JPH0641097Y2 - Low temperature refrigerator - Google Patents

Low temperature refrigerator

Info

Publication number
JPH0641097Y2
JPH0641097Y2 JP1987128452U JP12845287U JPH0641097Y2 JP H0641097 Y2 JPH0641097 Y2 JP H0641097Y2 JP 1987128452 U JP1987128452 U JP 1987128452U JP 12845287 U JP12845287 U JP 12845287U JP H0641097 Y2 JPH0641097 Y2 JP H0641097Y2
Authority
JP
Japan
Prior art keywords
refrigerant
low temperature
condenser
temperature side
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987128452U
Other languages
Japanese (ja)
Other versions
JPS6435367U (en
Inventor
純一 山田
敏弘 潮江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP1987128452U priority Critical patent/JPH0641097Y2/en
Publication of JPS6435367U publication Critical patent/JPS6435367U/ja
Application granted granted Critical
Publication of JPH0641097Y2 publication Critical patent/JPH0641097Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は少なくとも二つ以上の独立した冷凍回路をカ
スケード凝縮器を介して組み合わせてなる多元冷凍方式
の低温冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a low temperature refrigeration system of a multi-source refrigeration system in which at least two or more independent refrigeration circuits are combined via a cascade condenser.

(従来の技術とその問題点) 第3図は従来の二元冷凍方式の低温冷凍装置の冷凍回路
を示す図である。同図に示すように、この低温冷凍装置
1は高温側冷凍回路1hと低温側冷凍回路1とから構成
される。高温側冷凍回路1hは、圧縮機2hと,凝縮器4
と,減圧器を構成するキャピラリチューブ3hと,高温側
冷凍回路1hでは蒸発器とし作用するカスケード凝縮器5
とを閉ループ接続して形成される。一方、低温側冷凍回
路1は、圧縮機2lと,低温側冷凍回路1では凝縮器
として作用するカスケード凝縮器5と,減圧器を構成す
るキャピラリチューブ3lと,蒸発器6とを閉ループ接続
して形成される。
(Conventional Technology and Problems Thereof) FIG. 3 is a diagram showing a refrigeration circuit of a conventional low temperature refrigeration system of a dual refrigeration system. As shown in the figure, the low temperature refrigeration system 1 comprises a high temperature side refrigeration circuit 1h and a low temperature side refrigeration circuit 1. The high temperature side refrigeration circuit 1h includes a compressor 2h and a condenser 4
And a capillary tube 3h that constitutes a pressure reducer, and a cascade condenser 5 that functions as an evaporator in the high temperature side refrigeration circuit 1h.
And are closed loop connected. On the other hand, in the low temperature side refrigeration circuit 1, a compressor 2l, a cascade condenser 5 acting as a condenser in the low temperature side refrigeration circuit 1, a capillary tube 3l constituting a decompressor, and an evaporator 6 are connected in a closed loop. It is formed.

この低温冷凍装置1において、高温側冷凍回路1hでは、
圧縮機2hで圧縮された高温側冷媒の高圧ホットガスは凝
縮器4内で放熱して液化し、この液冷媒はキャピラリチ
ューブ3hにて絞り膨張されてカスケード凝縮器5で低温
側冷媒の高圧ホットガス(詳細は後述する)の熱をうば
って気化する。一方、低温側冷凍回路1では、圧縮機
2lで圧縮された低温側冷媒の高圧ホットガスはカスケー
ド凝縮器5内で上記高温側液冷媒に放熱して液化し、こ
の液冷媒はキャピラリチューブ3lにて絞り膨張されて蒸
発器6で気化する。これにより、図示しない負荷から熱
を奪いこれを冷却する。
In this low temperature refrigeration system 1, in the high temperature side refrigeration circuit 1h,
The high pressure hot gas of the high temperature side refrigerant compressed by the compressor 2h radiates heat in the condenser 4 and is liquefied. This liquid refrigerant is squeezed and expanded by the capillary tube 3h and the high pressure hot gas of the low temperature side refrigerant is cascaded in the cascade condenser 5. It vaporizes by the heat of gas (details will be described later). On the other hand, in the low temperature side refrigeration circuit 1, the compressor
The high-pressure hot gas of the low-temperature side refrigerant compressed by 2 l radiates heat to the high-temperature side liquid refrigerant in the cascade condenser 5 and is liquefied. This liquid refrigerant is squeezed and expanded by the capillary tube 3 l and vaporized by the evaporator 6. . As a result, heat is taken from a load (not shown) and cooled.

ところで、通常、このような低温冷凍装置1には、その
冷媒として高温側に高沸点冷媒(例えばR-12,R-22,R-50
2等)を用い、低温側に低沸点冷媒(例えばR-13,R-503
等)を用いている。また、圧縮機2h,2lにはその焼付を
防止するために潤滑油が用いられており、その潤滑油が
循環する冷媒中に混入される。しかしながら、この潤滑
油は、低温側冷媒に溶け込みにくく分離する傾向にあ
り、一方、低温側冷凍回路1のキャピラリチューブ3l
の冷媒出口付近から蒸発器6の冷媒出口付近までの低温
領域(第3図の矢符Pで示す)では−85℃〜−90℃の低
温となるため、冷媒より分離した潤滑油がこの低温領域
Pで凍結して冷媒の流れを阻害し、これにより冷媒の循
環が悪化して温度上昇を来たすという問題があった。ま
た、潤滑油の凍結によって圧縮機2lへ潤滑油が戻らなく
なると、圧縮機2l内の潤滑油の量が減少し、そのまま放
置しておくと圧縮器2lに焼付が生じるという問題があっ
た。
By the way, normally, in such a low temperature refrigeration system 1, a high boiling point refrigerant (for example, R-12, R-22, R-50) on the high temperature side is used as the refrigerant.
2 etc.) and a low boiling point refrigerant (eg R-13, R-503
Etc.) are used. Lubricating oil is used in the compressors 2h and 2l to prevent the seizure, and the lubricating oil is mixed in the circulating refrigerant. However, this lubricating oil tends not to dissolve in the low temperature side refrigerant and tends to separate, while the capillary tube 3l of the low temperature side refrigeration circuit 1 is separated.
In the low temperature region (shown by the arrow P in FIG. 3) from the vicinity of the refrigerant outlet of the evaporator to the vicinity of the refrigerant outlet of the evaporator 6, the lubricating oil separated from the refrigerant has a low temperature of −85 ° C. to −90 ° C. There is a problem in that the flow of the refrigerant is frozen in the region P and the flow of the refrigerant is hindered, and thereby the circulation of the refrigerant is deteriorated and the temperature rises. Further, when the lubricating oil does not return to the compressor 2l due to the freezing of the lubricating oil, the amount of the lubricating oil in the compressor 2l decreases, and if left as it is, there is a problem that seizure may occur in the compressor 2l.

(考案の目的) この考案は、上記従来技術の問題を解消するためになさ
れたもので、減圧器,蒸発器での潤滑油の凍結を防止で
きるとともに、圧縮機に焼付が生じない多元冷凍方式の
低温冷凍装置を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is possible to prevent freezing of the lubricating oil in the pressure reducer and the evaporator, and to prevent the compressor from seizing. It is an object of the present invention to provide a low temperature refrigerating device.

(目的を達成するための手段) この考案は、少なくとも二つ以上の独立した冷凍回路を
カスケード凝縮器を介して組み合わせてなり、低温側冷
凍回路が圧縮機,前記カスケード凝縮器,減圧器および
蒸発器を直列に閉ループ接続して形成された多元冷凍方
式の低温冷凍装置であって、上記目的を達成するため、
低温側冷凍回路の冷媒として高沸点・低沸点の混合冷媒
を用いる一方、前記圧縮機と前記カスケード凝縮器との
間に、高沸点の冷媒のみを液化させる凝縮器と、液化さ
れた高沸点の冷媒と気相状態にある低沸点の冷媒とを分
離する気液分離器とを直列に介装し、前記気液分離器に
より分離された気相状態にある冷媒は前記カスケード凝
縮器に導く一方、液冷媒はバイパス経路を介して前記減
圧器に直接導くようにしている。
(Means for Achieving the Purpose) The present invention comprises a combination of at least two independent refrigeration circuits via a cascade condenser, wherein the low temperature side refrigeration circuit is a compressor, the cascade condenser, a decompressor and an evaporator. In order to achieve the above object, it is a low temperature refrigerating device of a multi-source refrigeration system formed by connecting closed loops in series with each other.
While using a high-boiling / low-boiling mixed refrigerant as the refrigerant for the low-temperature side refrigeration circuit, between the compressor and the cascade condenser, a condenser that liquefies only the high-boiling refrigerant, and a liquefied high-boiling refrigerant A gas-liquid separator that separates the refrigerant and the low-boiling-point refrigerant in the gas phase is interposed in series, and the refrigerant in the gas phase separated by the gas-liquid separator is guided to the cascade condenser. The liquid refrigerant is directly guided to the pressure reducer via a bypass path.

(実施例) 第1図はこの考案の一実施例である低温冷凍装置の冷凍
回路を示す図である。同図に示すように、低温冷凍装置
7の高温側冷凍回路7hにおいては、圧縮機8hから凝縮器
9,減圧器のキャピラリチューブ10h,カスケード凝縮器11
および熱交換器13を経て再び圧縮機8hへ戻る冷凍経路が
形成される。一方、低温側冷凍回路7lにおいては、冷媒
として低沸点冷媒(例えばR-13,R-503等)と、潤滑油の
溶け込みが良好な高沸点冷媒(例えばR-11,R-114等)と
を混合した混合冷媒が用いれれる。そして、圧縮機8lの
冷媒出口が、熱交換器13を介して気液分離器14の入口に
接続される。この場合、熱交換器13は、高温側冷凍回路
7hの戻り冷媒の冷却熱を利用して、低温側冷凍回路7lの
混合冷媒のうち高沸点冷媒のみを凝縮させる作用を果た
し、気液分離器14は、液化された高沸点の冷媒と気相状
態にある低沸点の冷媒とを分離する作用を果たす。そし
て、気液分離器14の気相出口14aは、カスケード凝縮器1
1を介して減圧器のキャピラリチューブ10lに接続される
とともに、液相出口14bは電磁弁16の設けられたバイパ
ス経路15を介してキャピラリチューブ10lに直接接続さ
れる。キャピラリチューブ10lの出口は蒸発器12を介し
て圧縮機8lに接続される。なお、電磁弁16は気液分離器
14の液量が増え過ぎないように気液分離器14の液レベル
に応じ定期的に開成するように構成されている。
(Embodiment) FIG. 1 is a view showing a refrigerating circuit of a low temperature refrigerating apparatus which is an embodiment of the present invention. As shown in the figure, in the high temperature side refrigeration circuit 7h of the low temperature refrigeration system 7, the compressor 8h is connected to the condenser.
9, decompressor capillary tube 10h, cascade condenser 11
A refrigeration path is formed that returns to the compressor 8h via the heat exchanger 13. On the other hand, in the low temperature side refrigeration circuit 7l, a low boiling point refrigerant (for example, R-13, R-503, etc.) and a high boiling point refrigerant (for example, R-11, R-114, etc.) in which the lubricating oil melts well are used as the refrigerant. A mixed refrigerant prepared by mixing is used. The refrigerant outlet of the compressor 8l is connected to the inlet of the gas-liquid separator 14 via the heat exchanger 13. In this case, the heat exchanger 13 is a high temperature side refrigeration circuit.
Utilizing the cooling heat of the return refrigerant of 7h, it acts to condense only the high boiling point refrigerant of the mixed refrigerant of the low temperature side refrigeration circuit 7l, the gas-liquid separator 14, the liquefied high boiling point refrigerant and the gas phase It acts to separate the low boiling point refrigerant in the state. The gas phase outlet 14a of the gas-liquid separator 14 is connected to the cascade condenser 1
The liquid phase outlet 14b is directly connected to the capillary tube 10l via the bypass passage 15 provided with the solenoid valve 16 while being connected to the capillary tube 10l of the decompressor via 1. The outlet of the capillary tube 10l is connected to the compressor 8l via the evaporator 12. The solenoid valve 16 is a gas-liquid separator.
It is configured to open periodically according to the liquid level of the gas-liquid separator 14 so that the liquid amount of 14 does not increase too much.

