JPS5981453A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5981453A
JPS5981453A JP19114582A JP19114582A JPS5981453A JP S5981453 A JPS5981453 A JP S5981453A JP 19114582 A JP19114582 A JP 19114582A JP 19114582 A JP19114582 A JP 19114582A JP S5981453 A JPS5981453 A JP S5981453A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
liquid
refrigerant passage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19114582A
Other languages
Japanese (ja)
Other versions
JPH0461262B2 (en
Inventor
健一 藤原
杉 光
西川 峰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19114582A priority Critical patent/JPS5981453A/en
Publication of JPS5981453A publication Critical patent/JPS5981453A/en
Publication of JPH0461262B2 publication Critical patent/JPH0461262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍装置の減圧装置入口において適度に過冷却
された液冷媒が得られるように凝縮器を改良することに
より、冷凍能力の向上をはかった冷凍装置に関するもの
で、例えば自動車空調用に用いて好適である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system in which the refrigerating capacity is improved by improving the condenser so that a suitably supercooled liquid refrigerant can be obtained at the inlet of the decompression device of the refrigeration system. For example, it is suitable for use in automobile air conditioning.

冷凍装置の冷凍能力を向上させる方法として、従来より
知られている一方法は、冷凍装置の減圧装置である膨張
弁人口において冷媒に過冷却度を持たゼることにより、
蒸発器における冷媒の蒸発前後のエンタルピ差をより大
きくする方法がある。
One conventionally known method for improving the refrigeration capacity of a refrigeration system is to provide a degree of supercooling to the refrigerant in the expansion valve, which is a pressure reducing device of the refrigeration system.
There is a method of increasing the enthalpy difference before and after evaporation of the refrigerant in the evaporator.

しかし、従来この方法を実施するには、受液器の下流に
更に別の凝縮器を設け、受液器から出てくる液冷媒を再
度冷却し、過冷却冷媒を得ていた。
However, conventionally, in order to carry out this method, another condenser was provided downstream of the liquid receiver, and the liquid refrigerant coming out of the liquid receiver was cooled again to obtain supercooled refrigerant.

従って、この方法によれば、凝縮器の数がり・黙約に多
くなり、従って高価なものとなるほか、自動車用空調装
置などにおいてはその設置場所にも困難が伴うという欠
点をもっている。
Therefore, according to this method, the number of condensers is increased and the condensers are therefore expensive, and the method also has the disadvantage that it is difficult to install the condensers in an automobile air conditioner or the like.

本発明は上述した先行技術の欠点を克服して、従来と同
等の凝縮器を一個使用するだけで膨張弁入口において過
冷却された冷媒が得られる冷凍装置を提供することを目
的としている。
It is an object of the present invention to overcome the above-mentioned drawbacks of the prior art and to provide a refrigeration system in which supercooled refrigerant can be obtained at the inlet of the expansion valve by using only one condenser equivalent to the conventional one.

本発明の端緒となったのは、近6「自動車空調装置にお
いて、冷媒通+1P1を2分割し、並列に冷媒を〃Eず
イ疑縮器が現れC来たことである。すなわち、冷房に必
要な動力を低減させるため、あるいは冷房能力を向」−
さ−υるために、凝縮器は大型化しそれに伴っ−C冷媒
側圧力損失も増大した。この圧力1i3失をM少さUる
ためにnil記冷媒通路を2分割し並列に通ずことが)
えられたのである。本発明は後述′りるように、このよ
うな2本の並列な冷媒通路管を有する凝縮器を備えた冷
凍装置を対象としている。このことは2本の並列な冷媒
通路管を有することが、本発明の過冷却冷媒を得るのに
役立っているだけではなく、上述の冷媒側圧力損失を減
少さ・Uることにも役立っており、本発明の欠点には全
くなっていないことを意味している。
The origin of the present invention was the appearance of a condenser that divided the refrigerant passage +1P1 into two and connected the refrigerant in parallel in automobile air conditioners. To reduce the required power or improve cooling capacity.
In order to achieve this, the condenser has become larger and the pressure loss on the -C refrigerant side has also increased accordingly. In order to reduce this loss of pressure, the refrigerant passage can be divided into two and run in parallel)
It was granted. As will be described later, the present invention is directed to a refrigeration system equipped with such a condenser having two parallel refrigerant passage pipes. This means that having two parallel refrigerant passage pipes not only helps to obtain the supercooled refrigerant of the present invention, but also helps to reduce the above-mentioned pressure loss on the refrigerant side. This means that there are no drawbacks to the present invention.

本発明の要点は、冷alt装置の凝縮器において、2木
の並列な冷媒通路管を設け、各通路管の長さを互いに適
当な程度異なら・Uることにより、凝縮器下流に設りら
れている受t+に器内に、適度に過冷却されだ液冷媒を
得ることにある。通常の1本の冷媒通路管を使用した凝
縮器と受液器との組合せにおいては、受液器内には気液
両相の冷媒が飽和カスおよび飽和液として存在している
。従って受液器から膨張弁へと送られる液冷媒は過冷却
状態にあることはほとんどなく、その過冷却度は通常2
℃〜3℃以下である。一方、このような状態にある受液
器内の液相領域に、数十度の過冷却度をもつ液冷媒を注
入したとすると、当然受液器内において、気液両相の冷
媒間に熱交換が始まるが、熱交換は気液境界面において
のみ行われるので熱的平1)iに達するには時間を要し
、普通の使用状態においては、過冷却状態の液冷媒がそ
のまま受液器から膨張弁へと送られることになる。上述
した過冷却液媒を得る方法として、凝縮器内にさらに1
本冷媒通路管を追加し、その長さを他の通路管に比して
長くし、この長さの長い冷媒通路管を受液器下部の液相
部もしくは受液器の出口配管に接続することが本発明の
要点である。
The main point of the present invention is that two parallel refrigerant passage pipes are provided in the condenser of a cooling alt device, and the lengths of the respective passage pipes are set to be different from each other by an appropriate degree. The objective is to obtain a moderately supercooled drip refrigerant in the container at the receiving point. In a conventional combination of a condenser and a liquid receiver using one refrigerant passage pipe, refrigerant in both gas and liquid phases exists in the liquid receiver as saturated scum and saturated liquid. Therefore, the liquid refrigerant sent from the liquid receiver to the expansion valve is rarely in a supercooled state, and the degree of supercooling is usually 2.
℃~3℃ or less. On the other hand, if a liquid refrigerant with a degree of supercooling of several tens of degrees is injected into the liquid phase region in the liquid receiver in such a state, naturally there will be a gap between the gas and liquid phase refrigerant in the receiver. Heat exchange begins, but since heat exchange occurs only at the gas-liquid interface, it takes time to reach thermal equilibrium 1)i. Under normal usage conditions, the supercooled liquid refrigerant receives the liquid as it is. from the container to the expansion valve. As a method of obtaining the above-mentioned supercooled liquid medium, one additional layer is added in the condenser.
Add this refrigerant passage pipe, make its length longer than other passage pipes, and connect this long refrigerant passage pipe to the liquid phase section at the bottom of the receiver or to the outlet pipe of the receiver. This is the main point of the present invention.

以下図面を参照しつつ本発明の詳細な説明する。第1図
において、蒸発器5において気化した冷媒は、圧縮機1
に送られ、圧縮されて、高温高圧の状態となり、さらに
配管6を通り凝縮器2に送られる。送られてきた気相冷
媒は凝縮器2により冷却され液化して配管9a、9bを
通り受液器3に貯蔵され、受液器3内の液相冷媒は減圧
装置をなす膨張ブr4を通り膨張し、低温低圧の気液2
相状!ぶの冷媒となって蒸発器5に送られる。蒸発器5
において気化して冷房作用を行った気相冷媒は再び圧縮
機1に送られこの循環行程を繰返す。
The present invention will be described in detail below with reference to the drawings. In FIG. 1, the refrigerant vaporized in the evaporator 5 is transferred to the compressor 1.
The air is compressed into a high-temperature, high-pressure state, and is further sent to the condenser 2 through the pipe 6. The gas phase refrigerant sent is cooled and liquefied by the condenser 2, passes through pipes 9a and 9b, and is stored in the liquid receiver 3, and the liquid phase refrigerant in the liquid receiver 3 passes through the expansion block r4, which forms a pressure reducing device. Expanding, low-temperature, low-pressure gas-liquid 2
Condition! It becomes a refrigerant and is sent to the evaporator 5. Evaporator 5
The gas phase refrigerant that has been vaporized and has performed cooling action is sent to the compressor 1 again and this circulation process is repeated.

自動車用空調装置では蒸発器5で冷却された冷風を車室
内へ吹出して冷房作用を行うようにしており、また圧縮
機lは電磁クラッチ1aを介し゛ζ自動車エンジンによ
り駆動される。
In the automobile air conditioner, cold air cooled by an evaporator 5 is blown into the vehicle interior to effect cooling, and the compressor 1 is driven by the automobile engine via an electromagnetic clutch 1a.

次に、本発明の要部をなす凝縮器2に関して詳しく説明
する。
Next, the condenser 2, which forms the main part of the present invention, will be explained in detail.

第2図において、圧縮機lより来た配管6は分岐部2c
において分岐し、延べ長さが淘い方の冷媒通路管より成
る小凝縮器部2aと、延べ長さが長い方の冷媒通路管よ
り成る大凝縮器部2bとに分れ、小凝縮器2aは配管9
aにより受液器3の上部の人口配管3aに接続されてい
る。また、大凝縮器部2bは受液器3の下部の液相部に
接続されている。上記2個の凝縮器部2a、2bの冷媒
通路管は凝縮器内を蛇行して往復し、本実施例において
は、平行して走る直線部分を、小凝縮器部2aは5本、
大凝縮器部2bは7本有している。
In Fig. 2, the pipe 6 coming from the compressor 1 is connected to the branch 2c.
The small condenser section 2a is divided into a small condenser section 2a consisting of a refrigerant passage pipe with a shorter total length, and a large condenser section 2b consisting of a refrigerant passage tube with a longer total length. is piping 9
It is connected to the artificial pipe 3a at the upper part of the liquid receiver 3 by a. Further, the large condenser section 2b is connected to the lower liquid phase section of the liquid receiver 3. The refrigerant passage pipes of the two condenser sections 2a and 2b reciprocate in a meandering manner within the condenser, and in this embodiment, the straight section running in parallel is divided into five refrigerant passage pipes, and the small condenser section 2a has five pipes,
The large condenser section 2b has seven pieces.

冷媒通路管はアルミニウム材料でつくられ、偏平な断面
形状をもっている。また、平行に走る冷媒通路管の間に
は同しくアルミニウム・材料でつくられた多数のコルゲ
ートフィン2dが介在し、冷媒通路管にろう付されてい
る。受液器3には出L1配管IOが接続されていて、受
液器3内の液相冷媒だけを111張弁4に送るようにな
っている。なお、11は配管接続部である。
The refrigerant passage pipe is made of aluminum material and has a flat cross-sectional shape. Further, a large number of corrugated fins 2d, also made of aluminum, are interposed between the refrigerant passage pipes running in parallel and are brazed to the refrigerant passage pipes. An output L1 pipe IO is connected to the liquid receiver 3, and only the liquid phase refrigerant in the liquid receiver 3 is sent to the 111 tension valve 4. In addition, 11 is a piping connection part.

第3図により冷媒の気液相の推移状態を説明4゜る。点
で示す部分イが気相、破線で示す部分口が液相である。
The transition state of the gas-liquid phase of the refrigerant will be explained with reference to FIG. Part A indicated by a dot is the gas phase, and the part indicated by a broken line is the liquid phase.

先づ小凝縮器部2aについζ見ると、受液器3からは液
相冷媒だけが膨張弁4へ送られるので、気相冷媒が受液
器3に連続して流入して来ることは不可能である。従っ
て、小凝縮器部2aの出口において冷媒はほぼ凝縮を完
rした状態となっている。つきに大伏縮器部2bについ
て見ると、その出1」においζ少なくとも冷媒がほぼ凝
縮を完rしていなりればならぬことは小凝縮器部2aの
場合と同じである。しかしながら再凝縮器部2a、2b
の各々を通れる冷媒流量を検討すると、大凝縮器部21
)において凝縮完了の位置が更に限定されることが判る
。ずなわら、各凝縮器部2a12bを流れる冷媒流量の
割合は、各凝縮器部2a、2bにおりる冷媒圧力損失の
大きさの比に依存し、冷媒圧力損失は主に気相域で大き
く凝縮するに従い小さくなり、液相域ではその値はほと
んど無視できる程度になる。いま、仮りに、大凝縮器部
2bに4ついても小凝縮器部2aと同じく、丁度その出
I」において凝縮を完了するとすると、大凝縮器部2b
においては管長が長いだけ、気相域も長く、冷媒圧力損
失は大となり、したがって大凝縮器部2bを流れる冷媒
は、小凝縮器部2aを流れる冷媒より少なくなる。一方
、凝縮を完了する地点は、気相冷媒流量と、伝熱面の断
面長さに関係する。
First, looking at the small condenser section 2a, only the liquid phase refrigerant is sent from the liquid receiver 3 to the expansion valve 4, so it is impossible for vapor phase refrigerant to continuously flow into the liquid receiver 3. It is possible. Therefore, the refrigerant is almost completely condensed at the outlet of the small condenser section 2a. Regarding the large condenser section 2b, it is the same as the case of the small condenser section 2a that at least the refrigerant must have almost completely condensed in its output. However, the recondenser sections 2a, 2b
Considering the refrigerant flow rate that can pass through each of the large condenser section 21
), it can be seen that the position of completion of condensation is further limited. Naturally, the proportion of the refrigerant flow rate flowing through each condenser section 2a12b depends on the ratio of the magnitude of refrigerant pressure loss passing through each condenser section 2a and 2b, and the refrigerant pressure loss is mainly large in the gas phase region. As it condenses, it becomes smaller, and its value becomes almost negligible in the liquid phase region. Now, if we assume that the large condenser section 2b completes condensation at the same point as the small condenser section 2a, then the large condenser section 2b
In this case, the longer the pipe length, the longer the gas phase region, and the greater the refrigerant pressure loss.Therefore, the refrigerant flowing through the large condenser section 2b is smaller than the refrigerant flowing through the small condenser section 2a. On the other hand, the point at which condensation is completed is related to the flow rate of the gas phase refrigerant and the cross-sectional length of the heat transfer surface.

従っ゛C1大凝縮器部2bを流れる流量が小凝縮器部2
aを流れる流量より少なければ、凝縮を完了するまでの
気相域の長さはより短かくなり」二連の仮定と矛盾して
くる。かくて冷媒の流れは、再凝縮器部2a、2bを流
れる流量が相等しく、かつ両凝縮器部中の気相域の長さ
が相等しくなっている状態で平衡を保つことが理解され
よう。この状態を示したのが第3図である。図において
大凝縮器部2bの<y−x>の部分においても放熱が行
われるためその出目において過冷却冷媒が得られるので
ある。しかも、この大凝縮器部2bで過冷却された液冷
媒を配管9bによって受液器3下部の液相部に直接混入
するようにしているから、この過冷却液冷媒を気相冷媒
との間て熱交換させることなく膨張弁4側に供給できる
Therefore, the flow rate flowing through C1 large condenser section 2b is smaller than that of small condenser section 2.
If the flow rate is smaller than that flowing through a, the length of the gas phase region until condensation is completed becomes shorter, which contradicts the double assumption. It will be understood that the flow of the refrigerant is thus balanced with equal flow rates through the recondenser sections 2a and 2b and equal lengths of the gas phase regions in both condenser sections. . FIG. 3 shows this state. In the figure, heat is also radiated in the section <y-x> of the large condenser section 2b, so that supercooled refrigerant can be obtained. Moreover, since the liquid refrigerant supercooled in the large condenser section 2b is directly mixed into the liquid phase section at the lower part of the liquid receiver 3 through the pipe 9b, the supercooled liquid refrigerant is separated from the gas phase refrigerant. It can be supplied to the expansion valve 4 side without heat exchange.

本発明の効果は、実験によって確貨忍されており、その
結果を第4図に定量的に示している。実験は再凝縮器部
2a、2bの冷媒通路管の合δ1延べ長さくX+y)を
一定に保ち、すなわち凝縮器部の放熱面積を一定にしそ
の比y/xだけを変化さ一ロて、各々対応する冷凍能力
Qと、x=yの場合の能力Q1との比を示したものであ
る。図から判るJ−・)に約y/x−1,5におい°ζ
冷凍能力比Q / Q +は最大となり、約1.7を越
すと、基準値より低くなっている。これはy/xを余り
大きくとると、小凝縮器部2aの冷媒通II&竹の延べ
長さが短かくなり、x=yの場合に比し゛ζ充分な伝熱
面積が得られず凝縮圧力が上昇することに起因するもの
と思われる。第4図において、SCは膨張弁入口部にお
りる冷媒の過冷却度を示す。
The effects of the present invention have been confirmed through experiments, and the results are shown quantitatively in FIG. In the experiment, the total length δ1 (X+y) of the refrigerant passage pipes of the recondenser sections 2a and 2b was kept constant, that is, the heat dissipation area of the condenser section was kept constant, and only the ratio y/x was changed. It shows the ratio between the corresponding refrigerating capacity Q and the capacity Q1 when x=y. It can be seen from the figure that J-・) has a smell of about y/x-1,5 °ζ
The refrigeration capacity ratio Q/Q+ reaches its maximum, and when it exceeds about 1.7, it is lower than the standard value. This is because if y/x is too large, the total length of the refrigerant passage II & bamboo in the small condenser section 2a becomes short, and compared to the case where x=y, a sufficient heat transfer area cannot be obtained and the condensation pressure This seems to be due to the increase in In FIG. 4, SC indicates the degree of subcooling of the refrigerant flowing into the expansion valve inlet.

なお、」−述の実施例では、大凝縮器部2bの出口を配
管9bにより受液器3下部の液相部に接続しているが、
配管9bにより受液器3の出口配管10に接続し“ζも
よいことは勿論である。
In addition, in the embodiment described above, the outlet of the large condenser section 2b is connected to the liquid phase section at the lower part of the liquid receiver 3 by the pipe 9b.
Of course, it is also possible to connect to the outlet pipe 10 of the liquid receiver 3 through the pipe 9b.

以」二延べたように、本発明は延べ長さを異にする2本
の並列な冷媒通路管を凝縮器に設け、延べ桟さの短い冷
媒通(18管を従来通り受液器の人口部に接続するとと
もに、延べ長さの長い冷媒通路管を受11に器下部の液
相部もしくは受液器の出口配管に接続しているから、計
縮器にお+Jる冷媒圧力損失の低減できるのりならず、
膨張弁等の減圧装置に供給する冷媒に適度な過冷却度を
持た一Uることが可能となり、冷凍能力を向上できると
いう効果が犬である。
As described above, the present invention provides two parallel refrigerant passage pipes with different total lengths in the condenser, and the refrigerant passage pipes with a short total length (18 pipes as in the conventional case) are installed in the condenser. At the same time, the long refrigerant passage pipe is connected to the receiver 11 to the liquid phase section at the bottom of the container or to the outlet piping of the receiver, reducing refrigerant pressure loss to the condenser. There is no glue that can be done,
It is possible to have an appropriate degree of subcooling in the refrigerant supplied to a pressure reducing device such as an expansion valve, thereby improving the refrigerating capacity.

しかも、本発明の構成によれば、従来と同等の大きさの
凝縮器を1個使用するたりてよく、安価であり、取付ス
ペース等の点ても有利であるという効果がある。
Moreover, according to the configuration of the present invention, only one condenser of the same size as the conventional one can be used, which is advantageous in that it is inexpensive and has advantages in terms of installation space and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す冷凍装置サイクル図、 第2図は第1図の凝縮器と受液器部分を示す部分断面図
、 第3図は第2図の冷媒の気液状態を示1松式図、第4図
は2本の冷媒通路管の長さの比に対応して変化する冷凍
能力向上率を示す特性図である。 図において、 1・・・圧縮機、2・・・凝縮器、3・・・受1(l器
、4・・・膨張弁、5・・・蒸発器、2a・・・小凝縮
器部、2b・・・大凝縮器部、X・・・小凝縮器部の冷
媒通路管の延べ長さ、y・・・大凝縮器部の冷媒通路管
の延べ長′さ。 第1図 第3図 第4図 へ
Fig. 1 is a refrigeration system cycle diagram showing one embodiment of the present invention, Fig. 2 is a partial sectional view showing the condenser and liquid receiver portions of Fig. 1, and Fig. 3 is a gas-liquid refrigerant of Fig. 2. Fig. 4 is a characteristic diagram showing the rate of improvement in refrigerating capacity that changes depending on the ratio of the lengths of the two refrigerant passage pipes. In the figure, 1... Compressor, 2... Condenser, 3... Receiver 1 (l container, 4... Expansion valve, 5... Evaporator, 2a... Small condenser section, 2b...large condenser section, X...total length of the refrigerant passage pipe of the small condenser section, y...total length of the refrigerant passage pipe of the large condenser section. Fig. 1 Fig. 3 Go to figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)ti、ll能的に並列な2木の冷媒通路管を有し
、この冷媒通路管の各々が繰返し往復する形状に形成さ
れた凝縮器と、この凝縮器の下流に設けられた受液器と
を有する冷凍装置において、 前記2本の冷媒通llδ管の延べ長さを異ならゼ、延べ
長さが大きい方の冷媒通路管の延べ長さを、他の冷媒通
11fS管の延べ長さに托して1.7倍以下とし、 更に前記延べ長さの小さい方の冷媒通路管の出口をfl
iJ記受液器の入口に接続するとともに、前記延べ長さ
の大きい方の冷媒通路管を前記受液器下部の液相部もし
くは前記受液器の出1」配管に接続したことを特徴とす
る冷凍装置
(1) A condenser that has two refrigerant passage pipes that are functionally parallel to each other, each of which reciprocates repeatedly, and a receiver provided downstream of the condenser. In a refrigeration system having a liquid container, if the two refrigerant passage 11fS pipes have different total lengths, the total length of the refrigerant passage pipe with the larger total length is the total length of the other refrigerant passage 11fS pipe. 1.7 times or less, and furthermore, the outlet of the refrigerant passage pipe with the smaller total length is set to fl.
iJ is connected to the inlet of the liquid receiver, and the refrigerant passage pipe having the larger total length is connected to the liquid phase section at the lower part of the liquid receiver or the outlet 1'' pipe of the liquid receiver. refrigeration equipment
JP19114582A 1982-10-29 1982-10-29 Refrigerator Granted JPS5981453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19114582A JPS5981453A (en) 1982-10-29 1982-10-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19114582A JPS5981453A (en) 1982-10-29 1982-10-29 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5981453A true JPS5981453A (en) 1984-05-11
JPH0461262B2 JPH0461262B2 (en) 1992-09-30

Family

ID=16269636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19114582A Granted JPS5981453A (en) 1982-10-29 1982-10-29 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5981453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062970A (en) * 1992-06-22 1994-01-11 Nippondenso Co Ltd Air conditioner for vehicle
WO2001061263A1 (en) * 2000-02-15 2001-08-23 Zexel Valeo Climate Control Corporation Heat exchanger
JP2008157472A (en) * 2006-12-20 2008-07-10 Maruyasu Industries Co Ltd Heat exchanger
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062970A (en) * 1992-06-22 1994-01-11 Nippondenso Co Ltd Air conditioner for vehicle
WO2001061263A1 (en) * 2000-02-15 2001-08-23 Zexel Valeo Climate Control Corporation Heat exchanger
JP2008157472A (en) * 2006-12-20 2008-07-10 Maruyasu Industries Co Ltd Heat exchanger
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat

Also Published As

Publication number Publication date
JPH0461262B2 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
US5622055A (en) Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger
CN100485290C (en) Method and arrangement for defrosting vapor compression system
CN100494814C (en) Condenser
WO1990007683A1 (en) Trans-critical vapour compression cycle device
WO2000006957A2 (en) Dual evaporator for indoor units and method therefor
JPH10103800A (en) Composite type refrigerating plant
US6668569B1 (en) Heat pump apparatus
EP0249472A3 (en) Refrigeration system with hot gas pre-cooler
US5797277A (en) Condensate cooler for increasing refrigerant density
JPS5981453A (en) Refrigerator
US3398785A (en) Combination heating and cooling unit
JP3256856B2 (en) Refrigeration system
JPH0120705B2 (en)
JPH04244565A (en) Condenser
JP3480205B2 (en) Air conditioner
JP3097971U (en) Refrigeration equipment
JPS5837457A (en) Refrigerant circuit for refrigerator
JP2000346469A (en) Cooler
JPS58178159A (en) Multistage cascade cooling system
CN106196883A (en) A kind of gas liquefaction equipment
US1885017A (en) Refrigerating system
JPH0248823B2 (en) HIITOHONPU
CN115585584A (en) Optimized heat pump EVI (evaporative energy absorption) zone flash tank capillary tube re-cooling enthalpy increasing system
JPH0894192A (en) Vapor compression type refrigerating device
JPS6158745B2 (en)