JPH0429338Y2 - - Google Patents

Info

Publication number
JPH0429338Y2
JPH0429338Y2 JP18132087U JP18132087U JPH0429338Y2 JP H0429338 Y2 JPH0429338 Y2 JP H0429338Y2 JP 18132087 U JP18132087 U JP 18132087U JP 18132087 U JP18132087 U JP 18132087U JP H0429338 Y2 JPH0429338 Y2 JP H0429338Y2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
heat exchanger
cascade heat
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18132087U
Other languages
Japanese (ja)
Other versions
JPH0188271U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18132087U priority Critical patent/JPH0429338Y2/ja
Publication of JPH0188271U publication Critical patent/JPH0188271U/ja
Application granted granted Critical
Publication of JPH0429338Y2 publication Critical patent/JPH0429338Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、非共沸混合冷媒を用いた超低温冷凍
装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an ultra-low temperature refrigeration device using a non-azeotropic refrigerant mixture.

(従来の技術) 非共沸混合冷媒を用いて超低温を発生させる冷
凍システムは、冷媒の冷却と気液の分離を繰返す
ことによつて、最終的に低沸点成分の液を分離抽
出し、この蒸発潜熱によつて超低温の寒冷を得る
ものである。一方、圧縮機に使用される潤滑油に
は、超低温において固化しないようなものは現
在、得られない。このため、圧縮機から吐出され
る冷媒中に含まれる潤滑油(以下、油という)
は、冷凍サイクル中の低温部に到り、そこで流動
性を失い通路の壁面に付着する。付着量が増す
と、冷媒の流れの圧力損失が大きくなり、圧縮機
の吸入圧力が低下し効率の悪い運転となるだけで
なく、管壁を通しての伝熱作用が阻害され冷却性
能が著しく低下するという欠点があつた。
(Prior art) A refrigeration system that uses a non-azeotropic mixed refrigerant to generate ultra-low temperatures repeatedly cools the refrigerant and separates gas and liquid, ultimately separating and extracting the liquid with low boiling point components. Ultra-low temperature is obtained by latent heat of vaporization. On the other hand, there is currently no lubricating oil used in compressors that does not solidify at extremely low temperatures. For this reason, lubricating oil (hereinafter referred to as oil) contained in the refrigerant discharged from the compressor
reaches the low-temperature section of the refrigeration cycle, where it loses its fluidity and adheres to the walls of the passages. As the amount of adhesion increases, the pressure loss in the flow of refrigerant increases, which not only reduces the suction pressure of the compressor and causes inefficient operation, but also impedes heat transfer through the pipe wall and significantly reduces cooling performance. There was a drawback.

このため、必ずしも連続運転を必要としない冷
凍装置にあつては、適宜、運転を中止して超低温
部分の温度が油の流動点以上になるのを待つて運
転を再開し、詰つた油を圧縮機に送還して冷媒の
流れをよくし、冷却性能を回復させていた。しか
し、この手法では、余りにも際々、運転を中止す
る場合や、油の流動性回復が遅いため長時間の運
転中止を要する場合、冷却性能が阻害されるとい
う問題がある。
For this reason, in the case of refrigeration equipment that does not necessarily require continuous operation, it is recommended to stop operation as appropriate, wait until the temperature of the ultra-low temperature part reaches or exceeds the pour point of the oil, and then restart operation to compress the clogged oil. It was sent back to the aircraft to improve the flow of refrigerant and restore cooling performance. However, this method has a problem in that cooling performance is hindered if the operation is stopped too often or if the recovery of oil fluidity is slow and the operation has to be stopped for a long time.

このため、冷媒が流れる管路中に油分離器を設
けるものや、高温の未凝縮冷媒を配管と電磁弁か
らなるバイパス管路を介して、間欠的に超低温部
へ流すようにしたもの(特開昭62−98158)など
があるが、連続運転を必要とする冷凍装置ではや
むをえないとしても、そうでない場合は、装置が
複雑化するので、いかにも不経済である。
For this reason, oil separators are installed in the pipes through which the refrigerant flows, or high-temperature uncondensed refrigerants are intermittently passed to the ultra-low temperature section through bypass pipes consisting of pipes and solenoid valves (especially Although it is unavoidable for refrigeration equipment that requires continuous operation, it is uneconomical because the equipment becomes complicated in other cases.

(解決しようとする問題点) 本考案は、前述欠点に鑑みてなされたもので前
述冷凍装置、殊に間欠的に運転を中止できるもの
において、装置を複雑なものにすることなく、超
低温部分での油の流動性低下によつて性能が阻害
されることのない、高性能で経済的な運転が可能
な超低温冷凍装置を提供するものである。
(Problems to be Solved) The present invention has been made in view of the above-mentioned drawbacks, and can be used in the above-mentioned refrigeration equipment, especially those that can stop operation intermittently, without making the equipment complicated. The purpose of the present invention is to provide an ultra-low temperature refrigeration system that is capable of high performance and economical operation, and whose performance is not inhibited by a decrease in the fluidity of oil.

(問題点を解決するための手段及び作用) 本考案は、非共沸混合冷媒を順次分離し、最終
的に低沸点冷媒を液成分として取出し、これを減
圧、冷却器で冷却作用させることで超低温を発生
させる冷凍システムであり、潤滑油の付着する低
圧側管路を圧縮機の吸入部に向けて下り勾配構造
とし、間欠的な停止時に、温度の上昇で流動性を
回復した潤滑油を自然落下により圧縮機に回収す
るようにしたものである。
(Means and effects for solving the problem) The present invention sequentially separates the non-azeotropic mixed refrigerant, and finally extracts the low boiling point refrigerant as a liquid component, which is depressurized and cooled by a cooler. This is a refrigeration system that generates ultra-low temperatures.The low-pressure side pipe line on which lubricating oil adheres has a downward slope structure toward the suction part of the compressor, so that during intermittent shutdowns, the lubricating oil, which has regained fluidity due to the rise in temperature, is It is designed to be collected into a compressor by natural fall.

(実施例) 以下、本考案を低温槽の冷凍装置に実施した一
実施例について、第1図を用いて説明する。第1
図は、この冷凍装置を構成する機器の接続を示す
だけでなく、配設される高さ方向の位置関係をも
示す、実体的な接続図である。
(Example) Hereinafter, an example in which the present invention is implemented in a cryostat refrigeration device will be described using FIG. 1. 1st
The figure is a substantial connection diagram that not only shows the connections of the devices that make up this refrigeration system, but also shows the positional relationship in the height direction.

第1図において、冷凍装置は圧縮機1、凝縮器
2、第1気液分離器3、第1カスケード熱交換器
4、第1細管5、第2気液分離器6、第2カスケ
ード熱交換器7、第2細管8、減圧装置9、冷却
器10およびこれらを結ぶ管路で構成されてい
る。
In FIG. 1, the refrigeration system includes a compressor 1, a condenser 2, a first gas-liquid separator 3, a first cascade heat exchanger 4, a first capillary 5, a second gas-liquid separator 6, and a second cascade heat exchanger. It is composed of a container 7, a second thin tube 8, a pressure reducing device 9, a cooler 10, and a pipe line connecting these.

ここで、冷却器10は、図示しない低温槽のス
テンレススチール製の内箱の外表面に、規則正し
く蛇行して溶接された配管である。また第1,第
2カスケード熱交換器4,7は二重管構造で、そ
れぞれの内管4″,7″と外管4′,7′を流れる冷
媒の流れ方向がたがいに逆向きになるように接続
される。
Here, the cooler 10 is a piping welded to the outer surface of a stainless steel inner box of a low-temperature chamber (not shown) in a regularly meandering manner. Furthermore, the first and second cascade heat exchangers 4 and 7 have a double tube structure, and the flow directions of the refrigerant flowing through the inner tubes 4'' and 7'' and the outer tubes 4' and 7' are opposite to each other. connected like this.

そして、圧縮機1の吐出側は、凝縮器2の入口
に配管接続され、凝縮器2の出口は、第1気液分
離器3の入口に配管接続されている。第1気液分
離器3のガス出口は、第1カスケード熱交換器4
の外管4′の入口に配管接続され、外管4′の出口
は、第2気液分離器6の入口に配管接続されてい
る。第2気液分離器6のガス出口は、第2カスケ
ード熱交換器7の外管7′の入口に接続され、外
管7′の出口は、減圧装置9を介して冷却器10
の入口に配管接続されている。そして、冷却器1
0の出口は、第2カスケード熱交換器7の内管
7″、第1カスケード熱交換器4の内管4″を、そ
れぞれの外管7′,4′中の冷媒の流れと対向流を
なすように逆方向に順次経由して、圧縮機1の吸
入側へ配管接続されている。また、第2気液分離
器6の液溜部および第1気液分離器3の液溜部
は、それぞれ、冷却器10出口から第2カスケー
ド熱交換器7の内管7″への配管および第2カス
ケード熱交換器7の内管7″から第1カスケード
熱交換器4の内管4″への配管に、細管8および
5でもつて配管接続されている。
The discharge side of the compressor 1 is connected to an inlet of a condenser 2 by piping, and the outlet of the condenser 2 is connected to an inlet of a first gas-liquid separator 3 by piping. The gas outlet of the first gas-liquid separator 3 connects to the first cascade heat exchanger 4
The outlet of the outer tube 4' is connected to the inlet of the second gas-liquid separator 6 by piping. The gas outlet of the second gas-liquid separator 6 is connected to the inlet of the outer tube 7' of the second cascade heat exchanger 7, and the outlet of the outer tube 7' is connected to the cooler 10 through the pressure reducing device 9.
The pipe is connected to the inlet of the And cooler 1
The outlet of 0 connects the inner tube 7'' of the second cascade heat exchanger 7 and the inner tube 4'' of the first cascade heat exchanger 4 to a flow opposite to the refrigerant flow in the respective outer tubes 7' and 4'. The piping is connected to the suction side of the compressor 1 via sequentially in the opposite direction as shown in FIG. Further, the liquid reservoir section of the second gas-liquid separator 6 and the liquid reservoir section of the first gas-liquid separator 3 are connected to piping and pipes from the outlet of the cooler 10 to the inner pipe 7'' of the second cascade heat exchanger 7, respectively. The pipes from the inner pipe 7'' of the second cascade heat exchanger 7 to the inner pipe 4'' of the first cascade heat exchanger 4 are also connected by thin tubes 8 and 5.

そして、冷却器10、配管11、第2カスケー
ド熱交換器7の内管7″、配管12、第1カスケ
ード熱交換器4の内管4″、配管13及び圧縮機
1の吸入部は、第1図に示すとおり、高い位置か
ら低い位置へ順次、配設されたうえ、配管接続さ
れている。すなわち、冷却器10から配管13に
つながる低圧側管路は圧縮機1の吸入部に向けて
下り勾配に配設されている。
The cooler 10, the pipe 11, the inner pipe 7'' of the second cascade heat exchanger 7, the pipe 12, the inner pipe 4'' of the first cascade heat exchanger 4, the pipe 13, and the suction part of the compressor 1 are As shown in Figure 1, they are arranged sequentially from high to low positions and are connected to piping. That is, the low-pressure side pipe line leading from the cooler 10 to the pipe 13 is arranged at a downward slope toward the suction part of the compressor 1.

また、この冷凍装置を運転するための図示しな
い制御装置は、完全な連続運転ではなく、流動性
を失つた油が超低温部に詰まつたとき、間欠的に
運転を停止できるようになつている。
In addition, the control device (not shown) for operating this refrigeration equipment does not operate completely continuously, but is designed to be able to stop operation intermittently when oil that has lost fluidity becomes clogged in the ultra-low temperature section. .

そして、このように形成された冷凍サイクル内
には蒸発温度の異なる複数の冷媒(例えば、R
1,R12,R13の組合せ等)が封入されてい
る。
In the refrigeration cycle formed in this way, a plurality of refrigerants having different evaporation temperatures (for example, R
1, R12, R13, etc.) are enclosed.

以下、この冷凍サイクルの動作を説明する。圧
縮機1で圧縮された冷媒は凝縮器2で冷却され混
合冷媒のうちの一部の冷媒、ここでは蒸発温度の
一番高い成分が主として液化して気液混合状態で
第1気液分離器3へ流入し液冷媒となつた高沸点
成分と残りのガス冷媒とに分離される。液冷媒
は、第1細管5で減圧されて第1カスケード熱交
換器4の端部外側より内管4″内に流入し、一方
第1気液分離器3で分離されたガス冷媒は第1カ
スケード熱交換器4の外管4′内に流入して熱交
換が行われる。第1カスケード熱交換器4の外管
4′を流れる冷媒はその一部の冷媒、ここでは蒸
発温度が中温の成分が主として液化して気液混合
状態で第2気液分離器6へ流入して液冷媒となつ
た中沸点成分とガス冷媒(低沸点成分主体)とに
分離される。液冷媒は第2細管8を通して第2カ
スケード熱交換器7の端部外側より内管7″内に
流入し、またガス冷媒は第2カスケード熱交換器
7の外管7′内に流入してたがいに熱交換し外管
7内を流れる低沸点冷媒は完全に液化して減圧装
置9で減圧された後に冷却器10に流入し、そこ
で蒸発し超低温を発生する。この蒸発によつて冷
却器10を設けた低温槽(図示せず)は超低温と
なる。冷却器10で蒸発した冷媒は第2細管8で
導かれる冷媒とともに第2カスケード熱交換器7
の内管7″内に流入し、つづいて、この冷媒は第
1細管5で導かれる冷媒と合流後、第1カスケー
ド熱交換器4の内管4″内に流入し、さらに圧縮
機1へ帰還する。
The operation of this refrigeration cycle will be explained below. The refrigerant compressed in the compressor 1 is cooled in the condenser 2, and a part of the refrigerant in the mixed refrigerant, here the component with the highest evaporation temperature, is mainly liquefied and sent to the first gas-liquid separator in a gas-liquid mixed state. 3, where it is separated into a high boiling point component that becomes a liquid refrigerant and the remaining gas refrigerant. The liquid refrigerant is depressurized in the first capillary tube 5 and flows into the inner tube 4'' from the outside of the end of the first cascade heat exchanger 4, while the gas refrigerant separated in the first gas-liquid separator 3 is The refrigerant flows into the outer pipe 4' of the cascade heat exchanger 4 and heat exchange is performed.The refrigerant flowing through the outer pipe 4' of the first cascade heat exchanger 4 is a part of the refrigerant, and here the evaporation temperature is medium temperature. The components are mainly liquefied and flow into the second gas-liquid separator 6 in a gas-liquid mixed state, where they are separated into a medium-boiling point component, which has become a liquid refrigerant, and a gas refrigerant (mainly a low-boiling point component). The gas refrigerant flows into the inner tube 7'' from the outside of the end of the second cascade heat exchanger 7 through the thin tube 8, and the gas refrigerant flows into the outer tube 7' of the second cascade heat exchanger 7 to exchange heat with each other. The low boiling point refrigerant flowing in the outer pipe 7 is completely liquefied and reduced in pressure by the pressure reducing device 9, and then flows into the cooler 10, where it evaporates and generates an extremely low temperature. Due to this evaporation, the cryogenic chamber (not shown) provided with the cooler 10 becomes extremely low temperature. The refrigerant evaporated in the cooler 10 is transferred to the second cascade heat exchanger 7 together with the refrigerant guided through the second thin tube 8.
The refrigerant flows into the inner tube 7'' of the first cascade heat exchanger 4 after joining with the refrigerant guided through the first thin tube 5, and then flows into the inner tube 4'' of the first cascade heat exchanger 4. Return.

このような装置では、冷凍運転がつづくと、冷
却器10、配管11、第2カスケード熱交換器7
の内管7″、配管12、第1カスケード熱交換器
4の内管4″、配管13からなる低圧側管路には、
次第に圧縮機1より吐出された冷媒ガス中に含ま
れる潤滑油が固形化し付着していく。この結果、
管路の圧力損失は大きくなり、冷却性能も次第に
低下していく。しかしながら、この低圧側管路
は、圧縮機1の吸入部に対して下り勾配となつて
いる。このため、間欠運転によつて運転が一旦停
止されると、付着した油は温度の上昇とともに再
び流動性を回復し、重力により圧縮機1に戻され
る。したがつて、再起動時には、管路抵抗も解消
し、高効率の冷却運転を行うことができる。本実
施例では、気液を2回分離しているが、これに限
定することなく、1回またはn回分離する冷凍サ
イクルにも適用可能となるものである。
In such a device, if the refrigeration operation continues, the cooler 10, piping 11, and second cascade heat exchanger 7
The low pressure side pipe line consisting of the inner pipe 7'' of the first cascade heat exchanger 4, the pipe 12, the inner pipe 4" of the first cascade heat exchanger 4, and the pipe 13,
The lubricating oil contained in the refrigerant gas discharged from the compressor 1 gradually solidifies and adheres to the refrigerant gas. As a result,
The pressure loss in the pipeline increases, and the cooling performance gradually decreases. However, this low-pressure side pipe line has a downward slope with respect to the suction section of the compressor 1. Therefore, once the operation is stopped due to intermittent operation, the adhered oil regains fluidity as the temperature rises and is returned to the compressor 1 by gravity. Therefore, at the time of restart, the pipe resistance is also eliminated and highly efficient cooling operation can be performed. In this embodiment, gas and liquid are separated twice, but the present invention is not limited to this, and can also be applied to a refrigeration cycle in which gas and liquid are separated once or n times.

また、カスケード熱交換器は、2重管構造に限
るものではなく、平行管式のものや、容器中にコ
イル状の管路を内蔵させたものなど各種のもので
よい。冷却器からの冷媒をカスケード熱交換器に
通さないようにすることもできるが、通す方が有
利である。減圧装置は、減圧弁のほかキヤピラリ
チユーブなどにすることもできる。また、使用す
る用途も低温槽以外にコールドトラツプ用冷却装
置や、その他のものとすることができる。また、
使用する冷媒も前述実施例以外の混合冷媒とする
ことができる。
Furthermore, the cascade heat exchanger is not limited to a double tube structure, and may be of various types, such as a parallel tube type or one in which a coiled pipe is built into a container. Although it is possible not to pass the refrigerant from the cooler through the cascade heat exchanger, it is advantageous to do so. The pressure reducing device may be a capillary tube or the like in addition to a pressure reducing valve. In addition to the cryostat, it can also be used as a cooling device for cold traps and other applications. Also,
The refrigerant used may also be a mixed refrigerant other than those in the above embodiments.

(効果) 本考案は、非共沸混合冷媒を用い、冷媒の冷却
と気液の分離を繰返すことによつて超低温を発生
させるようにした冷凍装置、殊に間欠的に運転を
中止できるようなものにおいて、装置を複雑な構
成にすることなく、超低温部分への潤滑油の滞溜
を除去することができ、常に高効率の冷却運転を
継続することができるので非常に有効である。
(Effects) The present invention is a refrigeration system that uses a non-azeotropic mixed refrigerant and generates ultra-low temperatures by repeatedly cooling the refrigerant and separating gas and liquid. This method is very effective in that it is possible to remove lubricating oil accumulation in ultra-low temperature parts without complicating the structure of the device, and it is possible to continue highly efficient cooling operation at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本考案の実施例を示すものであつて、
第1図は、冷凍回路の実体接続図である。図面に
おいて、 1……圧縮機、2……凝縮器、3……第1気液
分離器、4……第1カスケード熱交換器、5……
第1細管、6……第2気液分離器、7……第2カ
スケード熱交換器、8……第2細管、9……減圧
装置、10……冷却器、4′,7′……外管、4″,
7″……内管。
The drawings illustrate embodiments of the invention,
FIG. 1 is a physical connection diagram of the refrigeration circuit. In the drawings, 1... Compressor, 2... Condenser, 3... First gas-liquid separator, 4... First cascade heat exchanger, 5...
First capillary, 6... Second gas-liquid separator, 7... Second cascade heat exchanger, 8... Second capillary, 9... Pressure reducing device, 10... Cooler, 4', 7'... Outer tube, 4″,
7″……Inner tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 非共沸混合冷媒を圧縮機で圧縮し、凝縮器で冷
却し、一部凝縮してなる気液混合冷媒を、液化し
た高沸点冷媒と残留ガス冷媒とに分離する第1気
液分離器3と、該第1気液分離器で分離した液冷
媒の減圧後の低温冷媒と同様に分離したガス冷媒
とが熱交換する第1カスケード熱交換器4と、該
第1カスケード熱交換器を通過した前記ガス冷媒
のうち液化した中沸点冷媒と残留ガス冷媒とに分
離する第2気液分離器6と、該第2気液分離器で
分離した液冷媒の減圧後の低温冷媒と同様に分離
したガス冷媒とが熱交換する第2カスケード熱交
換器7と、以下同様の気液分離器とカスケード熱
交換器を順次経て、最終段の第nカスケード熱交
換器で残留する低沸点成分のガス冷媒を完全に液
化し、これを減圧装置で減圧して冷却器に導き、
所望する寒冷を得るようにし、前記各カスケード
熱交換器および冷却器に減圧されて流入した冷媒
が前記圧縮機に帰還する経路を有する冷凍サイク
ルにおいて前記圧縮機吸入部に接続する、前記冷
却器およびカスケード熱交換器を含む低圧側管路
を前記圧縮機に対して下り勾配構造に形成してな
る冷凍装置。
A first gas-liquid separator 3 that compresses a non-azeotropic mixed refrigerant with a compressor, cools it with a condenser, and separates the partially condensed gas-liquid mixed refrigerant into a liquefied high-boiling point refrigerant and a residual gas refrigerant. and a first cascade heat exchanger 4 in which the low-temperature refrigerant after depressurizing the liquid refrigerant separated in the first gas-liquid separator and the gas refrigerant separated similarly exchange heat, and a first cascade heat exchanger 4 that passes through the first cascade heat exchanger. A second gas-liquid separator 6 separates the gas refrigerant into a liquefied medium-boiling point refrigerant and a residual gas refrigerant, and separates the liquid refrigerant separated in the second gas-liquid separator in the same way as the low-temperature refrigerant after depressurization. The remaining low boiling point component gas passes through the second cascade heat exchanger 7, where the gas refrigerant exchanges heat, and the remaining low boiling point component gas passes through the same gas-liquid separator and cascade heat exchanger in sequence, and then passes through the n-th cascade heat exchanger at the final stage. Completely liquefy the refrigerant, reduce the pressure with a pressure reducing device, and guide it to the cooler.
The cooler is connected to the compressor suction in a refrigeration cycle, and has a path in which the refrigerant flowing into each cascade heat exchanger and cooler under reduced pressure returns to the compressor so as to obtain a desired cold temperature; A refrigeration system in which a low-pressure side pipe line including a cascade heat exchanger is formed in a downward slope structure with respect to the compressor.
JP18132087U 1987-11-27 1987-11-27 Expired JPH0429338Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18132087U JPH0429338Y2 (en) 1987-11-27 1987-11-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18132087U JPH0429338Y2 (en) 1987-11-27 1987-11-27

Publications (2)

Publication Number Publication Date
JPH0188271U JPH0188271U (en) 1989-06-12
JPH0429338Y2 true JPH0429338Y2 (en) 1992-07-16

Family

ID=31472805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18132087U Expired JPH0429338Y2 (en) 1987-11-27 1987-11-27

Country Status (1)

Country Link
JP (1) JPH0429338Y2 (en)

Also Published As

Publication number Publication date
JPH0188271U (en) 1989-06-12

Similar Documents

Publication Publication Date Title
TWI397664B (en) Efficient heat exchanger for refrigeration process
US5622055A (en) Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger
WO1990007683A1 (en) Trans-critical vapour compression cycle device
JPS58159458U (en) Equipment for low temperature freezing
CN107192153A (en) Twin-stage sweat cooling system with injector
EP0249472A3 (en) Refrigeration system with hot gas pre-cooler
JPH0429338Y2 (en)
US4987751A (en) Process to expand the temperature glide of a non-azeotropic working fluid mixture in a vapor compression cycle
JPS6230691Y2 (en)
JPH0678851B2 (en) Refrigeration equipment
CN206399023U (en) A kind of water chiller with gas-liquid separator
CN215113322U (en) Cascade refrigerating unit with two evaporating temperatures
JPS6298158A (en) Refrigeration cycle
CN109442778A (en) Air-conditioning system
CN106196883A (en) A kind of gas liquefaction equipment
JPS5981453A (en) Refrigerator
JPS63238367A (en) Refrigeration cycle device
CN106546021A (en) A kind of water chiller with gas-liquid separator
JP2611351B2 (en) Refrigeration cycle
JPH0641097Y2 (en) Low temperature refrigerator
JPS6382171U (en)
JPS5818061A (en) Refrigerator
JPH07104055B2 (en) Air conditioner
JPH01244250A (en) Refrigerating plant
JPH04350466A (en) Refrigerator