JPH0247673B2 - SHOENERUGIITAGEN REITOSOCHI - Google Patents

SHOENERUGIITAGEN REITOSOCHI

Info

Publication number
JPH0247673B2
JPH0247673B2 JP12669484A JP12669484A JPH0247673B2 JP H0247673 B2 JPH0247673 B2 JP H0247673B2 JP 12669484 A JP12669484 A JP 12669484A JP 12669484 A JP12669484 A JP 12669484A JP H0247673 B2 JPH0247673 B2 JP H0247673B2
Authority
JP
Japan
Prior art keywords
condenser
coil
compressor
outlet
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12669484A
Other languages
Japanese (ja)
Other versions
JPS616551A (en
Inventor
Masahiro Nishihara
Akinori Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP12669484A priority Critical patent/JPH0247673B2/en
Publication of JPS616551A publication Critical patent/JPS616551A/en
Publication of JPH0247673B2 publication Critical patent/JPH0247673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔従来の技術〕 複数の冷凍装置を連結する多元冷凍装置では、
高元側の冷凍装置の凝縮器に冷却水を用いた冷却
方法を取り、冷却コイルは次の冷凍装置の圧縮機
で圧縮された冷媒ガスを凝縮する凝縮器として用
いることで数台の冷凍装置を熱交換器で連結した
ものとしてある。しかしこのような従来の多元冷
凍装置では、低元冷凍機で取つた熱はすべて中元
冷凍機の熱負荷となり、また中元冷凍機の熱負荷
はすべて高元冷凍機の熱負荷となる欠点がある。
[Detailed Description of the Invention] [Prior Art] In a multicomponent refrigeration system that connects a plurality of refrigeration systems,
By adopting a cooling method that uses cooling water in the condenser of the refrigeration equipment on the high side, and using the cooling coil as a condenser to condense the refrigerant gas compressed by the compressor of the next refrigeration equipment, several refrigeration equipment can be used. are connected by a heat exchanger. However, in such a conventional multicomponent refrigeration system, all of the heat taken by the low-component refrigerator becomes a heat load on the mid-component refrigerator, and all the heat load of the mid-component refrigerator becomes a heat load on the high-component refrigerator. There is.

〔本発明の目的〕[Object of the present invention]

本発明は、低元圧縮機、中元圧縮機、高元圧縮
機を備える多元冷凍装置において、高元圧縮機か
らの高元コンデンサにて凝縮された冷媒を中元圧
縮機からの吐出冷媒と中元コンデンサで熱交換さ
せるとともに低元圧縮機からの吐出ガスとも熱交
換器にて熱交換させることにより高元圧縮機には
充分に蒸発されたガス冷媒が吸入されるように
し、また、低元圧縮機からの前記熱交換器を経た
冷媒は中元コンデンサからの減圧された冷媒によ
り低元コンデンサで凝縮されて冷却器へ供給され
るようにすることにより、低元コンデンサの熱負
荷を低減せしめ得るようにし、かくすることによ
り前記熱交換器で低元コンデンサに入るべき熱量
の一部を除去し、その除去した熱は中元冷凍機を
バイパスして低元冷凍機から一気に高元冷凍機へ
送られて、中元冷凍機の負荷が軽減され、中元冷
凍機の小型化および高元冷凍機の小型化もでき
て、省エネルギー化を期せるようにしたことを目
的とする。
The present invention provides a multi-component refrigeration system including a low-compressor, a mid-compressor, and a high-compressor, in which refrigerant condensed in a high-component condenser from a high-compressor is used as refrigerant discharged from the mid-compressor. By exchanging heat with the intermediate condenser and with the discharge gas from the low compressor in the heat exchanger, sufficient evaporated gas refrigerant is sucked into the high compressor. The refrigerant from the main compressor that passes through the heat exchanger is condensed in the low-base condenser by the depressurized refrigerant from the middle-base condenser and then supplied to the cooler, reducing the heat load on the low-base condenser. By doing so, the heat exchanger removes a portion of the heat that should have entered the low-base condenser, and the removed heat bypasses the middle-base refrigerator and is transferred from the low-base refrigerator to the high-base refrigerator at once. The purpose of the present invention is to reduce the load on the mid-base refrigerator, reduce the size of the mid-base refrigerator, and downsize the high-base refrigerator, thereby saving energy.

〔本発明の構造〕[Structure of the present invention]

低元、中元、高元の各圧縮機を備える多元冷凍
機において、高元圧縮機からの吐出ガス冷媒は高
元コンデンサにて凝縮され、その凝縮液冷媒は膨
張弁を経て、中元圧縮機側の中元コンデンサのコ
イルに吹き込まれ、同コイルからの気液混合冷媒
は、低元圧縮機からの吐出ガス冷媒により熱交換
器で気化されて高元圧縮機に吸入され、また、中
元圧縮機からの前記中元コンデンサで凝縮された
液冷媒は膨張弁を経て低元側凝縮器に吹き込ま
れ、低元圧縮機からの前記熱交換器及び低元凝縮
器を経た冷媒は膨張弁、冷却器を経て低元圧縮機
に吸入され、しかも冷却器からの冷媒は、低元コ
ンデンサからの冷媒により過冷却熱交換器で気化
された圧縮機に吸入されるようにしてある。
In a multi-component refrigerator equipped with low-component, intermediate-compressor, and high-compressor compressors, the gas refrigerant discharged from the high-compressor is condensed in the high-component condenser, and the condensed liquid refrigerant passes through an expansion valve and is compressed into the intermediate compressor. The gas-liquid mixed refrigerant is blown into the coil of the intermediate condenser on the machine side, and the gas-liquid mixed refrigerant from the coil is vaporized by the gas refrigerant discharged from the lower compressor in the heat exchanger and sucked into the high compressor. The liquid refrigerant condensed in the middle condenser from the main compressor is blown into the low-base condenser through the expansion valve, and the refrigerant from the low-base compressor passes through the heat exchanger and low-base condenser through the expansion valve. The refrigerant is drawn into the low-base compressor via the cooler, and the refrigerant from the cooler is vaporized by the refrigerant from the low-base condenser in the subcooling heat exchanger before being sucked into the compressor.

〔本発明の実施例〕[Example of the present invention]

図は本発明の実施例を示し、第1図において、
符号1は高元圧縮機で、吐出側が高元吐出管2に
より高元コンデンサ3へ接続され、高元コンデン
サ3の液側は膨張弁4を有する高元送液管5によ
り中元コンデンサ6の凝縮コイル6aの入口へ接
続され、同コイル6aの出口は熱交換器7内の受
熱コイル8の入口に蒸気管9にて接続され、受熱
コイル8の出口は高元吸入管10により高元圧縮
機1の吸入側へ接続してある。
The figure shows an embodiment of the invention, in FIG.
Reference numeral 1 denotes a high-base compressor, the discharge side of which is connected to a high-base condenser 3 through a high-base discharge pipe 2, and the liquid side of the high-base condenser 3 connected to a high-base condenser 6 through a high-base liquid feed pipe 5 having an expansion valve 4. It is connected to the inlet of the condensing coil 6a, the outlet of the coil 6a is connected to the inlet of the heat receiving coil 8 in the heat exchanger 7 through a steam pipe 9, and the outlet of the heat receiving coil 8 is connected to the high source compression through the high source suction pipe 10. It is connected to the suction side of machine 1.

低元圧縮機17の吐出管18は前記熱交換器7
のガス側へ接続され、その出口は低元コンデンサ
15へ接続されて、低元コンデンサ15の液側は
低元送液管19により過冷却熱交換器20の放熱
コイル20aの入口に接続され、放熱コイル20
aの出口は膨張弁21を有する液管にて冷却器2
2のコイル22a入口に接続され、同コイル22
aの出口は前記過冷却熱交換器20の受熱コイル
20bを経て低元吸入管23により低元圧縮機1
7の吸入側へ接続してある。
The discharge pipe 18 of the low-end compressor 17 is connected to the heat exchanger 7.
Its outlet is connected to the low source condenser 15, and the liquid side of the low source condenser 15 is connected to the inlet of the heat radiation coil 20a of the subcooling heat exchanger 20 by the low source liquid sending pipe 19. Heat dissipation coil 20
The outlet of a is a liquid pipe with an expansion valve 21 connected to the cooler 2.
The coil 22a is connected to the inlet of the second coil 22a.
The outlet of a is connected to the low source compressor 1 via the low source suction pipe 23 via the heat receiving coil 20b of the supercooling heat exchanger 20.
It is connected to the suction side of 7.

11は中元圧縮機で、吐出側が中元吐出管12
にて中元コンデンサ6へ接続され、中元コンデン
サの液側は膨張弁13を有する中元送液管14に
より低元コンデンサ15のコイル15a入口へ接
続され、同コイル15aの出口は中元吸入管16
により中元圧縮機11の吸入側へ接続してある。
Reference numeral 11 is a central compressor, and the discharge side is a central discharge pipe 12.
The liquid side of the medium condenser is connected to the inlet of a coil 15a of the low source condenser 15 by a medium liquid feed pipe 14 having an expansion valve 13, and the outlet of the coil 15a is connected to the medium suction. tube 16
It is connected to the suction side of the middle compressor 11 by.

次に上記実施例の動作について述べる。 Next, the operation of the above embodiment will be described.

冷凍運転時には、高元圧縮機1からのガス冷媒
は高元コンデンサ3により冷却水等で凝縮され、
高元送液管5を経て膨張弁4により中元コンデン
サ6のコイル6a内で蒸発する。この蒸発作用に
より中元圧縮機11からのガスを凝縮し、液化し
た冷媒を膨張弁13により低元コンデンサ15の
コイル15a内で蒸発させる。
During refrigeration operation, the gas refrigerant from the high-base compressor 1 is condensed with cooling water etc. by the high-base condenser 3,
The liquid passes through the high source liquid sending pipe 5 and is evaporated within the coil 6a of the medium condenser 6 by the expansion valve 4. This evaporation action condenses the gas from the intermediate compressor 11, and the liquefied refrigerant is evaporated within the coil 15a of the low element condenser 15 by the expansion valve 13.

ところで、中元コンデンサのコイル6aを出た
気液混合冷媒は蒸気管9に導かれ、熱交換器7内
の受熱コイル8に供給される。熱交換器7へは低
元圧縮機17からの高温ガス冷媒が流入してお
り、中元コンデンサのコイル6aからの気液混合
冷媒は高温ガス冷媒によつて気化される。
By the way, the gas-liquid mixed refrigerant that has exited the coil 6a of the intermediate condenser is guided to the steam pipe 9 and supplied to the heat receiving coil 8 in the heat exchanger 7. The high-temperature gas refrigerant from the low-end compressor 17 flows into the heat exchanger 7, and the gas-liquid mixed refrigerant from the coil 6a of the middle-end condenser is vaporized by the high-temperature gas refrigerant.

この状態を示したモリエル線図が第2図で、b
で示される大きさのエンタルピが熱交換器7内で
放出されるため、低元コンデンサ15内で放出す
るエンタルピはcの大きさですむ事になる。
The Mollier diagram showing this state is shown in Figure 2, b
Since the enthalpy of the magnitude shown by is released within the heat exchanger 7, the enthalpy released within the low element condenser 15 only needs to be of the magnitude c.

低元コンデンサ15により液化した冷媒は低元
送液管19を経て過冷却熱交換器20に入り、低
元冷却コイル22aで蒸発した冷媒ガスからさら
に第2図のdの大きさのエンタルピを放出する。
したがつて、低元圧縮機17からの冷媒ガスは第
2図のcの大きさのエンタルピを低元コンデンサ
15で放出すればよく、低元コンデンサの熱負荷
が大巾に軽減される。
The refrigerant liquefied by the low source condenser 15 enters the subcooling heat exchanger 20 via the low source liquid sending pipe 19, and further releases enthalpy of magnitude d in Fig. 2 from the refrigerant gas evaporated in the low source cooling coil 22a. do.
Therefore, the refrigerant gas from the low-base compressor 17 only needs to release enthalpy of the magnitude c in FIG. 2 at the low-base condenser 15, and the heat load on the low-base condenser is greatly reduced.

以上のように、本発明によれば、中元コンデン
サのコイルからの減圧された低温の気液混合冷媒
で低元圧縮機からの冷媒ガスエンタルピを取りさ
ることができる。このため、多段式の冷凍装置に
おける各冷凍装置のエネルギーの損失を軽減する
ことができ、システム全体の省エネルギー化を図
れる。
As described above, according to the present invention, the refrigerant gas enthalpy from the low-end compressor can be removed with the reduced pressure, low-temperature gas-liquid mixed refrigerant from the coil of the middle-end condenser. Therefore, the energy loss of each refrigeration device in a multi-stage refrigeration device can be reduced, and the energy saving of the entire system can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る省エネ多元冷凍装置の一
例を示す図、第2図は低元圧縮機からの冷媒の状
態を示すモリエル線図である。 図中、1……高元圧縮機、2……高元吐出管、
3……高元コンデンサ、4,13,21……膨張
弁、5……高元送液管、6……中元コンデンサ、
7……熱交換器、8……受熱コイル、9……蒸気
管、10……高元吸入管、11……中元圧縮機、
12……中元吐出管、14……中元送液管、15
……低元コンデンサ、16……中元吸入管、17
……低元圧縮機、18……低元吐出管、19……
低元送液管、20……過冷却熱交換器、22……
冷却器。
FIG. 1 is a diagram showing an example of an energy-saving multicomponent refrigeration system according to the present invention, and FIG. 2 is a Mollier diagram showing the state of refrigerant from a low-component compressor. In the figure, 1...High source compressor, 2...High source discharge pipe,
3...High source condenser, 4,13,21...Expansion valve, 5...High source liquid sending pipe, 6...Medium source condenser,
7...Heat exchanger, 8...Heat receiving coil, 9...Steam pipe, 10...High source suction pipe, 11...Medium compressor,
12... Middle body discharge pipe, 14... Middle body liquid sending pipe, 15
...Low element condenser, 16...Middle element suction pipe, 17
...Low source compressor, 18...Low source discharge pipe, 19...
Low source liquid transfer pipe, 20...Supercooling heat exchanger, 22...
Cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 高元圧縮機の吐出側を高元吐出管で高元コン
デンサに接続し、この高元コンデンサ出口は膨張
弁を設けた高元送液管で中元コンデンサの凝縮コ
イルの入口に接続し、この凝縮コイルの出口は熱
交換器内の受熱コイル入口に蒸気管で接続し、受
熱コイル出口は高元吸入管で前記高元圧縮機の吸
入側へ接続し、中元圧縮機の吐出側を中元吐出管
で前記中元コンデンサに接続し、この中元コンデ
ンサ出口は膨張弁を設けた中元送液管で低元コン
デンサの凝縮コイルの入口に接続し、低元コンデ
ンサの凝縮コイル出口は中元吸入管で前記中元圧
縮機の吸入側に接続し、低元圧縮機の吐出側を吐
出管で前記熱交換器の入口へ接続し、前記熱交換
器の出口は前記低元コンデンサの入口に接続し、
同低元コンデンサの出口は低元送液管で過冷却熱
交換器の放熱コイル入口に接続し、同放熱コイル
出口は膨張弁を有する液管にて冷却器の冷却コイ
ル入口に接続し、冷却コイル出口は前記過冷却熱
交換器の受熱コイルに接続し、この受熱コイルを
低元吸入管にて前記低元圧縮機の吸入側に接続し
たことを特徴とする省エネルギー多元冷凍装置。
1. Connect the discharge side of the high-base compressor to the high-base condenser with a high-base discharge pipe, and connect the high-base condenser outlet to the inlet of the condensing coil of the medium-base condenser with a high-base liquid sending pipe equipped with an expansion valve. The outlet of this condensing coil is connected to the inlet of the heat-receiving coil in the heat exchanger through a steam pipe, the outlet of the heat-receiving coil is connected to the suction side of the high-end compressor through a high-end suction pipe, and the discharge side of the middle-end compressor is connected to the inlet of the heat-receiving coil in the heat exchanger. The medium discharge pipe connects to the medium condenser, and the medium condenser outlet is connected to the condensing coil inlet of the low source condenser through a medium liquid sending pipe equipped with an expansion valve, and the condensing coil outlet of the low source condenser A midstream suction pipe is connected to the suction side of the midstream compressor, a discharge pipe is connected to the inlet of the heat exchanger, and an outlet of the heat exchanger is connected to the intake side of the midstream compressor. Connect to the entrance
The outlet of the low source condenser is connected to the inlet of the heat dissipation coil of the subcooling heat exchanger through a low source liquid sending pipe, and the outlet of the heat dissipation coil is connected to the inlet of the cooling coil of the cooler through a liquid pipe with an expansion valve to cool the condenser. An energy-saving multicomponent refrigeration system characterized in that a coil outlet is connected to a heat receiving coil of the supercooling heat exchanger, and the heat receiving coil is connected to the suction side of the low source compressor through a low source suction pipe.
JP12669484A 1984-06-20 1984-06-20 SHOENERUGIITAGEN REITOSOCHI Expired - Lifetime JPH0247673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12669484A JPH0247673B2 (en) 1984-06-20 1984-06-20 SHOENERUGIITAGEN REITOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12669484A JPH0247673B2 (en) 1984-06-20 1984-06-20 SHOENERUGIITAGEN REITOSOCHI

Publications (2)

Publication Number Publication Date
JPS616551A JPS616551A (en) 1986-01-13
JPH0247673B2 true JPH0247673B2 (en) 1990-10-22

Family

ID=14941532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12669484A Expired - Lifetime JPH0247673B2 (en) 1984-06-20 1984-06-20 SHOENERUGIITAGEN REITOSOCHI

Country Status (1)

Country Link
JP (1) JPH0247673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664071U (en) * 1993-02-18 1994-09-09 株式会社東洋製作所 Multi-source refrigerator
EP2642220A4 (en) 2010-11-15 2017-04-19 Mitsubishi Electric Corporation Freezer

Also Published As

Publication number Publication date
JPS616551A (en) 1986-01-13

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
US6425249B1 (en) High efficiency refrigeration system
US8713963B2 (en) Economized vapor compression circuit
EP1686323A2 (en) Heat exchanger of air conditioner
JPH10103800A (en) Composite type refrigerating plant
JPH0953864A (en) Engine type cooling device
CN212274330U (en) Defrosting device adopting secondary condensation of refrigerant
JPH0247673B2 (en) SHOENERUGIITAGEN REITOSOCHI
CN215675710U (en) Heat recovery type split air conditioner
CN212274331U (en) Defrosting device adopting medium specific enthalpy vapor-liquid mixture refrigerant
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
CN111536720A (en) Defrosting method and device adopting secondary condensation of refrigerant
CN217110104U (en) Vapor compression type refrigeration heat pump circulating system with surrounding type heat regenerator
JP2611351B2 (en) Refrigeration cycle
CN111141049A (en) Cascade high temperature heat pump laboratory bench
JP2685583B2 (en) Heat pump heat recovery device
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
CN211943310U (en) Rail vehicle refrigerating system with fresh air precooling function
JPH07127934A (en) Cascade freezing device
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH0391663A (en) Refrigeration cycling device
KR0184207B1 (en) Refrigeration cycle apparatus of airconditioner
JPH03148569A (en) 2-stage compression room cooling, heating and water supplying system
JPS6139257Y2 (en)
KR0120035Y1 (en) Refrigerant separating apparatus for airconditioner