JP2002243296A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002243296A
JP2002243296A JP2001042764A JP2001042764A JP2002243296A JP 2002243296 A JP2002243296 A JP 2002243296A JP 2001042764 A JP2001042764 A JP 2001042764A JP 2001042764 A JP2001042764 A JP 2001042764A JP 2002243296 A JP2002243296 A JP 2002243296A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat exchanger
refrigerant pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001042764A
Other languages
Japanese (ja)
Inventor
Atsushi Koizumi
淳 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2001042764A priority Critical patent/JP2002243296A/en
Publication of JP2002243296A publication Critical patent/JP2002243296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance heat transfer rate by changing the flow speed of a refrigerant in an outdoor heat exchanger and an indoor heat exchanger. SOLUTION: An air conditioner comprises three systems of refrigerant flow passages 4a, 4b and 4c provided in the outdoor heat exchanger 4, and three systems of refrigerant flow passages 6a, 6b and 6c provided in the indoor heat exchanger 6. The conditioner is further provided with a first solenoid ON-OFF valve in a first bypass pipe 12 connected to one side of the outdoor heat exchanger 4, and a second solenoid ON-OFF valve 8 in a second bypass pipe 14 connected to the other side. A check valve 9 and a check valve 10 are provided respectively on a fourth bypass pipe 18 connected to one side of the heat exchanger 6, and a third bypass pipe 16 connected to the other side. In refrigerant operation, the flow speed of the refrigerant is increased in the outdoor heat exchanger 4 and the flow speed of the refrigerant is decreased in the indoor heat exchanger so as to raise heat transfer rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機に係わ
り、より詳細には、室内熱交換器と室外熱交換器とに設
けられた複数の冷媒流路の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to a structure of a plurality of refrigerant passages provided in an indoor heat exchanger and an outdoor heat exchanger.

【0002】[0002]

【従来の技術】従来の空気調和機は冷媒回路を、例えば
図4で示すように、圧縮機1と四方弁2と室外熱交換器
31と膨張弁5と室内熱交換器32とを順次接続して冷
凍サイクルを構成している。前記室外熱交換器31には
冷媒流路31aと冷媒流路31bとが設けられ、また前
記室内熱交換器32に冷媒流路32aと冷媒流路32b
とが設けられており、冷房運転時、前記圧縮機1から吐
出された冷媒は、前記四方弁2を介して前記室外熱交換
器31に流入し、同室外熱交換器31で熱を放出して凝
縮し、続いて前記膨張弁5を介して前記室内熱交換器3
2に流入し、同室内熱交換器32で蒸発して熱を吸収し
前記四方弁2を介して前記圧縮機1に還流するようにな
っている。暖房運転時は、前記圧縮機1から吐出された
冷媒は前記四方弁2を介して前記室内熱交換器32に流
入し、同室内熱交換器32で熱を放出して凝縮し、続い
て前記膨張弁5を介して前記室外熱交換器31に流入
し、同室外熱交換器31で熱を吸収して蒸発し、前記四
方弁2を介して前記圧縮機1に還流するようになってい
る。
2. Description of the Related Art In a conventional air conditioner, a compressor circuit, a four-way valve 2, an outdoor heat exchanger 31, an expansion valve 5, and an indoor heat exchanger 32 are sequentially connected as shown in FIG. To form a refrigeration cycle. The outdoor heat exchanger 31 is provided with a refrigerant channel 31a and a refrigerant channel 31b, and the indoor heat exchanger 32 is provided with a refrigerant channel 32a and a refrigerant channel 32b.
During the cooling operation, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 31 via the four-way valve 2 and releases heat in the outdoor heat exchanger 31. Condensed, and then through the expansion valve 5, the indoor heat exchanger 3
2, is evaporated in the indoor heat exchanger 32, absorbs heat, and is returned to the compressor 1 through the four-way valve 2. During the heating operation, the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 32 through the four-way valve 2 and releases heat in the indoor heat exchanger 32 to be condensed. The heat flows into the outdoor heat exchanger 31 through the expansion valve 5, absorbs heat in the outdoor heat exchanger 31, evaporates, and returns to the compressor 1 through the four-way valve 2. .

【0003】しかしながら、前記室外熱交換器31と前
記室内熱交換器32とは同数の冷媒流路を備えており、
冷房運転時あるいは暖房運転時において、前記冷媒流路
31a及び前記冷媒流路31bと、前記冷媒流路32a
及び前記冷媒流路32bとを流れる冷媒の流量及び流速
はほぼ同等である。冷房運転時において、前記室外熱交
換器31を流れる冷媒は、凝縮して液化する過程で流速
が大きい方が熱伝達率が良く、前記室内熱交換器32を
流れる冷媒は、蒸発する過程で流速が小さい方が前記冷
媒流路32a及び前記冷媒流路32b内での圧力損失が
小さく熱伝達率が向上する。これらにより前記室外熱交
換器31及び前記室内熱交換器32を流れる冷媒の流量
及び流速を変化させて冷房運転あるいは暖房運転の効率
を向上させる空気調和機が望まれていた。
[0003] However, the outdoor heat exchanger 31 and the indoor heat exchanger 32 have the same number of refrigerant flow paths,
During the cooling operation or the heating operation, the refrigerant flow path 31a and the refrigerant flow path 31b and the refrigerant flow path 32a
The flow rate and the flow rate of the refrigerant flowing through the refrigerant flow path 32b are substantially the same. During the cooling operation, the refrigerant flowing through the outdoor heat exchanger 31 has a higher heat transfer coefficient in the process of condensing and liquefying, and has a higher heat transfer coefficient. The refrigerant flowing in the indoor heat exchanger 32 has a higher flow rate in the process of evaporating. Is smaller, the pressure loss in the refrigerant passage 32a and the refrigerant passage 32b is smaller, and the heat transfer coefficient is improved. Accordingly, an air conditioner that improves the efficiency of the cooling operation or the heating operation by changing the flow rate and the flow velocity of the refrigerant flowing through the outdoor heat exchanger 31 and the indoor heat exchanger 32 has been desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点に
鑑み、室外熱交換器及び室内熱交換器に備えられた複数
の冷媒流路を流れる冷媒の流速を、冷房運転時、暖房運
転時あるいは除霜運転時に切換えて、冷房成績係数、暖
房成績係数及び除霜効率を向上させた空気調和機を提供
することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method for controlling the flow rate of refrigerant flowing through a plurality of refrigerant channels provided in an outdoor heat exchanger and an indoor heat exchanger during cooling operation and heating operation. Alternatively, it is an object of the present invention to provide an air conditioner that is switched at the time of a defrosting operation to improve a cooling coefficient of performance, a heating coefficient of performance, and defrosting efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するため、圧縮機と、四方弁と、室外熱交換器と、膨張
弁と、室内熱交換器とを順次接続し冷媒回路を構成して
なる空気調和機において、前記室外熱交換器に、上下方
向に3系統の第一冷媒管、第二冷媒管及び第三冷媒管を
設けるとともに、前記第一冷媒管と前記第二冷媒管とを
前記膨張弁側で第一U字管により接続し、前記第二冷媒
管と前記第三冷媒管とを前記四方弁側で第二U字管によ
り接続し、前記室内熱交換器に上下方向に3系統の第四
冷媒管、第五冷媒管及び第六冷媒管を設けるとともに、
前記第四冷媒管と前記第五冷媒管とを前記膨張弁側で第
三U字管により接続し、前記第五冷媒管と前記第六冷媒
管とを前記四方弁側で第四U字管により接続し、前記第
一冷媒管を前記四方弁に第一配管により接続するととも
に、同第一配管と前記第二U字管とに第一電磁開閉弁を
備えた第一バイパス管を接続し、前記第三冷媒管を前記
膨張弁に第二配管により接続するとともに、同第二配管
と前記第一U字管とに第二電磁開閉弁を備えた第二バイ
パス管を接続し、前記第六冷媒管と前記膨張弁とを第三
配管により接続するとともに、同第三配管と前記第三U
字管とに、前記膨張弁が上流側となる逆止弁を備えた第
三バイパス管を接続し、前記第四冷媒管を前記四方弁に
第四配管により接続するとともに、同第四配管と前記第
四U字管とに、前記室内熱交換器が上流側となる逆止弁
を備えた第四バイパス管を接続し、冷房運転時、前記四
方弁を、同四方弁から前記室外熱交換器に向けて冷媒が
流れるように切換えるとともに、前記第一電磁開閉弁
と、前記第二電磁開閉弁とを夫々閉じ、前記室外熱交換
器に流入した冷媒が、前記第一冷媒管から前記第二冷媒
管を経て前記第三冷媒管に順次流れ、前記膨張弁から前
記室内熱交換器に流入した冷媒が前記第四冷媒管、前記
第五冷媒管及び前記第六冷媒管を夫々平行して流れるこ
とにより、前記室外熱交換器を流れる冷媒の流速が前記
室内熱交換器を流れる冷媒の流速より大きくなるように
して、前記室外熱交換器での熱交換量を増加させてなる
構成となっている。
According to the present invention, a refrigerant circuit is constructed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger. In the air conditioner, the outdoor heat exchanger is provided with three systems of a first refrigerant pipe, a second refrigerant pipe, and a third refrigerant pipe in a vertical direction, and the first refrigerant pipe and the second refrigerant pipe are provided. Are connected by a first U-shaped pipe on the expansion valve side, the second refrigerant pipe and the third refrigerant pipe are connected by a second U-shaped pipe on the four-way valve side, and are vertically connected to the indoor heat exchanger. Along with providing three systems of fourth refrigerant pipe, fifth refrigerant pipe and sixth refrigerant pipe in the direction,
The fourth refrigerant pipe and the fifth refrigerant pipe are connected by a third U-shaped pipe on the expansion valve side, and the fifth refrigerant pipe and the sixth refrigerant pipe are connected by a fourth U-shaped pipe on the four-way valve side. And the first refrigerant pipe is connected to the four-way valve by a first pipe, and the first pipe and the second U-shaped pipe are connected to a first bypass pipe having a first solenoid on-off valve. Connecting the third refrigerant pipe to the expansion valve by a second pipe, connecting a second bypass pipe provided with a second electromagnetic on-off valve to the second pipe and the first U-shaped pipe, Six refrigerant pipes and the expansion valve are connected by a third pipe, and the third pipe and the third U
And a third bypass pipe provided with a check valve in which the expansion valve is on the upstream side, and the fourth refrigerant pipe is connected to the four-way valve by a fourth pipe. The fourth U-shaped pipe is connected to a fourth bypass pipe provided with a check valve in which the indoor heat exchanger is on the upstream side. During cooling operation, the four-way valve is connected to the outdoor heat exchanger through the four-way valve. While switching so that the refrigerant flows toward the device, the first solenoid on-off valve and the second solenoid on-off valve are each closed, and the refrigerant flowing into the outdoor heat exchanger flows from the first refrigerant pipe through the first refrigerant pipe. The refrigerant sequentially flows into the third refrigerant pipe via the two refrigerant pipes, and the refrigerant flowing into the indoor heat exchanger from the expansion valve is parallel to the fourth refrigerant pipe, the fifth refrigerant pipe, and the sixth refrigerant pipe, respectively. By flowing, the flow rate of the refrigerant flowing through the outdoor heat exchanger flows through the indoor heat exchanger. Set to be larger than the flow rate of the coolant, which is to become increasing constituting the heat exchange amount at the outdoor heat exchanger.

【0006】また、暖房運転時、前記四方弁を、同四方
弁から前記室内熱交換器に向けて冷媒が流れるように切
換えるとともに、前記第一電磁開閉弁と、前記第二電磁
開閉弁とを夫々開放し、前記室内熱交換器に流入した冷
媒が、前記第四冷媒管から前記第五冷媒管を経て前記第
六冷媒管に順次流れ、前記膨張弁から前記室外熱交換器
に流入した冷媒が前記第一冷媒管、前記第二冷媒管及び
前記第三冷媒管を夫々平行して流れることにより、前記
室内熱交換器での熱交換量を増加させてなる構成となっ
ている。
In the heating operation, the four-way valve is switched so that the refrigerant flows from the four-way valve toward the indoor heat exchanger, and the first electromagnetic on-off valve and the second electromagnetic on-off valve are switched. Each of the refrigerants opened and the refrigerant flowing into the indoor heat exchanger flows sequentially from the fourth refrigerant pipe through the fifth refrigerant pipe to the sixth refrigerant pipe, and flows from the expansion valve into the outdoor heat exchanger. Flows in parallel through the first refrigerant pipe, the second refrigerant pipe, and the third refrigerant pipe, thereby increasing the amount of heat exchange in the indoor heat exchanger.

【0007】更に、除霜運転時、前記四方弁を、同四方
弁から前記室外熱交換器に向けて冷媒が流れるように切
換えるとともに、前記第一電磁開閉弁と、前記第二電磁
開閉弁とを夫々開放し、前記室外熱交換器に流入した冷
媒が、前記第一冷媒管、前記第二冷媒管及び前記第三冷
媒管を夫々平行して流れ、前記膨張弁から前記室内熱交
換器に流入した冷媒が前記第四冷媒管、前記第五冷媒管
及び前記第六冷媒管を夫々平行して流れる構成となって
いる。
Further, during the defrosting operation, the four-way valve is switched so that the refrigerant flows from the four-way valve toward the outdoor heat exchanger, and the first electromagnetic on-off valve and the second electromagnetic on-off valve are switched. Respectively, the refrigerant flowing into the outdoor heat exchanger flows in parallel through the first refrigerant pipe, the second refrigerant pipe, and the third refrigerant pipe, respectively, from the expansion valve to the indoor heat exchanger. The inflowing refrigerant flows in the fourth refrigerant pipe, the fifth refrigerant pipe, and the sixth refrigerant pipe in parallel.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいた実施例として詳細に説明する。図1は
本発明による空気調和機の冷媒回路図であり、図2
(A)は冷房運転時の冷媒の流れを示す冷媒回路図であ
り、図2(B)は暖房運転時の冷媒の流れを示す冷媒回
路図である。また、図3(A)は除霜運転時の冷媒の流
れを示す冷媒回路図であり、図3(B)は夫々の運転時
における電磁開閉弁の開閉状態を示す図である。本発明
による空気調和機は、図1で示すように、圧縮機1と、
四方弁2と、室外熱交換器4と、膨張弁5と、室内熱交
換器6とアキュームレータ3とを順次接続して冷媒回路
を構成し、前記室外熱交換器4に上下方向に3系統の第
一冷媒管4a、第二冷媒管4b及び第三冷媒管4cを設
けるとともに、前記第一冷媒管4aと前記第二冷媒管4
bとを前記膨張弁5側で第一U字管4dにより接続し、
前記第二冷媒管4bと前記第三冷媒管4cとを前記四方
弁2側で第二U字管4eにより接続している。また、前
記室内熱交換器6に上下方向に3系統の第四冷媒管6
a、第五冷媒管6b及び第六冷媒管6cを設けるととも
に、前記第四冷媒管6aと前記第五冷媒管6bとを前記
膨張弁5側で第三U字管6dにより接続し、前記第五冷
媒管6bと前記第六冷媒管6cとを前記四方弁2側で第
四U字管6eにより接続している。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the present invention, and FIG.
FIG. 2A is a refrigerant circuit diagram illustrating a flow of a refrigerant during a cooling operation, and FIG. 2B is a refrigerant circuit diagram illustrating a flow of a refrigerant during a heating operation. FIG. 3A is a refrigerant circuit diagram showing the flow of the refrigerant during the defrosting operation, and FIG. 3B is a diagram showing the open / closed state of the electromagnetic on-off valve during each operation. The air conditioner according to the present invention includes a compressor 1 as shown in FIG.
The four-way valve 2, the outdoor heat exchanger 4, the expansion valve 5, the indoor heat exchanger 6, and the accumulator 3 are sequentially connected to form a refrigerant circuit, and the outdoor heat exchanger 4 is vertically connected to three systems. A first refrigerant pipe 4a, a second refrigerant pipe 4b, and a third refrigerant pipe 4c are provided, and the first refrigerant pipe 4a and the second refrigerant pipe 4c are provided.
b on the expansion valve 5 side by a first U-shaped pipe 4d,
The second refrigerant pipe 4b and the third refrigerant pipe 4c are connected by a second U-shaped pipe 4e on the four-way valve 2 side. Further, the indoor heat exchanger 6 is provided with three fourth refrigerant pipes 6 in the vertical direction.
a, a fifth refrigerant pipe 6b and a sixth refrigerant pipe 6c are provided, and the fourth refrigerant pipe 6a and the fifth refrigerant pipe 6b are connected by a third U-shaped pipe 6d on the expansion valve 5 side. The fifth refrigerant pipe 6b and the sixth refrigerant pipe 6c are connected by a fourth U-shaped pipe 6e on the four-way valve 2 side.

【0009】前記四方弁3と前記室外熱交換器4の前記
第一冷媒管4aとは第一配管11により接続され、同第
一配管11と、前記第二U字管4eとには第一電磁開閉
弁7を備えた第一バイパス管12が接続され、前記膨張
弁5と前記第三冷媒管4cとは第二配管13により接続
され、同第二配管13と前記第一U字管4dとには第二
電磁開閉弁8を備えた第二バイパス管14が接続されて
いる。前記膨張弁5と前記室内熱交換器6の前記第六冷
媒管6cは第三配管15により接続され、同第三配管1
5と前記第三U字管6dとには、前記膨張弁5が上流側
となる逆止弁10を備えた第三バイパス管16が接続さ
れ、前記四方弁2と前記室内熱交換器6の前記第四冷媒
管6aとは第四配管17により接続され、同第四配管1
7と前記第四U字管6eとには、前記室内熱交換器6が
上流側となる逆止弁9を備えた第四バイパス管18が接
続されている。
The four-way valve 3 and the first refrigerant pipe 4a of the outdoor heat exchanger 4 are connected by a first pipe 11, and the first pipe 11 and the second U-shaped pipe 4e have a first pipe. A first bypass pipe 12 having an electromagnetic on-off valve 7 is connected, the expansion valve 5 and the third refrigerant pipe 4c are connected by a second pipe 13, and the second pipe 13 and the first U-shaped pipe 4d. Is connected to a second bypass pipe 14 having a second electromagnetic on-off valve 8. The expansion valve 5 and the sixth refrigerant pipe 6 c of the indoor heat exchanger 6 are connected by a third pipe 15.
5 and the third U-shaped pipe 6d, a third bypass pipe 16 provided with a check valve 10 in which the expansion valve 5 is on the upstream side is connected, and the four-way valve 2 and the indoor heat exchanger 6 are connected to each other. The fourth refrigerant pipe 6a is connected to the fourth refrigerant pipe 6a by a fourth pipe 17,
A fourth bypass pipe 18 having a check valve 9 in which the indoor heat exchanger 6 is on the upstream side is connected to 7 and the fourth U-shaped pipe 6e.

【0010】次に、冷房運転時の冷媒の流れについて説
明をする。冷房運転時、図3(B)で示すように前記第
一電磁開閉弁7と前記第二電磁開閉弁8とは閉じられ
る。前記圧縮機1から吐出された冷媒は、図2(A)で
示すように、前記四方弁2を介し、前記配管11を通り
前記第一バイパス管12に流入するが、前記第一電磁開
閉弁7が閉じられているため流れが遮断される。前記第
一配管11から前記第一冷媒管4aに流入した冷媒は、
前記第二電磁開閉弁8が閉じられているため、前記第一
U字管4dを介して前記第二冷媒管4bに流入し、前記
第一電磁開閉弁7が閉じられているため、前記第二U字
管4eを介して前記第三冷媒管4cに流入し、これらで
熱を放出して凝縮する。凝縮した冷媒は続いて第二配管
13を通り前記膨張弁5により減圧され低圧となり、前
記三配管15と、前記第三バイパス管16とから前記第
四冷媒管6a、前記第五冷媒管6b及び前記第六冷媒管
6cとに夫々流入し、これらを平行して流れ、前記第四
バイパス管18と前記第四配管17とを通り、前記四方
弁2を介して前記圧縮機1に還流する。
Next, the flow of the refrigerant during the cooling operation will be described. During the cooling operation, the first solenoid on-off valve 7 and the second solenoid on-off valve 8 are closed as shown in FIG. The refrigerant discharged from the compressor 1 flows into the first bypass pipe 12 through the pipe 11 through the four-way valve 2 as shown in FIG. The flow is interrupted because 7 is closed. The refrigerant flowing into the first refrigerant pipe 4a from the first pipe 11 is
Since the second solenoid on-off valve 8 is closed, it flows into the second refrigerant pipe 4b via the first U-shaped pipe 4d, and the first solenoid on-off valve 7 is closed. The refrigerant flows into the third refrigerant pipe 4c via the two U-shaped pipes 4e, and releases heat and condenses them. The condensed refrigerant subsequently passes through the second pipe 13 and is reduced in pressure by the expansion valve 5 to a low pressure. From the three pipes 15 and the third bypass pipe 16, the fourth refrigerant pipe 6a, the fifth refrigerant pipe 6b and The refrigerant flows into the sixth refrigerant pipe 6c, respectively, flows in parallel, flows through the fourth bypass pipe 18 and the fourth pipe 17, and returns to the compressor 1 via the four-way valve 2.

【0011】上記したように冷房運転時、前記室外熱交
換器4において、冷媒は前記第一冷媒管4aから前記第
二冷媒管4bを経て前記第三冷媒管4cまで管路の長い
伝熱管内を流れることにより流速が増加し、これにより
前記室外熱交換器4での熱伝達率が向上する。また、前
記室内熱交換器6では、冷媒は前記第四冷媒管6a、前
記第五冷媒管6b及び前記第六冷媒管6cを平行して流
れることにより流速が低下し、圧力損失が小さくなるこ
とから熱伝達率が向上するようになっている。
As described above, during the cooling operation, in the outdoor heat exchanger 4, refrigerant flows from the first refrigerant pipe 4a through the second refrigerant pipe 4b to the third refrigerant pipe 4c in a long heat transfer pipe. , The flow velocity increases, thereby improving the heat transfer coefficient in the outdoor heat exchanger 4. Further, in the indoor heat exchanger 6, the refrigerant flows in parallel through the fourth refrigerant pipe 6a, the fifth refrigerant pipe 6b, and the sixth refrigerant pipe 6c, so that the flow velocity is reduced and the pressure loss is reduced. The heat transfer coefficient is improved.

【0012】次に、暖房運転時の冷媒の流れについて説
明をする。暖房運転時、図3(B)で示すように前記第
一電磁開閉弁7と前記第二電磁開閉弁8とは開けられ
る。前記圧縮機1から吐出された冷媒は、図2(B)で
示すように、前記四方弁2を介し、前記第四配管17を
通り前記室内熱交換器6の第四冷媒管6aに流入する。
前記第四バイパス管18に流入した冷媒は前記逆止弁9
により流れが遮断される。前記第四冷媒管6aに流入し
た冷媒は、前記第五冷媒管6bと前記第六冷媒管6cと
を通り、前記第三配管15から前記膨張弁5に流入し減
圧され、続いて前記第二配管13と、前記第二バイパス
管14とに分岐して前記室外熱交換器4の前記第一冷媒
管4a、前記第二冷媒管4b及び前記第三冷媒管4cに
夫々流入する。これらで熱交換した冷媒は前記第一配管
11と前記第一バイパス管12とを通り、前記四方弁2
を介して前記圧縮機1に還流する。
Next, the flow of the refrigerant during the heating operation will be described. During the heating operation, the first solenoid on-off valve 7 and the second solenoid on-off valve 8 are opened as shown in FIG. The refrigerant discharged from the compressor 1 flows into the fourth refrigerant pipe 6a of the indoor heat exchanger 6 through the fourth pipe 17 via the four-way valve 2 as shown in FIG. 2 (B). .
The refrigerant flowing into the fourth bypass pipe 18 is supplied to the check valve 9.
Blocks the flow. The refrigerant flowing into the fourth refrigerant pipe 6a passes through the fifth refrigerant pipe 6b and the sixth refrigerant pipe 6c, flows into the expansion valve 5 from the third pipe 15, and is decompressed. It branches into a pipe 13 and the second bypass pipe 14 and flows into the first refrigerant pipe 4a, the second refrigerant pipe 4b, and the third refrigerant pipe 4c of the outdoor heat exchanger 4, respectively. The refrigerant that has exchanged heat therethrough passes through the first pipe 11 and the first bypass pipe 12 and passes through the four-way valve 2.
To the compressor 1 through the compressor.

【0013】上記したように暖房運転時、前記室内熱交
換器6において、冷媒は前記第四冷媒管6aから前記第
五冷媒管6bを経て前記第六冷媒管6cまで管路の長い
伝熱管内を流れることにより流速が増加し、これにより
前記室内熱交換器6での熱伝達率が向上する。また、前
記室外熱交換器4では、冷媒は前記第一冷媒管4a、前
記第二冷媒管4b及び前記第三冷媒管4cを平行して流
れることにより流速が低下し、圧力損失が小さくなるこ
とから熱伝達率が向上するようになっている。
As described above, during the heating operation, in the indoor heat exchanger 6, refrigerant flows from the fourth refrigerant pipe 6a through the fifth refrigerant pipe 6b to the sixth refrigerant pipe 6c in a long heat transfer pipe. , The flow velocity increases, and thereby the heat transfer coefficient in the indoor heat exchanger 6 improves. In the outdoor heat exchanger 4, the refrigerant flows in the first refrigerant pipe 4a, the second refrigerant pipe 4b, and the third refrigerant pipe 4c in parallel, so that the flow velocity is reduced, and the pressure loss is reduced. The heat transfer coefficient is improved.

【0014】冬場に暖房運転を行なう際、前記室外熱交
換器4に霜が付着している際は暖房運転の前に除霜運転
を行う必要がある。次に、除霜運転時の冷媒の流れにつ
いて説明をする。除霜運転時、図3(B)で示すように
前記第一電磁開閉弁7と前記第二電磁開閉弁8とは開け
られる。前記圧縮機1から吐出された冷媒は、図3
(A)で示すように、前記四方弁2を介し、前記室外熱
交換器4の前記第一冷媒管4a、前記第二冷媒管4b及
び前記第三冷媒管4cに夫々流入し、熱を放出して前記
室外熱交換器4の除霜を行う。熱を放出した冷媒は前記
膨張弁5を介して前記前記第三配管15から前記室内熱
交換器6の前記第四冷媒管6a、前記第五冷媒管6b及
び前記第六冷媒管6cに夫々流入し、前記四方弁2を介
して前記圧縮機1に還流する。
When performing the heating operation in winter, if frost adheres to the outdoor heat exchanger 4, it is necessary to perform the defrosting operation before the heating operation. Next, the flow of the refrigerant during the defrosting operation will be described. During the defrosting operation, the first solenoid on-off valve 7 and the second solenoid on-off valve 8 are opened as shown in FIG. The refrigerant discharged from the compressor 1 is shown in FIG.
As shown in (A), the heat flows into the first refrigerant pipe 4a, the second refrigerant pipe 4b, and the third refrigerant pipe 4c of the outdoor heat exchanger 4 via the four-way valve 2 to release heat. Then, the outdoor heat exchanger 4 is defrosted. The refrigerant that has released the heat flows from the third pipe 15 through the expansion valve 5 into the fourth refrigerant pipe 6a, the fifth refrigerant pipe 6b, and the sixth refrigerant pipe 6c of the indoor heat exchanger 6, respectively. Then, the refrigerant is returned to the compressor 1 through the four-way valve 2.

【0015】上記したように除霜運転時、前記圧縮機1
から吐出された高温高圧の冷媒が、前記室外熱交換器4
の前記第一冷媒管4a、前記第二冷媒管4b及び前記第
三冷媒管4cを平行して流れ、熱を放出することにより
除霜運転の効率が向上するようになっている。
As described above, during the defrosting operation, the compressor 1
High-temperature and high-pressure refrigerant discharged from the outdoor heat exchanger 4
The first refrigerant pipe 4a, the second refrigerant pipe 4b, and the third refrigerant pipe 4c flow in parallel to release heat, thereby improving the efficiency of the defrosting operation.

【0016】[0016]

【発明の効果】以上説明したように、本発明によると、
室外熱交換器と室内熱交換器とに夫々3系統の冷媒流路
を設けるとともに、前記室外熱交換器の両側に接続され
たバイパス管に夫々電磁開閉弁を設け、前記室内熱交換
器の両側に接続されたバイパス管に夫々逆止弁を設け、
冷媒運転時、前記室外熱交換器において冷媒の流速を増
加させ、前記室内熱交換器において冷媒の流速を低下さ
せることにより熱伝達率を向上させ、暖房運転時、前記
室内熱交換器において冷媒の流速を増加させ、前記室外
熱交換器において冷媒の流速を低下させることにより熱
伝達率を向上させて、冷暖房運転または除霜運転の効率
が改善された空気調和機とすることができる。
As described above, according to the present invention,
The outdoor heat exchanger and the indoor heat exchanger are each provided with three refrigerant flow paths, and electromagnetic valves are provided on bypass pipes connected to both sides of the outdoor heat exchanger, respectively. Check valves are provided in the bypass pipes connected to the
During the refrigerant operation, the flow rate of the refrigerant is increased in the outdoor heat exchanger, and the heat transfer rate is improved by decreasing the flow rate of the refrigerant in the indoor heat exchanger. By increasing the flow rate and decreasing the flow rate of the refrigerant in the outdoor heat exchanger, the heat transfer rate is improved, and an air conditioner with improved efficiency of the cooling / heating operation or the defrosting operation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和機の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the present invention.

【図2】(A)は本発明による空気調和機の冷媒運転時
の冷媒の流れを示す冷媒回路図である。(B)は本発明
による空気調和機の暖房運転時の冷媒の流れを示す冷媒
回路図である。
FIG. 2A is a refrigerant circuit diagram showing a flow of a refrigerant during a refrigerant operation of the air conditioner according to the present invention. (B) is a refrigerant circuit diagram showing a refrigerant flow during a heating operation of the air conditioner according to the present invention.

【図3】(A)は本発明による空気調和機の除霜運転時
の冷媒の流れを示す冷媒回路図である。(B)は本発明
による空気調和機の冷媒回路に設けられた電磁開閉弁の
開閉状態を示す図である。
FIG. 3A is a refrigerant circuit diagram showing a refrigerant flow during a defrosting operation of the air conditioner according to the present invention. (B) is a figure which shows the opening / closing state of the solenoid on-off valve provided in the refrigerant circuit of the air conditioner by this invention.

【図4】従来例による空気調和機の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of an air conditioner according to a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 アキュームレータ 4 室外熱交換器 4a 第一冷媒管 4b 第二冷媒管 4c 第三冷媒管 4d 第一U字管 4e 第二U字管 5 膨張弁 6 室内熱交換器 6a 第四冷媒管 6b 第五冷媒管 6c 第六冷媒管 6d 第三U字管 6e 第四U字管 7 第一電磁開閉弁 8 第二電磁開閉弁 9 逆止弁 10 逆止弁 11 第一配管 12 第一バイパス管 13 第二配管 14 第二バイパス管 15 第三配管 16 第三バイパス管 17 第四配管 18 第四バイパス管 Reference Signs List 1 compressor 2 four-way valve 3 accumulator 4 outdoor heat exchanger 4a first refrigerant pipe 4b second refrigerant pipe 4c third refrigerant pipe 4d first U-shaped pipe 4e second U-shaped pipe 5 expansion valve 6 indoor heat exchanger 6a Four refrigerant pipe 6b Fifth refrigerant pipe 6c Sixth refrigerant pipe 6d Third U-shaped pipe 6e Fourth U-shaped pipe 7 First electromagnetic on-off valve 8 Second electromagnetic on-off valve 9 Check valve 10 Check valve 11 First pipe 12 First bypass pipe 13 Second pipe 14 Second bypass pipe 15 Third pipe 16 Third bypass pipe 17 Fourth pipe 18 Fourth bypass pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外熱交換器と、
膨張弁と、室内熱交換器とを順次接続し冷媒回路を構成
してなる空気調和機において、 前記室外熱交換器に、上下方向に3系統の第一冷媒管、
第二冷媒管及び第三冷媒管を設けるとともに、前記第一
冷媒管と前記第二冷媒管とを前記膨張弁側で第一U字管
により接続し、前記第二冷媒管と前記第三冷媒管とを前
記四方弁側で第二U字管により接続し、前記室内熱交換
器に上下方向に3系統の第四冷媒管、第五冷媒管及び第
六冷媒管を設けるとともに、前記第四冷媒管と前記第五
冷媒管とを前記膨張弁側で第三U字管により接続し、前
記第五冷媒管と前記第六冷媒管とを前記四方弁側で第四
U字管により接続し、 前記第一冷媒管を前記四方弁に第一配管により接続する
とともに、同第一配管と前記第二U字管とに第一電磁開
閉弁を備えた第一バイパス管を接続し、前記第三冷媒管
を前記膨張弁に第二配管により接続するとともに、同第
二配管と前記第一U字管とに第二電磁開閉弁を備えた第
二バイパス管を接続し、前記第六冷媒管と前記膨張弁と
を第三配管により接続するとともに、同第三配管と前記
第三U字管とに、前記膨張弁が上流側となる逆止弁を備
えた第三バイパス管を接続し、前記第四冷媒管を前記四
方弁に第四配管により接続するとともに、同第四配管と
前記第四U字管とに、前記室内熱交換器が上流側となる
逆止弁を備えた第四バイパス管を接続し、 冷房運転時、前記四方弁を、同四方弁から前記室外熱交
換器に向けて冷媒が流れるように切換えるとともに、前
記第一電磁開閉弁と、前記第二電磁開閉弁とを夫々閉
じ、前記室外熱交換器に流入した冷媒が、前記第一冷媒
管から前記第二冷媒管を経て前記第三冷媒管に順次流
れ、前記膨張弁から前記室内熱交換器に流入した冷媒が
前記第四冷媒管、前記第五冷媒管及び前記第六冷媒管を
夫々平行して流れることにより、前記室外熱交換器を流
れる冷媒の流速が前記室内熱交換器を流れる冷媒の流速
より大きくなるようにして、前記室外熱交換器での熱交
換量を増加させてなることを特徴とする空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger,
In an air conditioner configured by sequentially connecting an expansion valve and an indoor heat exchanger to form a refrigerant circuit, the outdoor heat exchanger has three first refrigerant pipes in a vertical direction;
A second refrigerant pipe and a third refrigerant pipe are provided, the first refrigerant pipe and the second refrigerant pipe are connected by a first U-shaped pipe on the expansion valve side, and the second refrigerant pipe and the third refrigerant pipe are connected. A pipe is connected to the four-way valve side by a second U-shaped pipe, and the indoor heat exchanger is provided with three systems of a fourth refrigerant pipe, a fifth refrigerant pipe, and a sixth refrigerant pipe in a vertical direction, and A refrigerant pipe and the fifth refrigerant pipe are connected by a third U-shaped pipe on the expansion valve side, and the fifth refrigerant pipe and the sixth refrigerant pipe are connected by a fourth U-shaped pipe on the four-way valve side. Connecting the first refrigerant pipe to the four-way valve by a first pipe, connecting a first bypass pipe provided with a first electromagnetic on-off valve to the first pipe and the second U-shaped pipe, The three refrigerant pipes are connected to the expansion valve by a second pipe, and the second pipe and the first U-shaped pipe are provided with a second solenoid valve. The second bypass pipe is connected, and the sixth refrigerant pipe and the expansion valve are connected by a third pipe, and the third pipe and the third U-shaped pipe have the expansion valve on the upstream side. A third bypass pipe having a check valve is connected, the fourth refrigerant pipe is connected to the four-way valve by a fourth pipe, and the indoor heat exchange is performed between the fourth pipe and the fourth U-shaped pipe. A fourth bypass pipe provided with a check valve on the upstream side of the vessel is connected, and during the cooling operation, the four-way valve is switched so that the refrigerant flows from the four-way valve toward the outdoor heat exchanger. The first solenoid on-off valve and the second solenoid on-off valve are each closed, and the refrigerant flowing into the outdoor heat exchanger flows sequentially from the first refrigerant pipe through the second refrigerant pipe to the third refrigerant pipe. The refrigerant flowing from the expansion valve into the indoor heat exchanger is the fourth refrigerant pipe and the fifth refrigerant. By flowing the pipe and the sixth refrigerant pipe in parallel, the flow rate of the refrigerant flowing through the outdoor heat exchanger is larger than the flow rate of the refrigerant flowing through the indoor heat exchanger. An air conditioner characterized by increasing the amount of heat exchange.
【請求項2】 暖房運転時、前記四方弁を、同四方弁か
ら前記室内熱交換器に向けて冷媒が流れるように切換え
るとともに、前記第一電磁開閉弁と、前記第二電磁開閉
弁とを夫々開放し、前記室内熱交換器に流入した冷媒
が、前記第四冷媒管から前記第五冷媒管を経て前記第六
冷媒管に順次流れ、前記膨張弁から前記室外熱交換器に
流入した冷媒が前記第一冷媒管、前記第二冷媒管及び前
記第三冷媒管を夫々平行して流れることにより、前記室
内熱交換器での熱交換量を増加させてなることを特徴と
する請求項1に記載の空気調和機。
2. During a heating operation, the four-way valve is switched so that refrigerant flows from the four-way valve toward the indoor heat exchanger, and the first electromagnetic on-off valve and the second electromagnetic on-off valve are connected to each other. Each of the refrigerants opened and the refrigerant flowing into the indoor heat exchanger flows sequentially from the fourth refrigerant pipe through the fifth refrigerant pipe to the sixth refrigerant pipe, and flows from the expansion valve into the outdoor heat exchanger. Flowing in parallel through the first refrigerant pipe, the second refrigerant pipe, and the third refrigerant pipe, thereby increasing an amount of heat exchange in the indoor heat exchanger. The air conditioner according to item 1.
【請求項3】 除霜運転時、前記四方弁を、同四方弁か
ら前記室外熱交換器に向けて冷媒が流れるように切換え
るとともに、前記第一電磁開閉弁と、前記第二電磁開閉
弁とを夫々開放し、前記室外熱交換器に流入した冷媒
が、前記第一冷媒管、前記第二冷媒管及び前記第三冷媒
管を夫々平行して流れ、前記膨張弁から前記室内熱交換
器に流入した冷媒が前記第四冷媒管、前記第五冷媒管及
び前記第六冷媒管を夫々平行して流れることを特徴とし
てなる請求項1に記載の空気調和機。
3. During the defrosting operation, the four-way valve is switched so that refrigerant flows from the four-way valve toward the outdoor heat exchanger, and the first electromagnetic on-off valve and the second electromagnetic on-off valve Respectively, the refrigerant flowing into the outdoor heat exchanger flows in parallel through the first refrigerant pipe, the second refrigerant pipe, and the third refrigerant pipe, respectively, from the expansion valve to the indoor heat exchanger. The air conditioner according to claim 1, wherein the inflowing refrigerant flows in parallel through the fourth refrigerant pipe, the fifth refrigerant pipe, and the sixth refrigerant pipe, respectively.
JP2001042764A 2001-02-20 2001-02-20 Air conditioner Pending JP2002243296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042764A JP2002243296A (en) 2001-02-20 2001-02-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042764A JP2002243296A (en) 2001-02-20 2001-02-20 Air conditioner

Publications (1)

Publication Number Publication Date
JP2002243296A true JP2002243296A (en) 2002-08-28

Family

ID=18905019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042764A Pending JP2002243296A (en) 2001-02-20 2001-02-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002243296A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP2012077921A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigeration apparatus
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
WO2012112802A3 (en) * 2011-02-16 2013-09-26 Johnson Controls Technology Company Heat pump system with a flow directing system
US20150047384A1 (en) * 2011-02-16 2015-02-19 Johnson Controls Technology Company Heat pump system with a flow directing system
CN104819590A (en) * 2014-02-03 2015-08-05 东普雷股份有限公司 Refrigeration device and operation method of refrigeration device
KR101566747B1 (en) 2014-04-14 2015-11-13 현대자동차 주식회사 Heat pump system for vehicle
WO2018055740A1 (en) * 2016-09-23 2018-03-29 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2019007558A1 (en) * 2017-07-03 2019-01-10 Audi Ag Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system
WO2020143538A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2020143540A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2021106079A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Refrigeration apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP4647512B2 (en) * 2006-02-13 2011-03-09 東芝キヤリア株式会社 Air conditioner
JP2012077921A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigeration apparatus
US9752803B2 (en) 2011-02-16 2017-09-05 Johnson Controls Technology Company Heat pump system with a flow directing system
US20150047384A1 (en) * 2011-02-16 2015-02-19 Johnson Controls Technology Company Heat pump system with a flow directing system
WO2012112802A3 (en) * 2011-02-16 2013-09-26 Johnson Controls Technology Company Heat pump system with a flow directing system
CN103380335A (en) * 2011-02-16 2013-10-30 江森自控科技公司 Heat pump system with a flow directing system
CN103518107B (en) * 2011-04-25 2015-08-26 松下电器产业株式会社 Refrigerating circulatory device
CN103518107A (en) * 2011-04-25 2014-01-15 松下电器产业株式会社 Refrigeration cycle device
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
JP2012237543A (en) * 2011-04-25 2012-12-06 Panasonic Corp Freezing cycle device
CN104819590A (en) * 2014-02-03 2015-08-05 东普雷股份有限公司 Refrigeration device and operation method of refrigeration device
TWI709723B (en) * 2014-02-03 2020-11-11 日商東普雷股份有限公司 Refrigeration device and operation method of refrigeration device
KR101566747B1 (en) 2014-04-14 2015-11-13 현대자동차 주식회사 Heat pump system for vehicle
US10254019B2 (en) 2014-04-14 2019-04-09 Hyundai Motor Company Heat pump system in vehicle
WO2018055740A1 (en) * 2016-09-23 2018-03-29 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2018055740A1 (en) * 2016-09-23 2019-06-24 三菱電機株式会社 Heat exchanger and refrigeration cycle device
EP3517855A4 (en) * 2016-09-23 2019-10-09 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
WO2019007558A1 (en) * 2017-07-03 2019-01-10 Audi Ag Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system
US11364770B2 (en) 2017-07-03 2022-06-21 Audi Ag Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system
WO2020143540A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2020143538A1 (en) * 2019-01-10 2020-07-16 青岛海尔空调器有限总公司 Heat exchanger and air conditioner
WO2021106079A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Refrigeration apparatus
JPWO2021106079A1 (en) * 2019-11-26 2021-06-03
JP7150198B2 (en) 2019-11-26 2022-10-07 三菱電機株式会社 refrigeration equipment

Similar Documents

Publication Publication Date Title
JP2002243296A (en) Air conditioner
JPH09318206A (en) Heat pump type air conditioner
KR100688168B1 (en) Heat exchanger of air conditioner
JP4288934B2 (en) Air conditioner
JP2002156149A (en) Air conditioner
JP2001099510A (en) Air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
JP2002107012A (en) Air conditioner
JP5071425B2 (en) Branch unit
CN210220276U (en) System capable of supplying cold air, hot water and cold water
JP2000234815A (en) Air-conditioner
JP2002340436A (en) Multi-chamber air conditioner
JP2002089996A (en) Multi-chamber type air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JP2002174469A (en) Multichamber air conditioner
JP2001147057A (en) Air conditioner
CN220506910U (en) Air conditioning system and air conditioner
JP3367649B2 (en) Operation control method of air conditioner
JP2001099470A (en) Air conditioner
JPH11148737A (en) Air conditioner
JP2002156167A (en) Multi-chamber type air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH03177765A (en) Air conditioner
JP2000205684A (en) Air conditioning equipment
JPH10141815A (en) Air conditioner