a前の高圧である高圧冷媒圧力と、中間圧センサ57で検出した室内膨張弁82a後の液圧である液管冷媒圧力とを定期的に取り込んで記憶部120に記憶している。CPU110は、記憶した高圧冷媒圧力と液管冷媒圧力との圧力差を算出する。CPU110は、この圧力差が所定値より小さい場合は、流出電磁弁42を閉じたままとして冷媒流出管34を遮断するとともに、流入電磁弁41を開いて冷媒流入管33を連通させる。   Specifically, the CPU 110 of the control unit 100 detects the high-pressure refrigerant pressure that is high before the indoor expansion valve 82 a detected by the high-pressure sensor 50 and the liquid pressure that is after the indoor expansion valve 82 a that is detected by the intermediate pressure sensor 57. The pipe refrigerant pressure is periodically taken in and stored in the storage unit 120. The CPU 110 calculates the pressure difference between the stored high-pressure refrigerant pressure and the liquid pipe refrigerant pressure. When the pressure difference is smaller than the predetermined value, the CPU 110 blocks the refrigerant outflow pipe 34 while keeping the outflow electromagnetic valve 42 closed, and opens the inflow electromagnetic valve 41 to connect the refrigerant inflow pipe 33.

流入電磁弁41を開いて冷媒流入管33を連通させることによって、図6の矢印Cで示すように、液管32を流れる冷媒が冷媒流入管33へ流入する。この冷媒は、流入電磁弁41を通って冷媒調整器27へ流入して貯留される。これにより、冷媒回路を流れる冷媒量が減少し、ひいては液圧が下降するので、高圧と液圧との圧力差を所定値以上とすることができる。従って、室内機8a〜8cでの冷媒循環量を確保することができ、暖房運転を行っている室内機8a〜8cで暖房能力の不足を抑制することができる。   By opening the inflow electromagnetic valve 41 and connecting the refrigerant inflow pipe 33, the refrigerant flowing through the liquid pipe 32 flows into the refrigerant inflow pipe 33 as shown by an arrow C in FIG. 6. This refrigerant flows into the refrigerant regulator 27 through the inflow electromagnetic valve 41 and is stored. As a result, the amount of refrigerant flowing through the refrigerant circuit is reduced, and as a result, the hydraulic pressure is lowered, so that the pressure difference between the high pressure and the hydraulic pressure can be set to a predetermined value or more. Therefore, the refrigerant circulation amount in the indoor units 8a to 8c can be ensured, and the shortage of the heating capacity can be suppressed in the indoor units 8a to 8c performing the heating operation.

次に、室内機8dで高い冷房能力が要求され、液圧と低圧との圧力差が小さくなる場合について説明する。図6に示す冷媒回路の状態で、冷房運転を行っている室内機8dにおいて高い冷房能力が要求された場合、室内機8dの制御部は要求される冷房能力に応じて室内熱交換器81dに流れる冷媒量を増加させるために室内膨張弁82dの開度を大きくするよう制御する。   Next, a case where a high cooling capacity is required in the indoor unit 8d and the pressure difference between the hydraulic pressure and the low pressure becomes small will be described. In the state of the refrigerant circuit shown in FIG. 6, when a high cooling capacity is required in the indoor unit 8d that is performing the cooling operation, the control unit of the indoor unit 8d sends the indoor heat exchanger 81d to the indoor heat exchanger 81d according to the required cooling capacity. In order to increase the amount of refrigerant flowing, control is performed to increase the opening of the indoor expansion valve 82d.

室内膨張弁82dの開度が大きくなると、液圧と低圧との圧力差、つまり、室内膨張弁82dの液管32側(室内膨張弁82dの前側)と低圧ガス管31側(室内膨張弁82dの前側)との圧力差が小さくなる。この液圧(中間圧)と低圧との圧力差が所定値(例えば、0.5MPa)より小さくなると、室内熱交換器81dを流れる冷媒量が減少する。冷房運転を行っている他の室内機8eは、室内機8dと並列に配管接続されており、また、室内機8d,8eは低圧ガス管31にそれぞれ接続されているため、室内膨張弁82dの前後の圧力差が所定値より小さくなると、室内機8eの室内熱交換器81eを流れる冷媒量も減少する。   When the opening of the indoor expansion valve 82d increases, the pressure difference between the hydraulic pressure and the low pressure, that is, the liquid pipe 32 side (the front side of the indoor expansion valve 82d) and the low pressure gas pipe 31 side (the indoor expansion valve 82d) of the indoor expansion valve 82d. The pressure difference from the front side) becomes smaller. When the pressure difference between the hydraulic pressure (intermediate pressure) and the low pressure becomes smaller than a predetermined value (for example, 0.5 MPa), the amount of refrigerant flowing through the indoor heat exchanger 81d decreases. The other indoor unit 8e performing the cooling operation is connected to the indoor unit 8d in parallel, and the indoor units 8d and 8e are connected to the low-pressure gas pipe 31, respectively. If the pressure difference before and after becomes smaller than a predetermined value, the amount of refrigerant flowing through the indoor heat exchanger 81e of the indoor unit 8e also decreases.

