WO2002077543A1 - Freezing system using non-azeotropic type mixed refrigerant - Google Patents

Freezing system using non-azeotropic type mixed refrigerant Download PDF

Info

Publication number
WO2002077543A1
WO2002077543A1 PCT/JP2001/002440 JP0102440W WO02077543A1 WO 2002077543 A1 WO2002077543 A1 WO 2002077543A1 JP 0102440 W JP0102440 W JP 0102440W WO 02077543 A1 WO02077543 A1 WO 02077543A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
compressor
pressure
working fluid
Prior art date
Application number
PCT/JP2001/002440
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Seino
Original Assignee
Dairei Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27919299A priority Critical patent/JP2001099498A/en
Application filed by Dairei Co.,Ltd. filed Critical Dairei Co.,Ltd.
Priority to PCT/JP2001/002440 priority patent/WO2002077543A1/en
Publication of WO2002077543A1 publication Critical patent/WO2002077543A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a refrigeration system such as a refrigerator unit.
  • CFCs have been widely used as refrigerants for freezers and refrigerators because of their excellent properties.However, CFCs containing chlorine destroy the ozone layer in the upper atmosphere, and many CFCs are greenhouse gases. These fluorocarbons are becoming internationally regulated and unusable because of their influence on dani. In response, attempts have been made to use so-called alternative chlorofluorocarbons that do not cause depletion of the ozone layer and are less affected by the greenhouse effect, and the development of new hydrocarbon-based refrigerants to replace these chlorofluorocarbon-based refrigerants has been promoted. ing.
  • the composition of the non-azeotropic refrigerant mixture and the type of each component substance can be selected widely, but the phase change characteristics of the non-azeotropic refrigerant mixture are constant at a dew point curve and a boiling point curve separated from each other. Liquefaction under the conditions of The start temperature and the liquefaction end temperature or the gasification start temperature and the vaporization end temperature are different.
  • cryogenic refrigerator system uses a non-azeotropic refrigerant mixture composed of two or more components, and the liquefaction of components with a low boiling point and a low critical temperature is necessary for the ability of the condenser to operate at room temperature. Because of the difficulty, a multi-component system that condenses in multiple stages for each component refrigerant is used.
  • Fig. 3 shows an example of this, in which a mixed refrigerant consisting of three types of refrigerants with different boiling points was used, and the mixed refrigerant compressed by one compressor (compressor) 1 was released through a condenser 2 Later, the first refrigerant having a higher boiling point is used for condensing a second refrigerant having a lower boiling point, and the second refrigerant is used for condensing a refrigerant having a lower boiling point which achieves a desired cooling temperature.
  • the first and second refrigerants are separated by gas-liquid separators 6 and 8, respectively, are passed through a throttle valve 4, and are cooled by heat exchange 7 and 9. To condense.
  • the third refrigerant having the lowest boiling point is vaporized by the evaporator 5 via the throttle valve 4 and cools the inside of the cooling tank (freezer) 50 to a desired temperature.
  • the present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant containing two or more refrigerant components, wherein evaporation in a circulation path returning to the compressor via a compressor, a condenser, a throttle valve, and an evaporator.
  • This is a refrigeration system characterized by cooling the working fluid from the condenser to the throttle valve with a low-temperature working fluid that returns from the compressor to the compressor to promote liquefaction of low-boiling components.
  • a low-temperature working fluid that cools the working fluid between the evaporator and the throttle valve
  • the cooling ability is effectively improved by making the liquid high boiling point component wet, and the working fluid from the condenser to the throttle valve is cooled by the low-temperature working fluid returning from the evaporator to the compressor.
  • the discharge pressure of the working fluid from the compressor can be reduced.
  • the critical temperature of at least one component of the non-azeotropic mixed refrigerant is substantially equal to or lower than room temperature, it is possible to easily realize a refrigerator system capable of achieving an extremely low temperature.
  • FIG. 1 is a configuration diagram schematically showing a refrigerator system of the present invention
  • FIG. 2 is a comparative example showing a prior art of the present invention
  • FIG. Three-way system Indicates a refrigerator system.
  • FIG. 1 is a conceptual diagram of one embodiment of a refrigerator system of the present invention, in which a working fluid composed of a non-azeotropic mixed refrigerant adiabatically compressed by a compressor 1 radiates heat in a condenser 2.
  • the liquid is cooled to approximately room temperature and liquefied, passed through the drier 3 and sent to the evaporator 5 through the throttle valve 4 to expand and absorb, absorb the heat in the freezer, and return to the compressor again.
  • the working fluid returning to the machine is at a low temperature, which is approximately the same as the internal temperature.
  • a heat exchanger 10 is installed in the path between the dryer and the throttle valve shown in the figure to mix before entering the throttle valve 4.
  • the refrigerant can be effectively cooled to lower the temperature to a temperature equal to or lower than room temperature.
  • Such a refrigerator system having a heat exchanger between the compressor and the evaporator has been often used in the past (for example, “Refrigeration and Air Conditioning” by Haruo Yamada, Yokendo Co., Ltd.) In this case, the seventh edition was issued on June 10, 1965, p. 77) .In this way, the gas coming from the evaporator was heated by the liquid high-temperature refrigerant and entered the compressor, while the liquid was deflected. The high-temperature refrigerant is supercooled well below the saturation temperature and enters the throttle valve without any residual gas mixed therein, and both the compressor and the evaporator can operate smoothly. However, these are performed in a single-component refrigerant, and are nothing more than the use of sensible heat to smooth the operation cycle of such a refrigerator.
  • the boiling point curve and the dew point curve are separated as described above.
  • the cooling in the step shifts the composition of the liquid phase toward the low-boiling-point refrigerant side, and the decrease in the vapor pressure due to the cooling suppresses the temperature rise during adiabatic compression, thereby further promoting this effect.
  • the boiling point differs depending on the composition of the liquid phase, and the boiling point of the mixed refrigerant on the lower boiling point side is lower.
  • the refrigerant which has shifted to the lower boiling point side composition has the maximum refrigeration capacity in the evaporation process. Can be demonstrated.
  • the refrigerant thus cooled in the condensing process has a reduced vapor pressure in accordance with the temperature thereof, so that the condensing process proceeds quickly at a lower pressure, and the operation of the entire refrigerator system is performed at a relatively low pressure.
  • «It is possible.
  • the discharge pressure of the compressor can be reduced, and the load can be reduced.
  • Combining a refrigerant with a higher boiling point and a critical temperature with respect to such a refrigerant having a lower boiling point, which can be easily condensed using a condenser operating at room temperature, is composed of two or more refrigerants.
  • a mixed refrigerant it is possible to easily exhibit ultra-low-temperature refrigeration capacity by a single-unit simple-structure refrigerator system using a condenser that operates at room temperature.
  • the feedback function works effectively in combination with increasing the cooling capacity using heat and sensible heat, so that a stable state can be maintained during steady-state operation, as well as easy start-up and quick steady state at the start of operation. It is possible to go into operation.
  • Such a feature of the refrigerator system of the present invention is that the temperature of the mixed refrigerant that cools the working fluid in front of the throttle valve and returns to the compressor is increased immediately before the compressor by heat exchange. Nevertheless, it can be seen that both the temperature and pressure at the compressor outlet are decreasing. That is, since the discharge pressure of the compressor is significantly reduced, the temperature rise due to adiabatic compression is suppressed, and such a process is immediately fed back to the refrigeration cycle.
  • the mixed refrigerant before entering the compressor is heated by heat exchange to increase the specific volume.
  • the remaining multi-phase liquid phase of the high-boiling components is also absorbed and does not hinder the operation of the compressor. State.
  • a commercially available double-walled copper pipe was 3 m long, and the outer pipe was returned and used as a refrigerant flow path.
  • Table 1 shows the pressure and temperature during these actual operation. Table 1: Temperature and pressure of each part of the refrigerator system (butane + R-116)
  • Example Discharge pressure and suction pressure are absolute values measured before and after the compressor.
  • Discharge pressure A
  • Discharge temperature A
  • Suction pressure B
  • Return temperature B
  • Heat exchange inlet temperature C
  • Heat exchange outlet temperature E
  • Evaporator inlet temperature G
  • Table 1 As shown in the figure, the return refrigerant used for cooling the refrigerant immediately before the throttle valve absorbs the heat of the refrigerant from the condenser and, as shown in the return temperature column, immediately before the compressor, has a 13.2-- Although the temperature rises by 9.4 ° C, the temperature after it is adiabatically compressed by the compressor decreases by 7.2 to 4.2 ° C.
  • Table 2 shows the relationship between the refrigerant temperature and the charge at the heat inlet and outlet.
  • Table 2 Relationship between refrigerant charge, discharge pressure and return refrigerant temperature
  • butane having a high boiling point circulates without being completely evaporated, and the wet gas containing the irreversible benzene reaches the heat exchanger, and the refrigerant from the compressor in the heat exchanger is removed.
  • the refrigerant By vaporizing through heat exchange, it greatly contributes to cooling of the refrigerant.
  • This state often occurs in a refrigerator system that normally uses a non-azeotropic mixed refrigerant, and is in a state called frost.
  • frost forms around the piping from the evaporator to the compressor, causing damage to the refrigeration equipment. Also.
  • the present invention not only eliminates this frosting phenomenon, but also significantly reduces the discharge pressure by utilizing the cooling capacity of the return refrigerant component that does not contribute to the refrigeration capacity, thereby reducing the load. Can be improved.
  • Table 3 shows the physical properties of R-116, butane.
  • the butane-R23 mixed refrigerant was replaced with a refrigerator system model F-14 (manufactured by UN I DAD).
  • the temperature and pressure at each part A to H of the refrigerator system were measured while changing the filling amount of the refrigerator in the range of 140 to 270 g.
  • Discharge pressure and suction pressure are absolute values measured before and after the compressor.
  • the boiling point of R23 is lower than that of R-116, and the critical temperature is high.
  • the vapor pressure is extremely high, but the temperature and pressure of the condensing process rise even for these mixed refrigerants. Therefore, it is difficult to use with the capacity of the conventional refrigerator.
  • the temperature of the return refrigerant in the heat exchange significantly decreases as the refrigerant charge increases, and in conjunction with these, the discharge pressure and the heat exchange ⁇ outlet It can be seen that the temperature of the refrigerant drops significantly. In this way, the refrigeration capacity of the butane R23-based refrigerant can be maximized. In this case, as in the case described above, there is an almost constant appropriate range in the cooling capacity of the returned refrigerant from the filling amount, and the refrigeration capacity does not improve even if the filling amount of the refrigerant is further increased.
  • the principle of the present invention is that, as seen from the boiling point curve of the gas-liquid equilibrium curve of the mixed refrigerant, the composition of the liquid phase shifts to the low boiling point component side as the temperature decreases in the condensation process of the non-azeotropic mixed refrigerant.
  • it utilizes the fact that the boiling point of the liquid phase also decreases, thereby making it possible to further lower the refrigeration temperature and significantly reduce the required compression pressure to significantly improve the refrigeration capacity. be able to.
  • these effects are obtained by using a refrigerant with a low boiling point or a high vapor pressure that cannot be liquefied at room temperature as a mixed refrigerant.
  • the type and number of these refrigerants are selected based on the relationship between the boiling point, critical temperature and critical pressure according to the target refrigerator maintenance temperature and the capacity of the refrigerator compressor, etc. And can be appropriately combined.
  • the configuration of the refrigeration system is basically based on the above embodiment, and for a lower temperature use, a heat exchange structure with a larger capacity may be used to promote the condensation process of the low-temperature boiling point refrigerant in the heat exchanger.
  • a spiral tube or a laminated structure may be used instead of the double tube.
  • the refrigeration system according to the present invention can achieve an ultra-low temperature efficiently with a simple configuration, and can be widely used in various fields such as preservation of biological tissue for medical use. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A freezing machine system using a non-azeotropic type mixed refrigerant containing two or more refrigerant components, wherein by means of low temperature working fluid which is present in a circulation passageway extending through a compressor (1), a condenser (2), a throttle valve (4) and an evaporator (5) to return to the compressor and which returns from the evaporator to the compressor, working fluid present in a region extending from the condenser to the throttle valve is cooled by a heat exchanger (10), thereby lowering the temperature and vapor pressure of the refrigerant, thereby further lowering the temperature and pressure in the compression and condensation steps, thereby lowering the freezing machine system working pressure, promoting the condensation and liquefaction of the high vapor pressure, low boiling refrigerant components. Therefore, it is possible to lower the working pressure for the freezing machine system and to easily realize cryogenic temperatures using a high critical pressure, low critical temperature refrigerant as a mixed refrigerant component.

Description

明 細 書  Specification
非共沸系混合冷媒を用レ、た冷凍システム 技術分野 Refrigeration system using non-azeotropic mixed refrigerant
この発明は、 冷凍機ュニット等の冷凍システムに関する。 背景技術  The present invention relates to a refrigeration system such as a refrigerator unit. Background art
冷凍庫、 冷凍機用冷媒として、 その優れた特性からフロンが広く用いられてき たが、 塩素を含むいわゆる特定フロンが大気圏上層のオゾン層を破壊すること及 ぴ多くのフロンが温室効果ガスとして地球温暖ィ匕に影響を及ぼすことから、 これ らのフロンが国際的な規制対象となって使用できないようになりつつある。 これ に対して、 オゾン層の破壊をもたらさず、 温室効果等の影響の少ないいわゆる代 替フロンの使用が試みられ、 またこれらのフロン系冷媒に変わる炭化水素系の新 しい冷媒の開発が進められている。  CFCs have been widely used as refrigerants for freezers and refrigerators because of their excellent properties.However, CFCs containing chlorine destroy the ozone layer in the upper atmosphere, and many CFCs are greenhouse gases. These fluorocarbons are becoming internationally regulated and unusable because of their influence on dani. In response, attempts have been made to use so-called alternative chlorofluorocarbons that do not cause depletion of the ozone layer and are less affected by the greenhouse effect, and the development of new hydrocarbon-based refrigerants to replace these chlorofluorocarbon-based refrigerants has been promoted. ing.
しかしながら、 冷媒として使用するには化学的に安定で毒性がなく、 潤滑油と の相溶个生がよいなどの特性のほか、 目的とする冷凍温度との関係で充分低レヽ標準 沸点を有すること及び室温環境下で作動するため臨界温度が高いことが求められ るが、 一般に絶対温度目盛で標準沸点の臨界温度に対する比の値 (対臨界沸点 値) は、 概ね 0 . 6〜0 . 7程度の範囲であるため、 室温で作動して冷凍庫庫内 度を大きく下げることのできる冷媒を得ることは困難であり、 特に一 5 0 °C以下 の庫内温度を維持する超低温用冷凍機用冷媒は、 臨界温度が低いことと相まって、 液化に要する圧力も高いため実用†生のある新たな冷凍システムの構築は実現困難 である。  However, when used as a refrigerant, it must be chemically stable and non-toxic, have good compatibility with lubricating oil, and have a sufficiently low standard boiling point in relation to the intended refrigeration temperature. It is required to have a high critical temperature because it operates in a room temperature environment. Generally, the ratio of the standard boiling point to the critical temperature on the absolute temperature scale (to the critical boiling point value) is about 0.6 to 0.7. Therefore, it is difficult to obtain a refrigerant that can operate at room temperature and significantly lower the freezer interior, especially for ultra-low-temperature refrigerators that maintain an interior temperature of 150 ° C or less. In addition to the low critical temperature, the pressure required for liquefaction is high, so it is difficult to construct a new refrigeration system with practical use.
このため、 2以上の成分から成る混合冷媒として、 沸点などの特性をその混合 組成を選定することにより調整す.ることが試みられている。 この場合、 非共沸混 合冷媒は組成や各成分物質の種類を広く選定する事ができるが、 他方非共沸混合 冷媒の相変化特性は、 露点曲線と沸点曲線とが分離して圧力一定の条件下で液化 開始温度と液化終了温度または気ィ匕開始温度と気化終了温度が異なる。 For this reason, attempts have been made to adjust the properties such as the boiling point of a mixed refrigerant composed of two or more components by selecting the mixed composition. In this case, the composition of the non-azeotropic refrigerant mixture and the type of each component substance can be selected widely, but the phase change characteristics of the non-azeotropic refrigerant mixture are constant at a dew point curve and a boiling point curve separated from each other. Liquefaction under the conditions of The start temperature and the liquefaction end temperature or the gasification start temperature and the vaporization end temperature are different.
従って、 等圧下の凝縮機内で気液各相の組成が変ィ匕し、 冷媒充填量を多くする などして冷却能力を上げると湿潤な冷媒ガスが蒸発器から残存したまま冷凍機シ ステムを循環して冷凍機システムの効率を低下することとなる。  Therefore, if the composition of each gas-liquid phase changes in the condenser under constant pressure and the cooling capacity is increased by increasing the refrigerant charge, etc., the refrigerating machine system will remain with wet refrigerant gas remaining from the evaporator. Circulation will reduce the efficiency of the refrigerator system.
また、 超低温用冷凍機システムでは、 2以上の成分から成る非共沸混合冷媒を 用いた冷凍機システムとして、 室温環境下で作動する凝縮器の能力では低沸点で 臨界温度の低い成分の液化が困難であるため、 成分冷媒毎に多段階で凝縮させる 多元方式などが用いられている。  In addition, the cryogenic refrigerator system uses a non-azeotropic refrigerant mixture composed of two or more components, and the liquefaction of components with a low boiling point and a low critical temperature is necessary for the ability of the condenser to operate at room temperature. Because of the difficulty, a multi-component system that condenses in multiple stages for each component refrigerant is used.
図 3に示すものはその 1例で、 沸点の異なる 3種類の冷媒から成る混合冷媒を 用い、 1台の圧縮機 (コンプレッサー) 1で圧縮された混合冷媒を凝縮器 2を経 て放熱させた後、 沸点の高い第 1の冷媒をより沸点の低い第 2の冷媒の凝縮に用 い、 さらに第 2の冷媒を目的とする冷却温度を実現する沸点の低い冷媒の凝縮に 用いるもので、 図においてこれらの第 1、 第 2の冷媒は、 気液分離器 6、 8でそ れぞれ分離されて絞り弁 4を経て気ィ匕され、 熱交 « 7、 9でより沸点の低い冷 媒を凝縮させる。 最も沸点の低い第 3の冷媒は絞り弁 4を経由して蒸発器 5で気 化されて冷却槽 (冷凍庫) 5 0内を目的の温度に冷却する。  Fig. 3 shows an example of this, in which a mixed refrigerant consisting of three types of refrigerants with different boiling points was used, and the mixed refrigerant compressed by one compressor (compressor) 1 was released through a condenser 2 Later, the first refrigerant having a higher boiling point is used for condensing a second refrigerant having a lower boiling point, and the second refrigerant is used for condensing a refrigerant having a lower boiling point which achieves a desired cooling temperature. In the first and second refrigerants, the first and second refrigerants are separated by gas-liquid separators 6 and 8, respectively, are passed through a throttle valve 4, and are cooled by heat exchange 7 and 9. To condense. The third refrigerant having the lowest boiling point is vaporized by the evaporator 5 via the throttle valve 4 and cools the inside of the cooling tank (freezer) 50 to a desired temperature.
しかしながら、 このような冷凍機システムは構造が複雑であり、 設備の大型ィ匕 が避けられないため、 製造コストが嵩むばかり力、 メンテナンスなども困難であ つて、 維持コストも掛かり、 普及を図る上での制約ともなつている。  However, such a refrigerator system has a complicated structure and unavoidable large-scale equipment. Therefore, the production cost is increased, the power and maintenance are difficult, and the maintenance cost is increased. It also has restrictions in the.
このため、 非共沸系混合冷媒を用いて、 単純なシステム構成により容易に高効 率の冷凍システム、 特に超低温用冷凍機システムを実現することが望まれている。 発明の開示  Therefore, it is desired to easily realize a high-efficiency refrigeration system, particularly a cryogenic refrigerator system, with a simple system configuration using a non-azeotropic mixed refrigerant. Disclosure of the invention
本発明は、 2以上の冷媒成分を含む非共沸系混合冷媒を用いた冷凍システムに おいて、 圧縮機、 凝縮器、 絞り弁、 蒸発器を経て圧縮機に帰還する循環経路内の、 蒸発器から圧縮機に帰還する低温の作動流体によつて凝縮器から絞り弁に至る間 の作動流体を冷却して低沸点成分の液ィ匕を促進することを特徴とする冷凍システ ムである。  The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant containing two or more refrigerant components, wherein evaporation in a circulation path returning to the compressor via a compressor, a condenser, a throttle valve, and an evaporator. This is a refrigeration system characterized by cooling the working fluid from the condenser to the throttle valve with a low-temperature working fluid that returns from the compressor to the compressor to promote liquefaction of low-boiling components.
また、 上記蒸発器から絞り弁に至る間の作動流体を冷却する低温の作動流体を、 液状の高沸点成分により湿潤状態とすることにより効果的に冷却能力を向上し、 さらに、 上記蒸発器から圧縮機に帰還する低温の作動流体によって凝縮器から絞 り弁に至る間の作動流体を冷却することにより、 圧縮機からの作動流体の吐出圧 力を低下させることができる。 In addition, a low-temperature working fluid that cools the working fluid between the evaporator and the throttle valve, The cooling ability is effectively improved by making the liquid high boiling point component wet, and the working fluid from the condenser to the throttle valve is cooled by the low-temperature working fluid returning from the evaporator to the compressor. By cooling, the discharge pressure of the working fluid from the compressor can be reduced.
また、 上記非共沸系混合冷媒の少なくとも一の成分の臨界温度が略室温以下で あることにより、 容易に超低温度を達成する冷凍機システムを実現することがで さる。 図面の簡単な説明  In addition, since the critical temperature of at least one component of the non-azeotropic mixed refrigerant is substantially equal to or lower than room temperature, it is possible to easily realize a refrigerator system capable of achieving an extremely low temperature. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の冷凍機システムの概略を示す構成図、 第 2図は本発明の先 行技術を示す比較例であり、 更に第 3図は、 上記の従来の超低温用多元系 (3元 系) 冷凍機システムを示す。 発明を実施するための最良の形態  FIG. 1 is a configuration diagram schematically showing a refrigerator system of the present invention, FIG. 2 is a comparative example showing a prior art of the present invention, and FIG. Three-way system) Indicates a refrigerator system. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 本発明の冷凍機システムの 1実施例の概念図であって、 圧縮機 1に よつて断熱圧縮された非共沸系混合冷媒から成る作動流体は、 凝縮器 2で放熱し て略室温にまで冷却されて液化し、 ドライヤー 3をへて絞り弁 4を通して蒸発器 5に送り込まれて膨張 ·気ィ匕して冷凍庫内の熱を吸収して再び圧縮機に戻るが、 圧縮機に戻る作動流体はその定常運転時には略庫内温度程度まで低温度となって おり、 図のドライヤーから絞り弁の間の経路に熱交換器 1 0を設けて絞り弁 4に 入る前の混合冷媒を効果的に冷却して室温以下の温度にまで温度を下げることが できる。  FIG. 1 is a conceptual diagram of one embodiment of a refrigerator system of the present invention, in which a working fluid composed of a non-azeotropic mixed refrigerant adiabatically compressed by a compressor 1 radiates heat in a condenser 2. The liquid is cooled to approximately room temperature and liquefied, passed through the drier 3 and sent to the evaporator 5 through the throttle valve 4 to expand and absorb, absorb the heat in the freezer, and return to the compressor again. During normal operation, the working fluid returning to the machine is at a low temperature, which is approximately the same as the internal temperature.Therefore, a heat exchanger 10 is installed in the path between the dryer and the throttle valve shown in the figure to mix before entering the throttle valve 4. The refrigerant can be effectively cooled to lower the temperature to a temperature equal to or lower than room temperature.
このような圧縮機と蒸発器との間に熱交 «を設けた冷凍機システム自体は徒 来よりしばしばみられるところである (例えば、 「冷凍及ぴ空気調和」 山田治夫 著、 株式会社養賢堂、 昭和 4 5年 6月 1 0日第 7版発行、 P . 7 7 ) 、 こうす ると蒸発器からくるガスは液状の高温の冷媒によって加熱されて圧縮機に入り、 一方液ィ匕した高温の冷媒は良く飽和温度以下に過冷却されてその中に残存ガスを まったく混在せずに絞り弁へ入り、 圧縮機と蒸発器の双方共に円滑な運転ができ る。 しかしながら、 これらは単一成分からなる冷媒にお 、て行なわれたものであつ て、 顕熱の利用によりこのような冷凍機の運転サイクルを円滑にする以上のもの ではない。 Such a refrigerator system having a heat exchanger between the compressor and the evaporator has been often used in the past (for example, “Refrigeration and Air Conditioning” by Haruo Yamada, Yokendo Co., Ltd.) In this case, the seventh edition was issued on June 10, 1965, p. 77) .In this way, the gas coming from the evaporator was heated by the liquid high-temperature refrigerant and entered the compressor, while the liquid was deflected. The high-temperature refrigerant is supercooled well below the saturation temperature and enters the throttle valve without any residual gas mixed therein, and both the compressor and the evaporator can operate smoothly. However, these are performed in a single-component refrigerant, and are nothing more than the use of sensible heat to smooth the operation cycle of such a refrigerator.
ところが、 本発明のように 2以上の成分からなる非共沸系混合冷媒において、 このようにして効果的に冷却すると、 上記したとおり沸点曲線と露点曲線とが分 離しているために、 凝縮過程での冷却は液相の組成を低沸点冷媒側に向けて移行 させ、 また冷却に伴う蒸気圧の低下は断熱圧縮の際の温度上昇を抑制してさらに この作用を促進することができる。 一方、 沸点は液相の組成によって異なり、 低 沸点成分側糸且成の混合冷媒の沸点はより低くなるから、 このようにして低沸点側 組成に移行した冷媒は蒸発過程では冷凍能力を最大限に発揮することができる。 更に、 このようにして凝縮過程で冷却された混合冷媒は、 その温度に応じて蒸 気圧が低下するため凝縮過程がより低圧で速やかに進行することとなり、 冷凍機 システム全体の作動を比較的低圧で «可能とする。  However, in the non-azeotropic mixed refrigerant composed of two or more components as in the present invention, when the cooling is performed effectively in this manner, the boiling point curve and the dew point curve are separated as described above. The cooling in the step shifts the composition of the liquid phase toward the low-boiling-point refrigerant side, and the decrease in the vapor pressure due to the cooling suppresses the temperature rise during adiabatic compression, thereby further promoting this effect. On the other hand, the boiling point differs depending on the composition of the liquid phase, and the boiling point of the mixed refrigerant on the lower boiling point side is lower. Thus, the refrigerant which has shifted to the lower boiling point side composition has the maximum refrigeration capacity in the evaporation process. Can be demonstrated. Further, the refrigerant thus cooled in the condensing process has a reduced vapor pressure in accordance with the temperature thereof, so that the condensing process proceeds quickly at a lower pressure, and the operation of the entire refrigerator system is performed at a relatively low pressure. In «It is possible.
すなわち、 従来、 凝縮過程の圧力を高くして低沸点冷媒側組成の液化を行なつ ていたところ、 圧縮機の吐出圧力を低くできることとなってその負荷を低減する ことができる。  That is, conventionally, when the pressure in the condensation process is increased to liquefy the low-boiling-point refrigerant side composition, the discharge pressure of the compressor can be reduced, and the load can be reduced.
このことから同じ能力の圧縮機を用いて、 より蒸気圧の高!/、冷媒成分を含む混 合冷媒を使用できるのであり、 冷凍機の能力の向上を図ることが可能となる。 ま た、 この熱交 による混合冷媒の冷却によって混合冷媒中の沸点が低く、 臨界 温度の低レヽ成分の凝縮が促進されるが、 この混合冷媒の温度を室温以下に冷却す ることにより、 室温の作動環境下で直接凝縮させることができなかった臨界温度 の低い冷媒の使用が可能となる。 このような沸点の低い冷媒に対して、 沸点及び 臨界温度がより高く、 室温環境下で作動する凝縮器を用いて容易に凝縮すること のできる冷媒を組合せて、 2以上の複数の冷媒からなる混合冷媒とすることによ り、 室温環境下で作動する凝縮器を用いた 1元式の簡単な構造の冷凍機システム によって、 容易に超低温の冷凍能力を発揮することができる。  From this fact, it is possible to use a mixed refrigerant having a higher vapor pressure and a refrigerant component by using a compressor having the same capacity, and it is possible to improve the capacity of the refrigerator. In addition, the cooling of the mixed refrigerant by the heat exchange lowers the boiling point of the mixed refrigerant and promotes the condensation of the low-temperature component at the critical temperature. This makes it possible to use a refrigerant with a low critical temperature, which could not be directly condensed under the operating environment of the above. Combining a refrigerant with a higher boiling point and a critical temperature with respect to such a refrigerant having a lower boiling point, which can be easily condensed using a condenser operating at room temperature, is composed of two or more refrigerants. By using a mixed refrigerant, it is possible to easily exhibit ultra-low-temperature refrigeration capacity by a single-unit simple-structure refrigerator system using a condenser that operates at room temperature.
この冷凍機システムにおいては、 上記の従来の多元方式に比較して、 途中の過 程で気液分離を行なわず、 絞り弁直前の凝縮過程の延長上で圧縮機への戻り過程 の混合冷媒の潜熱及ぴ顕熱を利用して作動流体の冷却 ·凝縮の促進を行なうもの で、 簡単な構成で極めて効率良く冷却することができる。 この絞り弁直前のサイ クルは、 凝縮過程の延長上にあるため圧縮過程の圧力低下に速やかに反映し、 断 熱圧縮における温度上昇を抑制することができ、 また、 戻り過程の混合冷媒の潜 熱及ぴ顕熱を利用して冷却能力を高めることと相まって効果的にフィードバック 作用が働くため、 定常運転時は安定した状態を維持できることはもとより運転開 始時においても立ち上りが容易で速やかに定常運転に入ることが可能である。 このような本発明の冷凍機システムの特徴は、 絞り弁の前で作動流体を冷却し て圧縮機に戻る混合冷媒の温度が熱交換によって、 圧縮機直前にお!/ヽて上昇して いるにもかかわらず、 圧縮機吐出口での温度及び圧力が共に低下していることに 見ることができる。 即ち、 圧縮機の吐出圧力が著しく低下するため、 断熱圧縮に よる温度上昇は抑制されているのであり、 このような過程が直ちに冷凍サイクル にフィードバックするのである。 In this refrigerating machine system, gas-liquid separation is not performed in the middle of the process compared to the conventional multi-unit system, and the mixed refrigerant in the process of returning to the compressor is extended on the extension of the condensation process immediately before the throttle valve. Cooling and condensing working fluid using latent heat and sensible heat Thus, cooling can be performed very efficiently with a simple configuration. Since the cycle immediately before the throttle valve is an extension of the condensing process, it is promptly reflected in the pressure drop in the compression process, which can suppress the temperature rise in the thermal compression and the latent refrigerant of the mixed refrigerant in the return process. The feedback function works effectively in combination with increasing the cooling capacity using heat and sensible heat, so that a stable state can be maintained during steady-state operation, as well as easy start-up and quick steady state at the start of operation. It is possible to go into operation. Such a feature of the refrigerator system of the present invention is that the temperature of the mixed refrigerant that cools the working fluid in front of the throttle valve and returns to the compressor is increased immediately before the compressor by heat exchange. Nevertheless, it can be seen that both the temperature and pressure at the compressor outlet are decreasing. That is, since the discharge pressure of the compressor is significantly reduced, the temperature rise due to adiabatic compression is suppressed, and such a process is immediately fed back to the refrigeration cycle.
また、 圧縮機に入る前の混合冷媒は、 熱交換によって加熱されて比容積は増え る ικ 残存する高沸点成分の多レヽ液相も気ィ匕されて圧縮機の運転に支障のな 、状 態となる。  In addition, the mixed refrigerant before entering the compressor is heated by heat exchange to increase the specific volume.The remaining multi-phase liquid phase of the high-boiling components is also absorbed and does not hinder the operation of the compressor. State.
このような本発明の冷凍システムの作動を確認するため、 図 2に示す圧縮機に 戻る前の戻り冷媒による熱交換器を備えていない従来の形式の冷凍システムによ るものと対比して実験をおこなつた。  In order to confirm the operation of such a refrigeration system of the present invention, an experiment was conducted in comparison with a conventional refrigeration system without a heat exchanger using return refrigerant before returning to the compressor shown in FIG. Was done.
これらの特性を把握する実験には混合冷媒の詳細な物性の解析は必ずしも必要 ではないので、 実機の運転によって確認することとし、 冷凍機には市販の UN I D ADネ i ^製品機種名 F— 1 4 (冷凍機機種名: G L 9 9 E J ) を用い、 混合冷 媒としてブタン (C4HW ) 5 5 %、 R - 116 (C6F6) 4 5 %の混合冷媒を使用 し、 冷凍機に対する充填量を 2 0 0〜2 3 7 gの範囲で変えて、 冷凍機システム の A〜Gの各部分における温度、 圧力値を測定した。 It is not necessary to analyze the detailed physical properties of the mixed refrigerant for experiments to grasp these characteristics, so it is necessary to confirm the actual operation of the refrigerant, and use a commercially available UN ID AD product for the refrigerator. 1 4 (refrigerator model name: GL 9 9 EJ) used, butane as a mixed refrigerant (C 4 H W) 5 5 %, R - 116 (C 6 F 6) using 4 5% of the mixed refrigerant, Temperature and pressure values of each part of the refrigerator system A to G were measured while changing the filling amount to the refrigerator in the range of 200 to 2337 g.
熱交 1 0として、 これも市販品の銅製二重管を 3 mの長さとし、 外管を戻 り冷媒の流路として用いた。  For heat exchange 10, a commercially available double-walled copper pipe was 3 m long, and the outer pipe was returned and used as a refrigerant flow path.
これらの実機運転における圧力、 温度を表 1に示す。 表 1 :冷凍機システム各部分の温度及び圧力 (ブタン +R-116) Table 1 shows the pressure and temperature during these actual operation. Table 1: Temperature and pressure of each part of the refrigerator system (butane + R-116)
Figure imgf000008_0001
Figure imgf000008_0001
例:吐出圧力、 吸入圧力は圧縮機の前後で計測した絶対値。  Example: Discharge pressure and suction pressure are absolute values measured before and after the compressor.
表の数値の測定点は次のとおりである。  The measurement points of the numerical values in the table are as follows.
吐出圧力 (A) 、 吐出温度 (A) 、 吸入圧力 (B) 、 戻り温度 (B) 、 熱交難 入口温度 ( C) 、 熱交觸出口温度 (E) 、 エバポレータ入口温度 (G) 表 1に示すとおり、 絞り弁直前の冷媒の冷却に使用した戻り冷媒は、 凝縮器か らの冷媒の熱を吸収して戻り温度の欄に示すとおり圧縮機直前で比較例よりも 1 3 . 2〜 9 . 4 °Cも温度が上昇しているが、 これを圧縮機によって断熱圧縮され た後の温度は逆に 7 . 2〜4 . 2 °C低下している。 また、 同時に熱交換器出口温 度の低下と共に吐出圧力が著しく低下しているのであって、 絞り弁直前における 冷媒の温度低下が、 混合冷媒の蒸気圧を低下させ、 吐出圧力の低下と吐出温度の 低下を生じていることが判る。  Discharge pressure (A), Discharge temperature (A), Suction pressure (B), Return temperature (B), Heat exchange inlet temperature (C), Heat exchange outlet temperature (E), Evaporator inlet temperature (G) Table 1 As shown in the figure, the return refrigerant used for cooling the refrigerant immediately before the throttle valve absorbs the heat of the refrigerant from the condenser and, as shown in the return temperature column, immediately before the compressor, has a 13.2-- Although the temperature rises by 9.4 ° C, the temperature after it is adiabatically compressed by the compressor decreases by 7.2 to 4.2 ° C. At the same time, the discharge pressure drops significantly with the heat exchanger outlet temperature, and the drop in refrigerant temperature immediately before the throttle valve lowers the vapor pressure of the mixed refrigerant, causing the discharge pressure to drop and the discharge temperature to drop. It can be seen that there is a decrease in
また、 この効果は冷媒の充填量を 2 0 0 gから 2 3 7 gに増加させることによ つて達成されており、 この冷媒充填量の増加が直接絞り弁直前における冷媒の冷 却作用を高め、 その熱交 m¾出口における温度を低下させていることが判る。 到達温度については、 凝縮温度の低下につれて沸点曲線の傾きが緩やかになる ため、 充填ガスの組成の沸点近傍では到達温度差は小さくなるが、 充填量や吐出 圧力の小さレ、範囲にお!/、ても効果的に所定の低温度を達成している。  This effect has been achieved by increasing the refrigerant charge from 200 g to 237 g.This increase in the refrigerant charge directly enhances the cooling effect of the refrigerant immediately before the throttle valve. However, it can be seen that the temperature at the outlet of the heat exchange m¾ is lowered. Regarding the attained temperature, the slope of the boiling point curve becomes gentler as the condensing temperature decreases, so the difference in the attained temperature becomes smaller near the boiling point of the composition of the filling gas. However, even a predetermined low temperature is effectively achieved.
そこで、 この冷媒充填量とこれらの冷却作用との関係を見るため、 熱交 入 口と出口における冷媒の温度と充填量との関係を対比すると、 表 2のようになる。 表 2 : 冷媒充填量と吐出圧力及び戻り冷媒の温度の関係 Therefore, to see the relationship between the refrigerant charge and their cooling action, Table 2 shows the relationship between the refrigerant temperature and the charge at the heat inlet and outlet. Table 2: Relationship between refrigerant charge, discharge pressure and return refrigerant temperature
Figure imgf000009_0001
Figure imgf000009_0001
測定点:戻り冷媒熱交 入口温度: F、 戻り冷媒熱交 «出口温度: D 即ち、 冷媒充填量が増加すると、 既に冷凍機能力上適正充填量であるため蒸発 器入口温度はあまり低下せず、 冷凍庫庫内温度も低下しないが、 熱交換器出口に おける冷媒の温度は著しく低下している。  Measuring point: Return refrigerant heat exchange Inlet temperature: F, Return refrigerant heat exchange «Outlet temperature: D In other words, if the refrigerant charge increases, the evaporator inlet temperature does not decrease much because it is already an appropriate charge for refrigeration function However, the temperature in the freezer does not drop, but the temperature of the refrigerant at the outlet of the heat exchanger drops significantly.
ここでは沸点の高いブタンが蒸発しきれずに循環してその気ィ匕しきれないプタ ンを含む湿潤ガスが熱交換器に達している状態にあり、 熱交換器内で圧縮機から の冷媒と熱交換して気化することにより、 冷媒の冷却に大きく寄与してレ、る。 この状態は、 通常非共沸系混合冷媒を用いる冷凍機システムにおいてはたびた ぴ発生し、 霜付と称する状態となる。 このような状態となると冷凍機の冷凍能力 に寄与せずに冷凍機の運転効率が低下するばかりでなく、 蒸発器から圧縮機に至 る配管周りに霜付を生じ、 冷凍設備の破損の原因ともなる。  Here, butane having a high boiling point circulates without being completely evaporated, and the wet gas containing the irreversible benzene reaches the heat exchanger, and the refrigerant from the compressor in the heat exchanger is removed. By vaporizing through heat exchange, it greatly contributes to cooling of the refrigerant. This state often occurs in a refrigerator system that normally uses a non-azeotropic mixed refrigerant, and is in a state called frost. In such a situation, not only does the refrigerator's refrigeration capacity not contribute to the refrigeration capacity, but also the refrigeration unit's operating efficiency decreases, and frost forms around the piping from the evaporator to the compressor, causing damage to the refrigeration equipment. Also.
本発明は、 この霜付現象を解消するのみでなく、 その冷凍能力に寄与しない戻 り冷媒成分の冷却能力を利用して吐出圧力を著しく低下させてその負荷を軽減し、 冷凍機の運転効率を向上することができる。  The present invention not only eliminates this frosting phenomenon, but also significantly reduces the discharge pressure by utilizing the cooling capacity of the return refrigerant component that does not contribute to the refrigeration capacity, thereby reducing the load. Can be improved.
表 3に R— 1 1 6、 ブタンの物理的性質を示す。  Table 3 shows the physical properties of R-116, butane.
表に記載されているとおり、 ブタンの沸点は一 0. 5 °Cであるから、 上記の充填 量 2 3 7 gの場合、 - 2 4. 6 °Cの冷媒の温度はブタンの潜熱に加えて冷媒の顕 熱によるものが大きいことが判る。 表 3 ブ タ ン 、 R - 6 の 物 理 的 性 質  As shown in the table, since the boiling point of butane is 0.5 ° C, the temperature of the refrigerant at -24.6 ° C is added to the latent heat of butane in the case of the above filling amount of 237 g. It can be seen that the large amount is due to the sensible heat of the refrigerant. Table 3 Physical properties of butane and R-6
化 学 式 沸 点 臨界温度 気 圧  Chemical formula Boiling point Critical temperature Gas pressure
(。C、 l atm) (。c) (atm, 20°C) ブ タ ン - 0 . 5 1 5 3 . 2 2. 1 (.C, l atm) (.c) (atm, 20 ° C) Butane-0.5 1 5 3.2.2.1
R— 1 1 6 C F 3 C F 3 - 7 8 . 2 1 9 . 8 5 3 0. 4 ブタン一 R 116系の混合冷媒は、 R - 116の蒸気圧が比較的低いため上記 のように本発明のシステムによらなくとも冷凍機システムの実機運転が可能であ るが、 本発明の冷凍機システムは凝縮過程における温度及び圧力を効果的に低下 させるため、 通常の室温の環境下では凝縮過程で高圧を要したり、 臨界温度が低 いため従来の冷凍機の能力においては液化できない冷媒を使用して、 超低温を実 現することができる。 R— 1 1 6 CF 3 CF 3-7 8.2 19.8 5 3 0.4 Since the butane-R116 mixed refrigerant has a relatively low vapor pressure of R-116, the actual operation of the refrigerator system can be performed without using the system of the present invention as described above. Because the cooling system effectively reduces the temperature and pressure during the condensation process, high pressure is required during the condensation process under normal room temperature environment, and the refrigerant that cannot be liquefied with the capacity of the conventional refrigerator due to the low critical temperature is used. It can be used to achieve very low temperatures.
そこで, ブタン一 Rl 16系混合冷媒に替えてブタン一 R 23系混合冷媒につ いて、 冷凍機システムを同じく UN I DAD社製機種名 F— 14 (冷凍機種名:  Therefore, instead of the butane-Rl 16 mixed refrigerant, the butane-R23 mixed refrigerant was replaced with a refrigerator system model F-14 (manufactured by UN I DAD).
GL99E J) の冷凍機と市販の銅製二重管からなる熱交難を用い、 混合冷媒 としてブタン (C4H10) 72%、 R-23 (CHF3) 28%の混合冷媒を冷凍 GL99E J) refrigerator and a commercially available copper double tube heat exchanger to freeze a mixed refrigerant of 72% butane (C 4 H 10 ) and 28% R-23 (CHF 3 ) as a mixed refrigerant
機に対する充填量を 140〜270 gの範囲で変えて冷凍機システムの A〜Hの 各部分における温度、 圧力を測定した。 The temperature and pressure at each part A to H of the refrigerator system were measured while changing the filling amount of the refrigerator in the range of 140 to 270 g.
¾~"4及び 5にそのデータ及びブタンと R— 23の物理的性質を示す。 表 4 :冷凍機システム各部分の温度及び圧力 (ブタン +R - 23) 吐出圧力 吸入圧力 熱交藤 熱交鶴 戻り冷媒 戻り冷媒 庫內温度 充填量 ¾ ~ "4 and 5 show the data and physical properties of butane and R-23. Table 4: Temperature and pressure of each part of refrigerator system (butane + R-23) Discharge pressure Suction pressure Heat exchange Heat exchange Crane Returned refrigerant Returned refrigerant Storage temperature Filling amount
(kg/cm2) (cmHg) 入口温度 出口温度 熱交鶴 熱交鶴 (。C) (g) (kg / cm 2 ) (cmHg) Inlet temperature Outlet temperature Heat-exchange crane Heat-exchange crane (.C) (g)
(。C) (°C) 入口 出口  (.C) (° C) Inlet Outlet
(°C) (°C)  (° C) (° C)
15.5 20 30.4 24.4 17.9 30.2 -27 140 15.5 20 30.4 24.4 17.9 30.2 -27 140
14.5 5 29.8 - 0.8 -17.0 29.2 -50 150 本 11.0 0 29.7 -17.5 -26.7 26.8 -69.7 160 14.5 5 29.8-0.8 -17.0 29.2 -50 150 11.0 0 29.7 -17.5 -26.7 26.8 -69.7 160
10.0 0 29.8 -22 -26.8 19.3 - 73.5 170 10.0 0 29.8 -22 -26.8 19.3-73.5 170
9.5 0 30.2 -24 一 30.9 -0.9 -74.2 1809.5 0 30.2 -24 1 30.9 -0.9 -74.2 180
9.5 0.1 30.3 - 23.4 -30.9 -1.9 -73.4 1909.5 0.1 30.3-23.4 -30.9 -1.9 -73.4 190
9.5 0.2 31.3 - 23.3 - 30.2 -4.8 -72.0 2009.5 0.2 31.3-23.3-30.2 -4.8 -72.0 200
10.0 0.3 32.9 -22.3 -29.2 -2.6 -70.1 210 明 10.5 0.5 34.6 -21.4 -28.9 -0.4 -67.9 220 10.0 0.3 32.9 -22.3 -29.2 -2.6 -70.1 210 Bright 10.5 0.5 34.6 -21.4 -28.9 -0.4 -67.9 220
11.0 0.6 35.0 -21.6 -28.9 1.7 -66.5 230 11.0 0.6 35.0 -21.6 -28.9 1.7 -66.5 230
11.25 0.6 35.3 -22.5 -29.5 2.8 -66.0 24011.25 0.6 35.3 -22.5 -29.5 2.8 -66.0 240
12.0 0.7 35.8 -24.2 -30.7 3.4 -65.5 25012.0 0.7 35.8 -24.2 -30.7 3.4 -65.5 250
12.25 0.8 35.6 -24.7 -30.7 3.5 -65.0 26012.25 0.8 35.6 -24.7 -30.7 3.5 -65.0 260
12.5 0.8 35.3 -25.4 -31.4 3.7 -64.4 270 例:吐出圧力、 吸入圧力は圧縮機の前後で計測した絶対値。 12.5 0.8 35.3 -25.4 -31.4 3.7 -64.4 270 Example: Discharge pressure and suction pressure are absolute values measured before and after the compressor.
測定点:戻り冷媒熱交換器入口 (F) 、 戻り冷媒熱交換器出口 (D) 、 庫内温度 (H) 表 5 : ブ タ ン 、 R - 2 3 の 物 理 的 性 質  Measurement points: Return refrigerant heat exchanger inlet (F), return refrigerant heat exchanger outlet (D), chamber temperature (H) Table 5: Physical properties of butane, R-23
Figure imgf000011_0001
表 5に見るとおり、 R 2 3は沸点が R— 1 1 6よりも低く、 臨界温度が高いが、 一方蒸気圧がすこぶる高いためこれらの混合系冷媒としても凝縮過程の温度, 圧 力が上昇して従来の冷凍機の能力では使用困難である。
Figure imgf000011_0001
As shown in Table 5, the boiling point of R23 is lower than that of R-116, and the critical temperature is high. However, the vapor pressure is extremely high, but the temperature and pressure of the condensing process rise even for these mixed refrigerants. Therefore, it is difficult to use with the capacity of the conventional refrigerator.
本発明の冷凍システムにおいては, 上記の表 4に見るとおり、 冷媒充填量が増 加するにつれて熱交 における戻り冷媒の温度が著しく低下し、 これらと連動 して吐出圧力及ぴ熱交 β出口の冷媒温度が著しく低下することが判る。 このよ うにして、 ブタンー R 2 3系冷媒の冷凍能力を最大限に発揮することができる。 この場合も上記の場合と同様に充填量からは戻り冷媒の冷却能力上ほぼ一定の適 正範囲があり、 それ以上冷媒充填量を増加しても冷凍能力は向上しない。  In the refrigeration system of the present invention, as shown in Table 4 above, the temperature of the return refrigerant in the heat exchange significantly decreases as the refrigerant charge increases, and in conjunction with these, the discharge pressure and the heat exchange β outlet It can be seen that the temperature of the refrigerant drops significantly. In this way, the refrigeration capacity of the butane R23-based refrigerant can be maximized. In this case, as in the case described above, there is an almost constant appropriate range in the cooling capacity of the returned refrigerant from the filling amount, and the refrigeration capacity does not improve even if the filling amount of the refrigerant is further increased.
以上の例では、 2成分系の混合冷媒を市販の冷凍機に充填して実機運転によつ てその作用効果を確認したが、 これらの作用は、 非共沸混合冷媒の組み合わせや これらの冷媒の種類の広い範囲において共通であって、 又その組み合わせる冷媒 の種類の数も 2以上の数において同様の作用 ·効果を発揮することが明らかであ る。  In the above example, a two-component mixed refrigerant was charged into a commercially available refrigerator, and its operation and effect were confirmed by actual operation.These effects were obtained by combining non-azeotropic mixed refrigerants and these refrigerants. It is clear that the same operation and effect are exhibited when the number of types of refrigerants to be combined is two or more.
すなわち、 本発明の原理は、 混合冷媒の気液平衡曲線の沸点曲線に見るように、 非共沸系混合冷媒の凝縮過程における温度低下に伴って液相の組成が低沸点成分 側に移行し、 またそれによつて液相の沸点もまた低下することを利用するもので あり、 冷凍温度をより低下することが可能となると共に、 所要の圧縮圧力をも低 下させて冷凍能力を著しく向上することができる。 また、 これらの効果は、 室温 で液化できないような沸点の低い、 あるいは蒸気圧の高い冷媒を混合冷媒として 容易に扱うことを可能とするもので、 これらの冷媒の種類や数は目的とする冷凍 機の維持温度や冷凍機圧縮機などの能力に応じて、 沸点、 臨界温度'臨界圧力の 関係から選定して適宜に組合せることができる。 That is, the principle of the present invention is that, as seen from the boiling point curve of the gas-liquid equilibrium curve of the mixed refrigerant, the composition of the liquid phase shifts to the low boiling point component side as the temperature decreases in the condensation process of the non-azeotropic mixed refrigerant. In addition, it utilizes the fact that the boiling point of the liquid phase also decreases, thereby making it possible to further lower the refrigeration temperature and significantly reduce the required compression pressure to significantly improve the refrigeration capacity. be able to. In addition, these effects are obtained by using a refrigerant with a low boiling point or a high vapor pressure that cannot be liquefied at room temperature as a mixed refrigerant. The type and number of these refrigerants are selected based on the relationship between the boiling point, critical temperature and critical pressure according to the target refrigerator maintenance temperature and the capacity of the refrigerator compressor, etc. And can be appropriately combined.
又、 冷凍システムの構成も基本的に上記実施例を踏まえて、 より低温用には熱 交換器中での低温度沸点冷媒の凝縮過程を促進するために、 より容量の大きい熱 交 構造としたり、 コンパクトな構成とするために 2重管に替えて螺旋管や積 層構造のものを採用することもできる。 産業上の利用可能十生  In addition, the configuration of the refrigeration system is basically based on the above embodiment, and for a lower temperature use, a heat exchange structure with a larger capacity may be used to promote the condensation process of the low-temperature boiling point refrigerant in the heat exchanger. However, in order to achieve a compact configuration, a spiral tube or a laminated structure may be used instead of the double tube. Industrial availability
以上のように、 本発明にかかる冷凍システムは、 簡単な構成で且つ効率的に超 低温度を達成することができるものであり、 医療用の生体組織の保存など各種の 分野において広く用いることができる。  As described above, the refrigeration system according to the present invention can achieve an ultra-low temperature efficiently with a simple configuration, and can be widely used in various fields such as preservation of biological tissue for medical use. it can.

Claims

求 の Sought
1 . 2以上の冷媒成分を含む非共沸系混合冷媒を用いた冷凍システムにおいて、 圧縮機、 凝縮器、 絞り弁、 蒸発器を経て圧縮機に帰還する循環経路内の、 蒸発器 力 ^圧縮機に帰還する低温の作動流体によつて凝縮器から絞り弁に至る間の作動 言青 In a refrigeration system using a non-azeotropic mixed refrigerant containing 1.2 or more refrigerant components, the evaporator power in the circulation path returning to the compressor via the compressor, condenser, throttle valve, and evaporator ^ compression The operation from the condenser to the throttle valve by the cold working fluid returning to the machine
流体を冷却して低沸点成分の液化を促進することを特徴とする冷凍システム。 A refrigeration system for cooling a fluid to promote liquefaction of low-boiling components.
2. 上記蒸発器から絞り弁に至る間の作動流体を冷却する低温の作動流体が、 液 状の高沸点成分により湿潤状態にあることを特徴とする請求の範囲第 1記載の冷 凍システム。 2. The refrigeration system according to claim 1, wherein the low-temperature working fluid for cooling the working fluid from the evaporator to the throttle valve is in a wet state by a liquid high-boiling component.
3 . 上記蒸発器から圧縮機に帰還する低温の作動流体によつて凝縮器から絞り弁 に至る間の作動流体を冷却することにより、 圧縮機からの作動流体の吐出圧力を 低下させることを特徴とする請求の範囲第 1項又は第 2項記載の冷凍システム。  3. The discharge pressure of the working fluid from the compressor is reduced by cooling the working fluid from the condenser to the throttle valve with the low-temperature working fluid returning from the evaporator to the compressor. 3. The refrigeration system according to claim 1 or claim 2.
4. 上記非共沸系混合冷媒の少なくとも一の成分の臨界温度が略室温以下である ことを特徴とする請求の範囲第 1、 2又は 3項記載の冷凍システム。 4. The refrigeration system according to claim 1, wherein the critical temperature of at least one component of the non-azeotropic mixed refrigerant is substantially equal to or lower than room temperature.
PCT/JP2001/002440 1999-09-30 2001-03-27 Freezing system using non-azeotropic type mixed refrigerant WO2002077543A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27919299A JP2001099498A (en) 1999-09-30 1999-09-30 Refrigeration system using nonazeotrope refrigerant
PCT/JP2001/002440 WO2002077543A1 (en) 1999-09-30 2001-03-27 Freezing system using non-azeotropic type mixed refrigerant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27919299A JP2001099498A (en) 1999-09-30 1999-09-30 Refrigeration system using nonazeotrope refrigerant
PCT/JP2001/002440 WO2002077543A1 (en) 1999-09-30 2001-03-27 Freezing system using non-azeotropic type mixed refrigerant

Publications (1)

Publication Number Publication Date
WO2002077543A1 true WO2002077543A1 (en) 2002-10-03

Family

ID=26345053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002440 WO2002077543A1 (en) 1999-09-30 2001-03-27 Freezing system using non-azeotropic type mixed refrigerant

Country Status (2)

Country Link
JP (1) JP2001099498A (en)
WO (1) WO2002077543A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577619A1 (en) * 2002-12-03 2005-09-21 Nihon Freezer Co., Ltd. Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
EP1669694A1 (en) * 2003-09-05 2006-06-14 Daikin Industries, Ltd. Freezer device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099498A (en) * 1999-09-30 2001-04-13 Dairei:Kk Refrigeration system using nonazeotrope refrigerant
JP2003013049A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
JP2003013050A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
KR100833696B1 (en) * 2005-04-13 2008-05-29 니혼 프리자 가부시키가이샤 Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
JP6957026B2 (en) * 2018-05-31 2021-11-02 伸和コントロールズ株式会社 Refrigeration equipment and liquid temperature control equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241589A (en) * 1992-12-04 1994-08-30 Mitsuhiro Kanao Counter measure for chlorofludrocarbon in apparatus
JPH06317358A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Refrigerator
JPH0748563A (en) * 1993-08-03 1995-02-21 Tabai Espec Corp Mixed refrigerant
JPH0748562A (en) * 1993-08-05 1995-02-21 Nippon Furiithe- Kk Mixed refrigerant based on fluorocarbon
JPH08166172A (en) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd Refrigerating equipment
JPH09151370A (en) * 1995-11-30 1997-06-10 Asahi Glass Co Ltd Mixed cooling medium and cooling device using the same
JPH10332212A (en) * 1997-06-02 1998-12-15 Toshiba Corp Refrigeration cycle of air conditioner
JP2000205676A (en) * 1998-12-30 2000-07-28 Praxair Technol Inc Method of providing refrigeration
JP2001099498A (en) * 1999-09-30 2001-04-13 Dairei:Kk Refrigeration system using nonazeotrope refrigerant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241589A (en) * 1992-12-04 1994-08-30 Mitsuhiro Kanao Counter measure for chlorofludrocarbon in apparatus
JPH06317358A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Refrigerator
JPH0748563A (en) * 1993-08-03 1995-02-21 Tabai Espec Corp Mixed refrigerant
JPH0748562A (en) * 1993-08-05 1995-02-21 Nippon Furiithe- Kk Mixed refrigerant based on fluorocarbon
JPH08166172A (en) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd Refrigerating equipment
JPH09151370A (en) * 1995-11-30 1997-06-10 Asahi Glass Co Ltd Mixed cooling medium and cooling device using the same
JPH10332212A (en) * 1997-06-02 1998-12-15 Toshiba Corp Refrigeration cycle of air conditioner
JP2000205676A (en) * 1998-12-30 2000-07-28 Praxair Technol Inc Method of providing refrigeration
JP2001099498A (en) * 1999-09-30 2001-04-13 Dairei:Kk Refrigeration system using nonazeotrope refrigerant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577619A1 (en) * 2002-12-03 2005-09-21 Nihon Freezer Co., Ltd. Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
EP1577619A4 (en) * 2002-12-03 2010-06-23 Nihon Freezer Co Ltd Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
EP1669694A1 (en) * 2003-09-05 2006-06-14 Daikin Industries, Ltd. Freezer device
EP1669694A4 (en) * 2003-09-05 2009-04-08 Daikin Ind Ltd Freezer device
US7640762B2 (en) 2003-09-05 2010-01-05 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
JP2001099498A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP5927339B2 (en) Dual refrigeration equipment
CN101446455B (en) Method for preparing multi-temperature refrigerator with variable evaporation temperature
JP5995990B2 (en) Refrigeration equipment
WO2014030236A1 (en) Refrigeration device
CN101025312A (en) Method for making multi-temperature refrigerator with variable vapourating temperature
CN102080903A (en) Refrigerating apparatus
JP5844505B1 (en) Non-azeotropic refrigerant for ultra low temperature
JP3934140B2 (en) Non-azeotropic refrigerant
JP2017096503A (en) Binary refrigeration device
WO2002077543A1 (en) Freezing system using non-azeotropic type mixed refrigerant
US5647224A (en) Air conditioner and heat exchanger therefor
WO2001023494A1 (en) Refrigerant composition and refrigerating circuit employing the same
JP2007085729A (en) Refrigerator system using non-azeotropic refrigerant
JP6682081B1 (en) Freezing method
US20190024948A1 (en) Deep freezer
JPH0678851B2 (en) Refrigeration equipment
JP2009036508A (en) Supercooling system
TW500902B (en) Refrigeration system using non-azeotropic mixing refrigerants
JPH08233386A (en) Heat exchanger
US20220325158A1 (en) Non-azeotropic mixed refrigerant and refrigerating apparatus using non-azeotropic mixed refrigerant
JP2012236884A (en) Mixed refrigerant and air conditioner using the same
JP4270802B2 (en) Ultra-low temperature refrigeration equipment
JP2009024998A (en) Supercooling device
JPH08303882A (en) Method of operating heat pump using new alternative refrigerant gas hfc
Atamtürk et al. Thermodynamic Analysis of an Auto-Cascade Freezer Cycle at Different Loads of Evaporators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP