JP2006017433A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006017433A
JP2006017433A JP2004198213A JP2004198213A JP2006017433A JP 2006017433 A JP2006017433 A JP 2006017433A JP 2004198213 A JP2004198213 A JP 2004198213A JP 2004198213 A JP2004198213 A JP 2004198213A JP 2006017433 A JP2006017433 A JP 2006017433A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004198213A
Other languages
Japanese (ja)
Other versions
JP4452137B2 (en
Inventor
Takahide Ito
隆英 伊藤
Masashi Maeno
政司 前野
So Sato
創 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004198213A priority Critical patent/JP4452137B2/en
Publication of JP2006017433A publication Critical patent/JP2006017433A/en
Application granted granted Critical
Publication of JP4452137B2 publication Critical patent/JP4452137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve efficiency of an air conditioner. <P>SOLUTION: The air conditioner 1 is provided with an outdoor side cycle 8 having a compressor 2, a four way valve 3, an intermediate heat exchanger 6 passing a refrigerant and a conveyance medium through an interior, an expansion valve 5, and an outdoor heat exchanger 4, and an indoor side cycle 13 having a conveyance medium drive unit 10 circulating the conveyance medium pressurized into a supercritical zone, the intermediate heat exchanger 6, and at least one indoor heat exchanger 11. Heat exchange is carried out in the intermediate heat exchanger 6 between the refrigerant circulating in the outdoor side cycle 8, and the conveyance medium circulating in the indoor side cycle 13. A non-azeotropic mixed refrigerant is used as the refrigerant, and the intermediate heat exchanger 6 carries out heat exchange during heating operation between the mixed refrigerant, and the conveyance medium changed by sensible heat as counter currents. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、搬送媒体を超臨界領域に加圧して室内側サイクル内に封入し、この搬送媒体を室内側サイクル内で循環させることにより空調動作を行わせる空気調和装置に関するものである。   The present invention relates to an air conditioner that pressurizes a carrier medium in a supercritical region, encloses the carrier medium in an indoor cycle, and circulates the carrier medium in the indoor cycle to perform an air conditioning operation.

搬送媒体を超臨界領域に加圧して室内側サイクル(「二次側サイクル」あるいは「利用側サイクル」ともいう)内に封入し、この搬送媒体を室内側サイクル内で循環させることにより空調動作を行わせる空気調和装置としては、たとえば、室外側サイクル(「一次側サイクル」あるいは「熱源側サイクル」ともいう)を循環する冷媒との熱交換により、搬送媒体を加熱したりあるいは冷却したりするものがある(たとえば、特許文献1参照)。
特開平9−79674号公報(たとえば、図7参照)
The carrier medium is pressurized to the supercritical region and enclosed in an indoor cycle (also referred to as a “secondary cycle” or “use-side cycle”), and this carrier medium is circulated in the indoor cycle to perform air conditioning operation. As an air conditioner to be performed, for example, a carrier medium is heated or cooled by heat exchange with a refrigerant circulating in an outdoor cycle (also referred to as “primary side cycle” or “heat source side cycle”). (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 9-79684 (see, for example, FIG. 7)

ところで、近年においては地球温暖化等の環境問題に対処するため、空気調和装置においてもそのエネルギー消費効率(COP:Coefficient of performance)をさらに向上させることが望まれている。
しかしながら、上述した従来技術の室外側サイクルにおいては、単段圧縮で運転される圧縮機の冷媒出口温度が一定の場合、冷媒の蒸発温度を一つに設定して運転する必要がある。このため、空調負荷にかかわらず入口圧力と出口圧力との差圧が大きくなり、圧縮機の仕事量が必要以上に大きくなる圧縮運転を行わなければならない運転領域を生じることになるので、換言すれば冷媒を圧縮するのに多くの圧縮機駆動動力を消費することとなるので、結果としてエネルギー消費効率(COP)を低下させるという問題がある。
By the way, in recent years, in order to deal with environmental problems such as global warming, it is desired to further improve the energy consumption efficiency (COP) of the air conditioner.
However, in the above-described outdoor cycle of the prior art, when the refrigerant outlet temperature of a compressor operated by single-stage compression is constant, it is necessary to operate with the refrigerant evaporation temperature set to one. For this reason, the differential pressure between the inlet pressure and the outlet pressure becomes large regardless of the air conditioning load, and an operation region in which the compressor operation must be performed becomes larger than necessary. In other words, a large amount of compressor drive power is consumed to compress the refrigerant, resulting in a problem that energy consumption efficiency (COP) is lowered.

本発明は、上記の事情に鑑みてなされたもので、空気調和装置の効率をさらに向上させることを目的とするものである。   The present invention has been made in view of the above circumstances, and aims to further improve the efficiency of an air conditioner.

本発明は、上記課題を解決するため、以下の手段を採用した。
請求項1に記載の空気調和装置は、冷媒を圧縮する圧縮機、運転モードにあわせて前記圧縮機から吐出された冷媒の流路を切り替える四方弁、内部を冷媒および搬送媒体が通過する中間熱交換器、冷媒を減圧・膨張させて低温・低圧の冷媒にする膨張弁、および内部を通過する冷媒と外気との熱交換を行う室外熱交換器を有する室外側サイクルと、超臨界領域に加圧された搬送媒体を循環させる搬送媒体駆動装置、前記中間熱交換器、および内部を通過する搬送媒体と室内へ送風される空気との熱交換を行う少なくとも一台の室内熱交換器を有する室内側サイクルとを具備し、前記中間熱交換器において前記室外側サイクルを循環する冷媒と前記室内側サイクルを循環する搬送媒体とを熱交換させる空気調和装置であって、
前記冷媒を非共沸混合冷媒とし、前記中間熱交換器が暖房運転時に前記冷媒と顕熱変化する前記搬送媒体とを対向流として熱交換させることを特徴とするものである。
The present invention employs the following means in order to solve the above problems.
The air conditioner according to claim 1 is a compressor that compresses a refrigerant, a four-way valve that switches a flow path of the refrigerant discharged from the compressor in accordance with an operation mode, and intermediate heat through which the refrigerant and the transport medium pass. An outdoor cycle having an exchanger, an expansion valve that decompresses and expands the refrigerant to form a low-temperature and low-pressure refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant that passes through the interior and the outside air, and the supercritical region. A chamber having a conveyance medium driving device that circulates the pressurized conveyance medium, the intermediate heat exchanger, and at least one indoor heat exchanger that exchanges heat between the conveyance medium passing through the inside and the air blown into the room An air conditioner that exchanges heat between the refrigerant circulating in the outdoor cycle and the transport medium circulating in the indoor cycle in the intermediate heat exchanger,
The refrigerant is a non-azeotropic refrigerant, and the intermediate heat exchanger exchanges heat between the refrigerant and the carrier medium that changes sensible heat as a counter flow during heating operation.

このような空気調和装置によれば、冷媒を非共沸混合冷媒とし、中間熱交換器では暖房運転時に非共沸混合冷媒と顕熱変化する搬送媒体とを対向流として熱交換させるので、非共沸混合冷媒特有の温度すべりにより、顕熱変化する搬送媒体との温度差を小さく設定して効率のよい運転が可能となる。すなわち、搬送媒体が顕熱変化する温度の傾斜とほぼ平行となるように温度すべりの傾きを設定し、かつ、その温度差を最小に設定すれば、圧縮機側の運転動力を抑制して効率のよい運転が可能となる。   According to such an air conditioner, the refrigerant is a non-azeotropic mixed refrigerant, and in the intermediate heat exchanger, the non-azeotropic mixed refrigerant and the transport medium that changes sensible heat are exchanged in the counter flow during the heating operation. Due to the temperature slip peculiar to the azeotropic refrigerant mixture, the temperature difference from the sensible heat changing carrier medium can be set small and efficient operation becomes possible. In other words, if the slope of the temperature slip is set so that the carrier medium is substantially parallel to the slope of the temperature at which the sensible heat changes, and the temperature difference is set to the minimum, the operating power on the compressor side is suppressed and the efficiency is reduced. Driving is possible.

上記の空気調和装置において、前記圧縮機が複数段圧縮を行うことが好ましく、これにより、顕熱変化する搬送媒体との温度差をより一層広範囲にわたって小さく設定することができる。
この場合、圧縮機の複数段圧縮は、1台の複数箇所から途中抽気したものでもよいし、あるいは複数台の圧縮機を直列に配列したものでもよい。
In the above air conditioner, it is preferable that the compressor performs multi-stage compression, so that the temperature difference from the carrier medium that changes sensible heat can be set to be even smaller over a wider range.
In this case, the multi-stage compression of the compressor may be one that is extracted from a plurality of locations on the way, or may be one in which a plurality of compressors are arranged in series.

上記の空気調和装置において、前記搬送媒体が超臨界流体の二酸化炭素(CO )であることが好ましい。 In the above air conditioner, the carrier medium is preferably supercritical fluid carbon dioxide (CO 2 ).

本発明の空気調和装置によれば、暖房運転時の中間熱交換器において、温度すべりを有する非共沸混合冷媒と顕熱変化する搬送媒体とが対向流となって熱交換するようにしたので、搬送媒体が顕熱変化する温度の傾斜とほぼ平行となるように温度すべりの傾きを設定して温度差を最小にすれば、圧縮機側の仕事量を最適化して圧縮機駆動動力の消費量を低減できるようになるため、空気調和装置のエネルギー消費効率(COP)を向上させることができる。また、冷媒と搬送媒体とが対向流となって熱交換するので、搬送媒体の出口温度を高く設定できるようになり、従って、これによっても空気調和装置の暖房運転時にエネルギー消費効率(COP)を向上させることができる。
さらに、圧縮機が複数段圧縮を行うようにすれば、顕熱変化する搬送媒体との温度差をきめ細かく広範囲にわたって小さく設定することができるので、空気調和装置のエネルギー消費効率(COP)をより一層向上させることができる。
According to the air conditioner of the present invention, in the intermediate heat exchanger during the heating operation, the non-azeotropic mixed refrigerant having a temperature slip and the transport medium changing the sensible heat are exchanged into a counter flow to exchange heat. If the temperature slip is set so that the temperature of the transport medium is almost parallel to the sensible heat temperature gradient and the temperature difference is minimized, the work on the compressor side is optimized and the compressor drive power is consumed. Since the amount can be reduced, the energy consumption efficiency (COP) of the air conditioner can be improved. In addition, since the refrigerant and the transport medium exchange heat with each other, the outlet temperature of the transport medium can be set high. Accordingly, this also increases the energy consumption efficiency (COP) during the heating operation of the air conditioner. Can be improved.
Furthermore, if the compressor performs multi-stage compression, the temperature difference from the carrier medium that changes sensible heat can be set finely over a wide range, so the energy consumption efficiency (COP) of the air conditioner can be further increased. Can be improved.

以下、図面を用いて本発明の実施の形態について説明する。
図1は、本発明による空気調和装置の一実施形態を示す概略構成図である。図1に示す空気調和装置1は、圧縮機2、四方弁3、室外熱交換器4、膨張弁5、中間熱交換器6、および配管7を主たる要素として有する室外側サイクル8と、前記中間熱交換器6、搬送媒体駆動装置10、室内熱交換器11、および配管12を主たる要素として有する室内側サイクル13とを具備するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of an air conditioner according to the present invention. An air conditioner 1 shown in FIG. 1 includes an outdoor cycle 8 having a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, an intermediate heat exchanger 6, and a pipe 7 as main elements, and the intermediate cycle. The heat exchanger 6, the conveyance medium drive device 10, the indoor heat exchanger 11, and the indoor side cycle 13 which has the piping 12 as main elements are comprised.

圧縮機2は、低温・低圧の混合冷媒のガス(混合冷媒は純物質の冷媒をある組成比率で混合させたものであり、たとえばプロパン、ブタン、イソブタンなど複数種類の炭化水素冷媒(炭素(C)および水素(H)が含まれる冷媒)を混合したものがある)を吸引して圧縮し、高温・高圧のガス状混合冷媒として送出するものである。
四方弁3は、圧縮機2の下流側に設けられるとともに、圧縮機2から吐出された混合冷媒(以下、「冷媒」と省略する)の流路を冷房運転時と暖房運転時とで切り替えるものであり、暖房運転時(図において実線矢印で示す方向に冷媒を循環させる時)には、圧縮機2から中間熱交換器6に向かう流路を形成し、一方、冷房運転時(図において破線矢印で示す方向に冷媒を循環させる時)には、圧縮機2から室外熱交換器4に向かう流路を形成するように構成されている。
室外熱交換器4は、冷房運転時に高温高圧のガス状冷媒を凝縮液化させて外気に放熱するコンデンサとして機能し、逆に暖房運転時には低温低圧の液状冷媒を蒸発気化させて外気から熱を奪うエバポレータとして機能するものである。
膨張弁5は、内部を通過する冷媒を減圧・膨張させて低温・低圧の冷媒にする機能を有するものである。
The compressor 2 is a low-temperature / low-pressure mixed refrigerant gas (a mixed refrigerant is a mixture of pure substance refrigerants in a certain composition ratio. For example, a plurality of hydrocarbon refrigerants such as propane, butane, and isobutane (carbon (C ) And hydrogen (H) -containing refrigerant) are sucked and compressed, and sent out as a high-temperature and high-pressure gaseous mixed refrigerant.
The four-way valve 3 is provided on the downstream side of the compressor 2 and switches the flow path of the mixed refrigerant discharged from the compressor 2 (hereinafter abbreviated as “refrigerant”) between the cooling operation and the heating operation. In the heating operation (when the refrigerant is circulated in the direction indicated by the solid line arrow in the figure), a flow path from the compressor 2 to the intermediate heat exchanger 6 is formed, while in the cooling operation (the broken line in the figure) When the refrigerant is circulated in the direction indicated by the arrow), a flow path from the compressor 2 toward the outdoor heat exchanger 4 is formed.
The outdoor heat exchanger 4 functions as a condenser that condenses and liquefies high-temperature and high-pressure gaseous refrigerant during cooling operation and dissipates heat to the outside air, and conversely evaporates low-temperature and low-pressure liquid refrigerant during heating operation and takes heat from the outside air. It functions as an evaporator.
The expansion valve 5 has a function of depressurizing and expanding the refrigerant passing through the inside to form a low-temperature and low-pressure refrigerant.