一方、上述したように室内膨張弁82dの前後の圧力差が所定値より小さくなる、つまり、液圧と低圧との圧力差が所定値より小さくなると、室内機8d,8eでの冷媒循環量が低下し、室内機8d,8eでの冷媒循環量を確保することができなくなるため、冷房運転を行っている室内機8d,8eで要求される冷房能力を発揮できない虞がある。   On the other hand, as described above, when the pressure difference before and after the indoor expansion valve 82d is smaller than a predetermined value, that is, when the pressure difference between the hydraulic pressure and the low pressure is smaller than the predetermined value, the refrigerant circulation amount in the indoor units 8d and 8e is increased. The amount of refrigerant circulating in the indoor units 8d and 8e cannot be ensured, and the cooling capacity required for the indoor units 8d and 8e performing the cooling operation may not be exhibited.

上記のような状態となった場合、制御部100は、流入電磁弁41を閉じたままとするとともに流出電磁弁42を開くことによって冷媒調整器27から低圧ガス管31へ冷媒を流出させて液圧を上昇させ、液圧と低圧との圧力差を所定値以上とすることで、室内機8d,8eでの冷媒循環量を確保できるよう制御を行う。   In such a state, the control unit 100 keeps the inflow electromagnetic valve 41 closed and opens the outflow electromagnetic valve 42 to cause the refrigerant to flow out from the refrigerant regulator 27 to the low-pressure gas pipe 31 to be liquid. By increasing the pressure and setting the pressure difference between the hydraulic pressure and the low pressure to a predetermined value or more, control is performed so that the refrigerant circulation amount in the indoor units 8d and 8e can be secured.

具体的には、制御部100のCPU110は、中間圧センサ57で検出した室内膨張弁82d前の液圧である液管冷媒圧力と、低圧センサ51で検出した室内膨張弁82d後の低圧である低圧冷媒圧力とを定期的に取り込んで記憶部120に記憶している。CPU110は、記憶した液管冷媒圧力と低圧冷媒圧力との圧力差を算出する。CPU110は、この圧力差が所定値より小さい場合は、流入電磁弁41を閉じたままとして冷媒流入管33を遮断するとともに、流出電磁弁42を開いて冷媒流出管34を連通させる。   Specifically, the CPU 110 of the control unit 100 is the liquid refrigerant pressure that is the fluid pressure before the indoor expansion valve 82 d detected by the intermediate pressure sensor 57 and the low pressure after the indoor expansion valve 82 d that is detected by the low pressure sensor 51. The low-pressure refrigerant pressure is taken in periodically and stored in the storage unit 120. The CPU 110 calculates a pressure difference between the stored liquid pipe refrigerant pressure and the low pressure refrigerant pressure. When this pressure difference is smaller than a predetermined value, the CPU 110 keeps the inflow electromagnetic valve 41 closed, shuts off the refrigerant inflow pipe 33, and opens the outflow electromagnetic valve 42 to connect the refrigerant outflow pipe 34.

流出電磁弁42を開いて冷媒流出管34を連通させることによって、図6の矢印Dで示すように、冷媒調整器27に貯留されていた冷媒が冷媒流出管34へ流れる。この冷媒は、流出電磁弁42を通り圧力調整器46で減圧されて低圧のガス冷媒となって低圧ガス管31へ流入する。これにより、冷媒回路を流れる冷媒量が増加し、ひいては液圧が上昇するので、液圧と低圧との圧力差を所定値以上とすることができる。従って、室内機8d,8eでの冷媒循環量を確保することができ、冷房運転を行っている室内機8d,8eで冷房運転能力の不足を抑制することができる。   By opening the outflow electromagnetic valve 42 and connecting the refrigerant outflow pipe 34, the refrigerant stored in the refrigerant regulator 27 flows into the refrigerant outflow pipe 34 as shown by an arrow D in FIG. 6. This refrigerant passes through the outflow electromagnetic valve 42, is reduced in pressure by the pressure regulator 46, becomes a low-pressure gas refrigerant, and flows into the low-pressure gas pipe 31. As a result, the amount of refrigerant flowing through the refrigerant circuit increases, and as a result, the hydraulic pressure rises, so that the pressure difference between the hydraulic pressure and the low pressure can be made a predetermined value or more. Therefore, the refrigerant circulation amount in the indoor units 8d and 8e can be secured, and the shortage of the cooling operation capability can be suppressed in the indoor units 8d and 8e performing the cooling operation.

以上説明した実施例においては、空気調和装置1で冷暖房フリーの運転を行っている場合の冷房主体運転の例として、5台の室内機の内3台が冷房運転を行っている場合について説明したが、冷房運転を行っている室内機の台数に関わらず、冷房運転を行っている室内機での負荷が暖房運転を行っている室内機での負荷より大きい状態であれば冷房主体運転となる。   In the embodiment described above, the case where three of the five indoor units are performing the cooling operation as an example of the cooling main operation when the air conditioner 1 is performing the cooling-free operation is described. However, regardless of the number of indoor units performing the cooling operation, if the load on the indoor unit performing the cooling operation is greater than the load on the indoor unit performing the heating operation, the cooling main operation is performed. .

また、暖房主体運転の例として、5台の室内機の内3台が暖房運転を行っている場合について説明したが、暖房運転を行っている室内機の台数に関わらず、暖房運転を行っている室内機での負荷が冷房運転を行っている室内機での負荷より大きい状態であれば暖房主体運転となる。   In addition, as an example of the heating main operation, the case where three of the five indoor units are performing the heating operation has been described. However, the heating operation is performed regardless of the number of indoor units performing the heating operation. If the load on the existing indoor unit is greater than the load on the indoor unit performing the cooling operation, the heating main operation is performed.

また、室内膨張弁82a〜82eの液管32側と高圧ガス管30側あるいは低圧ガス管31側との圧力差は、室内膨張弁82a〜82eのガス管側が高圧ガス管30あるいは低圧ガス管31である場合に関わらず、同じ所定値を設定して制御を行う場合について説明したが、室内膨張弁82a〜82eのガス管側が高圧ガス管30である場合と低圧ガス管31である場合とで所定値を異ならせる、例えば、高圧ガス管30である場合は0.5MPa、低圧ガス管31である場合は1.0MPa、としてもよい。   Further, the pressure difference between the liquid pipe 32 side of the indoor expansion valves 82a to 82e and the high pressure gas pipe 30 side or the low pressure gas pipe 31 side is such that the gas pipe side of the indoor expansion valves 82a to 82e is the high pressure gas pipe 30 or low pressure gas pipe 31. Regardless of the case, the case where the same predetermined value is set to perform the control has been described, but the case where the gas pipe side of the indoor expansion valves 82a to 82e is the high pressure gas pipe 30 and the case where the low pressure gas pipe 31 is used. For example, the high pressure gas pipe 30 may be set to 0.5 MPa, and the low pressure gas pipe 31 may be set to 1.0 MPa.

また、高圧センサ50で高圧を、低圧センサ51で低圧を、中間圧センサ57で液圧を、それぞれ検出し高圧と液圧との圧力差や液圧と低圧との圧力差が所定値以下となった場合に、流入電磁弁41や流出電磁弁42の開閉を制御して冷媒調整器27に冷媒を流入あるいは冷媒調整器27から冷媒流出させることによって液圧を制御する場合について説明したが、これら各冷媒圧力に代えて各冷媒の温度を検出しそれぞれの温度差に応じて流入電磁弁41や流出電磁弁42の開閉を制御して液管冷媒圧力を制御するようにしてもよい。   Further, the high pressure sensor 50 detects the high pressure, the low pressure sensor 51 detects the low pressure, and the intermediate pressure sensor 57 detects the hydraulic pressure, and the pressure difference between the high pressure and the hydraulic pressure or the pressure difference between the hydraulic pressure and the low pressure is less than a predetermined value. In this case, the case where the hydraulic pressure is controlled by controlling the opening and closing of the inflow electromagnetic valve 41 and the outflow electromagnetic valve 42 to flow the refrigerant into the refrigerant regulator 27 or flow out of the refrigerant from the refrigerant regulator 27 has been described. Instead of these refrigerant pressures, the temperature of each refrigerant may be detected, and the liquid pipe refrigerant pressure may be controlled by controlling the opening and closing of the inflow electromagnetic valve 41 and the outflow electromagnetic valve 42 according to the respective temperature differences.

具体的には、制御部100は高圧センサ50で高圧ガス管30を流れる冷媒の圧力を検出し、検出した高圧に対応した飽和温度を算出することで、凝縮器となっている室内熱交換器または室外熱交換器での凝縮温度を求める。尚、制御部100と高圧センサ50とで凝縮温度検出手段を構成している。また、制御部100は、冷房運転を行っている室内機の液側温度センサが検出した室内交換器の蒸発温度を取り込む。この場合、冷房運転を行っている室内機の液側温度センサが蒸発温度検出手段となる。さらには、制御部100は冷媒温度センサ54で液管32を流れる冷媒の温度(以下、液管冷媒温度と記載する)を検出する。尚、冷媒温度センサ54が液管冷媒温度検出手段である。   Specifically, the control unit 100 detects the pressure of the refrigerant flowing through the high-pressure gas pipe 30 with the high-pressure sensor 50, and calculates the saturation temperature corresponding to the detected high pressure, so that the indoor heat exchanger that is a condenser Or the condensation temperature in an outdoor heat exchanger is calculated | required. The control unit 100 and the high-pressure sensor 50 constitute a condensation temperature detection unit. Moreover, the control part 100 takes in the evaporation temperature of the indoor exchanger detected by the liquid side temperature sensor of the indoor unit which is performing the cooling operation. In this case, the liquid side temperature sensor of the indoor unit performing the cooling operation serves as the evaporation temperature detecting means. Further, the control unit 100 detects the temperature of the refrigerant flowing through the liquid pipe 32 (hereinafter referred to as “liquid pipe refrigerant temperature”) by the refrigerant temperature sensor 54. The refrigerant temperature sensor 54 is a liquid pipe refrigerant temperature detecting means.

凝縮温度は、高圧の変化に対応して変化するものであるため、高圧ガス管30を流れる冷媒の圧力を示す指標となる。また、蒸発温度は、低圧の変化に対応して変化するものであるため、低圧ガス管31を流れる冷媒の圧力を示す指標となる。従って、制御部100は、凝縮温度と液管冷媒温度との温度差や液管冷媒温度と蒸発温度との温度差を算出することで、液圧と高圧あるいは低圧との圧力差を把握することができる。   Since the condensation temperature changes in response to a change in high pressure, it is an index indicating the pressure of the refrigerant flowing through the high pressure gas pipe 30. Further, since the evaporation temperature changes in response to a change in low pressure, it becomes an index indicating the pressure of the refrigerant flowing through the low pressure gas pipe 31. Therefore, the control unit 100 grasps the pressure difference between the liquid pressure and the high pressure or the low pressure by calculating the temperature difference between the condensing temperature and the liquid pipe refrigerant temperature and the temperature difference between the liquid pipe refrigerant temperature and the evaporation temperature. Can do.

空気調和装置1で冷暖房フリーの運転を行っている際に、制御部100は検出した凝縮温度と液管冷媒温度との温度差、あるいは、液管冷媒温度と蒸発温度との温度差を算出し、この温度差が所定値より小さくなった場合は、流入電磁弁41を開いて冷媒流入管33を連通させることで冷媒回路から冷媒調整器27へ冷媒を流入させる、あるいは、流出電磁弁42を開いて冷媒流出管34を連通させることで、冷媒調整器27から冷媒回路へ冷媒を流出させて、冷媒回路の冷媒量を増減させる。   When the air conditioner 1 is performing air-conditioning-free operation, the control unit 100 calculates a temperature difference between the detected condensation temperature and the liquid pipe refrigerant temperature, or a temperature difference between the liquid pipe refrigerant temperature and the evaporation temperature. When this temperature difference becomes smaller than a predetermined value, the inflow electromagnetic valve 41 is opened and the refrigerant inflow pipe 33 is connected to allow the refrigerant to flow into the refrigerant regulator 27 from the refrigerant circuit, or the outflow electromagnetic valve 42 is By opening and connecting the refrigerant outflow pipe 34, the refrigerant flows out from the refrigerant regulator 27 to the refrigerant circuit, and the amount of refrigerant in the refrigerant circuit is increased or decreased.

これにより、液圧を上昇あるいは下降させるので、高圧および低圧と液圧との圧力差を所定値以上とすることができる。従って、冷房運転あるいは暖房運転を行っている室内機での冷媒循環量を確保することができ、各室内機での運転能力の不足を抑制することができる。   As a result, the hydraulic pressure is increased or decreased, and the pressure difference between the high pressure and the low pressure and the hydraulic pressure can be set to a predetermined value or more. Therefore, it is possible to secure the refrigerant circulation amount in the indoor unit that is performing the cooling operation or the heating operation, and it is possible to suppress the shortage of the operation capability in each indoor unit.

次に、図7に示すフローチャートを用いて、本発明における空気調和装置1での処理の流れについて説明する。図7に示すフローチャートは、空気調和装置1の制御部100に備えられたCPU110での処理の流れを説明するものであり、STはステップを表しこれに続く数字はステップの番号を表している。尚、図7では本発明に関わる処理を中心に説明しており、四方弁22の切り替えや使用者の指示した設定温度に対応した圧縮機の回転数や各膨張弁の開度調整等といった、冷媒回路に関するその他の処理の説明は省略している。   Next, the flow of processing in the air conditioner 1 according to the present invention will be described using the flowchart shown in FIG. The flowchart shown in FIG. 7 explains the flow of processing in the CPU 110 provided in the control unit 100 of the air conditioner 1. ST represents a step, and the subsequent numbers represent step numbers. In FIG. 7, the processing related to the present invention is mainly described, such as switching of the four-way valve 22, the rotation speed of the compressor corresponding to the set temperature instructed by the user, the opening degree adjustment of each expansion valve, etc. The description of other processes related to the refrigerant circuit is omitted.

空気調和装置1が運転を開始すると、CPU110は室外機2の流入電磁弁41および流出電磁弁42を閉じる(ST1)。次にCPU110は、運転している室内機が全て冷房運転あるいは暖房運転を行っているか否かを判断する(ST2)。   When the air conditioner 1 starts operation, the CPU 110 closes the inflow electromagnetic valve 41 and the outflow electromagnetic valve 42 of the outdoor unit 2 (ST1). Next, CPU 110 determines whether all the indoor units that are operating are performing a cooling operation or a heating operation (ST2).

運転している室内機が全て冷房運転あるいは暖房運転を行っている場合は(ST2−Yes)、CPU110は、使用者による運転指示内容(設定温度や風量等の指示)や各種センサでの検出値に応じて、室外機2の運転を開始もしくは継続する(ST9)。そして、ST2に処理を戻す。   When all the indoor units being operated are performing a cooling operation or a heating operation (ST2-Yes), the CPU 110 detects the operation instruction contents (instructions such as the set temperature and the air volume) by the user and the detected values by various sensors. Accordingly, the operation of the outdoor unit 2 is started or continued (ST9). Then, the process returns to ST2.

ST2において、運転している室内機が全て冷房運転あるいは暖房運転を行っていない場合(ST2−No)、つまり、冷暖房フリーの運転を行っている場合は、CPU110は高圧センサ50で検出した高圧冷媒圧力と、低圧センサ51で検出した低圧冷媒圧力と、中間圧センサ57で検出した液管冷媒圧力とを各々取り込んで記憶部120に記憶する(ST3)。   In ST2, when all the indoor units being operated are not performing the cooling operation or the heating operation (ST2-No), that is, in the case of performing the cooling-free operation, the CPU 110 detects the high-pressure refrigerant detected by the high-pressure sensor 50. The pressure, the low-pressure refrigerant pressure detected by the low-pressure sensor 51, and the liquid pipe refrigerant pressure detected by the intermediate pressure sensor 57 are taken in and stored in the storage unit 120 (ST3).

次にCPU110は、記憶した高圧冷媒圧力と液管冷媒圧力との圧力差を算出しこの値が所定値以上であるか否かを判断する(ST4)。圧力差が所定値より小さければ(ST4−No)、CPU110は流入電磁弁41を開き冷媒流入管33を連通させることで、液管32から冷媒調整器27に冷媒を流入させる(ST5)。そして、ST6へ処理を進める。   Next, CPU 110 calculates a pressure difference between the stored high-pressure refrigerant pressure and liquid pipe refrigerant pressure, and determines whether this value is equal to or greater than a predetermined value (ST4). If the pressure difference is smaller than the predetermined value (ST4-No), the CPU 110 opens the inflow electromagnetic valve 41 and causes the refrigerant inflow pipe 33 to communicate, thereby causing the refrigerant to flow into the refrigerant regulator 27 from the liquid pipe 32 (ST5). Then, the process proceeds to ST6.

一方、ST4において、圧力差が所定値以上であれば(ST4−Yes)、CPU110は、記憶した液管冷媒圧力と低圧冷媒圧力との圧力差を算出しこの値が所定値以上であるか否かを判断する(ST10)。圧力差が所定値以上であれば(ST10−Yes)、CPU110は処理をST2に戻す。圧力差が所定値より小さければ(ST10−No)、CPU110は流出電磁弁42を開き冷媒流出管34を連通させることで、冷媒調整器27から低圧ガス管31へ冷媒を流出させる(ST11)。そして、ST6へ処理を進める。   On the other hand, if the pressure difference is greater than or equal to a predetermined value in ST4 (ST4-Yes), CPU 110 calculates the pressure difference between the stored liquid pipe refrigerant pressure and the low-pressure refrigerant pressure, and whether or not this value is greater than or equal to the predetermined value. Is determined (ST10). If the pressure difference is equal to or greater than the predetermined value (ST10-Yes), CPU 110 returns the process to ST2. If the pressure difference is smaller than the predetermined value (ST10-No), the CPU 110 opens the outflow electromagnetic valve 42 and causes the refrigerant outflow pipe 34 to communicate, thereby causing the refrigerant to flow out from the refrigerant regulator 27 to the low pressure gas pipe 31 (ST11). Then, the process proceeds to ST6.

上記のように流入電磁弁41および流出電磁弁42の開閉を制御した後、CPU110は、高圧冷媒圧力と液管冷媒圧力との圧力差、あるいは、液管冷媒圧力と低圧冷媒圧力との圧力差が所定値以上となったか否かを判断する(ST6)。圧力差が所定値以上となっていなければ(ST6−No)、CPU110は現在の運転状態が変更されたか否かを判断する(ST7)。   After controlling the opening and closing of the inflow solenoid valve 41 and the outflow solenoid valve 42 as described above, the CPU 110 performs a pressure difference between the high pressure refrigerant pressure and the liquid pipe refrigerant pressure, or a pressure difference between the liquid pipe refrigerant pressure and the low pressure refrigerant pressure. Is determined to be equal to or greater than a predetermined value (ST6). If the pressure difference is not greater than or equal to the predetermined value (ST6-No), CPU 110 determines whether or not the current operating state has been changed (ST7).

ここで、運転状態の変更とは、現在の室内機8a〜8eのうち少なくともいずれか1台の運転モードが変更された場合を指し、例えば、5台の室内機のうち3台が冷房運転で残りが暖房運転を行っている状態から、全ての室内機で冷房運転を行う状態に変更された場合等である。   Here, the change in the operating state refers to a case where at least one of the current indoor units 8a to 8e is changed in operation mode. For example, three of the five indoor units are in the cooling operation. This is the case where the remaining state is changed from the state where the heating operation is performed to the state where the cooling operation is performed in all the indoor units.

運転状態が変更されていなければ(ST7−No)、CPU110はST2に処理を戻す。運転状態が変更されていれば(ST7−Yes)、CPU110は開いている流入電磁弁41あるいは流出電磁弁42を閉じ(ST8)、ST2へ処理を戻す。尚、ST6において、圧力差が所定値以上となっていれば(ST6−Yes)、CPU110はST8に処理を進める。   If the operating state has not been changed (ST7-No), CPU 110 returns the process to ST2. If the operating state has been changed (ST7-Yes), CPU 110 closes open inflow solenoid valve 41 or outflow solenoid valve 42 (ST8), and returns the process to ST2. If the pressure difference is equal to or greater than the predetermined value in ST6 (ST6-Yes), the CPU 110 advances the process to ST8.

少なくとも1台の室内機で運転状態が変更されると、空気調和装置1の冷媒回路における圧力のバランスが変わり、高圧冷媒圧力と液管冷媒圧力との圧力差あるいは液管冷媒圧力と低圧冷媒圧力との圧力差も変わる。また、運転状態の変更によって、室内機8a〜8e全てが冷房運転あるいは暖房運転となる場合、つまり、冷暖房フリーの運転でなくなる場合も考えられる。以上の理由により、本実施例では運転状態が変更された場合はST8の処理で一旦流入電磁弁と流出電磁弁を全閉し、ST2からの処理を繰り返すようにしている。   When the operating state is changed in at least one indoor unit, the balance of pressure in the refrigerant circuit of the air conditioner 1 changes, and the pressure difference between the high pressure refrigerant pressure and the liquid pipe refrigerant pressure or the liquid pipe refrigerant pressure and the low pressure refrigerant pressure. The pressure difference with the also changes. Further, it is conceivable that all the indoor units 8a to 8e are in the cooling operation or the heating operation due to the change of the operation state, that is, the operation is not in the air conditioning / free operation. For the above reasons, in this embodiment, when the operating state is changed, the inflow solenoid valve and the outflow solenoid valve are once fully closed in the process of ST8, and the process from ST2 is repeated.

以上説明した通り、本発明による空気調和装置では、冷媒調整器によって液管を流れる冷媒量を増減させ液管を流れる冷媒の圧力を調整する。これにより、室外熱交換器を蒸発器として使用している際に室内機で高い運転能力が要求されて液圧と低圧との差、または、高圧と液圧との差が小さくなった場合でも、これらの圧力差を確保することができる。従って、冷房運転あるいは暖房運転を行っている室内機で、冷媒循環量の低下を防ぐことができ、冷媒循環量の低下に起因する冷房能力あるいは暖房能力の不足を抑制することができる。   As described above, in the air conditioning apparatus according to the present invention, the refrigerant regulator adjusts the pressure of the refrigerant flowing through the liquid pipe by increasing or decreasing the amount of refrigerant flowing through the liquid pipe. As a result, even when an outdoor heat exchanger is used as an evaporator, a high operating capacity is required in the indoor unit, and even if the difference between the hydraulic pressure and the low pressure or the difference between the high pressure and the hydraulic pressure becomes small These pressure differences can be ensured. Therefore, in the indoor unit that is performing the cooling operation or the heating operation, it is possible to prevent a decrease in the refrigerant circulation amount, and it is possible to suppress a shortage of the cooling capacity or the heating capability due to the decrease in the refrigerant circulation amount.

1 空気調和装置
2 室外機
6a〜6e 分流ユニット
8a〜8e 室内機
21 圧縮機
22 四方弁
23 室外熱交換器
27 冷媒調整器
30 高圧ガス管
31 低圧ガス管
32 液管
33 冷媒流入管
34 冷媒流出管
40 室外膨張弁
41 流入電磁弁
42 流出電磁弁
46 圧力調整器
50 高圧センサ
51 低圧センサ
52 吐出温度センサ
53 吸込温度センサ
54 冷媒温度センサ
55 熱交温度センサ
56 外気温度センサ
57 中間圧センサ
61a〜61e 第1電磁弁
62a〜62e 第2電磁弁
63a〜63e 第1分流管
64a〜64e 第2分流管
81a〜81e 室内熱交換器
82a〜82e 室内膨張弁
84a〜84e 液側温度センサ
85a〜85e ガス側温度センサ
100 制御部
110 CPU
120 記憶部
130 通信部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 6a-6e Split unit 8a-8e Indoor unit 21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 27 Refrigerant regulator 30 High pressure gas pipe 31 Low pressure gas pipe 32 Liquid pipe 33 Refrigerant inflow pipe 34 Refrigerant outflow Pipe 40 Outdoor expansion valve 41 Inflow solenoid valve 42 Outflow solenoid valve 46 Pressure regulator 50 High pressure sensor 51 Low pressure sensor 52 Discharge temperature sensor 53 Suction temperature sensor 54 Refrigerant temperature sensor 55 Heat exchange temperature sensor 56 Outside air temperature sensor 57 Intermediate pressure sensor 61a- 61e 1st solenoid valve 62a-62e 2nd solenoid valve 63a-63e 1st branch pipe 64a-64e 2nd branch pipe 81a-81e Indoor heat exchanger 82a-82e Indoor expansion valve 84a-84e Liquid side temperature sensor 85a-85e Gas Side temperature sensor 100 control unit 110 CPU
120 storage unit 130 communication unit

Claims (2)

圧縮機と室外熱交換器と室外膨張弁とを備えた少なくとも1台の室外機と、室内熱交換器を備えた複数の室内機と、同室内機に対応して設けられた複数の分流ユニットと、これらを制御する制御手段と、前記室外機と複数の前記室内機と複数の前記分流ユニットとを相互に接続するための高圧ガス管と低圧ガス管と液管とを備え、
前記分流ユニットにより複数の前記室内機内における冷媒の流れ方向を切り替えることによって、複数の前記室内機において冷房運転と暖房運転とを混在して行えるようにした空気調和装置であって、
前記高圧ガス管を流れる高圧冷媒圧力を検出する高圧冷媒圧力検出手段と、前記低圧ガス管を流れる低圧冷媒圧力を検出する低圧冷媒圧力検出手段と、前記液管を流れる液管冷媒圧力を検出する液管冷媒圧力検出手段とを備えるとともに、
前記室外機は冷媒を格納する冷媒調整器を備え、
前記冷媒調整器は、前記室外膨張弁と前記液管とを接続する配管に、流入電磁弁を備えた冷媒流入管で接続されるとともに、前記冷媒調整器の他端が前記圧縮機の吸入側と前記低圧ガス管とを接続する配管に、流出電磁弁を備えた冷媒流出管で接続され、
前記制御手段は、検出した前記高圧冷媒圧力と前記液管冷媒圧力との圧力差および前記液管冷媒圧力と前記低圧冷媒圧力との圧力差をそれぞれ算出し、
算出した前記高圧冷媒圧力と前記液管冷媒圧力との圧力差が所定値より小さくなった場合は、前記流入電磁弁を制御して前記冷媒流入管を連通させ前記液管から前記冷媒調整器に冷媒を流入させることによって、あるいは、算出した前記液管冷媒圧力と前記低圧冷媒圧力との圧力差が所定値より小さくなった場合は、前記流出電磁弁を制御して前記冷媒流出管を連通させ前記冷媒調整器から前記低圧ガス管に冷媒を流出させることによって、前記圧力差がそれぞれ所定値以上となるよう調整することを特徴とする空気調和装置。
At least one outdoor unit including a compressor, an outdoor heat exchanger, and an outdoor expansion valve, a plurality of indoor units including the indoor heat exchanger, and a plurality of diversion units provided corresponding to the indoor unit And control means for controlling these, and a high-pressure gas pipe, a low-pressure gas pipe and a liquid pipe for connecting the outdoor unit, the plurality of indoor units and the plurality of diversion units to each other,
By switching the flow direction of the refrigerant in the plurality of indoor units by the diversion unit, an air conditioner capable of performing both cooling operation and heating operation in the plurality of indoor units,
High-pressure refrigerant pressure detecting means for detecting high-pressure refrigerant pressure flowing through the high-pressure gas pipe, low-pressure refrigerant pressure detecting means for detecting low-pressure refrigerant pressure flowing through the low-pressure gas pipe, and liquid pipe refrigerant pressure flowing through the liquid pipe A liquid pipe refrigerant pressure detection means,
The outdoor unit includes a refrigerant regulator that stores refrigerant,
The refrigerant regulator is connected to a pipe connecting the outdoor expansion valve and the liquid pipe by a refrigerant inflow pipe having an inflow electromagnetic valve, and the other end of the refrigerant regulator is at the suction side of the compressor And a pipe connecting the low-pressure gas pipe with a refrigerant outflow pipe having an outflow electromagnetic valve,
The control means calculates a pressure difference between the detected high-pressure refrigerant pressure and the liquid pipe refrigerant pressure and a pressure difference between the liquid pipe refrigerant pressure and the low-pressure refrigerant pressure, respectively.
When the calculated pressure difference between the high pressure refrigerant pressure and the liquid pipe refrigerant pressure becomes smaller than a predetermined value, the inflow solenoid valve is controlled to connect the refrigerant inflow pipe to the refrigerant regulator from the liquid pipe. When the refrigerant flows in, or when the calculated pressure difference between the liquid pipe refrigerant pressure and the low pressure refrigerant pressure becomes smaller than a predetermined value, the outflow solenoid valve is controlled to connect the refrigerant outflow pipe. An air conditioner that adjusts the pressure difference to be a predetermined value or more by allowing the refrigerant to flow out from the refrigerant regulator to the low-pressure gas pipe.
前記高圧冷媒圧力検出手段に代えて前記高圧ガス管を流れる高圧冷媒温度を検出する高圧冷媒温度検出手段を、前記低圧冷媒圧力検出手段に代えて前記低圧ガス管を流れる低圧冷媒温度を検出する低圧冷媒温度検出手段を、前記液管冷媒圧力検出手段に代えて前記液管を流れる液管冷媒温度を検出する液管冷媒温度検出手段を、それぞれ備え、
前記制御手段は、検出した前記高圧冷媒温度と前記液管冷媒温度との温度差および前記液管冷媒温度と前記低圧冷媒温度との温度差をそれぞれ算出し、
算出した前記高圧冷媒温度と前記液管冷媒温度との温度差が所定値より小さくなった場合は、前記流入電磁弁を制御して前記冷媒流入管を連通させ前記液管から前記冷媒調整器に冷媒を流入させることによって、あるいは、算出した前記液管冷媒温度と前記低圧冷媒温度との温度差が所定値より小さくなった場合は、前記流出電磁弁を制御して前記冷媒流出管を連通させ前記冷媒調整器から前記低圧ガス管に冷媒を流出させることによって、前記圧力差がそれぞれ所定値以上となるよう調整することを特徴とする請求項1に記載の空気調和装置。
Instead of the high-pressure refrigerant pressure detection means, a high-pressure refrigerant temperature detection means for detecting the high-pressure refrigerant temperature flowing through the high-pressure gas pipe, and a low-pressure refrigerant temperature for detecting the low-pressure refrigerant temperature flowing through the low-pressure gas pipe instead of the low-pressure refrigerant pressure detection means. Refrigerant temperature detecting means, each comprising liquid pipe refrigerant temperature detecting means for detecting the temperature of the liquid pipe refrigerant flowing through the liquid pipe instead of the liquid pipe refrigerant pressure detecting means,
The control means calculates a temperature difference between the detected high-pressure refrigerant temperature and the liquid pipe refrigerant temperature and a temperature difference between the liquid pipe refrigerant temperature and the low-pressure refrigerant temperature, respectively.
When the calculated temperature difference between the high-pressure refrigerant temperature and the liquid pipe refrigerant temperature becomes smaller than a predetermined value, the inflow solenoid valve is controlled to connect the refrigerant inflow pipe to the refrigerant regulator from the liquid pipe. When the refrigerant flows in, or when the temperature difference between the calculated liquid pipe refrigerant temperature and the low-pressure refrigerant temperature becomes smaller than a predetermined value, the outflow solenoid valve is controlled to connect the refrigerant outflow pipe. 2. The air conditioner according to claim 1, wherein the pressure difference is adjusted to be a predetermined value or more by causing the refrigerant to flow out from the refrigerant regulator to the low-pressure gas pipe.
JP2011060807A 2011-03-18 2011-03-18 Air conditioner Expired - Fee Related JP5573741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060807A JP5573741B2 (en) 2011-03-18 2011-03-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060807A JP5573741B2 (en) 2011-03-18 2011-03-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012197958A JP2012197958A (en) 2012-10-18
JP5573741B2 true JP5573741B2 (en) 2014-08-20

Family

ID=47180367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060807A Expired - Fee Related JP5573741B2 (en) 2011-03-18 2011-03-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP5573741B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045440B2 (en) * 2013-06-06 2016-12-14 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698179B2 (en) * 1989-07-14 1998-01-19 三洋電機株式会社 Air conditioning
JPH0682113A (en) * 1992-09-07 1994-03-22 Matsushita Refrig Co Ltd Multi-room air-conditioning apparatus
JP2003336914A (en) * 2002-05-21 2003-11-28 Fujitsu General Ltd Air conditioner
JP4389927B2 (en) * 2006-12-04 2009-12-24 ダイキン工業株式会社 Air conditioner
JP4245064B2 (en) * 2007-05-30 2009-03-25 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2012197958A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP6064412B2 (en) Air conditioner
JP6052488B2 (en) Air conditioner
WO2013088590A1 (en) Outdoor unit and air-conditioning device
JP5747709B2 (en) Air conditioner
AU2016201491B2 (en) Air conditioning apparatus
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
WO2015122056A1 (en) Air conditioning device
JP2014190554A (en) Air conditioner
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
EP3101372B1 (en) Freezing unit
WO2017138108A1 (en) Air conditioning device
JPWO2019053876A1 (en) Air conditioner
JP2014214951A (en) Air conditioner
EP3742071A1 (en) Air conditioning apparatus and control method thereof
JP6718786B2 (en) Heat pump water heater with heating function
JP5445494B2 (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP5463995B2 (en) Multi-room air conditioner
JP5645413B2 (en) Air conditioner
JP2012197959A (en) Air conditioning apparatus
JP5573741B2 (en) Air conditioner
JPWO2020110289A1 (en) Control device and air conditioner
JP2015222157A (en) Air conditioning device
JP6341122B2 (en) Air conditioner
JP2023510358A (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees