WO2001061263A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2001061263A1
WO2001061263A1 PCT/JP2000/000837 JP0000837W WO0161263A1 WO 2001061263 A1 WO2001061263 A1 WO 2001061263A1 JP 0000837 W JP0000837 W JP 0000837W WO 0161263 A1 WO0161263 A1 WO 0161263A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
tube
tubes
heat
Prior art date
Application number
PCT/JP2000/000837
Other languages
French (fr)
Japanese (ja)
Inventor
Soichi Kato
Akihiko Takano
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Priority to PCT/JP2000/000837 priority Critical patent/WO2001061263A1/en
Publication of WO2001061263A1 publication Critical patent/WO2001061263A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a heat exchanger that performs heat exchange by heat transmitted from a medium to a heat exchanger tube.
  • the refrigerant introduced from one header pipe flows through the refrigerant flow path inside the heat exchange tube, and then is discharged from the other header pipe, and the heat exchange of the refrigerant is performed by heat transmitted to the heat exchange tube. Is performed.
  • the heat exchange tube used in this type of heat exchanger is formed by using an aluminum alloy or the like as a material and using a manufacturing method such as extrusion.
  • the heat exchanger includes a fin that is in contact with the heat exchange tube, and the heat exchange tube has a flat cross section so as to increase the contact area between the heat exchange tube and the fin.
  • the flat tube has a configuration in which a plurality of medium flow paths are formed.
  • the refrigerant when flowing through the heat exchanger conditions, the gas-liquid two-phase state Excessive pressure is assumed to be applied to the heat exchanger compared to the case where the refrigerant in the normal gas-liquid two-phase state flows through the heat exchanger in the supercritical region beyond the critical point. Is done.
  • the heat exchanger to exert the action of heat radiation refrigerant which high temperature and high pressure, 6-fold compared to the case where refrigerant in a gas-liquid mixed state is flowing It is considered that the above pressure resistance is required.
  • the thickness of the heat exchange tube and header pipe through which the refrigerant flows can be made thick to ensure the pressure resistance required of the heat exchanger. Conceivable. However, if the thickness of the heat exchange tubes or header pipes is increased, the external shape of the heat exchanger itself will be enlarged, and the layout of the refrigeration system will be reduced in vehicles with limited installation space. Produces. Also, if the thickness of the heat exchanger tubes and header pipes constituting the heat exchanger is made thicker, the weight of the heat exchanger also increases. Is not preferred.
  • the heat exchange tube is used to increase the heat exchange capacity by causing turbulence in the medium and to increase the pressure resistance of the flat surface of the tube.
  • the cross section of the refrigerant flow path forms a rectangular shape, and when a refrigerant with high pressure resistance is required to flow, the refrigerant stress concentrates at this corner and the pressure This causes the problem of poor performance.
  • the inner diameter of the medium flow path of the header pipe becomes smaller, and the tube insertion hole formed for connecting the medium flow path of the header pipe and the tube is provided with the medium flow path. It is as small as the inside diameter of the road.
  • the header pipe and the tube are connected to each other by inserting a tube end into a tube insertion hole formed in the header pipe.
  • a tube is formed, along with the size of the tube insertion hole formed in the header pipe, the tube width is reduced, the contact area between the tube and the fin is reduced, and heat exchange performance is reduced. The problem of lowering occurs.
  • the invention described in Japanese Patent Laid-Open Publication No. HEI 1-1477287 discloses a tube insertion hole with respect to the axis X in the longitudinal direction of the header pipe 73 as shown in FIG. There is a long tube insertion hole formed by tilting the major axis Y at the angle S at 7 4. Also, in the tube connected to the pipe, the longitudinal end of the tube is twisted at an angle of 0 with respect to the center of the tube. 7 4
  • an object of the present invention is to provide a heat exchanger that has improved heat exchange performance while preventing a weight increase while maintaining a desired pressure resistance. Disclosure of the invention
  • the invention described in claim 1 of the present application is directed to a header pie that is connected to a heat exchange tube having a refrigerant flow path, a fin mounted between the tubes, and the tubes, and that sends and receives the refrigerant.
  • a heat exchanger that performs heat exchange by heat transmitted to the tubes and the fins, wherein the heat exchange tube has a refrigerant flow path having a circular cross section. It is.
  • the cross-sectional shape of the refrigerant channel circular. That is, by forming the refrigerant flow path into a circular cross section, the refrigerant pressure is uniformly applied to the outer wall of the flow path, and the pressure resistance of the tube can be improved.
  • each of the heat exchange tubes has the same cross-section and a plurality of refrigerant passages having circular cross-sections. It is a vessel.
  • the above-mentioned refrigerant flow path must have a circular cross section and the refrigerant flow path itself must be small in order to ensure the required pressure resistance. Conceivable. In other words, by reducing the size of the refrigerant channel, it is possible to increase the wall thickness of the tube in the same volume and secure pressure resistance. In this case, by providing a plurality of refrigerant flow paths, it is possible to secure a flow rate of the refrigerant flowing through the heat exchanger.
  • the invention described in claim 3 of the present application is the heat exchanger according to claim 1, wherein the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
  • the configuration of the heat exchanger is the heat exchanger according to claim 1, wherein the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
  • the invention described in claim 4 of the present application is the heat exchanger according to claim 2, wherein the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
  • the diameter of the refrigerant flow path having a circular cross section is 1 mm or less, by providing a plurality of the refrigerant flow paths in the tube, it is possible to secure the flow rate of the refrigerant flowing through the heat exchanger.
  • a fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects, wherein the refrigerant pipe of the header pipe has a circular cross section.
  • the refrigerant flow path of the header pipe is circular in cross section, the pressure of the refrigerant flowing through the header pipe is evenly applied to the header pipe, and the pressure resistance of the header pipe is increased. The performance is improved.
  • the invention described in claim 6 of the present application is the invention according to claim 5, wherein the inner diameter of the header pipe does not exceed 10 mm, and the thickness of the header pipe exceeds 5 mm.
  • the thickness of the header pipe In order to secure the required pressure resistance of the header pipe, which is not a heat exchanger, the thickness of the header pipe must be set by adjusting the internal pressure applied to the inside of the header pipe and pulling the material constituting the header pipe. It is necessary to consider the effects of stress and other factors.
  • the refrigerant flow path diameter is 10 mm or more
  • the pressure applied to the header pipe increases, and the thickness of the header pipe needs to be increased accordingly. growing.
  • the refrigerant flow path diameter is set to be small, the pressure applied to the header pipe by the flow of the refrigerant becomes small, so that the thickness of the header pipe becomes thinner and the weight increases. Addition problems are avoided.
  • the coolant flow path diameter is too small, the performance as a header pipe for sending and receiving the coolant is reduced. Accordingly, when the refrigerant flow path diameter is not larger than 10 mm, the outer diameter of the header pipe may be determined based on the expression (1) described in the embodiment of the invention described later. It is possible.
  • the tensile stress of aluminum is 10 kg / mm 2 .
  • the pressure on the high-pressure side of the refrigerant is about six times as high as the pressure of the refrigerant in a normal gas-liquid mixed state, so the internal pressure applied to the members also increases, and pressure resistance is required.
  • the outer diameter of the header pipe can be set to about 20 mm according to equation (1) described later.
  • the refrigerant pipe diameter is set to a value not exceeding 10 mm
  • the required pressure resistance is set by setting the thickness of the header pipe to a value not exceeding 5 mm. Can be ensured.
  • header pipe is configured with the minimum inner and outer diameter values to ensure the required pressure resistance, the increase in weight is limited and the in-vehicle latability is improved. Wear.
  • the wall thickness of the tube is taken into account in consideration of the tensile stress of the members constituting the tube, the diameter of the refrigerant flow path, and the internal pressure applied to the tube. Can be set.
  • the heat exchange tube includes a refrigerant flow path having a circular cross section, and a thick portion that does not form a refrigerant flow path.
  • the header pipe When the header pipe is made thick to ensure the required pressure resistance, the inside diameter of the refrigerant flow path flowing through the inside of the header pipe becomes small, As the inner diameter of the coolant channel decreases, the tube insertion hole formed for connecting the tube and the header pipe also becomes smaller. If, for example, the width of the tube having a flat cross section in the lateral direction is narrowed to match the tube insertion hole, the heat dissipation performance is reduced due to a decrease in the heat transfer area.
  • the flat cross section refers to a cross sectional shape of a tube having at least flat surfaces on the upper and lower surfaces of the tube.
  • the heat exchanger can be configured without securing the heat transfer area and reducing the heat exchange performance.
  • the invention described in claim 8 of the present application is the heat exchanger according to any one of claims 1 to 7, wherein the tubes and the fins are alternately stacked to form a multi-layer.
  • the heat exchange area is increased, the amount of refrigerant flowing through is increased, and the heat exchange performance is improved. It can be improved.
  • a partition plate that partitions a refrigerant flow path flowing between the tube and the header pipe into a plurality of sections is provided at a key point of the header pipe.
  • the heat exchanger is arranged and has the same total cross-sectional area in each section of each refrigerant flow path partitioned into the plurality of sections. For example, if c 02 is used as a refrigerant in a refrigeration cycle, CO 2
  • a fin is mounted between the tubes so as to be multi-tiered, and the end of the tube is connected to and connected to a header pipe.
  • a heat exchanger body composed of tubes, fins, and header pipes such that the cross-sectional longitudinal direction of the multi-tiered tubes and fins is orthogonal to the direction of ventilation of external air. This is a heat exchanger in which a plurality of heat exchangers are arranged, and the header pipes of each heat exchanger body are connected and connected.
  • a plurality of tubes and fins stacked in multiple stages are arranged so as to be parallel to the ventilation direction. If the header pipes are connected and connected to form an integrated heat exchanger, it is possible to increase the flow rate of the refrigerant flowing through the heat exchanger and to increase the heat transfer area, thereby improving the heat exchange performance. Can be improved.
  • the invention described in claim 11 of the present application is the invention according to any one of claims 7 to 9, wherein a plurality of tubes and fins have a cross-sectional longitudinal direction orthogonal to the ventilation direction.
  • This is a heat exchanger that passes between the heat exchangers in series or in parallel and performs heat exchange by heat transmitted to a plurality of tubes and fins.
  • a plurality of heat exchangers are arranged in parallel, and the heat exchangers are connected and connected to form an integrated heat exchanger, and the refrigerant passes in series or in parallel inside the heat exchanger. If it is configured to flow, it is possible to regulate the flow of the refrigerant in the ventilation direction.
  • the refrigerant flows through the plurality of header pipes arranged in parallel, the refrigerant flows in parallel between the plurality of heat exchanger bodies, or the refrigerant flows into one of the plurality of header pipes arranged in parallel.
  • the refrigerant flows in series in such a way that the refrigerant flows through the other heat exchanger bodies in order, the cooling process and the direction of ventilation of the external air are taken into consideration, and the heat exchange rate is improved. It is possible to achieve this.
  • the refrigerant when configured to flow in series between a plurality of heat exchanger bodies in series, the refrigerant flows from the header pipe in the rear row in the ventilation direction, and the refrigerant follows the cooling process.
  • the heat exchange medium When the heat exchange medium is configured to flow in the ventilation direction, the heat exchange medium, which has been cooled to some extent through the heat exchanger body, flows through the refrigerant flow path closest to the ventilation direction. It is further cooled and the heat exchange performance can be improved.
  • the invention according to claim 12 is the invention according to claim 10 or 11, wherein a plurality of heat exchanges are performed such that a longitudinal direction of a cross section of the tube and the fin is orthogonal to a ventilation direction.
  • a heat exchanger in which a plurality of tube insertion portions are formed at an end of the heat exchange tube, wherein the heat exchanger tubes are arranged in parallel, and header pipes of the respective heat exchangers are connected and connected to each other.
  • a heat exchanger in which the tube ends are connected to the respective header pipes.
  • a plurality of tube insertion portions are formed at the end of the tube, and the tube insertion portions are inserted into the tube insertion holes formed in the header pipe, whereby each refrigerant flow of each heat exchanger body is formed.
  • the roads can be connected and connected, and the heat transfer area can be increased.
  • the invention according to claim 13 is the heat exchanger according to any one of claims 9 to 12, wherein a plurality of refrigerant flow paths are formed in the header pipe.
  • the invention described in claim 14 of the present application is the heat exchanger according to any one of claims 1 to 7, wherein a fin is mounted between the tubes that reciprocate in a meandering manner. It is.
  • the heat exchange tubes through which the refrigerant flows are reciprocated in a meandering manner, and the fins are mounted between the tubes, thereby increasing the heat exchange area and improving the heat exchange rate. This is possible.
  • the invention described in claim 15 of the present application is the invention according to claim 14, wherein a plurality of heat exchanger bodies are arranged in parallel, and each heat exchanger body is connected and connected to be integrated. It is a heat exchanger.
  • the surface on which the heat exchanger can be installed is limited to a certain range due to the design of the car, etc., in the direction of external air flow.
  • the heat exchange area in contact with the external air is enlarged to improve the heat exchange performance. Can be improved.
  • the invention described in claim 16 of the present application is the invention according to any one of claims 1 to 15, wherein the tube and the header pipe are formed by molding aluminum or an aluminum alloy.
  • the heat exchanger has the following configuration.
  • Tubes and heads made of aluminum or aluminum alloy Forming a pipe has the advantage that tubes and header pipes can be easily formed at low cost.
  • the wall thickness of each member is increased in order to ensure the pressure resistance required of the heat exchanger. The problem is that the heat exchanger becomes thicker and the weight of the heat exchanger increases.
  • a structure is adopted in which the required pressure resistance is ensured and a weight increase is avoided, so that a tube or a header pipe can be formed using aluminum or an aluminum alloy. As a result, it is possible to form a heat exchanger at low cost.
  • the invention described in claim 17 of the present application is the heat exchanger according to any one of claims 1 to 16, wherein the refrigerant flowing into and out of the heat exchanger is in a gaseous state.
  • the heat exchanger when the high-temperature and high-pressure medium in the gaseous state flows between the heat exchangers in the gaseous state, the heat exchanger is required to have high pressure resistance. According to the configuration of the heat exchanger of the present invention, even when a medium in a gaseous state requiring high pressure resistance is passed, a weight increase for securing pressure resistance and deterioration of the radiation property are prevented. Can be avoided.
  • the heat exchanger of the present invention can be used in a refrigeration cycle using a refrigerant that requires high pressure resistance.
  • the invention described in claim 18 of the present application is the invention according to any one of claims 1 to 17, wherein the refrigerant flowing through the heat exchanger is heat using carbon dioxide (C 0 2 ). It is an exchanger.
  • the heat exchanger is required to have a pressure resistance that is at least six times higher than that in a case where a refrigerant in a gas-liquid mixed state flows. I mentioned earlier According to the heat exchanger of the present invention, since it is designed to satisfy high pressure resistance, it is possible to use carbon dioxide which is in a supercritical region as a refrigerant. Brief description of the drawings
  • FIG. 1 is a front view showing a multi-stage heat exchanger according to a specific example of the present invention.
  • FIG. 4 is a perspective view showing an end of a heat exchange tube according to a specific example of the present invention.
  • FIG. 2 is a perspective view showing a heat exchange tube and a fin according to a specific example of the present invention.
  • a plurality of heat exchangers composed of a tube, a fin, and a header pipe are arranged in parallel, and the header pipes are connected and connected to form a heat exchange unit. It is a top view which shows schematic structure of a container.
  • a plurality of heat exchangers composed of a tube, a fin, and a header pipe are arranged in parallel, and a pipe for flowing a medium in parallel to each header pipe is connected. It is a top view which shows the schematic structure of the heat exchanger of integral shape.
  • FIG. 4 is a perspective view showing an end portion of a heat exchange tube in which a plurality of tube insertion portions are formed according to a specific example of the present invention.
  • FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where an end of the tube shown in FIG. 6 is inserted into a tube insertion hole of a header pipe.
  • FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where a tube inlet shown in FIG. 6 is inserted into a header pipe in which a plurality of medium flow paths are formed.
  • FIG. 4 is a partial cross-sectional view of a tube and a fin, showing a schematic configuration of a heat exchanger in which the same fin is mounted on a plurality of tubes arranged in parallel according to a specific example of the present invention.