中間熱交換器(「冷媒間熱交換器」ともいう)6は、室外側サイクル8を循環する冷媒と室内側サイクル13を循環する搬送媒体との間で熱の授受を行わせるものであり、暖房運転時には室外側サイクル8を循環する冷媒により、室内側サイクル13を循環する搬送媒体が加熱され、冷房運転時には室外側サイクル8を循環する冷媒により、室内側サイクル13を循環する搬送媒体が冷却されるようになっている。また、この中間熱交換器6の入口近傍に位置する配管7には温度センサTが設けられており、この温度センサTにより検出された配管7内の冷媒温度データが制御器14に出力されるようになっている。
配管7は、これら圧縮機2、四方弁3、室外熱交換器4、膨張弁5および中間熱交換器6を接続するとともに、これら構成要素間を冷媒が循環できるようにするものであり、これにより室外側サイクル(「一次側サイクル」あるいは「熱源側サイクル」ともいう)8が形成されている。
The intermediate heat exchanger (also referred to as “inter-refrigerant heat exchanger”) 6 allows heat to be exchanged between the refrigerant circulating in the outdoor cycle 8 and the transport medium circulating in the indoor cycle 13. During the heating operation, the transport medium circulating in the indoor cycle 13 is heated by the refrigerant circulating in the outdoor cycle 8, and during the cooling operation, the transport medium circulating in the indoor cycle 13 is cooled by the refrigerant circulating in the outdoor cycle 8. It has come to be. Further, a temperature sensor T is provided in the pipe 7 positioned near the inlet of the intermediate heat exchanger 6, and refrigerant temperature data in the pipe 7 detected by the temperature sensor T is output to the controller 14. It is like that.
The pipe 7 connects the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5 and the intermediate heat exchanger 6, and allows the refrigerant to circulate between these components. Thus, an outdoor cycle (also referred to as “primary side cycle” or “heat source side cycle”) 8 is formed.

搬送媒体駆動装置10は、たとえばポンプや圧縮機のような流体の圧送手段であり、超臨界状態の搬送媒体(たとえば、二酸化炭素(CO)など)を送出して、室内側サイクル13の中で循環させるものである。
室内熱交換器11は、内部を通過する搬送媒体と、室内へ送風される空気との熱交換を行うものであり、冷房運転時にはいわゆるエバポレータとして、また暖房運転時にはいわゆるコンデンサとして機能するものである。
配管12は、中間熱交換器6、室内熱交換器11、および搬送媒体駆動装置10を接続するとともに、これら構成要素間を搬送媒体が循環できるようにするものであり、これにより室内側サイクル(「二次側サイクル」あるいは「利用側サイクル」ともいう)13が形成されている。
また、各室内熱交換器11の上流側に位置する配管12にはそれぞれ流量調整弁16が設けられており、中間熱交換器6から室内熱交換器11に流れ込む搬送媒体の量がそれぞれ調整されるようになっている。
The carrier medium driving device 10 is a fluid pressure-feeding means such as a pump or a compressor, for example, and sends a supercritical carrier medium (for example, carbon dioxide (CO 2 )), for example, in the indoor cycle 13. It is something to circulate in.
The indoor heat exchanger 11 performs heat exchange between the transport medium passing through the inside and the air blown into the room, and functions as a so-called evaporator during cooling operation and as a so-called condenser during heating operation. .
The pipe 12 connects the intermediate heat exchanger 6, the indoor heat exchanger 11, and the transport medium driving device 10, and enables the transport medium to circulate between these constituent elements. (Also referred to as “secondary cycle” or “use cycle”) 13 is formed.
The pipes 12 positioned on the upstream side of the indoor heat exchangers 11 are each provided with a flow rate adjusting valve 16 to adjust the amount of the transport medium flowing into the indoor heat exchanger 11 from the intermediate heat exchanger 6. It has become so.

さて、上述した室外側サイクル8で使用される非共沸混合冷媒は、温度すべりまたは温度勾配と呼ばれる単一冷媒にはない特性を有している。この温度すべりは、非共沸混合冷媒が一定圧力下で凝縮・蒸発の相変化をする場合、開始時と終了時との温度が異なって一定にならない現象のことである。すなわち、一般に「非共沸混合冷媒」と呼ばれる混合冷媒は、ある圧力における飽和ガス温度と飽和液温度との間に温度差を有するものとなる。(一方、飽和ガス温度と飽和液温度が同一となる混合冷媒は、「共沸混合冷媒」と呼ばれる。)
非共沸混合冷媒の具体例としては、プロパンおよびイソブタンをそれぞれ50wt%混合したものがあり、5℃の温度すべりが生じる。なお、非共沸混合冷媒の他の具体例としては、R410A、R404AおよびR407Cなどがある。
Now, the non-azeotropic refrigerant mixture used in the outdoor cycle 8 described above has a characteristic that is not found in a single refrigerant called temperature slip or temperature gradient. This temperature slip is a phenomenon in which when the non-azeotropic refrigerant mixture undergoes a condensation / evaporation phase change under a constant pressure, the temperature at the start and at the end is different and does not become constant. That is, the mixed refrigerant generally called “non-azeotropic mixed refrigerant” has a temperature difference between the saturated gas temperature and the saturated liquid temperature at a certain pressure. (On the other hand, the mixed refrigerant in which the saturated gas temperature and the saturated liquid temperature are the same is called an “azeotropic mixed refrigerant”.)
A specific example of the non-azeotropic refrigerant mixture is a mixture of propane and isobutane at 50 wt%, and a temperature slip of 5 ° C. occurs. Other specific examples of the non-azeotropic refrigerant mixture include R410A, R404A, and R407C.

ここで、上述した温度すべりの現象について、図2に示すモリエル線図(p−h線図)を参照して簡単に説明する。
圧縮機2で圧縮された低温低圧のガス状非共沸混合冷媒は、図中の点aから点bまで圧力上昇して高温高圧のガス冷媒となり、点bから点cに至る熱交換器内の等圧変化で凝縮する。このとき、点bにおける冷媒の温度をtiとすれば、この冷媒温度tiが暖房運転時における中間熱交換器6の入口温度となり、同熱交換器6内で対向流の搬送媒体と熱交換して凝縮液化した後の冷媒出口温度はtoに低下する。このような温度変化(ti→to)の過程において、凝縮を開始する飽和ガス温度t1と、凝縮が完了する飽和液温度t2との間に温度差が生じ、この温度差が温度すべりと呼ばれる。従って、中間熱交換器6内で状態変化する非共沸混合冷媒の平均飽和温度tは、下記の数式により求められる。
t=(t1+t2)/2
Here, the phenomenon of temperature slip described above will be briefly described with reference to the Mollier diagram (ph diagram) shown in FIG.
The low-temperature and low-pressure gaseous non-azeotropic refrigerant mixture compressed by the compressor 2 rises in pressure from point a to point b in the figure to become a high-temperature and high-pressure gas refrigerant, and in the heat exchanger from point b to point c Condensation is caused by a change in the isobaric pressure. At this time, if the temperature of the refrigerant at point b is ti, this refrigerant temperature ti becomes the inlet temperature of the intermediate heat exchanger 6 during the heating operation, and heat is exchanged with the counter-flow carrier medium in the heat exchanger 6. Then, the refrigerant outlet temperature after being condensed and liquefied decreases to to. In the process of such a temperature change (ti → to), a temperature difference is generated between the saturated gas temperature t1 at which condensation starts and the saturated liquid temperature t2 at which condensation is completed, and this temperature difference is called a temperature slip. Therefore, the average saturation temperature t of the non-azeotropic refrigerant mixture whose state changes in the intermediate heat exchanger 6 is obtained by the following equation.
t = (t1 + t2) / 2

また、図中の破線表示は、単一冷媒の場合を示しており、同じ飽和ガス温度t1とするには、圧縮機2で点b′まで加圧する必要がある。すなわち、同じ飽和ガス温度t1とするためには、混合冷媒の点bより高圧の点b′まで加圧することが必要であることがわかる。   Moreover, the broken line display in a figure has shown the case of a single refrigerant | coolant, and it is necessary to pressurize to the point b 'with the compressor 2 in order to set it as the same saturated gas temperature t1. That is, it can be seen that in order to achieve the same saturated gas temperature t1, it is necessary to pressurize to a point b 'higher than the point b of the mixed refrigerant.

ところで、上述した超臨界流体の搬送媒体は、少しの温度差でも多くの熱量(エンタルピ)変化が得られる領域を有している。図3は、超臨界流体の一例として二酸化炭素の特性を示した等圧線図であり、臨界圧限界から10MPa あたりまでの等圧線はエンタルピの増加に対して温度上昇が比例していない。これは、7.6Mpa まで二相域(潜熱域)が存在している影響を受けて、超臨界域でも等圧線に歪みが残っているためである。
このような領域では等圧線が凹状となり、曲線の傾斜が非常に小さくなって水平線に近い部分(低傾斜部)が存在するので、この部分を有効利用することにより、冷媒との温度差が少ない熱交換であっても大きな熱量変化を得ることができる。ちなみに、超臨界流体が二酸化炭素の場合には、実用的な最低温度レベルを50℃以下に設定すれば、等圧線の凹曲線部分に存在する低傾斜部を利用して小さな温度差から大きな熱量変化を得ることができるので、暖房運転時における中間熱交換器6の出口温度が高くなり、COPの向上に有効である。
By the way, the above-described transport medium for supercritical fluid has a region where a large amount of heat (enthalpy) change can be obtained even with a slight temperature difference. FIG. 3 is an isobaric diagram showing the characteristics of carbon dioxide as an example of a supercritical fluid. In the isobaric line from the critical pressure limit to around 10 MPa, the temperature rise is not proportional to the increase in enthalpy. This is because the isobaric strain remains in the supercritical region due to the influence of the two-phase region (latent heat region) up to 7.6 MPa.
In such a region, the isobaric line is concave, and the slope of the curve is very small and there is a part close to the horizon (low slope part). By using this part effectively, the temperature difference from the refrigerant is small. Even in exchange, a large change in heat quantity can be obtained. By the way, when the supercritical fluid is carbon dioxide, if the practical minimum temperature level is set to 50 ° C or less, a large amount of heat changes from a small temperature difference using the low slope part that exists in the concave curve part of the isobaric line. Therefore, the outlet temperature of the intermediate heat exchanger 6 at the time of heating operation becomes high, which is effective for improving COP.

図4は、上述した超臨界流体の低傾斜部を利用した中間熱交換器6における冷媒と搬送媒体との熱交換(温度変化)を示したものであり、横軸の熱交換距離に応じて変化する温度が縦軸に示されている。なお、図中の1次側は非共沸混合冷媒、2次側は顕熱変化する搬送流体(超臨界流体)であり、参考例として単一冷媒の温度変化が想像線で示されている。
図4は圧縮機2が単段圧縮の場合を示しており、対向流とした暖房運転の場合には、1次側が図中の右(入口)から左(出口)へ流れて熱交換による温度変化(温度低下)及び状態変化をし、2次側が図中の左(入口)から右(出口)へ流れて温度変化(温度上昇)する。この場合、2次側の搬送媒体は顕熱変化であるから、熱交換距離の増加に応じて温度の高い1次側から吸熱して昇温する。
FIG. 4 shows the heat exchange (temperature change) between the refrigerant and the transfer medium in the intermediate heat exchanger 6 using the above-described low-inclined portion of the supercritical fluid, and according to the heat exchange distance on the horizontal axis. The changing temperature is shown on the vertical axis. In the figure, the primary side is a non-azeotropic refrigerant mixture, the secondary side is a carrier fluid (supercritical fluid) that changes sensible heat, and the temperature change of a single refrigerant is shown by an imaginary line as a reference example. .
FIG. 4 shows a case where the compressor 2 is single-stage compression, and in the case of heating operation in the counterflow, the primary side flows from the right (inlet) to the left (outlet) in the figure, and the temperature due to heat exchange The change (temperature decrease) and state change occur, and the secondary side flows from the left (inlet) to the right (exit) in the figure to change the temperature (temperature increase). In this case, since the transport medium on the secondary side is a sensible heat change, the temperature is raised by absorbing heat from the primary side having a higher temperature as the heat exchange distance increases.

熱源となる1次側の非共沸混合冷媒は、圧縮機2から高温高圧のガス状態(気相)で中間熱交換器6に供給された後、2次側の搬送媒体と熱交換することにより液冷媒(液相)となって熱交換器外へ流出する。すなわち、入口温度tiのガス状態で中間熱交換器6に導入された混合冷媒は、出口温度toの液状態で流出することとなる。このとき、中間熱交換器6内には温度すべりを有する気液二相域の非共沸混合冷媒が存在する。この非共沸混合冷媒は、飽和ガス温度t1で凝縮を開始し、飽和液温度t2で凝縮を完了する。そして、このような温度すべりを有する凝縮により発生した凝縮熱の加熱を受けて、2次側の搬送媒体が温度上昇することとなる。   The primary non-azeotropic refrigerant mixture serving as a heat source is supplied from the compressor 2 to the intermediate heat exchanger 6 in a high-temperature and high-pressure gas state (gas phase), and then exchanges heat with the secondary-side transport medium. The liquid refrigerant (liquid phase) flows out of the heat exchanger. That is, the mixed refrigerant introduced into the intermediate heat exchanger 6 in the gas state at the inlet temperature ti flows out in the liquid state at the outlet temperature to. At this time, a gas-liquid two-phase non-azeotropic refrigerant mixture having a temperature slip exists in the intermediate heat exchanger 6. The non-azeotropic refrigerant mixture starts condensing at the saturated gas temperature t1 and completes condensing at the saturated liquid temperature t2. The secondary-side transport medium rises in temperature due to the heat of condensation heat generated by the condensation having such a temperature slip.

従って、中間熱交換器6内で凝縮する非共沸混合冷媒は、2次側の搬送媒体と同じ方向に傾斜する温度勾配を有するものとなり、二つの傾きを略平行に設定することができる。すなわち、想像線で示す凝縮温度が一定の単一冷媒と比較すれば、右上がりに温度上昇する2次側の温度変化と略平行な温度すべり(温度勾配)の非共沸混合冷媒を選択することにより、中間熱交換器6内の広い範囲にわたって温度差を略最小に設定した熱交換が可能となる。
図示の例では、1次側の凝縮開始温度(飽和ガス温度)がt1に設定されており、この凝縮開始温度t1の設定に応じて2次側の出口温度が決まる。すなわち、露付き点における凝縮温度t1と吸熱側の超臨界流体温度との温度差(Δt)により、実質的に2次側の出口温度が決まることとなる。
Therefore, the non-azeotropic refrigerant mixture that condenses in the intermediate heat exchanger 6 has a temperature gradient that is inclined in the same direction as the transport medium on the secondary side, and the two inclinations can be set substantially in parallel. That is, when compared with a single refrigerant having a constant condensation temperature indicated by an imaginary line, a non-azeotropic refrigerant mixture having a temperature slip (temperature gradient) substantially parallel to the temperature change on the secondary side that rises to the right is selected. Thus, heat exchange can be performed with the temperature difference set to a substantially minimum over a wide range in the intermediate heat exchanger 6.
In the illustrated example, the primary side condensation start temperature (saturated gas temperature) is set to t1, and the secondary side outlet temperature is determined according to the setting of the condensation start temperature t1. That is, the outlet temperature on the secondary side is substantially determined by the temperature difference (Δt) between the condensation temperature t1 at the dew point and the supercritical fluid temperature on the endothermic side.

このような非共沸混合冷媒を採用した対向流の熱交換では、単一冷媒を非共沸混合冷媒と同じ入口温度tiに設定する場合と比較して、換言すれば、単一冷媒を非共沸混合冷媒と同じ飽和ガス温度t1に設定する場合と比較して、圧縮機2で圧縮する圧力を低くすることができる。すなわち、同じ飽和ガス温度t1に設定する場合、図2に示すように、圧縮機2による加圧圧力は単一冷媒より非共沸混合冷媒の方が低くなるので、その分圧縮機2の駆動動力を低減することができる。従って、圧縮機2のエネルギー消費量を低減し、空気調和装置1のCOPを向上させることができる。   In counterflow heat exchange employing such a non-azeotropic refrigerant mixture, compared to the case where the single refrigerant is set to the same inlet temperature ti as that of the non-azeotropic refrigerant mixture, in other words, the single refrigerant is not Compared with the case where the saturated gas temperature t1 is set to be the same as that of the azeotropic refrigerant mixture, the pressure compressed by the compressor 2 can be lowered. That is, when the same saturated gas temperature t1 is set, as shown in FIG. 2, the pressure applied by the compressor 2 is lower in the non-azeotropic refrigerant mixture than in the single refrigerant, so that the compressor 2 is driven accordingly. Power can be reduced. Therefore, the energy consumption of the compressor 2 can be reduced and the COP of the air conditioner 1 can be improved.

また、非共沸混合冷媒の平均飽和温度tを単一冷媒の飽和温度t1と同じにする場合(図2参照)、すなわち、圧縮機2による圧縮圧力を同じにした場合、温度すべりのある非共沸混合冷媒は単一冷媒と比較して入口温度tiおよび飽和ガス温度t1が高くなる。このため、圧縮機2のエネルギー消費量が同じであっても、中間熱交換器6では高温の冷媒により搬送媒体を加熱することが可能になるため、より高温に昇温させることができる。すなわち、単一冷媒と同じエネルギー消費量で搬送媒体をより高温にできるため、空気調和装置1のCOPを向上させることができる。   Further, when the average saturation temperature t of the non-azeotropic refrigerant mixture is made the same as the saturation temperature t1 of the single refrigerant (see FIG. 2), that is, when the compression pressure by the compressor 2 is made the same, there is a non-temperature slippage. The azeotropic refrigerant mixture has a higher inlet temperature ti and saturated gas temperature t1 than a single refrigerant. For this reason, even if the energy consumption amount of the compressor 2 is the same, the intermediate heat exchanger 6 can heat the transport medium with a high-temperature refrigerant, and thus can be heated to a higher temperature. That is, since the transport medium can be heated to a higher temperature with the same energy consumption as that of the single refrigerant, the COP of the air conditioner 1 can be improved.

ところで、上述した実施形態では、室外側サイクル8の圧縮機2を単段圧縮としたが、図5に示す他の実施形態のように、複数段圧縮が可能な構成の圧縮機2′としてもよい。この構成例では、複数台(図示の例では3台)の圧縮機C1、C2、C3が直列に配列されている。なお、この場合の冷媒および搬送媒体の流れ方向は暖房運転時の状態を示しており、中間熱交換器6内においては、互いに逆向きの対向流となっている。
図示した圧縮機2′は、高圧段側から順に3台の圧縮機C1、C2、C3が直列に配列されているが、室外熱交換器4から低温低圧のガス冷媒を導入する低圧段圧縮機C3の吐出側配管7aが中圧段圧縮機C2に連結され、さらに、中圧段圧縮機C2の吐出側配管7bが高圧段圧縮機C1に連結されている。そして、高圧段圧縮機C1の吐出側に連結された配管7が、圧縮機2の吐出側配管として中間熱交換器6内の高温領域6aに連結されている。
In the above-described embodiment, the compressor 2 of the outdoor cycle 8 is single-stage compression. However, as in the other embodiment shown in FIG. Good. In this configuration example, a plurality (three in the illustrated example) of compressors C1, C2, and C3 are arranged in series. Note that the flow direction of the refrigerant and the carrier medium in this case indicates the state during the heating operation, and in the intermediate heat exchanger 6, the opposite flows are opposite to each other.
In the illustrated compressor 2 ′, three compressors C 1, C 2 and C 3 are arranged in series from the high-pressure stage side, but a low-pressure stage compressor that introduces low-temperature and low-pressure gas refrigerant from the outdoor heat exchanger 4. The discharge side pipe 7a of C3 is connected to the intermediate pressure stage compressor C2, and the discharge side pipe 7b of the intermediate pressure stage compressor C2 is connected to the high pressure stage compressor C1. A pipe 7 connected to the discharge side of the high-pressure compressor C1 is connected to a high temperature region 6a in the intermediate heat exchanger 6 as a discharge side pipe of the compressor 2.

また、上述した複数段圧縮の圧縮機2においては、中圧段圧縮機C2の吐出側配管7aから分岐したバイパス管P1および低圧段圧縮機C3の吐出側配管7bから分岐したバイパス管P2が中間熱交換器6内に導入される。中圧段圧縮機C2から分岐したバイパス管P1が中間熱交換器6内の中間温度領域6bに連結される上流側の途中(中間熱交換器6の外部)には、高圧段圧縮機C1から中間熱交換器6内に導入されて搬送媒体と熱交換した後の冷媒を流す配管7cが電磁開閉弁9aを介して連結されている。
同様に、低圧段圧縮機C3から分岐したバイパス管P2が中間熱交換器6内の低温領域6cに連結される上流側の途中には、中圧段圧縮機C2から中間熱交換器6内に導入されて搬送媒体と熱交換した後の冷媒を流す配管7dが電磁開閉弁9bを介して連結されている。
なお、中間熱交換器6と室外熱交換器4とを連結する配管7には、電磁開閉弁9cが配設されている。
Further, in the above-described multistage compression compressor 2, the bypass pipe P1 branched from the discharge side pipe 7a of the intermediate pressure stage compressor C2 and the bypass pipe P2 branched from the discharge side pipe 7b of the low pressure stage compressor C3 are intermediate. It is introduced into the heat exchanger 6. The bypass pipe P1 branched from the intermediate pressure stage compressor C2 is connected to the intermediate temperature region 6b in the intermediate heat exchanger 6 on the upstream side (outside of the intermediate heat exchanger 6) from the high pressure stage compressor C1. A pipe 7c for flowing the refrigerant after being introduced into the intermediate heat exchanger 6 and exchanging heat with the transport medium is connected via an electromagnetic on-off valve 9a.
Similarly, in the middle of the upstream side where the bypass pipe P2 branched from the low pressure stage compressor C3 is connected to the low temperature region 6c in the intermediate heat exchanger 6, the intermediate pressure stage compressor C2 enters the intermediate heat exchanger 6. A pipe 7d for flowing the refrigerant after being introduced and exchanging heat with the transport medium is connected via an electromagnetic on-off valve 9b.
In addition, an electromagnetic on-off valve 9c is disposed in the pipe 7 that connects the intermediate heat exchanger 6 and the outdoor heat exchanger 4.

このように構成された複数段圧縮の圧縮機2′は、以下に説明するような運転を行うことにより、中間熱交換器6に供給する高温高圧のガス冷媒について、その吐出圧力を選択することが可能となる。
最初に、1台の低圧段圧縮機C3を運転し、最も低い圧力で吐出される冷媒を中間熱交換器6に供給する場合について説明する。このような運転では、電磁開閉弁9a、9bが共に閉とされ、残る電磁開閉弁9cのみが開とされる。この結果、室外熱交換器4から導入した低温低圧のガス冷媒は、低圧段圧縮機C3で昇圧されることにより比較的低圧のガス冷媒(質量流量G3)となり、低圧段圧縮機C3からバイパス管P2を通って中間熱交換器6の低温領域6cに供給される。
The multistage compression compressor 2 ′ configured as described above selects the discharge pressure of the high-temperature and high-pressure gas refrigerant supplied to the intermediate heat exchanger 6 by performing the operation described below. Is possible.
First, the case where one low-pressure compressor C3 is operated and the refrigerant discharged at the lowest pressure is supplied to the intermediate heat exchanger 6 will be described. In such an operation, both the electromagnetic on-off valves 9a and 9b are closed, and only the remaining electromagnetic on-off valve 9c is opened. As a result, the low-temperature and low-pressure gas refrigerant introduced from the outdoor heat exchanger 4 is increased in pressure by the low-pressure stage compressor C3 to become a relatively low-pressure gas refrigerant (mass flow rate G3), and is bypassed from the low-pressure stage compressor C3. It is supplied to the low temperature region 6c of the intermediate heat exchanger 6 through P2.

次に、2台の圧縮機C2、C3を運転し、中間圧力で吐出される冷媒を中間熱交換器6に供給する場合について説明する。このような運転では、電磁開閉弁9aが閉とされ、他の電磁開閉弁9b、9cが開とされる。この結果、室外熱交換器4から導入した低温低圧のガス冷媒は、低圧段圧縮機C3で昇圧した後、一部のガス冷媒(質量流量G2)が中圧段圧縮機C2を通過して2段階に昇圧される。こうして中間圧力となったガス冷媒(質量流量G2)は、圧縮機C2からバイパス管P1を通って中間熱交換器6の中間温度領域6bに供給され、さらに、低圧段圧縮機C3から直接供給されるガス冷媒(質量流量G3)と合流し、両ガス冷媒(質量流量G2+G3)が低温領域6cを通過して搬送媒体と熱交換する。この場合、冷媒と搬送媒体とが対向流とされるため、搬送媒体は最初に低温領域6cで比較的温度の低い冷媒(質量流量G2+G3)と熱交換して入口温度から昇温された後、より温度の高いガス冷媒(質量流量G2)と中間温度領域6bで熱交換して昇温される。このため、中間温度領域6bで熱交換する時には、中間熱交換器6の入口温度から1段階の温度上昇をした搬送媒体となっているので、効率の良い熱交換が可能となる。   Next, the case where the two compressors C2 and C3 are operated and the refrigerant discharged at the intermediate pressure is supplied to the intermediate heat exchanger 6 will be described. In such operation, the electromagnetic on-off valve 9a is closed and the other electromagnetic on-off valves 9b and 9c are opened. As a result, the low-temperature and low-pressure gas refrigerant introduced from the outdoor heat exchanger 4 is pressurized by the low-pressure stage compressor C3, and then a part of the gas refrigerant (mass flow rate G2) passes through the intermediate-pressure stage compressor C2 to be 2 Boosted in stages. The gas refrigerant (mass flow rate G2) having the intermediate pressure in this way is supplied from the compressor C2 through the bypass pipe P1 to the intermediate temperature region 6b of the intermediate heat exchanger 6, and further directly supplied from the low-pressure compressor C3. Gas refrigerant (mass flow rate G3) joins, and both gas refrigerants (mass flow rate G2 + G3) pass through the low temperature region 6c and exchange heat with the transport medium. In this case, since the refrigerant and the carrier medium are counterflowed, the carrier medium is first heated from the inlet temperature by exchanging heat with the refrigerant (mass flow rate G2 + G3) having a relatively low temperature in the low temperature region 6c. The temperature is raised by exchanging heat between the higher temperature gas refrigerant (mass flow rate G2) and the intermediate temperature region 6b. For this reason, when heat is exchanged in the intermediate temperature region 6b, the transfer medium is a one-step temperature increase from the inlet temperature of the intermediate heat exchanger 6, so that efficient heat exchange is possible.

最後に、3台の圧縮機C1、C2、C3を全て運転し、最も高い吐出圧力の冷媒を中間熱交換器6に供給する場合について説明する。このような運転では、電磁開閉弁9a、9b、9cが全て開とされ、室外熱交換器4から導入した低温低圧のガス冷媒は、低圧段圧縮機C3で昇圧した後、一部のガス冷媒が中圧段圧縮機C2および高圧段圧縮機C3を通過して順次昇圧される。こうして高温高圧のガス冷媒(質量流量G1)が圧縮機C1から中間熱交換器6に供給され、高温領域6a、中間温度領域6bおよび低温領域6cの順に全て通過し、搬送媒体と熱交換する。また、中間温度領域6bについては、中圧段圧縮機C2から直接供給されるガス冷媒(質量流量G2)が加算され、合流したガス冷媒(質量流量G1+G2)が通過して搬送媒体と熱交換する。さらに、低温領域6cについては、低圧段圧縮機C3から直接供給されるガス冷媒(質量流量G3)が加算され、合流したガス冷媒(質量流量G1+G2+G3)が通過して搬送媒体と熱交換する。   Finally, the case where all the three compressors C1, C2, and C3 are operated and the refrigerant having the highest discharge pressure is supplied to the intermediate heat exchanger 6 will be described. In such an operation, the electromagnetic on-off valves 9a, 9b, 9c are all opened, and the low-temperature and low-pressure gas refrigerant introduced from the outdoor heat exchanger 4 is partially pressurized after being pressurized by the low-pressure stage compressor C3. Passes through the intermediate-pressure stage compressor C2 and the high-pressure stage compressor C3, and the pressure is sequentially increased. In this way, the high-temperature and high-pressure gas refrigerant (mass flow rate G1) is supplied from the compressor C1 to the intermediate heat exchanger 6, passes through all of the high-temperature region 6a, the intermediate temperature region 6b, and the low-temperature region 6c in this order, and exchanges heat with the transport medium. For the intermediate temperature region 6b, the gas refrigerant (mass flow rate G2) directly supplied from the intermediate pressure stage compressor C2 is added, and the merged gas refrigerant (mass flow rate G1 + G2) passes to exchange heat with the transport medium. . Further, in the low temperature region 6c, the gas refrigerant (mass flow rate G3) directly supplied from the low-pressure compressor C3 is added, and the merged gas refrigerant (mass flow rate G1 + G2 + G3) passes to exchange heat with the transport medium.

このとき、冷媒と搬送媒体とが対向流とされるため、搬送媒体は最初に低温領域6cで比較的温度の低い冷媒(質量流量G1+G2+G3)と熱交換して入口温度から昇温された後、順次温度の高い中間温度領域6bおよび高温領域6aでガス冷媒(質量流量G1+G2)およびガス冷媒(質量流量G1)と熱交換して昇温される。このため、最も冷媒温度の高い高温領域6aで熱交換する時には、中間熱交換器6の入口温度から2段階の温度上昇をした比較的高温の搬送媒体となっているので、効率の良い熱交換が可能となって搬送媒体の出口温度をより高温として取り出すことができる。   At this time, since the refrigerant and the conveyance medium are counterflowed, the conveyance medium is first heated from the inlet temperature by exchanging heat with the refrigerant (mass flow rate G1 + G2 + G3) having a relatively low temperature in the low temperature region 6c. The temperature is increased by heat exchange with the gas refrigerant (mass flow rate G1 + G2) and the gas refrigerant (mass flow rate G1) in the intermediate temperature region 6b and the high temperature region 6a having successively higher temperatures. For this reason, when heat exchange is performed in the high temperature region 6a having the highest refrigerant temperature, the transfer medium is a relatively high-temperature transport medium that is two-stage temperature rise from the inlet temperature of the intermediate heat exchanger 6, and thus efficient heat exchange. Becomes possible, and the outlet temperature of the transport medium can be taken out at a higher temperature.

上述した複数段(3段)圧縮に非共沸混合冷媒を採用すれば、図6に示すように、2次側の出口温度を上述した単段圧縮と同じ値に設定する場合、吸熱側の顕熱変化に合わせて凝縮温度を複数(3段階)の温度レベルに設定することができる。図示の例では、質量流量G1のガス冷媒を供給する高圧段圧縮機C1の凝縮温度を図4の単段圧縮とほぼ同じ値に設定し、中圧段圧縮機C2および低圧段圧縮機C3の順に段階的に低い凝縮温度となるように設定されている。なお、冷媒の凝縮温度は圧力との相関関係があり、高圧時ほど高い温度となる。
そして、非共沸混合冷媒の温度すべりにより、各圧縮段で、あるいは、圧縮段毎に1次側の傾斜を2次側の温度上昇に合わせることができるので、単段圧縮と比較して、広い熱交換領域にわたってより一層2次側の温度上昇に近づけた設定が可能となる。換言すれば、搬送媒体の温度変化と略平行となるように温度差を小さく設定したきめ細かい運転が可能になるので、圧縮機2′の運転に消費する駆動力を低減して効率のよい運転が可能となる。
If a non-azeotropic refrigerant mixture is employed for the above-described multistage (three-stage) compression, as shown in FIG. 6, when the secondary side outlet temperature is set to the same value as the above-described single-stage compression, The condensation temperature can be set to a plurality of (three stages) temperature levels in accordance with the sensible heat change. In the illustrated example, the condensation temperature of the high-pressure compressor C1 that supplies the gas refrigerant with the mass flow rate G1 is set to substantially the same value as that of the single-stage compression in FIG. 4, and the intermediate-pressure compressor C2 and the low-pressure compressor C3 It is set so that the condensing temperature becomes lower step by step. The condensation temperature of the refrigerant has a correlation with the pressure, and the higher the pressure, the higher the temperature.
And, by the temperature slip of the non-azeotropic refrigerant mixture, the primary side slope can be matched to the secondary side temperature rise at each compression stage or for each compression stage, so compared with single stage compression, A setting closer to the secondary side temperature rise over a wide heat exchange region is possible. In other words, since it is possible to perform fine operation in which the temperature difference is set to be small so as to be substantially parallel to the temperature change of the transport medium, the driving force consumed for the operation of the compressor 2 ′ can be reduced and efficient operation can be achieved. It becomes possible.

以上説明したように、本発明の空気調和装置1においては、非共沸混合冷媒の温度すべりを有効に利用して圧縮機2の仕事量を最適化することができるので、圧縮機駆動動力の消費量を低減してCOPを向上させることができる。さらに、非共沸混合冷媒と搬送媒体とが対向流となって熱交換するので、搬送媒体の出口温度を高く設定できるようになり、これによっても空気調和装置1の暖房運転時におけるCOPを向上させることができる。   As described above, in the air conditioner 1 of the present invention, the work of the compressor 2 can be optimized by effectively utilizing the temperature slip of the non-azeotropic refrigerant mixture. Consumption can be reduced and COP can be improved. Further, since the non-azeotropic refrigerant mixture and the transport medium exchange heat with each other, the outlet temperature of the transport medium can be set high, which also improves the COP during the heating operation of the air conditioner 1. Can be made.

また、上述した実施形態の複数段圧縮は、圧縮機を直列に配列して3段圧縮を行う圧縮機2′としたが、2段または4段以上の複数段圧縮を行うものとしてもよい。また、複数段圧縮については、複数の圧縮機を直列に配列するほかにも、たとえばスクロール圧縮機の途中から複数箇所で抽気することで、吐出圧力および凝縮温度が異なる複数段を形成してもよい。
なお、本発明は上述した実施形態に限定されるものではなく、1次側の冷媒および2次側の搬送媒体を適宜選択して変更可能であるなど、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
In the above-described multi-stage compression, the compressors are arranged in series and the compressor 2 'performs the three-stage compression. However, the multi-stage compression may be performed in two stages or four or more stages. For multi-stage compression, in addition to arranging a plurality of compressors in series, for example, a plurality of stages with different discharge pressures and condensation temperatures may be formed by extracting air at a plurality of locations from the middle of the scroll compressor. Good.
The present invention is not limited to the above-described embodiment, and can be changed by appropriately selecting the primary-side refrigerant and the secondary-side transport medium, as long as they do not depart from the gist of the present invention. It can be changed as appropriate.

本発明による空気調和装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the air conditioning apparatus by this invention. 非共沸混合冷媒の温度すべり現象を説明するためのモリエル線図(p−h線図)である。It is a Mollier diagram (ph diagram) for explaining a temperature slip phenomenon of a non-azeotropic refrigerant mixture. 超臨界流体の一例として二酸化炭素の特性を示した等圧線図である。It is an isobaric diagram which showed the characteristic of the carbon dioxide as an example of a supercritical fluid. 中間熱交換器における1次側(冷媒)と2次側(搬送媒体)との熱交換(温度変化)について、単段圧縮の場合を示す図である。It is a figure which shows the case of single stage compression about the heat exchange (temperature change) of the primary side (refrigerant) and secondary side (conveyance medium) in an intermediate heat exchanger. 本発明の他の実施形態を示す図で、室外側サイクルの圧縮機が多段圧縮の場合を示す概略構成図である。It is a figure which shows other embodiment of this invention, and is a schematic block diagram which shows the case where the compressor of an outdoor cycle is multistage compression. 中間熱交換器における1次側(冷媒)と2次側(搬送媒体)との熱交換(温度変化)について、3段圧縮の場合を示す図である。It is a figure which shows the case of three-stage compression about the heat exchange (temperature change) of the primary side (refrigerant) and secondary side (conveyance medium) in an intermediate heat exchanger.

符号の説明Explanation of symbols

1 空気調和装置
2 圧縮機
4 室外熱交換器
5 膨張弁
6 中間熱交換器
8 室外側サイクル
10 搬送媒体駆動装置
11 室内熱交換器
13 室内側サイクル
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Compressor 4 Outdoor heat exchanger 5 Expansion valve 6 Intermediate heat exchanger 8 Outdoor cycle 10 Transport medium drive device 11 Indoor heat exchanger 13 Indoor cycle

Claims (3)

冷媒を圧縮する圧縮機、運転モードにあわせて前記圧縮機から吐出された冷媒の流路を切り替える四方弁、内部を冷媒および搬送媒体が通過する中間熱交換器、冷媒を減圧・膨張させて低温・低圧の冷媒にする膨張弁、および内部を通過する冷媒と外気との熱交換を行う室外熱交換器を有する室外側サイクルと、
超臨界領域に加圧された搬送媒体を循環させる搬送媒体駆動装置、前記中間熱交換器、および内部を通過する搬送媒体と室内へ送風される空気との熱交換を行う少なくとも一台の室内熱交換器を有する室内側サイクルとを具備し、
前記中間熱交換器において前記室外側サイクルを循環する冷媒と前記室内側サイクルを循環する搬送媒体とを熱交換させる空気調和装置であって、
前記冷媒を非共沸混合冷媒とし、前記中間熱交換器が暖房運転時に前記冷媒と顕熱変化する前記搬送媒体とを対向流として熱交換させることを特徴とする空気調和装置。
A compressor that compresses the refrigerant, a four-way valve that switches the flow path of the refrigerant discharged from the compressor according to the operation mode, an intermediate heat exchanger through which the refrigerant and the transport medium pass, and a low temperature by decompressing and expanding the refrigerant An outdoor valve having an expansion valve for making a low-pressure refrigerant, and an outdoor heat exchanger for exchanging heat between the refrigerant passing through the inside and the outside air;
At least one indoor heat that exchanges heat between the transport medium driving device that circulates the transport medium pressurized in the supercritical region, the intermediate heat exchanger, and the transport medium that passes through the interior and the air that is blown into the room An indoor cycle having an exchanger,
An air conditioner for exchanging heat between the refrigerant circulating in the outdoor cycle and the carrier medium circulating in the indoor cycle in the intermediate heat exchanger,
An air-conditioning apparatus, wherein the refrigerant is a non-azeotropic refrigerant mixture, and the intermediate heat exchanger exchanges heat between the refrigerant and the carrier medium that changes sensible heat as a counterflow during heating operation.
前記圧縮機が複数段圧縮を行うことを特徴とする請求項1に記載の空気調和装置。   The air conditioner according to claim 1, wherein the compressor performs multi-stage compression. 前記搬送媒体が超臨界流体の二酸化炭素(CO)であることを特徴とする請求項1または2に記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein the carrier medium is carbon dioxide (CO 2 ) as a supercritical fluid.
JP2004198213A 2004-07-05 2004-07-05 Air conditioner Expired - Lifetime JP4452137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198213A JP4452137B2 (en) 2004-07-05 2004-07-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198213A JP4452137B2 (en) 2004-07-05 2004-07-05 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006017433A true JP2006017433A (en) 2006-01-19
JP4452137B2 JP4452137B2 (en) 2010-04-21

Family

ID=35791883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198213A Expired - Lifetime JP4452137B2 (en) 2004-07-05 2004-07-05 Air conditioner

Country Status (1)

Country Link
JP (1) JP4452137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216187A1 (en) * 2017-05-26 2018-11-29 三菱電機株式会社 Refrigeration cycle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269964A (en) * 1994-03-30 1995-10-20 Toshiba Corp Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269964A (en) * 1994-03-30 1995-10-20 Toshiba Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216187A1 (en) * 2017-05-26 2018-11-29 三菱電機株式会社 Refrigeration cycle device
JPWO2018216187A1 (en) * 2017-05-26 2019-12-19 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP4452137B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US7320228B2 (en) Refrigerant cycle apparatus
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
EP2995885B1 (en) Binary refrigeration device
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
AU2012303446B2 (en) Refrigeration apparatus
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
EP1628088A2 (en) Refrigerant cycle apparatus
WO2007110908A9 (en) Refrigeration air conditioning device
Cao et al. Performance analysis of an ejector-assisted two-stage evaporation single-stage vapor-compression cycle
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
JP2000161805A (en) Refrigerating apparatus
JP2007240025A (en) Refrigerating device
JP2006112708A (en) Refrigerating air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP4442237B2 (en) Air conditioner
JP2009299911A (en) Refrigeration device
JP4906963B2 (en) Refrigeration cycle equipment
EP1607696A2 (en) Refrigerating machine
JP2018028395A (en) Heat pump device
JP4751851B2 (en) Refrigeration cycle
KR20090015148A (en) Refrigeration device
JP4999531B2 (en) Air conditioner
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
JP4452137B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R151 Written notification of patent or utility model registration

Ref document number: 4452137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4