JPH0678851B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0678851B2
JPH0678851B2 JP8193088A JP8193088A JPH0678851B2 JP H0678851 B2 JPH0678851 B2 JP H0678851B2 JP 8193088 A JP8193088 A JP 8193088A JP 8193088 A JP8193088 A JP 8193088A JP H0678851 B2 JPH0678851 B2 JP H0678851B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
compressor
oil
intermediate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8193088A
Other languages
Japanese (ja)
Other versions
JPH01256766A (en
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8193088A priority Critical patent/JPH0678851B2/en
Publication of JPH01256766A publication Critical patent/JPH01256766A/en
Publication of JPH0678851B2 publication Critical patent/JPH0678851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は圧縮機を用いた冷凍装置に関し、特に非共沸混
合冷媒を封入して超低温を得る装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to a refrigerating apparatus using a compressor, and more particularly to an apparatus for enclosing a non-azeotropic mixed refrigerant to obtain an ultralow temperature.

(ロ)従来の技術 此種非共沸混合冷媒を用いた冷凍装置(1)を第1図に
示す。冷凍装置(1)は−120℃以下の最終温度を目指
すもので、冷媒として従来ではテトラフルオロメタン
(以下R14と称す)と例えばクロロトリフルオロメタン
(以下R13と称す)及びプロパンの非共沸混合冷媒を充
填している。動作を説明すると、(2)は圧縮機であ
り、圧縮機(2)で圧縮され、吐出された高温高圧のガ
ス状混合冷媒は予備凝縮器(3)で予冷された後オイル
セパレーター(4)にて冷媒中に混入した圧縮機(1)
のオイルのうちの大部分を分離し、戻し管(5)より圧
縮機(2)に帰還させる。オイルセパレーター(4)を
出た冷媒は凝縮器(6)で流入し、ここで空気、水或い
は他の冷凍装置の蒸発器による冷却を受け、次に蒸発器
(7)からの帰還冷媒が流通する第1の中間熱交換器
(9)内を通過する高圧側配管(8)中を通過して第1
の気液分離器(10)に至る。第1の気液分離器(10)内
では混合冷媒がガス冷媒と液冷媒とに分離され、ガス冷
媒は第2の中間熱交換器(11)内を通過して第2の気液
分離器(12)に至る気相配管(13)中を通過して第2の
気液分離器(12)に流入する。第1の気液分離器(10)
内の液冷媒は液相配管(14)に流入し、キャピラリチュ
ーブ(15)で減圧された後、蒸発器(7)からの帰還冷
媒が流通する第2の中間熱交換器(11)内に流入して蒸
発し、前記帰還冷媒と共に圧縮機(2)に帰還する。
(B) Conventional Technology A refrigeration system (1) using this type of non-azeotropic mixed refrigerant is shown in FIG. The refrigeration system (1) aims at a final temperature of −120 ° C. or lower, and is a non-azeotropic mixture of tetrafluoromethane (hereinafter referred to as R14), chlorotrifluoromethane (hereinafter referred to as R13), and propane, for example, as a refrigerant. Is filled. Describing the operation, (2) is a compressor, and the high temperature and high pressure gaseous mixed refrigerant compressed by the compressor (2) is pre-cooled by the pre-condenser (3) and then the oil separator (4). Compressor mixed in the refrigerant at (1)
Most of the oil is separated and returned to the compressor (2) through the return pipe (5). The refrigerant exiting the oil separator (4) flows into the condenser (6) where it is cooled by air, water or the evaporator of another refrigeration system, and then the return refrigerant from the evaporator (7) flows. The first intermediate heat exchanger (9) passing through the high pressure side pipe (8)
To the gas-liquid separator (10). In the first gas-liquid separator (10), the mixed refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant passes through the second intermediate heat exchanger (11) to be the second gas-liquid separator. It passes through the gas-phase pipe (13) leading to (12) and flows into the second gas-liquid separator (12). First gas-liquid separator (10)
The liquid refrigerant inside flows into the liquid phase pipe (14), is decompressed by the capillary tube (15), and then flows into the second intermediate heat exchanger (11) through which the return refrigerant from the evaporator (7) flows. It flows in and evaporates, and returns to the compressor (2) together with the return refrigerant.

第2の気液分離器(12)内では流入した冷媒が再びガス
冷媒と液冷媒とに分離され、ガス冷媒は第3の中間熱交
換器(17)及び第4の中間熱交換器(18)内を通過して
乾燥器(19)に至る気相配管(20)中を通過してキャピ
ラリチューブ(21)に至り、そこで減圧されて蒸発器
(7)に流入して蒸発し、その後第4及び第3の中間熱
交換器(18),(17)に次々に流入して圧縮機(2)に
帰還する。第2の気液分離器(12)中の液冷媒は液相配
管(22)に流入し、乾燥器(23)を通過してキャピラリ
チューブ(24)にて減圧され、第3の中間熱交換器(1
7)内に流入して蒸発し、前述の帰還冷媒と共に圧縮機
(2)に帰還する。(25)は膨張タンクである。
In the second gas-liquid separator (12), the inflowing refrigerant is again separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is a third intermediate heat exchanger (17) and a fourth intermediate heat exchanger (18). ) To the dryer (19) and then to the capillary tube (21) where it is decompressed and flows into the evaporator (7) to evaporate, then They flow into the fourth and third intermediate heat exchangers (18) and (17) one after another and return to the compressor (2). The liquid refrigerant in the second gas-liquid separator (12) flows into the liquid phase pipe (22), passes through the dryer (23) and is decompressed by the capillary tube (24), and the third intermediate heat exchange. Bowl (1
It flows into the inside of 7) and evaporates, and returns to the compressor (2) together with the above-mentioned return refrigerant. (25) is an expansion tank.

前述の冷媒を用いることによって第1の中間熱交換器
(9)は前述の帰還して来る低温ガス冷媒によって−60
℃に冷却される。第2図に此種冷媒の沸点と圧縮機
(2)の潤滑油との相溶性を示している。これによれば
冷凍装置(1)に封入されたプロパンは高圧側配管
(8)を通過の際、第1の中間熱交換器(9)(−60
℃)によって凝縮液化され、第1の気液分離器(10)に
て分離せられてキャピラリチューブ(15)にて減圧さ
れ、第2の中間熱交換器(11)内で蒸発するので、前述
の帰還冷媒からの冷却が加って第2の中間熱交換器(1
1)は−90℃となる。未だガス状のR14とR13の混合物は
第1の気液分離器(10)を出て気相配管(13)を通過す
る際、R13が凝縮液化されて第2の気液分離器(12)に
至り、分離されてキャピラリチューブ(24)で減圧され
第3の中間熱交換器(17)で蒸発する。第3の中間熱交
換器(17)は帰還冷媒とR13の蒸発によって−110℃に冷
却され、気相配管(20)に流入した未だガス状態のR14
がここを通過する際凝縮され、第4の中間熱交換器(1
8)にて更に凝縮されてキャピラリチューブ(21)にて
減圧され、蒸発器(7)に流入して蒸発する。ここで−
125℃の最終温度を得る。
By using the above-mentioned refrigerant, the first intermediate heat exchanger (9) is -60 by the above-mentioned returning low-temperature gas refrigerant.
It is cooled to ℃. FIG. 2 shows the compatibility between the boiling point of this type of refrigerant and the lubricating oil of the compressor (2). According to this, when the propane enclosed in the refrigeration system (1) passes through the high-pressure side pipe (8), the first intermediate heat exchanger (9) (-60
), Condensed in the first gas-liquid separator (10), decompressed in the capillary tube (15), and evaporated in the second intermediate heat exchanger (11). The second intermediate heat exchanger (1
1) is -90 ° C. When the still gaseous mixture of R14 and R13 exits the first gas-liquid separator (10) and passes through the gas-phase pipe (13), R13 is condensed and liquefied to the second gas-liquid separator (12). Then, it is separated, decompressed by the capillary tube (24), and evaporated by the third intermediate heat exchanger (17). The third intermediate heat exchanger (17) is cooled to −110 ° C. by the evaporation of the return refrigerant and R13, and is still in a gas state R14 that has flowed into the gas phase pipe (20).
Are condensed as they pass through it, and the fourth intermediate heat exchanger (1
It is further condensed in 8), decompressed in the capillary tube (21), flows into the evaporator (7) and evaporates. Where −
A final temperature of 125 ° C is obtained.

(ハ)発明が解決しようとする課題 斯かる冷凍装置(1)において圧縮機(2)のオイルは
混合冷媒と共に吐出され、その大部分はオイルセパレー
ター(4)にて冷媒から分離されて圧縮機(2)に戻さ
れるが、一部は冷媒に溶解したままオイルセパレーター
(4)を出る。オイルは第2図の如く相溶性の良好なる
プロパンの外、高温状態であるため、相溶性の非常に悪
いR13やR14にも溶解して冷凍装置(1)内を流れて行
く。
(C) Problems to be Solved by the Invention In such a refrigerating apparatus (1), the oil of the compressor (2) is discharged together with the mixed refrigerant, and most of it is separated from the refrigerant by the oil separator (4) to be the compressor. Although it is returned to (2), it leaves the oil separator (4) while being partially dissolved in the refrigerant. As shown in FIG. 2, the oil is in a high temperature state in addition to propane, which has good compatibility, and therefore dissolves in R13 and R14, which have very poor compatibility, and flows in the refrigeration system (1).

これらのオイルのうちプロパンに溶解したオイルは温度
が降下しても溶解したままプロパンと共に圧縮機(2)
に帰還するが、R13やR14に溶解したものはその後の第2
の中間熱交換器(11)での温度降下により分離し、所謂
二相分離が生ずる。するとこの分離したオイルが気相配
管(20)に流入し、極低温であるために、キャピラリチ
ューブ(21)と乾燥器(19)の入口及び出口にて固化し
てしまい、冷媒流通を阻害する問題が生じていた。
Of these oils, the oil dissolved in propane remains dissolved even when the temperature drops, together with propane and the compressor (2)
Return to, but the one dissolved in R13 and R14 is the second
Due to the temperature drop in the intermediate heat exchanger (11), the so-called two-phase separation occurs. Then, the separated oil flows into the gas-phase pipe (20) and is solidified at the inlet and outlet of the capillary tube (21) and the dryer (19) due to the extremely low temperature, which impedes the refrigerant flow. There was a problem.

本発明は斯かる課題を解決するために成されたものであ
る。
The present invention has been made to solve such problems.

(ニ)課題を解決するための手段 本発明は二種以上の沸点の異なる冷媒から成る非共沸混
合冷媒を充填され、圧縮機から吐出された混合冷媒を凝
縮して高沸点冷媒を液化させ、該液冷媒を残りのガス冷
媒から分離し、前記液冷媒の膨張蒸発にて前記ガス冷媒
を凝縮する操作を行うことにより、蒸発器にて最終の温
度を得る冷凍装置において、前記混合冷媒として少なく
ともR14とエタンを封入したものである。
(D) Means for Solving the Problems The present invention is filled with a non-azeotropic mixed refrigerant composed of two or more kinds of refrigerants having different boiling points, and condenses the mixed refrigerant discharged from the compressor to liquefy the high boiling point refrigerant. , In the refrigerating device for obtaining the final temperature in the evaporator by separating the liquid refrigerant from the remaining gas refrigerant and condensing the gas refrigerant by expansion and evaporation of the liquid refrigerant, as the mixed refrigerant. It contains at least R14 and ethane.

(ホ)作用 本発明によればR14から分離したオイルはエタンに溶解
し、圧縮機に帰還せしめられる。
(E) Action According to the present invention, the oil separated from R14 is dissolved in ethane and returned to the compressor.

(ヘ)実施例 冷凍装置としては第1図の冷凍装置(1)を用いる。こ
の場合封入する冷媒としてはR14とプロパンの他にエタ
ンを用いる。エタンは第2図の如くR13同等以下の沸点
を有し、更にオイルとの相溶性も良好である。更に図よ
り相溶性が良好で沸点の低いものとしてエチレンがある
が、エチレンは化学式中の二重結合のため不安定な化合
物であるので冷媒としては不向きである。
(F) Example As the refrigerating apparatus, the refrigerating apparatus (1) shown in FIG. 1 is used. In this case, ethane is used as the refrigerant to be sealed in addition to R14 and propane. As shown in Fig. 2, ethane has a boiling point equal to or lower than R13 and has good compatibility with oil. Further, although ethylene has a good compatibility and a low boiling point as shown in the figure, ethylene is an unstable compound due to the double bond in the chemical formula and therefore is not suitable as a refrigerant.

次に動作を説明する。圧縮機(2)から吐出された混合
冷媒中のプロパンは同様に第1の中間熱交換器(9)ま
でで凝縮して第1の気液分離器(10)から液相配管(1
4)に流入するが、R14とエタンは未凝縮で気相配管(1
3)に流入する。ここを流れる過程で−90℃に冷却され
た第2の中間熱交換器(11)によりエタンは凝縮される
が、この過程でR14から分離するオイルはエタンに溶解
する。このオイルを溶解したエタンは第2の気液分離器
(12)から液相配管(22)に流入し、乾燥器(23)を経
てキャピラリチューブ(24)で減圧された後、第3の中
間熱交換器(17)に流入して蒸発する。エタンはオイル
との相溶性が良好であるので二相分離は発生せず、従っ
てキャピラリチューブ(21)と乾燥器(19)部分でのオ
イルの固化による管路の閉塞も防止される。尚、圧縮機
(2)として高出力のものを用い、凝縮分離を一段減ら
して封入冷媒をR14とエタンのみとしても良い。
Next, the operation will be described. Propane in the mixed refrigerant discharged from the compressor (2) is similarly condensed up to the first intermediate heat exchanger (9), and is then condensed from the first gas-liquid separator (10) to the liquid phase pipe (1).
4) but R14 and ethane are not condensed and vapor phase piping (1
Inflow into 3). While ethane is condensed by the second intermediate heat exchanger (11) cooled to -90 ° C in the process of flowing therethrough, the oil separated from R14 is dissolved in ethane in this process. The ethane in which this oil is dissolved flows into the liquid phase pipe (22) from the second gas-liquid separator (12), passes through the dryer (23) and is decompressed by the capillary tube (24), and then the third intermediate It flows into the heat exchanger (17) and evaporates. Since ethane has a good compatibility with oil, two-phase separation does not occur, and therefore the blockage of the pipeline due to the solidification of oil in the capillary tube (21) and the dryer (19) is also prevented. It is also possible to use a high-output compressor (2) and reduce the condensation / separation by one stage to use only R14 and ethane as the enclosed refrigerant.

(ト)発明の効果 本発明によればテトラフルオロメタン(R14)の使用に
よって−120℃以下の超低温を得ることができると共に
テトラフルオロメタンから分離した圧縮機のオイルをエ
タンに溶解して帰還せしめるので低温部分でのオイルの
固化による管路の閉塞を確実に防止できる。
(G) Effect of the Invention According to the present invention, by using tetrafluoromethane (R14), an ultralow temperature of −120 ° C. or lower can be obtained, and the compressor oil separated from tetrafluoromethane is dissolved in ethane and returned. Therefore, it is possible to reliably prevent blockage of the pipeline due to solidification of oil in the low temperature portion.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍装置の冷媒回路図、第2図は冷媒の沸点と
圧縮機オイルとの相溶性を示す図である。 (1)…冷凍装置、(2)…圧縮機、(7)…蒸発器、
(9),(11),(17),(18)…第1,第2,第3及び第
4の中間熱交換器、(10),(12)…第1及び第2の気
液分離器、(15),(21),(24)…キャピラリチュー
ブ。
FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus, and FIG. 2 is a diagram showing compatibility between a boiling point of a refrigerant and compressor oil. (1) ... Refrigerator, (2) ... Compressor, (7) ... Evaporator,
(9), (11), (17), (18) ... First, second, third and fourth intermediate heat exchangers, (10), (12) ... First and second gas-liquid separation Vessel, (15), (21), (24) ... Capillary tube.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二種以上の沸点の異なる冷媒から成る非共
沸混合冷媒を充填され、圧縮機から吐出された混合冷媒
を凝縮して高沸点冷媒を液化させ、該液冷媒を残りのガ
ス冷媒から分離し、前記液冷媒の膨張蒸発にて前記ガス
冷媒を凝縮する操作を行うことにより、蒸発器にて最終
の温度を得る冷凍装置において、前記混合冷媒として少
なくともテトラフルオロメタンとエタンを封入した事を
特徴とする冷凍装置。
1. A non-azeotropic mixed refrigerant composed of two or more kinds of refrigerants having different boiling points, condensing the mixed refrigerant discharged from the compressor to liquefy the high boiling point refrigerant, and the liquid refrigerant is the remaining gas. In a refrigerating apparatus that obtains a final temperature in an evaporator by performing an operation of separating from a refrigerant and condensing the gas refrigerant by expansion and evaporation of the liquid refrigerant, at least tetrafluoromethane and ethane are enclosed as the mixed refrigerant. Refrigeration equipment characterized by
JP8193088A 1988-04-01 1988-04-01 Refrigeration equipment Expired - Lifetime JPH0678851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8193088A JPH0678851B2 (en) 1988-04-01 1988-04-01 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8193088A JPH0678851B2 (en) 1988-04-01 1988-04-01 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH01256766A JPH01256766A (en) 1989-10-13
JPH0678851B2 true JPH0678851B2 (en) 1994-10-05

Family

ID=13760188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8193088A Expired - Lifetime JPH0678851B2 (en) 1988-04-01 1988-04-01 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0678851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013049A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559220Y2 (en) * 1992-03-31 1998-01-14 新明和工業株式会社 Refrigeration equipment
JPH0827576A (en) * 1994-07-18 1996-01-30 Canon Inc Formation of diamond film
JP2003013050A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
KR101221368B1 (en) * 2010-09-09 2013-01-11 정준영 Extremely Low Temperature Refrigerative Apparatus
KR20210022930A (en) * 2019-08-21 2021-03-04 엘지전자 주식회사 Non-azeotropic mixed refrigerant, and refrigerating apparatus using the same
GB202108306D0 (en) * 2021-06-10 2021-07-28 Stratox Ltd Improved apparatus and method for refrigeration systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013049A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature

Also Published As

Publication number Publication date
JPH01256766A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
CA2793469C (en) Integrated pre-cooled mixed refrigerant system and method
TW448282B (en) Single mixed refrigerant gas liquefaction process
US7669428B2 (en) Vortex tube refrigeration systems and methods
CN100476322C (en) Super-low-temperature refrigerant system with pipeline preventing freezing
JPH0678851B2 (en) Refrigeration equipment
US4987751A (en) Process to expand the temperature glide of a non-azeotropic working fluid mixture in a vapor compression cycle
JP2004019995A (en) Refrigeration device
WO2002077543A1 (en) Freezing system using non-azeotropic type mixed refrigerant
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
JP2711879B2 (en) Low temperature refrigerator
JPH08233386A (en) Heat exchanger
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP3256856B2 (en) Refrigeration system
JPH03269083A (en) Refrigerant composition
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPS6353456B2 (en)
JPH0745984B2 (en) Refrigeration equipment
JP4270802B2 (en) Ultra-low temperature refrigeration equipment
JPH10153352A (en) Refrigerating device
JPH04113169A (en) Freezing cycle device
JP3480205B2 (en) Air conditioner
JP4066147B2 (en) Refrigeration system
JPH03158659A (en) Refrigerating plant
JPH0429338Y2 (en)
JPH07208818A (en) Freezing device