  • FIG. 1 is a plan view showing a pen-type heat exchanger according to a specific example of the present invention.
  • FIG. 9 is a perspective view schematically showing a header pipe in which a long tube-shaped tube insertion hole inclined at an angle of 0 is formed according to a conventional example.
  • FIG. 1 is a front view showing a schematic configuration of a stacked heat exchanger in which tubes and fins are alternately stacked in multiple stages.
  • the heat exchanger 1 has a plurality of tubes 2 and fines 3 alternately stacked, and each end of each of the stacked tubes 2 and 2 has a header pipe 4. , 5 are inserted and connected to the tube insertion holes 6, 6.
  • the header pipes 4 and 5 are formed such that the refrigerant passage through which the refrigerant flows has a circular cross section.
  • the openings at the upper and lower ends of the header pipes 4 and 5 are closed by caps 7. Also, at the required location for header pipe 4 or 5.
  • a partition plate 8 for dividing the refrigerant flow path into a plurality of sections and coupling members 9 and 10 for flowing in and out the refrigerant are provided.
  • reference numeral 11 denotes a side blade.
  • Heat exchanger 1 of this embodiment for example, when the C 0 2 with C 0 2 is used as the refrigerant in the refrigerant frozen cycle, exerts a heat radiation effect of high temperature, high pressure and summer were refrigerant It is considered that the heat exchanger is required to have a pressure resistance six times or more as compared with the case where the refrigerant in the gas-liquid mixed state flows.
  • the heat exchanger 1 of the present example is formed by the partition plate 8 so that the sectional area of each section (path) of the refrigerant flow path divided into a plurality of sections is substantially the same.
  • each section of each refrigerant flow path (each path) is in a range where pressure resistance can be ensured.
  • the total cross-sectional area at can be made approximately the same. This does not increase the size of the heat exchanger.
  • Each medium channel formed to communicate in the longitudinal direction of the header pipes 4 and 5 has a circular cross section.
  • pressure is uniformly applied to the refrigerant flow path, and the pressure resistance of the refrigerant flow path is improved.
  • the refrigerant pipe diameter of the header pipe is preferably 10 mm or less, and the thickness of the header pipe is preferably 5 mm or less.
  • the relationship between the outer diameter of the header pipe and the inner diameter of the refrigerant channel formed in the header pipe depends on the internal pressure applied to the header pipe and the tensile stress of the material constituting the header pipe. In consideration of the above, it can be determined according to the following equation (1).
  • the tensile stress of aluminum is 10 kg / mm 2 . If the internal pressure of 6 0 O kg / cm 2 which is loaded on Dzudapai flop to, when the refrigerant flow path diameter of Heddapai flop is 1 0 mm, calculates the outline diameter of header Dapai flop in accordance with the equation (1) Then, the outer diameter of the header pipe is 20 mm.
  • the diameter of the refrigerant flow path of the header pipe does not exceed 10 mm.
  • the refrigerant flow path diameter of the header pipe is 10 mm
  • the minimum outer diameter of the header pipe is calculated to be 20 mm by calculating the outer diameter of the header pipe according to the above equation (1).
  • the thickness can be set based on the above equation (1). You.
  • FIG. 2 is a perspective view showing a tube end.
  • the tube 2 of the present example is formed to have a flat cross section and a plurality of refrigerant channels 21 and 21 having a circular cross section.
  • the portion has a thick portion 22 in which no refrigerant flow path is formed.
  • the tube 2 in this example is formed in a thin, flat shape with a tube width of 20 mm or less.
  • the refrigerant pressure is uniformly applied in the refrigerant passage, and, for example, the pressure resistance is lower than in the case where the refrigerant passage has a rectangular cross section.
  • the thick portion 22 is formed in the width direction of the tube, the pressure resistance of the tube is improved, and the area of the tube and the tube are reduced.
  • the fin area to be installed is enlarged, and the heat exchange rate can be improved by increasing the heat exchange area.
  • the tube insertion portion 23 having a small cross-sectional area compared with the cross-sectional area of other portions is obtained by cutting the thick portion 22 at the longitudinal end of the tube 2 in the width direction. Is formed.
  • the inner diameter of the header pipe having a constant outer diameter decreases, and the tube and the header pipe become smaller.
  • the width of the tube insertion hole formed for communication connection becomes smaller.
  • the thick portions 22 formed at both ends in the width direction of the tube are cut, and the tube insertion holes formed in the header pipes 4 and 5 are formed.
  • a tube insertion portion 23 having a cross-sectional shape substantially matching 6 is formed. Therefore, even if the header pipes 4 and 5 become thicker and the tube insertion hole 6 becomes smaller with the inner diameter of the header pipe, the width of the tube to which the fin is mounted can be changed. Instead, the tube insertion portion 23 is inserted into the tube insertion hole 6, the tube 2 and the header pipes 4 and 5 are assembled, and the tube 2 and the header pipes 4 and 5 can be connected and connected.
  • the tube 2 and the header pipes 4 and 5 can be assembled without changing the width of the tube 2, the amount of heat transfer to the fin 3 is secured and the heat exchange rate is improved. This is possible.
  • the tube and the header pipe of this example are formed by extruding and molding aluminum or aluminum alloy.
  • the tube 2 is formed with the thick portion 22, the required pressure resistance is secured, and the heat exchanger 1 is made of aluminum or an aluminum alloy at a low cost and light weight. Can be manufactured.
  • a tube insertion portion 23 having a smaller cross-sectional area than other portions of the tube 2 is formed at the end of the tube 2, and the tube insertion hole 23 is inserted into the tube insertion hole of the header pipe.
  • the tube 2 and the header pipes 4 and 5 were connected by inserting it into the tube 6, but the connection of the tube and the header pipe is not limited to this example, and it is also possible to connect the pipes and connectors.
  • heat exchange tubes In addition to heat exchange tubes with a flat cross section, heat exchange tubes
  • the cross section of the valve itself can be circular.
  • FIG. 3 is a perspective view showing a schematic configuration of heat exchange tubes 24 and fins 30 according to another specific example.
  • the heat exchange tube 24 of the present example is provided with a refrigerant passage 25 having a circular cross section, and the outer shape of the tube 24 itself is also circular.
  • the minimum volume can be kept within the same range while maintaining the strength that can withstand the pressure load of the medium flowing through the inside. Can improve the layout.
  • the concave portion 31 having a curvature along the outer shape of the tube 24 is provided in the fin 30 so that the tubes 24 and the By increasing the contact area of the fin 30, the heat transfer rate to the fin 30 side can be improved, and the heat exchange rate of the tube 24 and the fin 30 can be improved.
  • the wall thickness of the tube 24 is determined by the diameter of the refrigerant passage 25 formed in the tube, the internal pressure applied to the tube, and the material constituting the tube based on the expression (1). In consideration of stress
  • FIG. 4 is a plan view showing a schematic configuration of the heat exchanger of the present example, in which tubes 2 stacked in multiple stages with fins (not shown) mounted therebetween and the ends of the tubes 2 are connected.
  • a plurality of heat exchangers consisting of header pipes 41, 51, header pipes 42, 52, and header pipes 43, 53 have a tube and fin in the longitudinal direction. Are arranged in parallel with each other at right angles to the header pipe 51 and the header pipe 52, and between the header pipe 42 and the header pipe 43.
  • Is a heat exchanger 12 which is connected by pipes 60 and 61 and is integrated.
  • the arrows in the figure indicate the ventilation direction.
  • reference numeral 13 denotes a refrigerant inlet
  • reference numeral 14 denotes a refrigerant outlet.
  • the heat exchanger 12 of this example has the tubes 2, the fins and the header pipes 41, 42, so that the longitudinal directions of the tubes 2 and the fins are perpendicular to the ventilation direction.
  • a plurality of heat exchangers composed of 4 3, 5 1, 5 2, 5 3 are arranged in parallel, and the header pipes 4 1 4 2, 4 3, 5 1, 5 2, 5 3 are connected and connected to form a unit. Since the heat exchangers 1 and 2 are configured, the flow rate of the refrigerant flowing through the heat exchanger can be increased and the heat transfer area can be increased, and the heat exchange performance can be improved. .
  • the refrigerant flow path is formed so that the refrigerant flowing between the heat exchangers flows in series, for example, from the header pipe 41 which is a rear row in the ventilation direction. Flows through the heat exchanger in the direction of the ventilation according to the cooling process, and the refrigerant that has been cooled to some extent by passing through the heat exchanger sequentially from the rear row is the refrigerant flow path closest to the ventilation direction. By flowing the gas through it, it is further cooled and the heat exchange performance can be improved.
  • the required air-conditioning function can be achieved by installing a heat exchanger with an increased heat transfer area and improved heat exchange performance.
  • the range of the surface area facing the ventilation direction is limited to a certain range, but it is assumed that the space with the heat exchanger will also increase with the size of the vehicle body. Therefore, as in this example, if the heat transfer area is increased while keeping the same surface area in the ventilation direction, the heat exchange performance is improved. Therefore, the structure of this specific example is suitable for the case of mounting in a vehicle where the mounting space is narrow.
  • the heat exchanger 15 shown in FIG. 5 connects the header pipes 44, 45, 46 to the refrigerant inflow pipe 62, and connects the header pipes 54, 55, 56 to the refrigerant outflow pipe 63.
  • the refrigerant flowing into the header pipes 41, 42, and 43 from the refrigerant inflow pipe 62 flows through the plurality of tubes 2 in parallel, and flows from the header pipes 51, 52, and 53. It is configured to flow out to the refrigerant outflow pipe 63.
  • the flow rate of the refrigerant flowing through the heat exchanger is increased, and the heat transfer area is increased by increasing the heat transfer area.
  • the efficiency can be improved and the heat exchange of the refrigerant can be performed all at once.
  • FIG. 6 is a perspective view showing another specific example of the tube.
  • the tube 26 has a tube width capable of accommodating a plurality of header pipes arranged in parallel, and the refrigerant flow path 27 and the refrigerant flow path 27 each having a circular cross section are formed. It has a thick portion 28 that is not formed.
  • a tube having a smaller cross-sectional area than other portions of the tube 26 is provided in order to allow the refrigerant flowing through the refrigerant passage 27 having the circular cross section to communicate with the header pipe.
  • a plurality of insertion portions 29 and 29 are formed.
  • a plurality of tube insertion portions 29, 29 are formed at the end of the tube 26, and the tube insertion portions 29, 29 are inserted into the tube insertion holes formed in the header pipe, It can be connected to each of the refrigerant flow passages, whereby the tube width can be increased and the heat transfer area can be increased.
  • FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where the tube insertion portions 29 and 29 of the tube 26 are inserted into the tube insertion holes of a plurality of header pipes 47 and 48.
  • the tube width can be increased.
  • the heat transfer area between the tube and the fin can be increased, and the heat exchange performance can be improved.
  • FIG. 8 shows a state in which a plurality of refrigerant channels 71 and 72 are formed in the header pipe 70, and the tube insertion portion 23 of the tube 2 is inserted into a tube insertion hole formed in the header pipe 70.
  • FIG. 2 is a partial cross-sectional view schematically showing the structure of FIG.
  • a plurality of heat exchangers composed of a plurality of tubes, fins, and header pipes are arranged in parallel to the direction of air flow.
  • the number of assembling steps such as connection of header pipes arranged in parallel is reduced, and the number of parts is reduced as compared with the case where a plurality of header pipes are arranged in parallel. Work efficiency can be improved.
  • a plurality of heat exchangers shown in Fig. 4 or Fig. 5 are arranged in parallel, and the force has the same configuration as an integrated heat exchanger.
  • the heat exchange area can be increased and the heat exchange performance can be improved.
  • the present invention is not limited to this example, and as shown in FIG.
  • the structure of the tube and the heat exchanger of the present example can be used. is there.
  • the heat exchanger according to the present invention is a heat exchanger in which the pressure resistance and heat exchange rate of the heat exchange tube are improved, and is suitable for a high-pressure medium such as carbon dioxide gas instead of the conventional heat exchange medium. It is particularly suitable for automotive and consumer refrigeration cycles.

Abstract

A heat exchanger (1); comprising heat exchange tubes (2), (24), and (26) having refrigerant flow paths, fins (3) and (32) installed between the tubes, and header pipes (4) and (5) to which the tubes communicate and which supply and receive refrigerant; and performing the exchange of heat transferred to the tubes and fins; wherein the heat exchange tubes are provided with refrigerant flow paths of circular cross-section, each of the heat exchange tubes is formed in the same cross-section and is provided with a plurality of refrigerant flow paths (21) and (25) of circular cross-section, the diameter of the circular cross-section of the refrigerant flow paths is 1 mm or less, the refrigerant flow paths in the header pipes are formed in a circular cross-section, the diameter of the refrigerant flow paths in the header pipes does not exceed 10 mm and the wall thickness of the header pipes does not exceed 5 mm, and the heat exchange tubes are provided with the refrigerant flow paths of circular cross-section and a thick wall part not forming the refrigerant flow paths and a tube inserting part having a cross-section smaller than that of the other portions is formed in the heat exchange tubes at the longitudinal end part thereof.

Description

明細 熱 交 換器 技術分野  Description Heat exchanger Technical field
本発明は、媒体が熱交換器チューブに伝わる熱によって熱交換 を行う熱交換器に関する。  The present invention relates to a heat exchanger that performs heat exchange by heat transmitted from a medium to a heat exchanger tube.
背景技術 Background art
従来、 冷媒の熱交換を行う熱交換チューブと、 前記冷媒を受給 及び送給する一対のヘ ッ ダパイ プと を連通接続 して構成される 熱交換器が知 られている。  2. Description of the Related Art Conventionally, there has been known a heat exchanger configured by connecting a heat exchange tube for exchanging heat of a refrigerant and a pair of header pipes for receiving and transmitting the refrigerant to each other.
すなわち、 一方のヘッダパイ プから取 り 入れられた冷媒は、 熱 交換チューブ内部の冷媒流路を流通 した後、他方のヘッダパイ プ から排出され、 冷媒の熱交換は、 熱交換チューブに伝わる熱によ つて行われる。  That is, the refrigerant introduced from one header pipe flows through the refrigerant flow path inside the heat exchange tube, and then is discharged from the other header pipe, and the heat exchange of the refrigerant is performed by heat transmitted to the heat exchange tube. Is performed.
また、 この種の熱交換器に用い られる熱交換チューブは、 アル ミ ニゥム合金等を材料と して、押 し出 し成形による製造方法等を 用いて形成されている。  The heat exchange tube used in this type of heat exchanger is formed by using an aluminum alloy or the like as a material and using a manufacturing method such as extrusion.
また、 前記熱交換器は、 熱交換チューブに当接される フ ィ ンを 備え、熱交換チューブと フ ィ ン との接触面積を大き く するため、 熱交換チューブ断面が扁平形状となる よう に形成され、前記扁平 形状のチューブに複数の媒体流路が形成されている構成となつ ている。  Further, the heat exchanger includes a fin that is in contact with the heat exchange tube, and the heat exchange tube has a flat cross section so as to increase the contact area between the heat exchange tube and the fin. The flat tube has a configuration in which a plurality of medium flow paths are formed.
近年において、 フ ロ ン系の冷媒は、 地球温暖化作用等を生 じる こ とから、 これらの冷媒の使用禁止及び縮減の方向の要求が強 く なっている。 このため、 特許第 2 8 0 4 8 4 4号公報、 及び特開 平 1 0— 1 9 4 2 1 号公報に、 フ ロ ン系冷媒の代替冷媒と して、 オゾン層を破壊しない二酸化炭素 ( C 0 2 ) を冷媒と して用いる 冷凍サイ クルが記載されている。 In recent years, fluorocarbon-based refrigerants have a global warming effect and the like. Therefore, there is an increasing demand for the ban on the use of these refrigerants and the direction of reduction. For this reason, Japanese Patent Publication No. 2850484 and Japanese Patent Application Laid-Open No. H10-92421 disclose, as substitute refrigerants for fluorinated refrigerants, Carbon dioxide does not destroy the ozone layer (C 0 2) discloses a refrigerating cycle using as a refrigerant.
C 0 2を冷媒と して冷凍サイ クルに用いた場合、 高温高圧とな つた冷媒から熱を放熱するために、熱交換器を通流する際の冷媒 の状態は、 気液二相状態の臨界点を超えた超臨界域にあ り 、 通常 の気液二相状態の冷媒が熱交換器を通流する場合と比較して、熱 交換器に過度の圧力が負荷される こ とが想定される。 When using the C 0 2 in the refrigeration cycle as a refrigerant, for dissipating heat from high temperature and high pressure and Do ivy refrigerant, the refrigerant when flowing through the heat exchanger conditions, the gas-liquid two-phase state Excessive pressure is assumed to be applied to the heat exchanger compared to the case where the refrigerant in the normal gas-liquid two-phase state flows through the heat exchanger in the supercritical region beyond the critical point. Is done.
例えば、 C 0 2を冷媒と して用いた場合、 高温高圧となった冷 媒の放熱作用を発揮する熱交換器には、気液混合状態の冷媒が通 流する場合と比較 して 6 倍以上の耐圧性が要求されと考え られ る。 For example, if a C 0 2 is used as a refrigerant, the heat exchanger to exert the action of heat radiation refrigerant which high temperature and high pressure, 6-fold compared to the case where refrigerant in a gas-liquid mixed state is flowing It is considered that the above pressure resistance is required.
冷凍装置に、 超臨界的な冷媒を用いる場合に、 冷媒が通流する 熱交換チューブ及びヘッダパイ プ等の部材を肉厚と して、熱交換 器に要求される耐圧性を確保する こ とが考え られる。 しか し、 熱 交換チューブ又はヘッ ダパイ プ等の部材を肉厚とする と、熱交換 器自体の外形が拡大し、搭載スペースが制限された車内において 冷凍装置のレイ アウ ト性が低下する という 問題を生 じる。また、 熱交換器を構成する熱交換チューブ及びヘ ッ ダパイ プ等の部材 を肉厚とする と、 熱交換器の重量も増加 し、 車体搭載時に軽量化 が望まれている冷凍装置と しては、 好ま し く ない。  When a supercritical refrigerant is used in a refrigeration system, the thickness of the heat exchange tube and header pipe through which the refrigerant flows can be made thick to ensure the pressure resistance required of the heat exchanger. Conceivable. However, if the thickness of the heat exchange tubes or header pipes is increased, the external shape of the heat exchanger itself will be enlarged, and the layout of the refrigeration system will be reduced in vehicles with limited installation space. Produces. Also, if the thickness of the heat exchanger tubes and header pipes constituting the heat exchanger is made thicker, the weight of the heat exchanger also increases. Is not preferred.
また、 通常、 熱交換チューブは、 媒体に乱流を起こ させて熱交 換能力を高める と と も に、チューブ扁平面の耐圧強度を高めるた めに、 冷媒流路を ビー ド等によって仕切る場合がある。 ビ一 ド等 によって扁平形状のチューブを仕切った場合、 その冷媒流路断面 は矩形状を形成し、 耐圧性要求の高い冷媒が通流した場合、 この 角部に冷媒応力が集中 して、耐圧性能が悪化する という 問題を生 じる。  Usually, the heat exchange tube is used to increase the heat exchange capacity by causing turbulence in the medium and to increase the pressure resistance of the flat surface of the tube. There is. When a flat tube is partitioned by beads or the like, the cross section of the refrigerant flow path forms a rectangular shape, and when a refrigerant with high pressure resistance is required to flow, the refrigerant stress concentrates at this corner and the pressure This causes the problem of poor performance.
要求される耐圧性を確保するために、 同一体積においてヘッ ダ パイ プを肉厚とする と、ヘッ ダパイ プの媒体流路の内径は小さ く な り、 このヘッダパイ プの媒体流路と、 チューブを連通接続する ために形成されるチューブ挿入孔は、媒体流路の内径と同様に小 さ く なる。 To secure the required pressure resistance, use the same volume header When the pipe is made thicker, the inner diameter of the medium flow path of the header pipe becomes smaller, and the tube insertion hole formed for connecting the medium flow path of the header pipe and the tube is provided with the medium flow path. It is as small as the inside diameter of the road.
一般にヘッダパイ プとチューブは、チューブ端部をヘッダパイ プに形成されたチューブ挿入孔に挿入して連通接続している。 ヘッ ダパイ プに形成されるチューブ挿入孔の大き さ に と も な つて、 チューブを形成する と、 チューブ幅が狭く な り 、 チューブ と フ ィ ンの接触面積が小さ く な り、熱交換性能が低下する という 問題を生じる。  Generally, the header pipe and the tube are connected to each other by inserting a tube end into a tube insertion hole formed in the header pipe. When a tube is formed, along with the size of the tube insertion hole formed in the header pipe, the tube width is reduced, the contact area between the tube and the fin is reduced, and heat exchange performance is reduced. The problem of lowering occurs.
こ こで、 放熱性能の低下を撤回するため、 有効スペースを利用 して出来る限 り チューブ幅を拡大し、熱交換性能を向上させる必 要が生じる。  Here, it is necessary to increase the tube width as much as possible using the effective space to improve the heat exchange performance in order to avoid the deterioration of the heat radiation performance.
チューブ幅確保のため、 例えば、 特開平 1 — 1 4 7 2 8 7 号公 報記載の発明は、 図 1 1 に示すよう に、 ヘッダパイ プ 7 3 の長手 方向の軸線 Xに対してチューブ挿入孔 7 4 の長径方向軸線 Yを 角度 S傾けた長穴のチューブ挿入孔が形成されている。 また、 へ ヅ ダパイ プに連通接続されるチューブは、チューブの長手方向端 部が、 チューブの中央部に対して角度 0捩られて、 チューブ挿入 ?し 7 4 に嵌着されている。  In order to secure the tube width, for example, the invention described in Japanese Patent Laid-Open Publication No. HEI 1-1477287 discloses a tube insertion hole with respect to the axis X in the longitudinal direction of the header pipe 73 as shown in FIG. There is a long tube insertion hole formed by tilting the major axis Y at the angle S at 7 4. Also, in the tube connected to the pipe, the longitudinal end of the tube is twisted at an angle of 0 with respect to the center of the tube. 7 4
この場合、チューブ端部をチューブ揷入孔 7 4 に合致する よ う に捩る必要があ り 、 作業的に煩雑となる場合があ り 、 捩ったチュ —ブ端部とチューブ挿入孔の組み付けが困難である場合があつ た。  In this case, it is necessary to twist the tube end so as to match the tube insertion hole 74, which may be cumbersome in operation, and assembling the twisted tube end with the tube insertion hole. Was sometimes difficult.
そ こで、 本発明は前記問題点に鑑みて、 所望の耐圧性を保持し つつ、 熱交換性能を向上 し、 重量増加を防止 した熱交換器を提供 する こ とを 目的とする。 発 明 の 開示 Therefore, in view of the above problems, an object of the present invention is to provide a heat exchanger that has improved heat exchange performance while preventing a weight increase while maintaining a desired pressure resistance. Disclosure of the invention
本願第 1 請求項に記載した発明は、 冷媒流路を有する熱交換チ ユ ーブと、 前記チューブ間に装着される フ ィ ン と、 前記チューブ が連通接続され、 冷媒の送受給を行う ヘッダパイ プとを備え、 チ ュ一ブ及びフ ィ ンに伝わる熱に よ って熱交換を行う 熱交換器に おいて、 前記熱交換チューブは、 断面円形の冷媒流路を備えてい る熱交換器である。  The invention described in claim 1 of the present application is directed to a header pie that is connected to a heat exchange tube having a refrigerant flow path, a fin mounted between the tubes, and the tubes, and that sends and receives the refrigerant. A heat exchanger that performs heat exchange by heat transmitted to the tubes and the fins, wherein the heat exchange tube has a refrigerant flow path having a circular cross section. It is.
例えば、 熱交換器を通流する冷媒と して、 気液二相状態の臨界 点を超えた超臨界域の状態となる冷媒を冷凍サイ クルに用いた 場合、高温高圧となった冷媒の放熱作用を発揮する熱交換器には 気液混合状態の冷媒が通流する場合と比較 して 6 倍以上の耐圧 性が要求されと考え られる。  For example, when a refrigerant in a supercritical state exceeding the critical point of the gas-liquid two-phase state is used in a refrigeration cycle as the refrigerant flowing through the heat exchanger, the heat of the refrigerant at high temperature and high pressure is released. It is considered that the heat exchanger that exerts its function must have a pressure resistance that is at least six times that of the case where the refrigerant in the gas-liquid mixed state flows.
従って、 要求される耐圧性を確保するために、 冷媒流路の断面 形状を円形とする こ とが考え られる。 すなわち、 冷媒流路を断面 円形とする こ とによ り 、 冷媒圧が流路外壁に均等に負荷され、 チ ユ ーブの耐圧性を向上する こ とが可能となる。  Therefore, in order to secure the required pressure resistance, it is conceivable to make the cross-sectional shape of the refrigerant channel circular. That is, by forming the refrigerant flow path into a circular cross section, the refrigerant pressure is uniformly applied to the outer wall of the flow path, and the pressure resistance of the tube can be improved.
本願第 2 請求項に記載した発明は、前記請求項 1 記載の熱交換 器において、 前記熱交換チューブの各々は、 同一断面であ り 且つ 複数の断面円形の冷媒流路を備えている熱交換器である。  The invention described in claim 2 of the present application is the heat exchanger according to claim 1, wherein each of the heat exchange tubes has the same cross-section and a plurality of refrigerant passages having circular cross-sections. It is a vessel.
高い耐圧性能を要求する冷媒を冷凍サイ クルに用いる場合、要 求される耐圧性確保のため、前述した冷媒流路を断面円形とする こ と と、 冷媒流路自体を小さ く する こ とが考え られる。 すなわち 冷媒流路を小さ く する こ とで、 同一体積においてチューブの肉厚 を厚 く し、 耐圧性を確保する こ とが可能となる。 この場合、 冷媒 流路を複数設ける こ とで、熱交換器を通流する冷媒流量を確保す る こ とが可能となる。  When a refrigerant that requires high pressure resistance is used in a refrigeration cycle, the above-mentioned refrigerant flow path must have a circular cross section and the refrigerant flow path itself must be small in order to ensure the required pressure resistance. Conceivable. In other words, by reducing the size of the refrigerant channel, it is possible to increase the wall thickness of the tube in the same volume and secure pressure resistance. In this case, by providing a plurality of refrigerant flow paths, it is possible to secure a flow rate of the refrigerant flowing through the heat exchanger.
本願第 3 請求項に記載した発明は、前記請求項 1 記載の熱交換 器において、前記冷媒流路の断面円形の直径が 1 m m以下である 構成の熱交換器である 。 The invention described in claim 3 of the present application is the heat exchanger according to claim 1, wherein the diameter of the circular cross section of the refrigerant channel is 1 mm or less. The configuration of the heat exchanger.
このよ う に、チューブに形成する断面円形の冷媒流路の直径を l m m以下とする こ とで、要求される耐圧性を確保する こ とが可 能となる。  In this way, by setting the diameter of the refrigerant passage having a circular cross section formed in the tube to 1 mm or less, required pressure resistance can be secured.
本願第 4 請求項に記載した発明は、前記請求項 2 記載の熱交換 器において、前記冷媒流路の断面円形の直径が 1 m m以下である 構成の熱交換器である。  The invention described in claim 4 of the present application is the heat exchanger according to claim 2, wherein the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
断面円形の冷媒流路直径を 1 m m以下と した場合、 この冷媒流 路をチューブに複数設ける こ とによ り 、熱交換器を通流する冷媒 流量を確保する こ とが可能となる。  When the diameter of the refrigerant flow path having a circular cross section is 1 mm or less, by providing a plurality of the refrigerant flow paths in the tube, it is possible to secure the flow rate of the refrigerant flowing through the heat exchanger.
本願第 5 請求項に記載した発明は、前記請求項 1 乃至 4 いずれ か記載の発明において、前記へッ ダパイ プの冷媒流路が断面円形 の熱交換器である。  A fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects, wherein the refrigerant pipe of the header pipe has a circular cross section.
このよ う に、 ヘッ ダパィ プの冷媒流路が断面円形である と、 へ ッダパイ プ内を通流する冷媒圧力が、ヘッ ダパイ プに均等に付加 される こ と とな り、 ヘッダパイ プの耐圧性が向上する。  In this way, if the refrigerant flow path of the header pipe is circular in cross section, the pressure of the refrigerant flowing through the header pipe is evenly applied to the header pipe, and the pressure resistance of the header pipe is increased. The performance is improved.
本願第 6 請求項に記載した発明は、前記請求項 5記載の発明に おいて、前記ヘッダパイ プ内径の直径が 1 0 m mを超えない直径 であ り、ヘッダパイ プの肉厚が 5 m mを超えない熱交換器である ヘッダパイ プに要求される耐圧性を確保するために、ヘッダパ イ ブの肉厚の設定には、 ヘッ ダパイ プ内部にかかる内圧や、 へッ ダパイ プを構成する材料の引っ張 り応力等の影響を考慮する 必 要がある。  The invention described in claim 6 of the present application is the invention according to claim 5, wherein the inner diameter of the header pipe does not exceed 10 mm, and the thickness of the header pipe exceeds 5 mm. In order to secure the required pressure resistance of the header pipe, which is not a heat exchanger, the thickness of the header pipe must be set by adjusting the internal pressure applied to the inside of the header pipe and pulling the material constituting the header pipe. It is necessary to consider the effects of stress and other factors.
冷媒流路直径が 1 0 m m以上である と、へッ ダパイ プに付加さ れる圧力が大き く な り 、 その分ヘ ッ ダパイ プの肉厚を厚 く する必 要があるため、 重量増加が大き く なる。 また、 冷媒流路直径を小 さ く 設定する と、 冷媒通流によって、 ヘッ ダパイ プに付加される 圧力は小さ く なるため、 ヘ ッ ダパイ プの肉厚は薄 く な り 、 重量増 加の問題は回避される。 一方、 冷媒流路直径が小さ く な り すぎる と、 冷媒の送受給を行うヘッダパイ プと しての性能が低下する。 従って、冷媒流路直径が 1 0 m mを超えない大き さの直径であ つた場合、 後述する発明の実施の形態に記載した ( 1 ) 式に基づ いて、 ヘッダパイ プ外形直径を定める こ とが可能である。 When the refrigerant flow path diameter is 10 mm or more, the pressure applied to the header pipe increases, and the thickness of the header pipe needs to be increased accordingly. growing. Also, when the refrigerant flow path diameter is set to be small, the pressure applied to the header pipe by the flow of the refrigerant becomes small, so that the thickness of the header pipe becomes thinner and the weight increases. Addition problems are avoided. On the other hand, if the coolant flow path diameter is too small, the performance as a header pipe for sending and receiving the coolant is reduced. Accordingly, when the refrigerant flow path diameter is not larger than 10 mm, the outer diameter of the header pipe may be determined based on the expression (1) described in the embodiment of the invention described later. It is possible.
例えば、ヘッダパイ プを形成する材料と してアル ミ ニウムを用 いた場合、 アル ミ ニウムの引っ張 り応力は、 1 0 kg/mm 2である。 冷媒の高圧側の圧力は、通常の気液混合状態の冷媒の圧力と比較 して、 6倍程度となるため、 部材にかかる内圧も大き く な り 、 耐 圧性が要求される。 For example, when aluminum is used as a material for forming a header pipe, the tensile stress of aluminum is 10 kg / mm 2 . The pressure on the high-pressure side of the refrigerant is about six times as high as the pressure of the refrigerant in a normal gas-liquid mixed state, so the internal pressure applied to the members also increases, and pressure resistance is required.
このため、 後述する ( 1 ) 式によ り 、 ヘッ ダパイ プの外形直径 は 2 0 m m程度に設定する こ とができ る。  For this reason, the outer diameter of the header pipe can be set to about 20 mm according to equation (1) described later.
従って、 ヘッ ダパイ プは、 冷媒流路直径を 1 0 m mを超えない 値に設定 した場合、ヘッ ダパイ プの肉厚を 5 m mを超えない値に 設定する こ とによ り 、要求される耐圧性を確保する こ とが可能と なる。  Therefore, when the refrigerant pipe diameter is set to a value not exceeding 10 mm, the required pressure resistance is set by setting the thickness of the header pipe to a value not exceeding 5 mm. Can be ensured.
また、 要求される耐圧性を確保するため、 最小となる内外径の 値でヘッダパイ プを構成する と、重量増加が制限される と と も に 車載レイ ァゥ ト性を向上する こ とがで き る。  In addition, if the header pipe is configured with the minimum inner and outer diameter values to ensure the required pressure resistance, the increase in weight is limited and the in-vehicle latability is improved. Wear.
また、 ヘッダパイ プのみな らず、 外形を断面円形と したチュー ブの場合も、 チューブを構成する部材の引っ張 り 応力、 冷媒流路 直径、 及びチューブにかかる内圧を考慮 して、 チューブの肉厚を 設定する こ とが可能である。  In addition to the header pipe, in the case of a tube with a circular cross section, the wall thickness of the tube is taken into account in consideration of the tensile stress of the members constituting the tube, the diameter of the refrigerant flow path, and the internal pressure applied to the tube. Can be set.
本願第 7 請求項に記載 した発明は、前記請求項 1 乃至 6 いずれ か記載の発明において、 前記熱交換チューブは、 断面円形の冷媒 流路と、 冷媒流路を形成しない肉厚部と を備え、 前記熱交換チュ —ブの長手方向端部において、他の部位よ り も小さ い断面積とな るチューブ挿入部が形成されている熱交換器である。 このよ う に、 高い耐圧性が要求される熱交換器において、 冷媒 流路を断面円形とする と と もに、熱交換チューブに肉厚部を形成 する こ とによ り、要求される耐圧性を確保する こ とが可能となる また、要求される耐圧性確保のためにヘッダパイ プを肉厚と し た場合、へッダパイ プ内部を通流する冷媒流路の内径が小さ く な り、 この冷媒流路の内径の縮小に と もない、 チューブとヘッダパ イ ブを接続するために形成されるチューブ挿入孔も小さ く なる。 チューブ揷入孔に合致させるために、 例えば、 断面扁平状のチュ ーブ横手方向の幅を狭 く する と、伝熱面積の減少によ り放熱性能 が低下する。 According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the heat exchange tube includes a refrigerant flow path having a circular cross section, and a thick portion that does not form a refrigerant flow path. A heat exchanger in which a tube insertion portion having a smaller cross-sectional area than other portions is formed at a longitudinal end of the heat exchange tube. As described above, in a heat exchanger that requires high pressure resistance, the required pressure resistance is obtained by forming the refrigerant flow path into a circular cross section and forming a thick portion in the heat exchange tube. When the header pipe is made thick to ensure the required pressure resistance, the inside diameter of the refrigerant flow path flowing through the inside of the header pipe becomes small, As the inner diameter of the coolant channel decreases, the tube insertion hole formed for connecting the tube and the header pipe also becomes smaller. If, for example, the width of the tube having a flat cross section in the lateral direction is narrowed to match the tube insertion hole, the heat dissipation performance is reduced due to a decrease in the heat transfer area.
こ こで断面扁平状とは、チューブの上下面に少な く と も平面を 有 しているチューブの断面形状をいう 。  Here, the flat cross section refers to a cross sectional shape of a tube having at least flat surfaces on the upper and lower surfaces of the tube.
本発明は、 熱交換チューブの長手方向端部において、 他の部位 よ り も小さ い断面積となるチューブ揷入部が形成されているの で、 断面扁平状のチューブ横手方向の幅を変える こ とな く 、 伝熱 面積を確保して、熱交換性能を低下させる こ とな く 熱交換器を構 成する こ とがで き る。  According to the present invention, since a tube insertion portion having a smaller cross-sectional area than other portions is formed at the longitudinal end of the heat exchange tube, the width of the tube having a flat cross section in the lateral direction is changed. In addition, the heat exchanger can be configured without securing the heat transfer area and reducing the heat exchange performance.
本願第 8 請求項に記載 した発明は、前記請求項 1 乃至 7 いずれ か記載の発明において、前記チューブとフ ィ ンが交互に積層され て多段層を形成する熱交換器である。  The invention described in claim 8 of the present application is the heat exchanger according to any one of claims 1 to 7, wherein the tubes and the fins are alternately stacked to form a multi-layer.
このよ う に、チューブ及びフ ィ ンを交互に積層 して多断層を形 成する こ とによ り 、 熱交換面積を拡大して、 通流する冷媒量を増 大し、 熱交換性能を向上する こ とが可能となる。  As described above, by forming multiple faults by alternately stacking tubes and fins, the heat exchange area is increased, the amount of refrigerant flowing through is increased, and the heat exchange performance is improved. It can be improved.
本願第 9 請求項に記載した発明は、前記請求項 8 に記載した発 明において、前記チューブ及びヘッダパイ プ間を通流する冷媒流 路を複数に区画する仕切 り板がヘッダパイ プの要所に配置され、 前記複数の区画に仕切られた各冷媒流路の各区画におけ る総断 面積が同一である熱交換器である。 例えば、 c 0 2を冷媒と して冷凍サイ クルに用いた場合、 C OAccording to the ninth aspect of the present invention, in the invention according to the eighth aspect, a partition plate that partitions a refrigerant flow path flowing between the tube and the header pipe into a plurality of sections is provided at a key point of the header pipe. The heat exchanger is arranged and has the same total cross-sectional area in each section of each refrigerant flow path partitioned into the plurality of sections. For example, if c 02 is used as a refrigerant in a refrigeration cycle, CO 2
2は気体域で使用され、 従来のフ ロ ン冷媒のよ う に凝縮による体 積変化を生じないため、 耐圧性を確保で き る範囲において、 各冷 媒流路の各区画における総断面積は略同一とするこ とができ る。 これによ り 熱交換器の大き さがいたず ら に大き く な る こ とはな い o 2 is used in the gaseous area and does not cause a change in volume due to condensation unlike conventional refrigerants, so that the total cross-sectional area in each section of each refrigerant flow path is within a range that can ensure pressure resistance. Can be almost the same. This does not increase the size of the heat exchanger unnecessarily o
本願第 1 0請求項に記載した発明は、前記請求項 8 又は 9 記載 の発明において、前記チューブの間にフ ィ ンを装着して多段積層 され、 前記チューブ端部がヘッダパイ プに連通接続され、 前記多 段積層されたチューブ及びフ ィ ンの断面長手方向が、外部空気の 通風方向に対して直交する よ う に、 チューブ、 フ ィ ン及びヘッ ダ パイ プから構成される熱交換器体が、 複数配置され、 各熱交換器 体のヘッ ダパイ プが連通接続されて一体となってい る熱交換器 である。  According to the tenth aspect of the present invention, in the invention of the eighth or ninth aspect, a fin is mounted between the tubes so as to be multi-tiered, and the end of the tube is connected to and connected to a header pipe. A heat exchanger body composed of tubes, fins, and header pipes such that the cross-sectional longitudinal direction of the multi-tiered tubes and fins is orthogonal to the direction of ventilation of external air. This is a heat exchanger in which a plurality of heat exchangers are arranged, and the header pipes of each heat exchanger body are connected and connected.
このよ う に、 耐圧性確保のために、 冷媒流路を小さ く した熱交 換器においても、多段積層されたチューブ及びフ ィ ンが通風方向 に対して並列となる よ う に複数配置され、各ヘッ ダパイ プを連通 接続して一体の熱交換器を構成する と、熱交換器を通流する冷媒 流量の増大及び伝熱面積の拡大を図る こ とが可能とな り 、熱交換 性能を向上する こ とが可能となる。  In this way, even in a heat exchanger in which the refrigerant flow path is made small in order to ensure pressure resistance, a plurality of tubes and fins stacked in multiple stages are arranged so as to be parallel to the ventilation direction. If the header pipes are connected and connected to form an integrated heat exchanger, it is possible to increase the flow rate of the refrigerant flowing through the heat exchanger and to increase the heat transfer area, thereby improving the heat exchange performance. Can be improved.
本願第 1 1 請求項に記載した発明は、前記請求項 7 乃至 9 いず れか記載の発明において、前記通風方向に対してチューブ及びフ ィ ンの断面長手方向が直交する よ う に複数の熱交換器体が並列 に配置され、各熱交換器体のヘッダパイ プが連通接続されて一体 となっている熱交換器であって、各チューブ及びへヅ ダパイ プを 通流する媒体が、複数の熱交換器体間を直列又は並列に通流し、 複数のチューブ及びフ ィ ンに伝わる熱に よ って熱交換を行う 熱 交換器である。 このよ う に、 複数の熱交換器体を並列に配置し、 各熱交換器体 を連通接続して一体と した熱交換器を形成し、熱交換器体内部を 冷媒が直列又は並列に通流する よ う に構成する と、通風方向に対 して冷媒の通流を調製する こ とが可能となる。 The invention described in claim 11 of the present application is the invention according to any one of claims 7 to 9, wherein a plurality of tubes and fins have a cross-sectional longitudinal direction orthogonal to the ventilation direction. A heat exchanger in which the heat exchangers are arranged in parallel and the header pipes of the respective heat exchangers are connected and connected to each other, and a plurality of media flow through each tube and the header pipe. This is a heat exchanger that passes between the heat exchangers in series or in parallel and performs heat exchange by heat transmitted to a plurality of tubes and fins. In this way, a plurality of heat exchangers are arranged in parallel, and the heat exchangers are connected and connected to form an integrated heat exchanger, and the refrigerant passes in series or in parallel inside the heat exchanger. If it is configured to flow, it is possible to regulate the flow of the refrigerant in the ventilation direction.
すなわち、複数並列に配置されたヘッダパイ プに一括して冷媒 を通流する と、 複数の熱交換器体間を並列に冷媒が通流し、 又は 複数並列に配置されたヘッダパイ プの一つに冷媒を通流して、順 次他の熱交換器体を冷媒が通流する よ う に直列に冷媒を通流す る と、 冷却過程及び外部空気の通風方向が考慮されて、 熱交換率 の向上を図る こ とが可能となる。  That is, when the refrigerant flows through the plurality of header pipes arranged in parallel, the refrigerant flows in parallel between the plurality of heat exchanger bodies, or the refrigerant flows into one of the plurality of header pipes arranged in parallel. When the refrigerant flows in series in such a way that the refrigerant flows through the other heat exchanger bodies in order, the cooling process and the direction of ventilation of the external air are taken into consideration, and the heat exchange rate is improved. It is possible to achieve this.
例えば、冷媒が複数の熱交換器体間を直列に通流する よ う に構 成した場合、 通風方向に対して、 後列となるヘッダパイ プから冷 媒を流入し、 冷却する過程に従って、 冷媒が通風方向に向かって 通流する よ う に構成する と、熱交換器体を通流して有る程度冷却 された熱交換媒体が、通風方向にも っ とも近い冷媒流路を通流す る こ とによ り 更に冷却され、熱交換性能を向上する こ とが可能と なる。  For example, when the refrigerant is configured to flow in series between a plurality of heat exchanger bodies in series, the refrigerant flows from the header pipe in the rear row in the ventilation direction, and the refrigerant follows the cooling process. When the heat exchange medium is configured to flow in the ventilation direction, the heat exchange medium, which has been cooled to some extent through the heat exchanger body, flows through the refrigerant flow path closest to the ventilation direction. It is further cooled and the heat exchange performance can be improved.
また、 前記請求項 1 2 記載の発明は、 前記請求項 1 0 又は 1 1 記載の発明において、前記チューブ及びフ ィ ンの断面長手方向が 通風方向に対して直交する よ う に複数の熱交換器体が並列に配 置され、各熱交換器体のヘッダパイ プが連通接続されて一体とな つている熱交換器であって、 前記熱交換チューブ端部に、 複数の チューブ挿入部が形成され、前記チューブ端部が各ヘッ ダパイ プ に連通接続されている熱交換器である。  The invention according to claim 12 is the invention according to claim 10 or 11, wherein a plurality of heat exchanges are performed such that a longitudinal direction of a cross section of the tube and the fin is orthogonal to a ventilation direction. A heat exchanger in which a plurality of tube insertion portions are formed at an end of the heat exchange tube, wherein the heat exchanger tubes are arranged in parallel, and header pipes of the respective heat exchangers are connected and connected to each other. And a heat exchanger in which the tube ends are connected to the respective header pipes.
このよ う に、チューブ端部に複数のチューブ挿入部が形成され 前記チューブ挿入部をヘッ ダパイ プに形成されたチューブ挿入 孔に挿入する こ とによ り、各熱交換器体の各冷媒流路を連通接続 させる こ とがで きて、 伝熱面積の増加を図る こ とがで き る。 前記請求項 1 3 記載の発明は、前記請求項 9 乃至 1 2 いずれか 記載の発明において、前記ヘッ ダパイ ブ内に複数の冷媒流路が形 成されている熱交換器である。 As described above, a plurality of tube insertion portions are formed at the end of the tube, and the tube insertion portions are inserted into the tube insertion holes formed in the header pipe, whereby each refrigerant flow of each heat exchanger body is formed. The roads can be connected and connected, and the heat transfer area can be increased. The invention according to claim 13 is the heat exchanger according to any one of claims 9 to 12, wherein a plurality of refrigerant flow paths are formed in the header pipe.
ヘッダパイ プ内に複数の冷媒流路を形成する と、複数の熱交換 器体を並列に配置 して一体構成する場合、各ヘッ ダパイ プ間にお けるチューブの連結等の作業が削減されるので、複数の熱交換器 体を連通接続して一体と した熱交換器の製造が容易とな り、作業 効率の向上を図る こ とがで き る。  By forming a plurality of refrigerant flow paths in the header pipe, when a plurality of heat exchangers are arranged in parallel and integrated, the work such as connecting tubes between header pipes is reduced. In addition, it is easy to manufacture a heat exchanger integrated by connecting and connecting a plurality of heat exchanger bodies, and it is possible to improve work efficiency.
本願第 1 4請求項に記載した発明は、前記請求項 1 乃至 7 いず れか記載の発明において、蛇行状に往復する前記チューブの間に フ ィ ンが装着されている構成の熱交換器である。  The invention described in claim 14 of the present application is the heat exchanger according to any one of claims 1 to 7, wherein a fin is mounted between the tubes that reciprocate in a meandering manner. It is.
このよ う に、冷媒が通流する熱交換チューブを蛇行状に往復さ せ、 前記チューブ間にフ ィ ンを装着する こ とによ り 、 熱交換面積 を拡大して熱交換率を向上する こ とが可能となる。  In this way, the heat exchange tubes through which the refrigerant flows are reciprocated in a meandering manner, and the fins are mounted between the tubes, thereby increasing the heat exchange area and improving the heat exchange rate. This is possible.
本願第 1 5請求項に記載した発明は、前記請求項 1 4記載の発 明において、 複数の熱交換器体が並列に配置され、 各熱交換器体 が連通接続されて一体となっている熱交換器である。  The invention described in claim 15 of the present application is the invention according to claim 14, wherein a plurality of heat exchanger bodies are arranged in parallel, and each heat exchanger body is connected and connected to be integrated. It is a heat exchanger.
例えば、 熱交換器を車体に搭載する際、 外部空気の通風方向に 対して、 熱交換器を設置でき る面は、 車のデザイ ン等によ って一 定範囲に制限されている。  For example, when a heat exchanger is mounted on a vehicle body, the surface on which the heat exchanger can be installed is limited to a certain range due to the design of the car, etc., in the direction of external air flow.
本発明は、 複数の熱交換器体が並列に配置され、 各熱交換器体 が連通接続されて一体となっているので、外部空気と接触する熱 交換面積を拡大させて、 熱交換性能の向上を図る こ とがで き る。  According to the present invention, since a plurality of heat exchanger bodies are arranged in parallel and each of the heat exchanger bodies is connected and connected to each other, the heat exchange area in contact with the external air is enlarged to improve the heat exchange performance. Can be improved.
本願第 1 6 請求項に記載した発明は、前記請求項 1 乃至 1 5 い ずれか記載の発明において、前記チューブ及びへッ ダパィ プは、 アル ミ ニウム又はアル ミ ニ ウ ム合金を成形 してなる構成の熱交 換器である。  The invention described in claim 16 of the present application is the invention according to any one of claims 1 to 15, wherein the tube and the header pipe are formed by molding aluminum or an aluminum alloy. The heat exchanger has the following configuration.
アル ミ ニウム又はアル ミ ニウム合金を用いてチューブやへ ッ ダパイ プを形成する と、廉価で簡易にチューブやヘッダパイ プを 形成でき る という利点がある。 しか し、 例えば、 冷媒と して、 熱 交換器通流時に超臨界域となる冷媒を用いた場合、熱交換器に要 求される耐圧性を確保しよ う する と、各部材の肉厚が厚 く な り、 熱交換器の重量増加が大き く なつて しま う という問題を生じる。 Tubes and heads made of aluminum or aluminum alloy Forming a pipe has the advantage that tubes and header pipes can be easily formed at low cost. However, for example, when a refrigerant that is in a supercritical region when flowing through the heat exchanger is used as the refrigerant, the wall thickness of each member is increased in order to ensure the pressure resistance required of the heat exchanger. The problem is that the heat exchanger becomes thicker and the weight of the heat exchanger increases.
本発明においては、 要求される耐圧性を確保しつつ、 重量増加 を回避する構造と したので、 アルミ ニウム又はアル ミ ニウム合金 を用いて、チューブやヘッ ダパイ プを形成する こ とが可能とな り その結果、 廉価に熱交換器を形成する こ とが可能となる。  In the present invention, a structure is adopted in which the required pressure resistance is ensured and a weight increase is avoided, so that a tube or a header pipe can be formed using aluminum or an aluminum alloy. As a result, it is possible to form a heat exchanger at low cost.
本願第 1 7 請求項に記載した発明は、前記請求項 1 乃至 1 6 い ずれか記載の発明において、 熱交換器に流出入する冷媒は、 気体 状態である構成の熱交換器である。  The invention described in claim 17 of the present application is the heat exchanger according to any one of claims 1 to 16, wherein the refrigerant flowing into and out of the heat exchanger is in a gaseous state.
このよ う に、 気体状態である高温高圧の媒体が、 気体状態のま ま熱交換器間を通流する場合、 熱交換器には、 高い耐圧性が要求 される こ と となる。 本発明の熱交換器の構成によれば、 高い耐圧 性を要求する気体状態の媒体を通流する場合であっても、耐圧性 確保のための重量増加や レ イ ァゥ ト性の悪化を回避する こ とが でき る。  As described above, when the high-temperature and high-pressure medium in the gaseous state flows between the heat exchangers in the gaseous state, the heat exchanger is required to have high pressure resistance. According to the configuration of the heat exchanger of the present invention, even when a medium in a gaseous state requiring high pressure resistance is passed, a weight increase for securing pressure resistance and deterioration of the radiation property are prevented. Can be avoided.
また、 本発明の熱交換器は、 これを高い耐圧性を要求する冷媒 を用いた冷凍サイ クルにおいても、 用いる こ とが可能となる。 本願第 1 8請求項に記載した発明は、前記請求項 1 乃至 1 7 い ずれか記載の発明において、 前記熱交換器に通流する冷媒は、 二 酸化炭素 ( C 0 2 ) を用いた熱交換器である。 Further, the heat exchanger of the present invention can be used in a refrigeration cycle using a refrigerant that requires high pressure resistance. The invention described in claim 18 of the present application is the invention according to any one of claims 1 to 17, wherein the refrigerant flowing through the heat exchanger is heat using carbon dioxide (C 0 2 ). It is an exchanger.
二酸化炭素を冷凍サイ クルの冷媒と して用いた場合、気液二相 状態の臨界点を超え る超臨界域の高圧の冷媒が熱交換器内部を 通流する こ と となる。  When carbon dioxide is used as the refrigerant in the refrigeration cycle, high-pressure refrigerant in the supercritical region exceeding the critical point of the gas-liquid two-phase state flows through the heat exchanger.
従って、 熱交換器には、 通常の気液混合状態の冷媒が通流する 場合と比較して、 6倍以上の高い耐圧性が要求される。 前述した 本発明の熱交換器によれば、高い耐圧性を満たす設計となってい るため、超臨界域の状態となる二酸化炭素を冷媒と して用いる こ とが可能である。 図面 の簡単 な 説明 Therefore, the heat exchanger is required to have a pressure resistance that is at least six times higher than that in a case where a refrigerant in a gas-liquid mixed state flows. I mentioned earlier According to the heat exchanger of the present invention, since it is designed to satisfy high pressure resistance, it is possible to use carbon dioxide which is in a supercritical region as a refrigerant. Brief description of the drawings
【図 1】  【Figure 1】
本発明の具体例に係 り 、多段積層型の熱交換器を示す正面図で ある。  FIG. 1 is a front view showing a multi-stage heat exchanger according to a specific example of the present invention.
【図 2】  【Figure 2】
本発明の具体例に係 り 、熱交換チューブ端部を示す斜視図であ る。  FIG. 4 is a perspective view showing an end of a heat exchange tube according to a specific example of the present invention.
【図 3】  [Figure 3]
本発明の具体例に係 り、熱交換チューブ及びフ ィ ンを示す斜視 図である。  FIG. 2 is a perspective view showing a heat exchange tube and a fin according to a specific example of the present invention.
【図 4】  [Fig. 4]
本発明の具体例に係 り、 チューブ、 フ ィ ン及びヘ ッダパイ プか ら構成される複数の熱交換器を並列に配置 し、各ヘ ッダパイ プを 連通接続 して一体化 した形状の熱交換器の概略構成を示す平面 図である。  According to a specific example of the present invention, a plurality of heat exchangers composed of a tube, a fin, and a header pipe are arranged in parallel, and the header pipes are connected and connected to form a heat exchange unit. It is a top view which shows schematic structure of a container.
【図 5】  [Figure 5]
本発明の具体例に係 り、 チューブ、 フ ィ ン及びヘッダパイ プか ら構成される複数の熱交換器を並列に配置 し、各ヘッダパイ プに 並列に媒体を通流する配管を連通接続 して一体化 した形状の熱 交換器の概略構成を示す平面図である。  According to an embodiment of the present invention, a plurality of heat exchangers composed of a tube, a fin, and a header pipe are arranged in parallel, and a pipe for flowing a medium in parallel to each header pipe is connected. It is a top view which shows the schematic structure of the heat exchanger of integral shape.
【図 6】  [Fig. 6]
本発明の具体例に係 り 、複数のチューブ揷入部を形成した熱交 換チューブ端部を示す斜視図である。  FIG. 4 is a perspective view showing an end portion of a heat exchange tube in which a plurality of tube insertion portions are formed according to a specific example of the present invention.
【図 7】 図 6 に示すチューブの端部をヘ ッ ダパイ プのチューブ挿入孔 に挿入した状態の概略構成を示す一部断面図である。 [Fig. 7] FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where an end of the tube shown in FIG. 6 is inserted into a tube insertion hole of a header pipe.
【図 8 】  [Fig. 8]
複数の媒体流路が形成されたヘッダパイ プに、図 6 に示すチュ —ブ揷入部をヘ ッ ダパイ プに挿入 した状態の概略構成を示す一 部断面図である。  FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where a tube inlet shown in FIG. 6 is inserted into a header pipe in which a plurality of medium flow paths are formed.
【図 9 】  [Fig. 9]
本発明の具体例に係 り、複数の並列に配置されたチューブに同 一のフ ィ ンを装着した熱交換器の概略構成を示す、チューブ及び フ ィ ンの一部断面図である。  FIG. 4 is a partial cross-sectional view of a tube and a fin, showing a schematic configuration of a heat exchanger in which the same fin is mounted on a plurality of tubes arranged in parallel according to a specific example of the present invention.
【図 1 0 】  [Fig. 10]
本発明の具体例に係 り、サ一ペン夕 イ ン型の熱交換器を示す平 面図である。  FIG. 1 is a plan view showing a pen-type heat exchanger according to a specific example of the present invention.
【図 1 1 】  [Fig. 11]
従来例に係 り、角度 0傾いた長穴形状のチューブ挿入孔を形成 したヘッダパイ ブの概略を示す斜視図である。  FIG. 9 is a perspective view schematically showing a header pipe in which a long tube-shaped tube insertion hole inclined at an angle of 0 is formed according to a conventional example.
発 明 を 実施 す る た め の 最 良 の形態 Best mode for carrying out the invention
以下に本発明の具体例を図面に基づいて説明する。  Hereinafter, specific examples of the present invention will be described with reference to the drawings.
図 1 は、チューブと フ ィ ンを交互に多段積層 した積層型の熱交 換器の概略構成を示す正面図である。  FIG. 1 is a front view showing a schematic configuration of a stacked heat exchanger in which tubes and fins are alternately stacked in multiple stages.
図 1 に示すよ う に、 この熱交換器 1 は、 複数のチューブ 2 と フ イ ン 3 が交互に積層され、 これらの積層されたチューブ 2 , 2 の 各両端が、 それそれヘッ ダパイ プ 4, 5 のチューブ挿入孔 6 , 6 に挿入されて接続されている。 前記ヘッ ダパイ プ 4, 5 は、 冷媒 が通流する冷媒流路が断面円形状となる よ う に形成されている。 また、 ヘッダパイ プ 4, 5 の上下端部の開口は、 キャ ッ プ 7 によ つて閉塞されている。 また、 へヅダパイ プ 4 又は 5 の所要箇所に . 冷媒流路を複数に区画する仕切 り板 8 と、冷媒を流出入する継手 部材 9 , 1 0 が設けられている。 また、 図中 1 1 は、 サイ ドブレ ー ト である。 As shown in FIG. 1, the heat exchanger 1 has a plurality of tubes 2 and fines 3 alternately stacked, and each end of each of the stacked tubes 2 and 2 has a header pipe 4. , 5 are inserted and connected to the tube insertion holes 6, 6. The header pipes 4 and 5 are formed such that the refrigerant passage through which the refrigerant flows has a circular cross section. The openings at the upper and lower ends of the header pipes 4 and 5 are closed by caps 7. Also, at the required location for header pipe 4 or 5. A partition plate 8 for dividing the refrigerant flow path into a plurality of sections and coupling members 9 and 10 for flowing in and out the refrigerant are provided. In the figure, reference numeral 11 denotes a side blade.
本例の熱交換器 1 は、 例えば、 C 0 2を冷媒と して用いている C 0 2 を冷媒と して冷凍サイ クルに用いた場合、 高温高圧となつ た冷媒の放熱作用を発揮する熱交換器は、気液混合状態の冷媒が 通流する場合と比較して、 6倍以上の耐圧性が要求される と考え られる。 Heat exchanger 1 of this embodiment, for example, when the C 0 2 with C 0 2 is used as the refrigerant in the refrigerant frozen cycle, exerts a heat radiation effect of high temperature, high pressure and summer were refrigerant It is considered that the heat exchanger is required to have a pressure resistance six times or more as compared with the case where the refrigerant in the gas-liquid mixed state flows.
本例の熱交換器 1 は、 仕切 り板 8 によ って、 複数に区画された 冷媒流路の、 各区画 (パス) の断面積が略同一となる よ う に形成 されている。  The heat exchanger 1 of the present example is formed by the partition plate 8 so that the sectional area of each section (path) of the refrigerant flow path divided into a plurality of sections is substantially the same.
例えば、 C 0 2を冷媒と して冷凍サイ クルに用いた場合、 C OFor example, when used in a refrigeration cycle by the C 0 2 as a refrigerant, CO
2は気体域で使用され、 従来のフ ロ ン冷媒のよ う に凝縮によ る体 積変化を生じないため、耐圧性を確保で き る範囲において各冷媒 流路の各区画 (各パス) における総断面積は略同一とする こ とが で きる。これによ り 熱交換器の大き さがやた らに増大する こ とは ない。 2 is used in the gaseous region and does not cause a change in volume due to condensation unlike conventional fluorocarbon refrigerants, so that each section of each refrigerant flow path (each path) is in a range where pressure resistance can be ensured. The total cross-sectional area at can be made approximately the same. This does not increase the size of the heat exchanger.
ヘッダパイ プ 4 , 5 の長手方向に連通 して形成される各媒体流 路は、 断面円形に形成されている。 冷媒流路が断面円形に形成さ れる と、 冷媒流路内に圧力が均等に負荷され、 冷媒流路の耐圧性 が向上する。  Each medium channel formed to communicate in the longitudinal direction of the header pipes 4 and 5 has a circular cross section. When the refrigerant flow path is formed in a circular cross section, pressure is uniformly applied to the refrigerant flow path, and the pressure resistance of the refrigerant flow path is improved.
この場合に、 ヘッダパイ プの冷媒流路直径は 1 0 m m以下、 へ ヅ ダパイ プの肉厚は 5 m m以下が望ま しい。  In this case, the refrigerant pipe diameter of the header pipe is preferably 10 mm or less, and the thickness of the header pipe is preferably 5 mm or less.
へッ ダパイ プの外形直径とへ ッ ダパイ プに形成される冷媒流 路の内径直径の関係は、前記ヘッ ダパイ プに負荷される内圧や、 ヘッ ダパイ プを構成する材料の引 っ張 り 応力を考慮 して、 下記 ( 1 ) 式に従って定める こ とがで き る。  The relationship between the outer diameter of the header pipe and the inner diameter of the refrigerant channel formed in the header pipe depends on the internal pressure applied to the header pipe and the tensile stress of the material constituting the header pipe. In consideration of the above, it can be determined according to the following equation (1).
( 1 ) び 二 P ( r 2 2 + r 1 2 ) / ( r 2 2 - r 1 2 ) こ こで、 びは、 チューブを構成する材料の引っ張 り応力、 Pは ヘッダパイ プ内部の圧力、 r 2 は、 へヅ ダパイ プ外形半径、 r 1 は、 ヘッ ダパイ プの冷媒流路半径を示す。 (1) and 2 P (r 2 2 + r 1 2 ) / (r 2 2 -r 1 2 ) Here, the tensile stress of the material constituting the tube, P is the pressure inside the header pipe, r2 is the outer radius of the header pipe, and r1 is the refrigerant flow path radius of the header pipe. .
例えば、ヘッダパイ プを形成する材料と してアルミ ニウムを用 いた場合、 アル ミ ニウムの引っ張 り応力は、 1 0 k g / m m 2で ある。 へヅダパイ プに負荷される内圧を 6 0 O k g / c m 2 と し た場合、 ヘッダパイ プの冷媒流路直径が 1 0 m mである と、 前記 ( 1 ) 式に従ってヘッ ダパイ プの外形直径を算出する と、 ヘッダ パイ プの外形直径は、 2 0 m mとなる。 For example, when aluminum is used as a material for forming a header pipe, the tensile stress of aluminum is 10 kg / mm 2 . If the internal pressure of 6 0 O kg / cm 2 which is loaded on Dzudapai flop to, when the refrigerant flow path diameter of Heddapai flop is 1 0 mm, calculates the outline diameter of header Dapai flop in accordance with the equation (1) Then, the outer diameter of the header pipe is 20 mm.
例えば、 高い耐圧性を要求する C 0 2等を冷凍サイ クルを通流 する冷媒と して用いた場合は、冷媒流路直径を 1 0 m m以上とす る と、 通流する冷媒量が多 く なる。 通流する冷媒量が多 く なる と よ り高い耐圧性がヘッダパイ プに要求されるため、ヘッダパイ プ を更に厚肉とする必要が生 じる。 その結果、 冷凍サイ クルは、 材 料コス ト の高騰と、熱交換器重量が増大する という 不都合を生 じ る。 For example, in the case of using by a C 0 2 or the like requiring high pressure resistance and refrigerant Tsuryu frozen cycle, if you refrigerant flow path diameter and 1 0 mm or more, the amount of refrigerant flowing through multi It becomes bad. As the amount of refrigerant flowing increases, a higher pressure resistance is required for the header pipe, so that it is necessary to make the header pipe thicker. As a result, refrigeration cycles have the disadvantage of soaring material costs and increasing the weight of the heat exchanger.
その意味で、ヘッ ダパイ プの冷媒流路直径は 1 0 m mを超えな い程度が適当 と考え られる。  In this sense, it is considered appropriate that the diameter of the refrigerant flow path of the header pipe does not exceed 10 mm.
また、 前述したよ う に、 C 0 2を冷媒と して用い る場合の熱交 換器は、従来用い られている気液二相状態の冷媒が通流する場合 に要求される熱交換器の耐圧性の 6 倍以上の耐圧性が要求され る ものと想定される。 Furthermore, the cormorants I mentioned above, C 0 heat exchangers when 2 Ru used as the refrigerant, the heat exchanger gas-liquid two-phase refrigerant which has been used conventionally is required when flowing It is assumed that a pressure resistance of 6 times or more is required.
これらの条件を考慮して、ヘッダパイ プの冷媒流路直径が 1 0 m mである場合、 前記 ( 1 ) 式に従いヘッ ダパイ プの外形直径を 算出する と、 最小となる外形直径が 2 0 m mとなる。  Considering these conditions, if the refrigerant flow path diameter of the header pipe is 10 mm, the minimum outer diameter of the header pipe is calculated to be 20 mm by calculating the outer diameter of the header pipe according to the above equation (1). Become.
この結果から、ヘッ ダパイ プの冷媒流路直径が 1 0 m mを超え ない値に設定された場合に、ヘッダパイ プの肉厚を 5 m m超えな い厚さ とする と、 要求される耐圧性を確保した、 最小限度の肉厚 が設定されたヘッダパイ プを形成する こ とができ、 従って、 重量 増加を防止する こ とができ る。 From this result, when the refrigerant pipe diameter of the header pipe is set to a value not exceeding 10 mm, if the thickness of the header pipe does not exceed 5 mm, the required pressure resistance is reduced. Secured, minimum wall thickness Thus, it is possible to form a header pipe in which the weight is set, and thus it is possible to prevent an increase in weight.
また、 ヘッダパイ プの肉厚の設定のみな らず、 熱交換チューブ やその他の部材の肉厚を設定する場合においても、 前記 ( 1 ) 式 に基づいて、 肉厚を設定する こ とがで き る。  In addition to setting the thickness of the header pipe, when setting the thickness of the heat exchange tube and other members, the thickness can be set based on the above equation (1). You.
次に、本例のチューブについて図面に基づいて詳細に説明する 図 2 は、 チューブ端部を示す斜視図である。  Next, the tube of the present example will be described in detail with reference to the drawings. FIG. 2 is a perspective view showing a tube end.
図 2 に示すよ う に、 本例のチューブ 2 は、 断面扁平形状に形成 され、 断面円形状の複数の冷媒流路 2 1 , 2 1 が形成されている また、 チューブ 2 の幅方向の両端部には、 冷媒流路が形成され ない肉厚部 2 2 が形成されている。 本例のチューブ 2 は、 チュー ブ幅が 2 0 m m以下の薄型の扁平形状に形成されている  As shown in FIG. 2, the tube 2 of the present example is formed to have a flat cross section and a plurality of refrigerant channels 21 and 21 having a circular cross section. The portion has a thick portion 22 in which no refrigerant flow path is formed. The tube 2 in this example is formed in a thin, flat shape with a tube width of 20 mm or less.
チューブの冷媒流路 2 1 が断面円形に形成されている と、冷媒 流路内に冷媒圧力が均等に負荷され、 例えば、 冷媒流路断面が矩 形状である場合と比較 して、耐圧性を向上する こ とが可能となる , また、 チューブの幅方向に肉厚部 2 2 が形成されている と、 チ ユ ーブの耐圧性の向上される と ともに、チューブの面積及びチュ —ブに装着される フ ィ ン面積が拡大し、熱交換面積の拡大によ り 熱交換率を向上する こ とがで き る。  When the refrigerant passage 21 of the tube is formed in a circular cross section, the refrigerant pressure is uniformly applied in the refrigerant passage, and, for example, the pressure resistance is lower than in the case where the refrigerant passage has a rectangular cross section. In addition, when the thick portion 22 is formed in the width direction of the tube, the pressure resistance of the tube is improved, and the area of the tube and the tube are reduced. The fin area to be installed is enlarged, and the heat exchange rate can be improved by increasing the heat exchange area.
また、 本例のチューブは、 チューブ 2 の長手方向端部の肉厚部 2 2 を幅方向に切削 し、他の部位の断面積と比較して小さ い断面 積となるチューブ挿入部 2 3 が形成されている。  Also, in the tube of this example, the tube insertion portion 23 having a small cross-sectional area compared with the cross-sectional area of other portions is obtained by cutting the thick portion 22 at the longitudinal end of the tube 2 in the width direction. Is formed.
要求される耐圧性を確保するため、 ヘ ッ ダパイ プの肉厚が厚 く なる と、 一定外径を備えるヘ ッ ダパイ プの内径は小さ く な り 、 チ ユ ーブとヘ ッ ダパイ プを連通接続する ために形成されるチュー ブ挿入孔の幅が小さ く なる。  In order to ensure the required pressure resistance, as the thickness of the header pipe increases, the inner diameter of the header pipe having a constant outer diameter decreases, and the tube and the header pipe become smaller. The width of the tube insertion hole formed for communication connection becomes smaller.
すなわち、 チューブ挿入孔が小さ く なつて しま う と、 通常の偏 平チューブの場合、 このチューブ挿入孔にチューブ端部を挿入 し て連通接続するチューブの幅が狭く なる。 そ う する と、 チューブ 間に装着されたフ ィ ンへの伝熱量が少な く な り、熱交換率が低下 して しま う という 問題を生じる。 In other words, if the tube insertion hole becomes smaller, insert the tube end into this tube insertion hole in the case of a normal flat tube. The width of the tubing connected for communication is reduced. If this is done, the amount of heat transferred to the fins installed between the tubes will decrease, causing a problem that the heat exchange rate will decrease.
本例のチューブは、 チューブ 2 の長手方向端部において、 チュ 一ブの幅方向の両端に形成された肉厚部 2 2 を切削 し、ヘッダパ ィ プ 4 , 5 に形成されるチューブ揷入孔 6 と略一致する断面形状 を有するチューブ挿入部 2 3 が形成されている。 従って、 ヘッ ダ パイ プ 4, 5 が肉厚となって、 チューブ挿入孔 6 がヘッダパイ プ の内径に伴って小さ く なつた場合も、 フ ィ ンが装着されるチュー ブの幅を変化させる こ とな く 、チューブ挿入孔 6 にチューブ挿入 部 2 3 を挿入して、 チューブ 2及びヘッダパイ プ 4, 5 を組み付 け、 チューブ 2及びヘッダパイ プ 4, 5 を連通接続する こ とがで ぎる。  In the tube of this example, at the longitudinal end of the tube 2, the thick portions 22 formed at both ends in the width direction of the tube are cut, and the tube insertion holes formed in the header pipes 4 and 5 are formed. A tube insertion portion 23 having a cross-sectional shape substantially matching 6 is formed. Therefore, even if the header pipes 4 and 5 become thicker and the tube insertion hole 6 becomes smaller with the inner diameter of the header pipe, the width of the tube to which the fin is mounted can be changed. Instead, the tube insertion portion 23 is inserted into the tube insertion hole 6, the tube 2 and the header pipes 4 and 5 are assembled, and the tube 2 and the header pipes 4 and 5 can be connected and connected.
また、 チューブ 2 幅を変化させる こ とな く 、 チューブ 2及びへ ッダパイ プ 4 , 5 を組み付ける こ とがで き るため、 フ ィ ン 3 への 伝熱量を確保して熱交換率を向上する こ とが可能となる。  Also, since the tube 2 and the header pipes 4 and 5 can be assembled without changing the width of the tube 2, the amount of heat transfer to the fin 3 is secured and the heat exchange rate is improved. This is possible.
本例のチューブ及びヘッダパイ プは、 アル ミ ニウム又はアル ミ ニゥム合金を押 し出 し成形する こ とによって形成される。  The tube and the header pipe of this example are formed by extruding and molding aluminum or aluminum alloy.
本例においては、チューブ 2 は肉厚部 2 2 が形成されている た め、 要求される耐圧性を確保して、 アル ミ ニウム又はアル ミ ニゥ ム合金で、 軽量且つ廉価に熱交換器 1 を製作する こ とができ る。  In this example, since the tube 2 is formed with the thick portion 22, the required pressure resistance is secured, and the heat exchanger 1 is made of aluminum or an aluminum alloy at a low cost and light weight. Can be manufactured.
本例においては、 チューブ 2 端部に、 チューブ 2 の他の部位よ り も断面積の小さ く なるチューブ揷入部 2 3 を形成し、前記チュ —ブ挿入孔 2 3 をヘッダパイ プのチューブ挿入孔 6 に挿入 して、 チューブ 2 及びヘッダパイ プ 4, 5 を連結したが、 本例に限らず チューブ及びヘッ ダパイ プの連結は、配管やコネク タ によって連 結する こ と も可能である。  In this example, a tube insertion portion 23 having a smaller cross-sectional area than other portions of the tube 2 is formed at the end of the tube 2, and the tube insertion hole 23 is inserted into the tube insertion hole of the header pipe. The tube 2 and the header pipes 4 and 5 were connected by inserting it into the tube 6, but the connection of the tube and the header pipe is not limited to this example, and it is also possible to connect the pipes and connectors.
また、 断面扁平状の熱交換チューブのみな らず、 熱交換チュー ブ自体の断面を円形とする こ とも可能である。 In addition to heat exchange tubes with a flat cross section, heat exchange tubes The cross section of the valve itself can be circular.
図 3 は、他の具体例に係る熱交換チューブ 2 4及びフ ィ ン 3 0 の概略構成を示す斜視図である。  FIG. 3 is a perspective view showing a schematic configuration of heat exchange tubes 24 and fins 30 according to another specific example.
図 3 に示すよ う に、 本例の熱交換チューブ 2 4 は、 断面円形の 冷媒流路 2 5 を設ける と と もに、 チューブ 2 4 自体の外形も断面 円形と している。  As shown in FIG. 3, the heat exchange tube 24 of the present example is provided with a refrigerant passage 25 having a circular cross section, and the outer shape of the tube 24 itself is also circular.
チューブ 2 4外形を断面円形とする と、 内部を通流する媒体の 圧力負荷に耐え得る強度を保持しつつ、 同一範囲内で最小体積と する こ とができ、車載スペースの限られた車体内で レイ アウ ト性 を向上する こ とがで き る。  If the outer shape of the tube 24 is circular, the minimum volume can be kept within the same range while maintaining the strength that can withstand the pressure load of the medium flowing through the inside. Can improve the layout.
また、 熱交換チューブ 2 4 の外形を断面円形と した場合、 前記 チューブ 2 4 の外形に沿っ た曲率を有する凹部 3 1 を フ ィ ン 3 0 に設ける こ とによ り 、チューブ 2 4及びフ ィ ン 3 0 の当接面積 を拡大させて、 フ ィ ン 3 0側への伝熱率を向上し、 チューブ 2 4 及びフ ィ ン 3 0 の熱交換率を向上する こ とがで き る。  When the outer shape of the heat exchange tube 24 is a circular cross section, the concave portion 31 having a curvature along the outer shape of the tube 24 is provided in the fin 30 so that the tubes 24 and the By increasing the contact area of the fin 30, the heat transfer rate to the fin 30 side can be improved, and the heat exchange rate of the tube 24 and the fin 30 can be improved. .
この場合のチューブ 2 4 の肉厚は、 前記 ( 1 ) 式に基づいて、 チューブに形成される冷媒流路 2 5 直径、チューブにかかる内圧 及びチ ュ ーブを構成す る材料に引 っ張 り 応力 を考慮 して前記 In this case, the wall thickness of the tube 24 is determined by the diameter of the refrigerant passage 25 formed in the tube, the internal pressure applied to the tube, and the material constituting the tube based on the expression (1). In consideration of stress
( 1 ) 式に基づいて算出する こ とがで き る。 It can be calculated based on equation (1).
次に、耐圧性向上を 目的と した熱交換器の他の具体例について 説明する。  Next, another specific example of the heat exchanger for improving the pressure resistance will be described.
図 4 は、 本例の熱交換器の概略構成を示す平面図であ り 、 図示 を省略したフ ィ ンを間に装着して多段積層されたチューブ 2 と、 前記チューブ 2 端部が接続されたヘッダパイ プ 4 1 , 5 1 、 へ ッ ダパイ プ 4 2 , 5 2 及びヘッ ダパイ プ 4 3 , 5 3 か ら構成される 複数の熱交換器が、チューブ及びフ ィ ンの長手方向が通風方向に 対して直交する方向に並列に配置され、ヘッ ダパイ ブ 5 1 とへッ ダパイ プ 5 2 間、 及び、 ヘッダパイ プ 4 2 とへッダノ イ ブ 4 3 間 が配管 6 0 , 6 1 で連通接続されて一体となっている熱交換器 1 2 である。 なお、 図中矢印は、 通風方向を示 している。 また、 図 中 1 3 は、 冷媒流入口、 1 4 は、 冷媒流出口を示す。 FIG. 4 is a plan view showing a schematic configuration of the heat exchanger of the present example, in which tubes 2 stacked in multiple stages with fins (not shown) mounted therebetween and the ends of the tubes 2 are connected. A plurality of heat exchangers consisting of header pipes 41, 51, header pipes 42, 52, and header pipes 43, 53 have a tube and fin in the longitudinal direction. Are arranged in parallel with each other at right angles to the header pipe 51 and the header pipe 52, and between the header pipe 42 and the header pipe 43. Is a heat exchanger 12 which is connected by pipes 60 and 61 and is integrated. The arrows in the figure indicate the ventilation direction. In the figure, reference numeral 13 denotes a refrigerant inlet, and reference numeral 14 denotes a refrigerant outlet.
本例の熱交換器 1 2 は、多段積層されたチューブ 2及びフ ィ ン の長手方向が通風方向に対して直交する よう に、 チューブ 2 、 フ イ ン及びヘッ ダパイ プ 4 1 , 4 2, 4 3 , 5 1 , 5 2, 5 3 から 構成される熱交換器が並列に複数配置され、各ヘッダパイ プ 4 1 4 2 , 4 3 , 5 1, 5 2, 5 3 を連通接続して一体の熱交換器 1 2 が構成されているので、熱交換器を通流する冷媒流量の増大及 び伝熱面積の拡大を図る こ とができ、熱交換性能を向上する こ と が可能となる。  The heat exchanger 12 of this example has the tubes 2, the fins and the header pipes 41, 42, so that the longitudinal directions of the tubes 2 and the fins are perpendicular to the ventilation direction. A plurality of heat exchangers composed of 4 3, 5 1, 5 2, 5 3 are arranged in parallel, and the header pipes 4 1 4 2, 4 3, 5 1, 5 2, 5 3 are connected and connected to form a unit. Since the heat exchangers 1 and 2 are configured, the flow rate of the refrigerant flowing through the heat exchanger can be increased and the heat transfer area can be increased, and the heat exchange performance can be improved. .
また、 本例においては、 熱交換器間を通流する冷媒が直列に通 流するよ う に、 冷媒流路が形成され、 例えば、 通風方向に対して 後列となるヘッ ダパイ プ 4 1 から冷媒を流入し、冷却する過程に 従って、 順次通風方向に向かって通流する こ と とな り、 後列から 順次熱交換器を通流してある程度冷却された冷媒が、通風方向に 最も近い冷媒流路を通流する こ とによ り 更に冷却され、熱交換性 能を向上する こ とが可能となる。  Further, in this example, the refrigerant flow path is formed so that the refrigerant flowing between the heat exchangers flows in series, for example, from the header pipe 41 which is a rear row in the ventilation direction. Flows through the heat exchanger in the direction of the ventilation according to the cooling process, and the refrigerant that has been cooled to some extent by passing through the heat exchanger sequentially from the rear row is the refrigerant flow path closest to the ventilation direction. By flowing the gas through it, it is further cooled and the heat exchange performance can be improved.
例えば、 室内空間が広いワ ンボッ クス車等には、 優れた空調機 能が求められる。 この場合、 熱伝達面積を拡大し、 熱交換性能を 向上した熱交換器を搭載する こ と によ り 、要求される空調機能を 達成する こ とがで き る。  For example, excellent air-conditioning functions are required for umbox vehicles with large indoor spaces. In this case, the required air-conditioning function can be achieved by installing a heat exchanger with an increased heat transfer area and improved heat exchange performance.
車内において、 通風方向に対向する表面積の範囲は、 ある範囲 に制限されるが、 車体の大き さ に と もなって、 熱交換器搭載スぺ —スも拡大する と想定される。 従って、 本例のよう に、 通風方向 に対する表面積を同一と しつつも、 熱伝達面積を拡大する と、 熱 交換性能が向上する。 従って、 搭載スペースが狭い車内に搭載す る場合にこの具体例の構造は好適である。 次に、 図 5 に示す熱交換器 1 5 は、 ヘッダパイ プ 4 4, 4 5 , 4 6 を冷媒流入配管 6 2 に連通し、 ヘッダパイ プ 5 4 , 5 5, 5 6 を冷媒流出配管 6 3 に連通し、冷媒流入配管 6 2 から各ヘッダ パイ プ 4 1 , 4 2 , 4 3 に流入した冷媒が、 複数のチューブ 2 を 並列に通流して、 ヘッダパイ プ 5 1, 5 2 , 5 3 から冷媒流出配 管 6 3 に流出する構成と している。 In the vehicle, the range of the surface area facing the ventilation direction is limited to a certain range, but it is assumed that the space with the heat exchanger will also increase with the size of the vehicle body. Therefore, as in this example, if the heat transfer area is increased while keeping the same surface area in the ventilation direction, the heat exchange performance is improved. Therefore, the structure of this specific example is suitable for the case of mounting in a vehicle where the mounting space is narrow. Next, the heat exchanger 15 shown in FIG. 5 connects the header pipes 44, 45, 46 to the refrigerant inflow pipe 62, and connects the header pipes 54, 55, 56 to the refrigerant outflow pipe 63. The refrigerant flowing into the header pipes 41, 42, and 43 from the refrigerant inflow pipe 62 flows through the plurality of tubes 2 in parallel, and flows from the header pipes 51, 52, and 53. It is configured to flow out to the refrigerant outflow pipe 63.
このよ う に、冷媒を並列に複数の熱交換器に通流する こ とによ り 、 熱交換器を通流する冷媒流量を増大する と と もに、 伝熱面積 を拡大して熱交換率を向上させ、一挙に冷媒の熱交換を行う こ と ができ る。  In this way, by flowing the refrigerant in parallel to the plurality of heat exchangers, the flow rate of the refrigerant flowing through the heat exchanger is increased, and the heat transfer area is increased by increasing the heat transfer area. The efficiency can be improved and the heat exchange of the refrigerant can be performed all at once.
また、 図 6 は、 チューブの他の具体例を示す斜視図である。 図 6 に示すよ う に、 チューブ 2 6 は、 並列に配置された複数の ヘッダパイ プに対応し得るチューブ幅を有 し、 また、 断面円形の 冷媒流路 2 7 と、冷媒流路 2 7 が形成されない肉厚部 2 8 を備え ている。前記断面円形の冷媒流路 2 7 を通流する冷媒をヘッ ダパ イ ブに連通するために、 チューブ 2 6 の端部には、 チューブ 2 6 の他の部位よ り も断面積の小さいチューブ挿入部 2 9 , 2 9 が複 数形成されている。  FIG. 6 is a perspective view showing another specific example of the tube. As shown in FIG. 6, the tube 26 has a tube width capable of accommodating a plurality of header pipes arranged in parallel, and the refrigerant flow path 27 and the refrigerant flow path 27 each having a circular cross section are formed. It has a thick portion 28 that is not formed. At the end of the tube 26, a tube having a smaller cross-sectional area than other portions of the tube 26 is provided in order to allow the refrigerant flowing through the refrigerant passage 27 having the circular cross section to communicate with the header pipe. A plurality of insertion portions 29 and 29 are formed.
このよ う に、チューブ 2 6端部に複数のチューブ挿入部 2 9, 2 9 が形成され、 前記チューブ挿入部 2 9 , 2 9 をヘッ ダパイ プ に形成されたチューブ挿入孔に挿入して、各冷媒流路と連通接続 させる こ とができ、 これによ り 、 チューブ幅を拡大して、 伝熱面 積の増加を図る こ とがで き る。  Thus, a plurality of tube insertion portions 29, 29 are formed at the end of the tube 26, and the tube insertion portions 29, 29 are inserted into the tube insertion holes formed in the header pipe, It can be connected to each of the refrigerant flow passages, whereby the tube width can be increased and the heat transfer area can be increased.
図 7 は、 複数のヘッ ダパイ プ 4 7 , 4 8 のチューブ挿入孔に前 記チューブ 2 6 のチューブ挿入部 2 9 , 2 9 を挿入 した状態の概 略構成を示す一部断面図である。  FIG. 7 is a partial cross-sectional view showing a schematic configuration in a state where the tube insertion portions 29 and 29 of the tube 26 are inserted into the tube insertion holes of a plurality of header pipes 47 and 48.
このよ う に、チューブ 2 6 の端部に複数のチューブ揷入部 2 9 2 9 を形成する こ とによ り、 チューブ幅を拡大する こ とが可能と な り 、 チューブとフ ィ ンの伝熱面積を拡大して、 熱交換性能を向 上するこ とが可能となる。 By forming a plurality of tube insertion portions 2992 at the end of the tube 26, the tube width can be increased. In other words, the heat transfer area between the tube and the fin can be increased, and the heat exchange performance can be improved.
また、 図 8 は、 ヘッダパイ プ 7 0 に複数の冷媒流路 7 1 , 7 2 を形成し、前記チューブ 2 のチューブ挿入部 2 3 をヘッダパイ プ 7 0 に形成されたチューブ挿入孔に挿入 した状態の概略を示す 一部断面図である。  FIG. 8 shows a state in which a plurality of refrigerant channels 71 and 72 are formed in the header pipe 70, and the tube insertion portion 23 of the tube 2 is inserted into a tube insertion hole formed in the header pipe 70. FIG. 2 is a partial cross-sectional view schematically showing the structure of FIG.
ヘッダパイ プ 7 0 に複数の冷媒流路 7 1 , 7 2 を形成する と、 通風方向に直交 して、 複数のチューブ、 フ ィ ン及びヘッダパイ プ から構成される熱交換器を複数並列に配置する場合、並列に配置 されたヘッダパイ プの連結等の組み付け工程が低減し、 また、 へ ッ ダパイ プを複数並列に配置 した場合と比較 して部品点数が低 減し、 製造が容易とな り 、 作業効率の向上を図る こ とができ る。  When a plurality of refrigerant flow paths 71 and 72 are formed in the header pipe 70, a plurality of heat exchangers composed of a plurality of tubes, fins, and header pipes are arranged in parallel to the direction of air flow. In this case, the number of assembling steps such as connection of header pipes arranged in parallel is reduced, and the number of parts is reduced as compared with the case where a plurality of header pipes are arranged in parallel. Work efficiency can be improved.
また、 図 9 に示すよ う に、 チューブを複数本並列に配置 して、 各チューブに同一のフ ィ ンを装着 して熱交換器を構成する こ と も可能である。  Also, as shown in Fig. 9, it is possible to arrange a plurality of tubes in parallel and to attach the same fin to each tube to form a heat exchanger.
この場合、図 4 又は図 5 に示 した複数の熱交換器を並列に配置 して、 一体と した熱交換器と同様の構成となる力 本例の熱交換 器は、並列に配置された複数のチューブに同一のフ ィ ン 3 2 を装 着する こ とによ り 、 熱交換面積を拡大して、 熱交換性能の向上を 図る こ とがで き る。  In this case, a plurality of heat exchangers shown in Fig. 4 or Fig. 5 are arranged in parallel, and the force has the same configuration as an integrated heat exchanger. By mounting the same fins 32 on the tubes, the heat exchange area can be increased and the heat exchange performance can be improved.
また、 前述した具体例においては、 フ ィ ンを間に装着したチュ 一ブを多段積層 した積層型の熱交換器について説明したが、本例 に限らず、 図 1 0 に示すよ う に、 チューブを蛇行状に往復させ、 前記往復するチューブ間にフ ィ ンを装着 したサーペンタ イ ン型 の熱交換器 1 6 においても、本例のチューブ及び熱交換器の構造 を用いる こ とが可能である。 産業上 の利 用 可能性 本発明に係る熱交換器は、熱交換チューブの耐圧性及び熱交換 率を向上 した熱交換器であって、従来の熱交換媒体に代わる炭酸 ガス等の高圧媒体に適する次世代用の熱交換器であ り、 と り わけ 自動車用や民生用の冷凍サイ クルに好適である。 Further, in the specific example described above, the stacked heat exchanger in which the tubes with the fins mounted therebetween are stacked in multiple stages has been described. However, the present invention is not limited to this example, and as shown in FIG. In the serpentine heat exchanger 16 in which the tubes are reciprocated in a meandering manner and the fins are mounted between the reciprocating tubes, the structure of the tube and the heat exchanger of the present example can be used. is there. Industrial applicability The heat exchanger according to the present invention is a heat exchanger in which the pressure resistance and heat exchange rate of the heat exchange tube are improved, and is suitable for a high-pressure medium such as carbon dioxide gas instead of the conventional heat exchange medium. It is particularly suitable for automotive and consumer refrigeration cycles.

Claims

請求の範 囲 The scope of the claims
1 . 冷媒流路を有する熱交換チューブと、 前記チューブ間に装 着される フ ィ ン と、 前記チューブが連通接続され、 冷媒の送受給 を行うヘッダパイ プとを備え、チューブ及びフ ィ ンに伝わる熱に よって熱交換を行う熱交換器において、 1. A heat exchange tube having a refrigerant flow path, a fin mounted between the tubes, and a header pipe connected and connected to the tubes to transmit and receive a refrigerant, the tubes and the fins being provided in the tubes and the fins. In a heat exchanger that exchanges heat by transferring heat,
前記熱交換チューブは、断面円形の冷媒流路を備えている こ と を特徴とする熱交換器。  The heat exchanger, wherein the heat exchange tube has a refrigerant flow path having a circular cross section.
2 . 前記請求項 1 記載の熱交換器において、  2. The heat exchanger according to claim 1,
前記熱交換チューブの各々は、 同一断面であ り 且つ複数の断面 円形の冷媒流路を備えている こ とを特徴とする熱交換器。  The heat exchanger, wherein each of the heat exchange tubes has a refrigerant passage having the same cross section and a plurality of circular cross sections.
3 . 前記請求項 1 記載の熱交換器において、  3. The heat exchanger according to claim 1,
前記冷媒流路の断面円形の直径が 1 m m以下であ る こ と を特 徴とする熱交換器。  A heat exchanger characterized in that the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
4 . 前記請求項 2 記載の熱交換器において、 4. The heat exchanger according to claim 2,
前記冷媒流路の断面円形の直径が 1 m m以下であ る こ と を特 徴とする熱交換器。  A heat exchanger characterized in that the diameter of the circular cross section of the refrigerant channel is 1 mm or less.
5 . 前記ヘッダパイ プの冷媒流路が断面円形である こ と を特徴 とする前記請求項 1 乃至 4 いずれか記載の熱交換器。  5. The heat exchanger according to any one of claims 1 to 4, wherein the refrigerant pipe of the header pipe has a circular cross section.
6 . 前記ヘ ッダパイ プの冷媒流路の直径が 1 0 m mを超えない 直径であ り 、ヘッ ダパイ プ肉厚が 5 m mを超えないこ とを特徴と する前記請求項 5記載の熱交換器。 6. The heat exchanger according to claim 5, wherein the diameter of the refrigerant channel of the header pipe does not exceed 10 mm, and the thickness of the header pipe does not exceed 5 mm. .
7 . 前記熱交換チューブは、 断面円形の冷媒流路と、 冷媒流路 を形成しない肉厚部とを備え、  7. The heat exchange tube includes a refrigerant channel having a circular cross section, and a thick portion that does not form a refrigerant channel.
前記熱交換チューブの長手方向端部において、他の部位よ り も 小さ い断面積となるチューブ挿入部が形成されている こ と を特 徴とする前記請求項 1 乃至 6 いずれか記載の熱交換器。  The heat exchange according to any one of claims 1 to 6, wherein a tube insertion portion having a smaller cross-sectional area than other portions is formed at a longitudinal end portion of the heat exchange tube. vessel.
8 . 前記熱交換チューブと フ ィ ンが交互に積層されて多段層を 形成する こ とを特徴と する前記請求項 1 乃至 7 いずれか記載の 熱交換器。 8. The heat exchange tubes and fins are alternately stacked to form a multi-stage layer. The heat exchanger according to claim 1, wherein the heat exchanger is formed.
9 . 前記チューブ及びヘッ ダパイ プ間を通流する冷媒流路を複 数に区画する仕切 り板がヘッダパイ プの要所に配置され、  9. A partition plate that partitions a plurality of refrigerant flow paths flowing between the tube and the header pipe is arranged at a key point of the header pipe,
前記複数の区画に仕切られた各冷媒流路の各区画におけ る総 断面積が同一である こ と特徴とする前記請求項 8 記載の熱交換 器。  9. The heat exchanger according to claim 8, wherein the total cross-sectional area of each of the refrigerant flow paths partitioned into the plurality of sections is the same.
1 0 · 前記チューブの間にフ ィ ンを装着 して多段積層され、 前 記チューブ端部がへッダパイ プに連通接続され、  10 ・ Fin mounted between the tubes and multi-layered, the end of the tube is connected to the header pipe,
前記多段積層されたチューブ及びフ ィ ンの断面長手方向が、外 部空気の通風方向に対して直交する よ う に、 チューブ、 フ ィ ン及 びヘッダパイ プから構成される熱交換器体が、 複数配置され、 各 熱交換器体のヘ ッ ダパイ プが連通接続されて一体となってい る こ と を特徴とする前記請求項 8 又は 9 記載の熱交換器。  The heat exchanger body including the tubes, the fins, and the header pipes is configured such that the cross-sectional longitudinal direction of the multi-tiered tubes and the fins is orthogonal to the direction of the external air flow. 10. The heat exchanger according to claim 8, wherein a plurality of the heat exchangers are arranged, and header pipes of the respective heat exchanger bodies are connected to each other and are integrated.
1 1 . 前記通風方向に対してチューブ及びフ ィ ンの断面長手方 向が直交する よう に複数の熱交換器体が並列に配置され、各熱交 換器体のヘ ッ ダパイ プが連通接続されて一体となってい る熱交 換器であって、  1 1. A plurality of heat exchangers are arranged in parallel so that the cross-sectional longitudinal directions of the tubes and fins are orthogonal to the ventilation direction, and the header pipes of each heat exchanger are connected to each other. Heat exchanger that is integrated
各チューブ及びヘッダパイ プを通流する媒体が、複数の熱交換 器体間を直列又は並列に通流し、複数のチューブ及びフ ィ ンに伝 わる熱に よ って熱交換を行う こ と を特徴とする前記請求項 7 乃 至 9 いずれか記載の熱交換器。  The medium flowing through each tube and header pipe flows in series or in parallel between a plurality of heat exchanger bodies, and performs heat exchange by heat transferred to a plurality of tubes and fins. The heat exchanger according to any one of claims 7 to 9.
1 2 . 前記チューブ及びフ ィ ンの断面長手方向力 通風方向に 対して直交する よ う に複数の熱交換器体が並列に配置され、各熱 交換器体のヘ ッ ダパイ ブが連通接続されて一体とな ってい る熱 交換器であって、  12 2. A plurality of heat exchangers are arranged in parallel so as to be orthogonal to the ventilation direction in the cross-sectional longitudinal direction of the tubes and the fins, and the header pipes of the heat exchangers are connected and connected. Heat exchanger,
前記熱交換チューブ端部に、複数のチューブ挿入部が形成され 前記チューブ端部が各ヘ ッ ダパイ プに連通接続されている こ と を特徴とする前記請求項 1 0 又は 1 1 記載の熱交換器。 A plurality of tube insertion portions are formed at the end of the heat exchange tube, and the tube end is connected to each of the header pipes. The heat exchanger according to claim 10 or 11, wherein:
1 3 . 前記ヘッダパイ プ内に複数の冷媒流路が形成されている こ とを特徴とする前記請求項 9 乃至 1 2 いずれか記載の熱交換 器。  13. The heat exchanger according to any one of claims 9 to 12, wherein a plurality of refrigerant channels are formed in the header pipe.
1 4 . 蛇行状に往復する前記チューブの間に、 フ ィ ンが装着さ れている こ とを特徴とする前記請求項 1 乃至 7 いずれか記載の 熱交換器。  14. The heat exchanger according to any one of claims 1 to 7, wherein a fin is mounted between the tubes that reciprocate in a meandering manner.
1 5 . 複数の熱交換器体が並列に配置され、 各熱交換器体が連 通接続されて一体となっている こ と を特徴とする前記請求項 1 4記載の熱交換器。  15. The heat exchanger according to claim 14, wherein a plurality of heat exchanger bodies are arranged in parallel, and each heat exchanger body is connected and integrated.
1 6 . 前記チューブ及びヘッダパイ プは、 アル ミ ニウム又はァ ル ミ ニゥム合金を成形 してなる こ と を特徴とする前記請求項 1 乃至 1 5 いずれか記載の熱交換器。  16. The heat exchanger according to any one of claims 1 to 15, wherein the tube and the header pipe are made of an aluminum or aluminum alloy.
1 7 . 前記熱交換器に流出入する冷媒は、 気体状態である こ と を特徴とする前記請求項 1 乃至 1 6 いずれか記載の熱交換器。 17. The heat exchanger according to any one of claims 1 to 16, wherein the refrigerant flowing into and out of the heat exchanger is in a gaseous state.
1 8 . 前記熱交換器に通流する冷媒は、 二酸化炭素 ( C 0 2 ) である こ と を特徴とする前記請求項 1 乃至 1 7 いずれか記載の 熱交換器。 1 8. Refrigerant Tsuryu to the heat exchanger, carbon dioxide (C 0 2) the claims 1 to 1 7 heat exchanger according to any one, characterized in that it is a.
補正害の請求の範囲 Claims for amendment harm
[2000年 7月 1 7日 (1 7. 07. 00 ) 国際事務局受理:出願当初の請求の範囲 1 , 5, 7, 8, 1 4, 1 6, 1 7及び 1 8は補正された;出願当初の請求の範囲 2, 3及び 4 は取り下げられた。 (3頁) ]  [July 17, 2000 (17.7.00) Accepted by the International Bureau: Claims 1, 5, 7, 8, 1, 4, 16, 17, and 18 at the time of filing were amended Claims 2, 3 and 4 at the beginning of the application have been withdrawn. (Page 3)]
1 . (補正後) 冷媒流路を有する熱交換チューブと、 前記チュ ーブ間に装着される フ ィ ンと 、 前記チューブが連通接続され、 冷 媒の送受給を行うヘッダパイプと を備え、チューブ及びフ ィ ンに 伝わる熱によって熱交換を行う熱交換器において、 1. (after correction) a heat exchange tube having a refrigerant flow path, a fin mounted between the tubes, and a header pipe connected and connected to the tubes to transmit and receive the refrigerant, In a heat exchanger that performs heat exchange by heat transmitted to tubes and fins,
前記熱交換チューブは、 断面円形の冷媒流路を備え、  The heat exchange tube includes a refrigerant passage having a circular cross section,
前記熱交換チューブの各々は、同一断面であ り且つ複数の断面 円形の冷媒流路を備え、  Each of the heat exchange tubes has the same cross-section and a plurality of circular cross-section refrigerant flow paths,
更に、前記冷媒流路の断面円形の直径が l mm以下であるこ と を特徵とする熱交換器。  Further, the heat exchanger is characterized in that the diameter of the circular cross section of the refrigerant channel is lmm or less.
2. (削除)  2. (Delete)
3. (削除) 3. (Delete)
4. (削除) 4. (Delete)
5 . (補正後) 前記ヘッダパイプの冷媒流路が断面円形である こ とを特徴とする前記請求項 1記載の熱交換器。 . 5. (After correction) The heat exchanger according to claim 1, wherein the refrigerant flow passage of the header pipe has a circular cross section. .
6. 前記ヘッダパイプの冷媒流路の直径が 1 0 m mを超えない 直径であり、ヘッダパイプ肉厚が 5 mmを超えないこ とを特徴と する前記請求項 5記載の熱交換器。  6. The heat exchanger according to claim 5, wherein the diameter of the refrigerant flow path of the header pipe does not exceed 10 mm, and the thickness of the header pipe does not exceed 5 mm.
7. (補正後) 前記熱交換チューブは、 断面円形の冷媒流路と、 冷媒流路を形成しない肉厚部と を備え、  7. (After correction) The heat exchange tube includes a refrigerant flow path having a circular cross section, and a thick portion that does not form a refrigerant flow path,
前記熱交換チューブの長手方向端部において、他の部位よ り も 小さい断面積と なるチューブ揷入部が形成されている こ とを特 徴とする前記請求項 1 、 5又は 6記載の熱交換器。  7. The heat exchanger according to claim 1, wherein a tube insertion portion having a smaller cross-sectional area than other portions is formed at a longitudinal end portion of the heat exchange tube. .
8. (捕正後) 前記熱交換チューブとフ ィ ンが交互に積層され 補正きれた 紙 ( 約第 19条) て多段層を形成する こ と を特徴とする前記請求項 1、 5、 6 又は 7記載の熱交換器。 8. (After collection) Paper with the heat exchange tubes and fins laminated alternately and corrected (about Article 19) 8. The heat exchanger according to claim 1, wherein the heat exchanger forms a multi-stage layer.
9 . 前記チューブ及びヘッダパイプ間を通流する冷媒流路を複 数に区画する仕切 り板がヘッダパイ プの要所に配置され、  9. A partition plate for partitioning the refrigerant flow path flowing between the tube and the header pipe into a plurality of sections is arranged at a key point of the header pipe,
前記複数の区画に仕切 られた各冷媒流路の各区画における総 断面積が同一である こ と特徴とする前記請求項 8 記載の熱交換  9. The heat exchange according to claim 8, wherein the total cross-sectional area of each of the refrigerant flow paths divided into the plurality of sections is the same.
1 0 . 前記チューブの間にフィ ンを装着して多段積層され、 前 記チューブ端部がヘッダパイプに連通接続され、 10. A fin is mounted between the tubes to form a multi-stage stack, and the tube end is connected to a header pipe,
前記多段積層されたチューブ及びフィ ンの断面長手方向が、外 部空気の通風方向に対して直交する よ う に、 チューブ、 フィ ン及 びヘッダパイプから構成される熱交換器体が、 複数配置され、 各 熱交換器体のヘッダパイプが連通接続されて一体と なっている こ と を特徴とする前記請求項 8又は 9記載の熱交換器。  A plurality of heat exchanger bodies composed of tubes, fins, and header pipes are arranged so that the cross-sectional longitudinal direction of the multi-tiered tubes and fins is orthogonal to the direction of external air flow. 10. The heat exchanger according to claim 8, wherein the header pipes of the heat exchanger bodies are connected and integrated.
1 1 . 前記通風方向に対してチューブ及びフ ィ ンの断面長手方 向が直交する よ う に複数の熱交換器体が並列に配置され、各熱交 換器体のヘッダパイ プが連通接続されて一体と なっている熱交 換器であって、  1 1. A plurality of heat exchangers are arranged in parallel so that the cross-sectional longitudinal directions of the tubes and the fins are orthogonal to the ventilation direction, and the header pipes of each heat exchanger are connected and connected. Heat exchanger,
各チューブ及びヘッダパイ プを通流する媒体が、複数の熱交換 器体間を直列又は並列に通流し、複数のチューブ及びフ ィ ンに伝 わる熱によって熱交換を行 う こ と を特徴とする前記請求項 7 乃 至 9 いずれか記載の熱交換器。  A medium flowing through each tube and the header pipe flows in series or in parallel between a plurality of heat exchanger bodies, and performs heat exchange by heat transferred to the plurality of tubes and the fins. The heat exchanger according to any one of claims 7 to 9.
1 2 . 前記チューブ及びフ ィ ンの断面長手方向が、 通風方向に 対して直交する よ う に複数の熱交換器体が並列に配置され、各熱 交換器体のヘッ ダパイ プが連通接続されて一体と なっている熱 交換器であつて、  12 2. A plurality of heat exchangers are arranged in parallel so that the cross-sectional longitudinal direction of the tubes and fins is orthogonal to the ventilation direction, and the header pipes of each heat exchanger are connected and connected. A heat exchanger that is
前記熱交換チューブ端部に、複数のチューブ揷入部が形成され、 前記チューブ端部が各ヘッ ダパイ プに連通接続されている こ と 補正きれた用紙 (条約第 19条) を特徴とする前記請求項 1 0又は 1 1 記載の熱交換器。 A plurality of tube insertion portions are formed at the end of the heat exchange tube, and the tube end is connected to each of the header pipes. Corrected paper (Article 19 of the Convention) The heat exchanger according to claim 10 or 11, wherein:
1 3 . 前記ヘッダパイプ内に複数の冷媒流路が形成されている こ と を特徴とする前記請求項 9 乃至 1 2 いずれか記載の熱交換 1 4 . (補正後) 蛇行状に往復する前記チューブの間に、 フ ィ ンが装着されている こ と を特徴とする前記請求項 1 、 5、 6又は 7記載の熱交換器。  13. Heat exchange according to any one of claims 9 to 12, characterized in that a plurality of refrigerant channels are formed in the header pipe. 14. (After correction) The heat exchanger reciprocates in a meandering manner. The heat exchanger according to claim 1, 5, 6, or 7, wherein a fin is mounted between the tubes.
1 5 . 複数の熱交換器体が並列に配置され、 各熱交換器体が連 通接続されて一体と なっている こ と を特徴とする前記請求項 1 4記載の熱交換器。  15. The heat exchanger according to claim 14, wherein a plurality of heat exchanger bodies are arranged in parallel, and each heat exchanger body is connected and integrated.
1 6 . (補正後) 前記チューブ及びヘッダパイ プは、 アルミ 二 ゥム又はアルミ ニゥム合金を成形してなる こ と を特徴とする前 記請求項 1、 5 乃至 1 5 いずれか記載の熱交換器。  16. The heat exchanger according to any one of claims 1, 5 to 15, wherein the tube and the header pipe are formed by molding aluminum or aluminum alloy. .
1 7 . (補正後) 前記熱交換器に流出入する冷媒は、 気体状態 である こ とを特徴とする前記請求項 1、 5 乃至 1 6 いずれか記載 の熱交換器。  17. The heat exchanger according to any one of claims 1, 5 to 16, wherein the refrigerant flowing into and out of the heat exchanger is in a gaseous state.
1 8 . (補正後) 前記熱交換器に通流する冷媒は、 二酸化炭素 ( C O 2 ) である こ と を特徴とする前記請求項 1 、 5乃至 1 7い ずれか記載の熱交換器。 1 8. Refrigerant Tsuryu the (corrected) the heat exchanger, carbon dioxide (CO 2) claim 1, 5 to 1 7 have heat exchanger deviation or wherein that it is a.
補正きれた 紙 (条約第 19条) Corrected paper (Article 19 of the Convention)
PCT/JP2000/000837 2000-02-15 2000-02-15 Heat exchanger WO2001061263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000837 WO2001061263A1 (en) 2000-02-15 2000-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000837 WO2001061263A1 (en) 2000-02-15 2000-02-15 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2001061263A1 true WO2001061263A1 (en) 2001-08-23

Family

ID=11735686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000837 WO2001061263A1 (en) 2000-02-15 2000-02-15 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2001061263A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085347A1 (en) * 2002-04-02 2003-10-16 Modine Manufacturing Company Heat exchanger and folded tube used therein
WO2007037670A1 (en) * 2005-09-30 2007-04-05 Seasonair (M) Sdn Bhd Heat exchanger
EP2165141A1 (en) * 2007-06-01 2010-03-24 Carrier Corporation Parallel flow heat exchanger with connectors
CN114585871A (en) * 2019-10-10 2022-06-03 三菱电机株式会社 Heat exchanger, heat exchanger unit, refrigeration cycle device, and method for manufacturing heat exchange member
DE102016219205B4 (en) 2016-10-04 2023-02-02 Volkswagen Aktiengesellschaft Multi-pass air/refrigerant heat exchanger, air conditioning device for a motor vehicle and motor vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193173U (en) * 1981-06-02 1982-12-07
JPS5981453A (en) * 1982-10-29 1984-05-11 株式会社デンソー Refrigerator
JPS63167090U (en) * 1987-04-10 1988-10-31
JPH0228986U (en) * 1988-08-12 1990-02-23
JPH02140166U (en) * 1989-04-24 1990-11-22
EP0414433A2 (en) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex heat exchanger
JPH0387085U (en) * 1989-12-21 1991-09-04
JPH10288476A (en) * 1997-04-10 1998-10-27 Sanden Corp Heat-exchanger
EP0877221A2 (en) * 1997-05-09 1998-11-11 Denso Corporation Heat exchanger constructed by a plurality of tubes
JPH11226685A (en) * 1998-02-16 1999-08-24 Denso Corp Manufacture of heat exchanger and header tank
JP2000046421A (en) * 1998-07-27 2000-02-18 Calsonic Corp Heat exchanger for carbon dioxide refrigeration cycle
DE19845336A1 (en) * 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193173U (en) * 1981-06-02 1982-12-07
JPS5981453A (en) * 1982-10-29 1984-05-11 株式会社デンソー Refrigerator
JPS63167090U (en) * 1987-04-10 1988-10-31
JPH0228986U (en) * 1988-08-12 1990-02-23
JPH02140166U (en) * 1989-04-24 1990-11-22
EP0414433A2 (en) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex heat exchanger
JPH0387085U (en) * 1989-12-21 1991-09-04
JPH10288476A (en) * 1997-04-10 1998-10-27 Sanden Corp Heat-exchanger
EP0877221A2 (en) * 1997-05-09 1998-11-11 Denso Corporation Heat exchanger constructed by a plurality of tubes
JPH11226685A (en) * 1998-02-16 1999-08-24 Denso Corp Manufacture of heat exchanger and header tank
JP2000046421A (en) * 1998-07-27 2000-02-18 Calsonic Corp Heat exchanger for carbon dioxide refrigeration cycle
DE19845336A1 (en) * 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085347A1 (en) * 2002-04-02 2003-10-16 Modine Manufacturing Company Heat exchanger and folded tube used therein
WO2007037670A1 (en) * 2005-09-30 2007-04-05 Seasonair (M) Sdn Bhd Heat exchanger
EP2165141A1 (en) * 2007-06-01 2010-03-24 Carrier Corporation Parallel flow heat exchanger with connectors
EP2165141A4 (en) * 2007-06-01 2013-11-13 Carrier Corp Parallel flow heat exchanger with connectors
DE102016219205B4 (en) 2016-10-04 2023-02-02 Volkswagen Aktiengesellschaft Multi-pass air/refrigerant heat exchanger, air conditioning device for a motor vehicle and motor vehicle
CN114585871A (en) * 2019-10-10 2022-06-03 三菱电机株式会社 Heat exchanger, heat exchanger unit, refrigeration cycle device, and method for manufacturing heat exchange member

Similar Documents

Publication Publication Date Title
US6732789B2 (en) Heat exchanger for CO2 refrigerant
JP4211998B2 (en) Heat exchanger plate
US20050011637A1 (en) Heat exchanger and tube for heat exchanger
US20030141048A1 (en) Heat exchanger tube and heat exchanger using the same
US20090065183A1 (en) Flat heat transfer tube
JP2003121092A (en) Heat exchanger
JP2006132920A (en) Heat exchanger
US20080121385A1 (en) Heat dissipation fin for heat exchangers
WO2002025189A1 (en) Heat exchanger and method of manufacturing the heat exchanger
WO2010044420A1 (en) Refrigerant evaporator and air-conditioning device utilizing the same
US11268769B2 (en) Heat exchanger
US7051796B2 (en) Heat exchanger
US20050217839A1 (en) Integral primary and secondary heat exchanger
WO2006016704A1 (en) Flat tube, platelike body for making the flat tube and heat exchanger
US20200132378A1 (en) Heat exchanger
US7174953B2 (en) Stacking-type, multi-flow, heat exchanger
JP2005195316A (en) Heat exchanger
JP2011237062A (en) Refrigerant distributor, evaporator and refrigerant distribution method
US20070056718A1 (en) Heat exchanger and duplex type heat exchanger
WO2001061263A1 (en) Heat exchanger
US6923019B2 (en) Heat exchanger
JPH11325784A (en) Heat exchanger
KR100638488B1 (en) Heat exchanger for using CO2 as a refrigerant
WO2006068262A1 (en) Heat exchanger
JP2000220979A (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase