JP2003336914A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003336914A
JP2003336914A JP2002145595A JP2002145595A JP2003336914A JP 2003336914 A JP2003336914 A JP 2003336914A JP 2002145595 A JP2002145595 A JP 2002145595A JP 2002145595 A JP2002145595 A JP 2002145595A JP 2003336914 A JP2003336914 A JP 2003336914A
Authority
JP
Japan
Prior art keywords
expansion valve
heat exchanger
refrigerant
valve
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002145595A
Other languages
Japanese (ja)
Inventor
Kazuya Funada
和也 船田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002145595A priority Critical patent/JP2003336914A/en
Publication of JP2003336914A publication Critical patent/JP2003336914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of preventing a refrigerating capacity from lowering without reducing a refrigerant amount flowing through a refrigerant circuit when a cooling operation is performed at a high ambient temperature. <P>SOLUTION: This air conditioner comprises the refrigerant circuit formed by connecting, in order, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, and an accumulator 6. A bypass passage 8 having a relief valve 7 parallel with the expansion valve is connected to both sides of the expansion valve 4. When a pressure difference between both sides of the expansion valve 4 is increased to a specified value or higher during cooling operation, the relief valve is opened to control a part of high pressure liquid refrigerant to bypass the expansion valve to a low pressure side. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、空気調和機に係わ
り、より詳細には、高外気温時での冷房運転の際、室外
側熱交換器の冷媒の凝縮量の減少を抑え、冷凍能力の低
下を防止できる冷媒回路の構成に関する。 【0002】 【従来の技術】従来の空気調和機は、図2(A)で示す
ように、圧縮機1、四方弁2、室外側熱交換器3、膨張
弁4及び室内側熱交換器5を順次接続して冷媒回路を構
成している。冷房運転時、前記圧縮機1から吐出された
高温高圧の冷媒は、前記四方弁2を介して前記室外側熱
交換器3に流入し、同室外側熱交換器3の周囲を流れる
空気に熱を放出して凝縮する。凝縮した冷媒は前記膨張
弁4を通過することにより膨張して低温低圧となり前記
室内側熱交換器5に流入し、同室内側熱交換器5で熱を
吸収して蒸発し、蒸発した冷媒は前記四方弁2を介して
前記圧縮機1に還流するようになっている。 【0003】しかし、例えば中東地域などの外気温が4
0℃を越える環境で上記した空気調和機を運転した場
合、前記室外側熱交換器3の周囲には高温の空気が流れ
るため、同室外側熱交換器3での熱交換効率が低下し冷
媒の凝縮量が減少する。これにより、高圧の気相冷媒が
前記室内側熱交換器5と前記四方弁2を介して前記圧縮
機1に還流し、同圧縮機1内での圧力が上昇する。圧力
が一定以上に上昇すると、高圧シェルタイプの前記圧縮
機1に損傷が発生する恐れがあるため、吐出配管側に設
けられた圧力センサ22が作動して所定時間、前記圧縮
機1を停止するようになっている。 【0004】また、前記圧縮機1内での圧力上昇を防止
する手段として、図6(B)で示すように、前記室外側
熱交換器3の下流側と、前記圧縮機1との間に、キャピ
ラリチューブ21を備えたインジェクション管路20を
設け、前記室外側熱交換器3から流出した液相冷媒を前
記インジェクション管路20により前記圧縮機1に還流
させ、同圧縮機1を冷却するとともに、圧力の異常な上
昇を防止するようになっている。 【0005】しかしながら、上記した前記圧力センサ2
2により前記圧縮機1を停止させる方法は、冷房運転が
中断することにより使用者に不快感を与えることとな
り、また前記インジェクション管路20を設けると、比
較的低温時での冷房運転の際、液相冷媒が直接前記圧縮
機1に流入するため、液圧縮により前記圧縮機1に損傷
が発生する恐れがあった。 【0006】 【発明が解決しようとする課題】本発明は上記問題点に
鑑み、高外気温時の冷房運転の際、冷媒回路を流れる冷
媒量を減少させずに、冷凍能力の低下を防止することが
できる空気調和機を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は上記課題を解決
するため、圧縮機と、四方弁と、室外側熱交換器と、膨
張弁と、室内側熱交換器と、アキュームレータとを順次
接続して冷媒回路を構成してなる空気調和機において、
前記膨張弁と並列に、リリーフバルブを備えたバイパス
路を設け、冷房運転時に前記膨張弁の両端間の圧力差が
所定値以上となった場合、前記リリーフバルブを開放
し、高圧液冷媒の一部を低圧側にバイパスさせてなる構
成となっている。 【0008】 【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいた実施例として詳細に説明する。図1は
本発明による空気調和機の実施例を示す冷媒回路図であ
る。図において、、圧縮機1と四方弁2と室外側熱交換
器3と膨張弁4と室内側熱交換器5とアキュームレータ
6とを順次接続する一方、前記膨張弁4の両側間に、並
列にリリーフバルブ7を備えたバイパス路8を設け冷媒
回路を構成している。尚、前記膨張弁4と前記室内側熱
交換器5との間には二方弁9が、前記室内側熱交換器5
と前記四方弁2との間には三方弁10が夫々設けられ、
室外機と室内機とが配管接続されている。 【0009】次に、上記した冷媒回路の冷媒の流れにつ
いて説明する。冷房運転時に、冷媒は図1の実線矢印の
方向に流れ、前記圧縮機1から吐出された高温高圧の冷
媒は、前記四方弁2を介して前記室外側熱交換器3に流
入し、同室外側熱交換器3で熱を放出して凝縮する。凝
縮した冷媒は前記膨張弁4を通過して低温低圧となり前
記室内側熱交換器5に流入し、同室内側熱交換器5で熱
を吸収して蒸発し、蒸発した冷媒は前記四方弁2を介し
て前記圧縮機1に還流するようになっている。 【0010】前記バイパス路8に接続されたリリーフバ
ルブ7は、通常の冷暖房運転時は閉鎖されているが、冷
房運転時に前記膨張弁4の両側間の圧力差、即ち前記室
外側熱交換器3を出た高圧液冷媒と、前記膨張弁4を通
過した後の低圧2相冷媒の圧力差が所定値以上になる
と、内臓したスプリングの作動により自動的に開放され
るようになっている。 【0011】高外気温での冷房運転時には、前記室外側
熱交換器3の周囲に高温の空気が流れ、前記室外側熱交
換器3での熱交換効率が低下することにより、前記室外
側熱交換器3の圧力が上昇するが、前記膨張弁4の両側
間の圧力差所定値以上になると、上記したように前記リ
リーフバルブ7が開放される。同リリーフバルブ7が開
放されると、前記室外側熱交換器3を出た高圧液冷媒が
低圧2相冷媒側にリリースされ、冷媒回路を循環する冷
媒量を減らさずに、冷凍能力の低下を防止することがで
きる。 【0012】また、前記バイパス路8の一端を、前記膨
張弁4と前記二方弁9との接続配管に接続することによ
り、前記圧縮機1で発生する振動の影響を前記バイパス
路8が受けずにすみ、これを構成する配管への亀裂発生
等を防止できるようになっている。 【0013】以上説明したように、前記膨張弁4の両側
間に、並列にリリーフバルブ7を備えたバイパス路8を
設け冷媒回路を構成し、高外気温での冷房運転時に前記
膨張弁4の両側間の圧力差が所定値以上となった場合、
前記リリーフバルブ7を開放し、高圧液冷媒の一部を低
圧側にバイパスさせることにより、冷媒回路を循環する
冷媒量を減らさずに、冷凍能力の低下を防止することが
できると共に、前記バイパス路8の一端を、前記膨張弁
4と前記二方弁9との接続配管に接続することにより、
前記圧縮機1で発生する振動の影響を前記バイパス路8
が受けずにすみ、これを構成する配管への亀裂発生等を
防止できる空気調和機となる。 【0014】 【発明の効果】以上のように本発明によると、膨張弁の
両側間に、並列にリリーフバルブを備えたバイパス路を
設け冷媒回路を構成し、高外気温での冷房運転時に膨張
弁の両側間の圧力差が所定値以上となった場合、リリー
フバルブを開放し、高圧液冷媒の一部を低圧側にバイパ
スさせることにより、冷媒回路を循環する冷媒量を減ら
さずに、冷凍能力の低下を防止することができると共
に、バイパス路の一端を、膨張弁と二方弁との接続配管
に接続することにより、圧縮機で発生する振動の影響を
前記バイパス路が受けずにすみ、これを構成する配管へ
の亀裂発生等を防止できる空気調和機となる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an air conditioner, and more particularly, to a refrigerant in an outdoor heat exchanger during a cooling operation at a high outdoor temperature. The present invention relates to a configuration of a refrigerant circuit that can suppress a decrease in the amount of condensate and prevent a decrease in refrigeration capacity. 2. Description of the Related Art As shown in FIG. 2A, a conventional air conditioner includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Are sequentially connected to form a refrigerant circuit. During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and transfers heat to the air flowing around the outdoor heat exchanger 3. Release and condense. The condensed refrigerant expands by passing through the expansion valve 4 and has a low temperature and low pressure, flows into the indoor heat exchanger 5, absorbs heat in the indoor heat exchanger 5, and evaporates. The refrigerant is returned to the compressor 1 through a four-way valve 2. [0003] However, for example, when the outside temperature in the Middle East region is 4
When the above-described air conditioner is operated in an environment exceeding 0 ° C., since high-temperature air flows around the outdoor heat exchanger 3, heat exchange efficiency in the outdoor heat exchanger 3 is reduced, and refrigerant The amount of condensation decreases. As a result, the high-pressure gas-phase refrigerant returns to the compressor 1 via the indoor heat exchanger 5 and the four-way valve 2, and the pressure in the compressor 1 increases. If the pressure rises above a certain level, the high-pressure shell type compressor 1 may be damaged. Therefore, the pressure sensor 22 provided on the discharge pipe side operates to stop the compressor 1 for a predetermined time. It has become. [0006] As means for preventing a pressure increase in the compressor 1, as shown in FIG. 6 (B), between the downstream side of the outdoor heat exchanger 3 and the compressor 1. An injection line 20 having a capillary tube 21 is provided, and the liquid-phase refrigerant flowing out of the outdoor heat exchanger 3 is returned to the compressor 1 by the injection line 20, thereby cooling the compressor 1. , To prevent an abnormal rise in pressure. However, the above-described pressure sensor 2
The method of stopping the compressor 1 by 2 causes discomfort to the user by interrupting the cooling operation, and when the injection pipe 20 is provided, when the cooling operation is performed at a relatively low temperature, Since the liquid-phase refrigerant directly flows into the compressor 1, the compressor 1 may be damaged by liquid compression. SUMMARY OF THE INVENTION In view of the above problems, the present invention prevents a decrease in refrigeration capacity without reducing the amount of refrigerant flowing through a refrigerant circuit during cooling operation at a high outside temperature. It is an object of the present invention to provide an air conditioner that can perform such operations. [0007] In order to solve the above problems, the present invention provides a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and an accumulator. Are sequentially connected to form a refrigerant circuit,
A bypass including a relief valve is provided in parallel with the expansion valve, and when a pressure difference between both ends of the expansion valve becomes equal to or greater than a predetermined value during a cooling operation, the relief valve is opened and one of the high-pressure liquid refrigerant is released. The part is bypassed to the low pressure side. Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention. In the figure, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, and an accumulator 6 are sequentially connected, while being connected in parallel between both sides of the expansion valve 4. A bypass circuit 8 having a relief valve 7 is provided to constitute a refrigerant circuit. A two-way valve 9 is provided between the expansion valve 4 and the indoor heat exchanger 5.
And the four-way valve 2 are provided with three-way valves 10, respectively.
The outdoor unit and the indoor unit are connected by piping. Next, the flow of the refrigerant in the refrigerant circuit will be described. During the cooling operation, the refrigerant flows in the direction of the solid line arrow in FIG. 1, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 via the four-way valve 2, The heat is released and condensed in the heat exchanger 3. The condensed refrigerant passes through the expansion valve 4 and becomes low temperature and low pressure, flows into the indoor heat exchanger 5, absorbs heat in the indoor heat exchanger 5 and evaporates, and the evaporated refrigerant passes through the four-way valve 2 The refrigerant is returned to the compressor 1 through the compressor. The relief valve 7 connected to the bypass passage 8 is closed during a normal cooling and heating operation, but has a pressure difference between both sides of the expansion valve 4 during a cooling operation, that is, the outdoor heat exchanger 3. When the pressure difference between the high-pressure liquid refrigerant that has exited and the low-pressure two-phase refrigerant that has passed through the expansion valve 4 becomes greater than or equal to a predetermined value, it is automatically opened by the operation of a built-in spring. At the time of cooling operation at a high outdoor temperature, high-temperature air flows around the outdoor heat exchanger 3 and the heat exchange efficiency in the outdoor heat exchanger 3 is reduced. Although the pressure of the exchanger 3 increases, when the pressure difference between both sides of the expansion valve 4 becomes equal to or more than a predetermined value, the relief valve 7 is opened as described above. When the relief valve 7 is opened, the high-pressure liquid refrigerant that has exited the outdoor heat exchanger 3 is released to the low-pressure two-phase refrigerant, and the refrigeration capacity is reduced without reducing the amount of refrigerant circulating in the refrigerant circuit. Can be prevented. Further, by connecting one end of the bypass passage 8 to a connection pipe between the expansion valve 4 and the two-way valve 9, the bypass passage 8 receives the influence of vibration generated in the compressor 1. This makes it possible to prevent the occurrence of cracks and the like in the pipes constituting the pipe. As described above, a bypass circuit 8 provided with a relief valve 7 in parallel is provided between both sides of the expansion valve 4 to constitute a refrigerant circuit, and the cooling operation of the expansion valve 4 is performed during a cooling operation at a high outside air temperature. If the pressure difference between both sides exceeds a specified value,
By opening the relief valve 7 and bypassing a part of the high-pressure liquid refrigerant to the low-pressure side, it is possible to prevent a decrease in refrigeration capacity without reducing the amount of refrigerant circulating in the refrigerant circuit, 8 is connected to a connection pipe between the expansion valve 4 and the two-way valve 9,
The influence of the vibration generated in the compressor 1 is reduced by the bypass passage 8.
The air conditioner can prevent the occurrence of cracks in the piping that constitutes the air conditioner. As described above, according to the present invention, a bypass circuit having a relief valve is provided in parallel between both sides of the expansion valve to form a refrigerant circuit, and the refrigerant circuit expands during cooling operation at a high outside air temperature. When the pressure difference between both sides of the valve becomes equal to or more than a predetermined value, the relief valve is opened and a part of the high-pressure liquid refrigerant is bypassed to the low-pressure side, so that the amount of refrigerant circulating in the refrigerant circuit is not reduced, and the refrigeration is performed. It is possible to prevent a decrease in capacity, and by connecting one end of the bypass to the connection pipe between the expansion valve and the two-way valve, the bypass is not affected by the vibration generated in the compressor. Thus, the air conditioner can prevent cracks from occurring in the pipes constituting the air conditioner.

【図面の簡単な説明】 【図1】本発明による空気調和機の冷媒回路図である。 【図2】(A)及び,(B)は従来例による空気調和機
の冷媒回路図である。 【符号の説明】 1 圧縮機 2 四方弁 3 室外側熱交換器 4 膨張弁 5 室内側熱交換器 6 アキュームレータ 7 リリーフバルブ 8 バイパス路 9 二方弁 10 三方弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the present invention. FIGS. 2A and 2B are refrigerant circuit diagrams of an air conditioner according to a conventional example. [Description of Signs] 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Expansion valve 5 Indoor heat exchanger 6 Accumulator 7 Relief valve 8 Bypass path 9 Two-way valve 10 Three-way valve

Claims (1)

【特許請求の範囲】 【請求項1】 圧縮機と、四方弁と、室外側熱交換器
と、膨張弁と、室内側熱交換器と、アキュームレータと
を順次接続して冷媒回路を構成してなる空気調和機にお
いて、 前記膨張弁と並列に、リリーフバルブを備えたバイパス
路を設け、冷房運転時に前記膨張弁の両端間の圧力差が
所定値以上となった場合、前記リリーフバルブを開放
し、高圧液冷媒の一部を低圧側にバイパスさせるよう制
御してなることを特徴とする空気調和機。
Claims 1. A refrigerant circuit is configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and an accumulator. In the air conditioner, a bypass including a relief valve is provided in parallel with the expansion valve, and when a pressure difference between both ends of the expansion valve becomes equal to or more than a predetermined value during a cooling operation, the relief valve is opened. An air conditioner characterized in that a part of a high-pressure liquid refrigerant is controlled to be bypassed to a low-pressure side.
JP2002145595A 2002-05-21 2002-05-21 Air conditioner Pending JP2003336914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145595A JP2003336914A (en) 2002-05-21 2002-05-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145595A JP2003336914A (en) 2002-05-21 2002-05-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003336914A true JP2003336914A (en) 2003-11-28

Family

ID=29704835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145595A Pending JP2003336914A (en) 2002-05-21 2002-05-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003336914A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257110A (en) * 2004-03-09 2005-09-22 Saginomiya Seisakusho Inc Refrigerating cycle device and electric control valve
JP2007163080A (en) * 2005-12-16 2007-06-28 Fujitsu General Ltd Air conditioner
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
JP2007271180A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
WO2010116901A1 (en) 2009-04-06 2010-10-14 株式会社鷺宮製作所 Pressure-operated control valve
JP2012197958A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus
US12007149B2 (en) 2021-08-20 2024-06-11 Carrier Corporation Expansion control system on a centrifugal chiller with an integral subcooler

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257110A (en) * 2004-03-09 2005-09-22 Saginomiya Seisakusho Inc Refrigerating cycle device and electric control valve
JP2007163080A (en) * 2005-12-16 2007-06-28 Fujitsu General Ltd Air conditioner
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
JP2007271180A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner
WO2010116901A1 (en) 2009-04-06 2010-10-14 株式会社鷺宮製作所 Pressure-operated control valve
US8678349B2 (en) 2009-04-06 2014-03-25 Kabushiki Kaisha Saginomiya Seisakusho Pressure-operated control valve
JP2012197958A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus
US12007149B2 (en) 2021-08-20 2024-06-11 Carrier Corporation Expansion control system on a centrifugal chiller with an integral subcooler

Similar Documents

Publication Publication Date Title
US8302413B2 (en) Air conditioner
JP4797727B2 (en) Refrigeration equipment
US11143421B2 (en) Sequential hot gas reheat system in an air conditioning unit
JP5235925B2 (en) Refrigeration equipment
JP2005076933A (en) Refrigeration cycle system
JP2007271181A (en) Air conditioner
JP5414598B2 (en) Air conditioner
JP2003336914A (en) Air conditioner
JP2004226025A (en) Air-conditioner
JP2009228975A (en) Remote condenser type air conditioner
JPH04324075A (en) Air conditioning apparatus
JPH1163709A (en) Air conditioner
JP7496938B2 (en) Air Conditioning Equipment
JPH08166183A (en) Air-conditioning equipment
JP2007163080A (en) Air conditioner
WO2023144902A1 (en) Air conditioner and air conditioner control method
KR100591323B1 (en) Heat pump type air conditioner
JP2007271180A (en) Air conditioner
JP2013217574A (en) Air conditioner
JP2007255861A (en) Multi-chamber type air conditioner
JP2005042980A (en) Heat accumulating type air conditioner
JP2003156258A (en) Air-conditioner
JPH01123965A (en) Air conditioner
JPH01127870A (en) Air conditioner
JPS6322463Y2 (en)