つぎに、この低温冷凍装置7の動作について説明する。
高温側冷凍回路7hでは、凝縮器9で液化された液冷媒は
キャピラリチューブ10hにて絞り膨張されてカスケード
凝縮器11で低温側冷凍回路7lの冷媒から熱を奪って気化
し、更に熱交換器13で同じく低温側冷凍回路7lの冷媒か
ら熱を奪い高温となって圧縮機8hへ戻る。すなわち、カ
スケード凝縮器11と熱交換器13とは、ともに低温側冷凍
回路7lの凝縮器として作用することになる。一方、低温
側冷凍回路7lにおいては、圧縮機8lで圧縮された高沸点
・低沸点の混合冷媒のホットガスのうち高沸点の冷媒の
みが熱交換器13より凝縮されて液化し、液化された高沸
点冷媒と気相状態の低沸点冷媒とが気液分離器14で分離
される。そして、気相状態の低沸点冷媒は気液分離器14
の気相出口14aよりカスケード凝縮器11に送られ、ここ
で凝縮されて液化し、更にキャピラリチューブ10lにて
絞り膨張されて蒸発器12で気化し、これにより負荷の冷
却が行なわれる。一方、気液分離器14で分離された液相
状態の高沸点冷媒は気液分離器14内の液レベルに応じ電
磁弁16が定期的に開成することによって、順次気液分離
器14の液相出口14bよりバイパス経路15を通って、上記
低沸点液冷媒と混合されながらキャピラリチューブ10l
に送られる。この場合、気液分離器14よりバイパス経路
15を通って直接キャピラリチューブ10lに導かれる高沸
点冷媒は、カスケード凝縮器11を通らないために、カス
ケード凝縮器11を通って得られた低沸点冷媒よりも高温
となっている。そのため、キャピラリチューブ10l,蒸発
器12内で圧縮機用潤滑油が凍結されても、冷凍された潤
滑油は高温の高沸点冷媒の顕熱により、溶かされて圧縮
機8l内へ戻される。こうして、キャピラリチューブ10l,
蒸発器12での潤滑油の凍結を防止できるので、冷媒の循
環がスムーズに行なえて、温度の上昇を来たすことがな
くなるとともに、圧縮機8lの焼付も防止できる。
Next, the operation of the low temperature refrigeration system 7 will be described.
In the high temperature side refrigeration circuit 7h, the liquid refrigerant liquefied in the condenser 9 is squeezed and expanded by the capillary tube 10h, and in the cascade condenser 11, heat is taken from the refrigerant in the low temperature side refrigeration circuit 7l to be vaporized, and further the heat exchanger. At 13 as well, heat is taken from the refrigerant in the low temperature side refrigeration circuit 7l and the temperature becomes high, and the temperature returns to the compressor 8h. That is, the cascade condenser 11 and the heat exchanger 13 both act as a condenser of the low temperature side refrigeration circuit 7l. On the other hand, in the low temperature side refrigeration circuit 7l, only the high boiling point refrigerant of the high boiling point / low boiling point mixed refrigerant hot gas compressed by the compressor 8l is condensed and liquefied by the heat exchanger 13. The high boiling point refrigerant and the low boiling point refrigerant in the vapor phase are separated by the gas-liquid separator 14. Then, the low boiling point refrigerant in the gas phase is the gas-liquid separator 14
Is sent to the cascade condenser 11 from the gas phase outlet 14a thereof, is condensed and liquefied there, and is further expanded by being squeezed by the capillary tube 10l and vaporized in the evaporator 12, whereby the load is cooled. On the other hand, the high-boiling-point refrigerant in the liquid phase separated by the gas-liquid separator 14 is opened by the solenoid valve 16 according to the liquid level in the gas-liquid separator 14 periodically, so that the liquid in the gas-liquid separator 14 is sequentially discharged. Capillary tube 10l from the phase outlet 14b through the bypass path 15 while being mixed with the low boiling point liquid refrigerant.
Sent to. In this case, bypass the gas-liquid separator 14
The high-boiling-point refrigerant that is directly guided to the capillary tube 10l through 15 is higher in temperature than the low-boiling-point refrigerant obtained through the cascade condenser 11 because it does not pass through the cascade condenser 11. Therefore, even if the compressor lubricating oil is frozen in the capillary tube 10l and the evaporator 12, the frozen lubricating oil is melted and returned to the compressor 8l by the sensible heat of the high-temperature high-boiling-point refrigerant. In this way, the capillary tube 10l,
Since the freezing of the lubricating oil in the evaporator 12 can be prevented, the refrigerant can be circulated smoothly, the temperature does not rise, and the compressor 8l can be prevented from seizing.

第2図にこの考案の他の実施例である低温冷凍装置の冷
凍回路図を示す。この低温冷凍装置17が上記第1図に示
す低温冷凍装置7と相違する点は、上記低温冷凍装置7
では、低温側冷凍回路7lの高沸点冷媒を液化させるの
に、高温側冷凍回路7hの戻り冷媒の冷却熱を利用する熱
交換器13を用いているに対し、この低温冷凍装置17で
は、高温側冷凍回路17hとは独立した関係にある凝縮器2
3を、単独に低温側冷凍回路17l内に配置して高沸点冷媒
の液化を見るように構成している。その他の構成は上記
第1図に示す低温冷凍装置7と同様であり、同様の効果
を達成するので、同一または相当部分に同一符号を付し
てその説明を省略する。
FIG. 2 shows a refrigerating circuit diagram of a low temperature refrigerating apparatus according to another embodiment of the present invention. The low-temperature refrigeration system 17 is different from the low-temperature refrigeration system 7 shown in FIG.
Then, in order to liquefy the high boiling point refrigerant of the low temperature side refrigeration circuit 7l, the heat exchanger 13 which uses the cooling heat of the return refrigerant of the high temperature side refrigeration circuit 7h is used, while in the low temperature refrigeration apparatus 17, the high temperature Condenser 2 that is independent of the side refrigeration circuit 17h
3 is independently arranged in the low temperature side refrigeration circuit 17l so as to observe the liquefaction of the high boiling point refrigerant. Other configurations are the same as those of the low temperature refrigeration system 7 shown in FIG. 1 and achieve the same effects. Therefore, the same or corresponding parts are designated by the same reference numerals and the description thereof is omitted.

なお、上記実施例においては、この考案を二元冷凍方式
の低温冷凍装置7,17に適用したものを例に挙げて説明し
たが、この考案を2元以上の多元冷凍方式の低温冷凍装
置にも適用可能である。この場合、低温側冷凍回路と
は、最も高温側の冷凍回路以外のものを言う。
In the above-mentioned embodiment, the invention is applied to the low temperature refrigeration system 7, 17 of the dual refrigeration system as an example, but the invention is applied to the low temperature refrigeration system of the multi-source refrigeration system of two or more sources. Is also applicable. In this case, the low temperature side refrigeration circuit refers to other than the highest temperature side refrigeration circuit.

(考案の効果) 以上のように、この考案の多元冷凍方式の低温冷凍装置
によれば、冷温側冷凍回路の冷媒として高沸点・低沸点
の混合冷媒を用い、圧縮機とカスケード凝縮器との間に
高沸点冷媒のみを液化させる凝縮器を設けて、その凝縮
器により液化された高沸点の液冷媒のみを、カスケード
凝縮器をバイパスさせて直接減圧器へ導き、その顕熱で
減圧器,蒸発器に凍結した潤滑油を溶解するようにして
いるので、減圧器,蒸発器の潤滑油の凍結を防止できる
とともに圧縮機に焼付が生じないという効果が得られ
る。
(Effect of the Invention) As described above, according to the low temperature refrigerating apparatus of the multi-source refrigeration system of the present invention, a mixed refrigerant having a high boiling point and a low boiling point is used as the refrigerant in the cold side refrigeration circuit, and the compressor and the cascade condenser are combined. A condenser for liquefying only the high-boiling-point refrigerant is provided between them, and only the high-boiling-point liquid refrigerant liquefied by the condenser is directly passed to the decompressor by bypassing the cascade condenser, and the decompressor by its sensible heat, Since the frozen lubricating oil is dissolved in the evaporator, it is possible to prevent the lubricating oil of the pressure reducer and the evaporator from being frozen and to prevent seizure of the compressor.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の一実施例である低温冷凍装置の冷凍
回路を示す図、第2図はこの考案の他の実施例である低
温冷凍装置の冷凍回路を示す図、第3図は従来の低温冷
凍装置の冷凍回路を示す図である。 7,17……低温冷凍装置、 7l,17l……低温側冷凍回路、 8l……圧縮機、 10l……キャピラリチューブ(減圧器)、 11……カスケード凝縮器、 12……蒸発器、13……熱交換器(凝縮器)、 14……気液分離器、15……バイパス経路、 23……凝縮器
FIG. 1 is a diagram showing a refrigerating circuit of a low temperature refrigerating apparatus which is an embodiment of the present invention, FIG. 2 is a diagram showing a refrigerating circuit of a low temperature refrigerating apparatus which is another embodiment of the present invention, and FIG. It is a figure which shows the refrigeration circuit of the low temperature refrigeration equipment of. 7,17 …… Low temperature refrigeration equipment, 7l, 17l …… Low temperature side refrigeration circuit, 8l …… Compressor, 10l …… Capillary tube (pressure reducer), 11 …… Cascade condenser, 12 …… Evaporator, 13… … Heat exchanger (condenser), 14 …… Gas-liquid separator, 15 …… Bypass path, 23 …… Condenser

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】少なくとも二つ以上の独立した冷凍回路を
カスケード凝縮器を介して組み合わせてなり、低温側冷
凍回路が圧縮機,前記カスケード凝縮器,減圧器および
蒸発器を直列に閉ループ接続して形成された多元冷凍方
式の低温冷凍装置において、 低温側冷凍回路の冷媒として高沸点・低沸点の混合冷媒
を用いる一方、前記圧縮機と前記カスケード凝縮器との
間に、高沸点の冷媒のみを液化させる凝縮器と、液化さ
れた高沸点の冷媒と気相状態にある低沸点の冷媒とを分
離する気液分離器とを直列に介装し、前記気液分離器に
より分離された気相状態にある冷媒は前記カスケード凝
縮器に導く一方、液冷媒はバイパス経路を介して前記減
圧器に直接導くようにした多元冷凍方式の低温冷凍装
置。
1. A combination of at least two independent refrigeration circuits via a cascade condenser, wherein a low temperature side refrigeration circuit comprises a compressor, the cascade condenser, a pressure reducer and an evaporator connected in series in a closed loop. In the low temperature refrigeration system of the formed multi-source refrigeration system, while using a high boiling point / low boiling point mixed refrigerant as the refrigerant of the low temperature side refrigeration circuit, between the compressor and the cascade condenser, only the high boiling point refrigerant is used. A condenser for liquefying, a gas-liquid separator for separating a liquefied high-boiling-point refrigerant and a low-boiling-point refrigerant in a gas phase state is interposed in series, and the gas phase separated by the gas-liquid separator The low temperature refrigeration system of the multi-source refrigeration system in which the refrigerant in the state is guided to the cascade condenser, while the liquid refrigerant is directly guided to the pressure reducer via a bypass path.
JP1987128452U 1987-08-24 1987-08-24 Low temperature refrigerator Expired - Lifetime JPH0641097Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987128452U JPH0641097Y2 (en) 1987-08-24 1987-08-24 Low temperature refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987128452U JPH0641097Y2 (en) 1987-08-24 1987-08-24 Low temperature refrigerator

Publications (2)

Publication Number Publication Date
JPS6435367U JPS6435367U (en) 1989-03-03
JPH0641097Y2 true JPH0641097Y2 (en) 1994-10-26

Family

ID=31381807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987128452U Expired - Lifetime JPH0641097Y2 (en) 1987-08-24 1987-08-24 Low temperature refrigerator

Country Status (1)

Country Link
JP (1) JPH0641097Y2 (en)

Also Published As

Publication number Publication date
JPS6435367U (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US3733845A (en) Cascaded multicircuit,multirefrigerant refrigeration system
CA2836458C (en) Cascade cooling system with intercycle cooling
WO2004027326A3 (en) Refrigeration system with de-superheating bypass
JPH10103800A (en) Composite type refrigerating plant
KR101221368B1 (en) Extremely Low Temperature Refrigerative Apparatus
US4850199A (en) Cryo-refrigeration system
US7582223B2 (en) Refrigerant composition for refrigeration systems
JPH0641097Y2 (en) Low temperature refrigerator
EP0524197B1 (en) Vapor compression cycle with apparatus for expanding the temperature glide for use with non-azeotropic working fluid mixture
KR102319331B1 (en) Cryogenic rapid refrigeration system
JP2711879B2 (en) Low temperature refrigerator
JPH0814430B2 (en) Refrigeration equipment
JP2532754B2 (en) Refrigeration cycle equipment
JPS6112540Y2 (en)
JPH047491Y2 (en)
JPH086205Y2 (en) Freezer refrigerator
JPS6298158A (en) Refrigeration cycle
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JP2626912B2 (en) Refrigeration equipment
JPH0742074Y2 (en) Freezer refrigerator
JPH0429338Y2 (en)
JPH03158659A (en) Refrigerating plant
JP2756361B2 (en) Refrigeration system for cooling both low temperature medium and high temperature medium
JPS6277551A (en) Refrigerator
JPH07104058B2 (en) Refrigeration cycle equipment