JPH06241589A - Counter measure for chlorofludrocarbon in apparatus - Google Patents

Counter measure for chlorofludrocarbon in apparatus

Info

Publication number
JPH06241589A
JPH06241589A JP4358110A JP35811092A JPH06241589A JP H06241589 A JPH06241589 A JP H06241589A JP 4358110 A JP4358110 A JP 4358110A JP 35811092 A JP35811092 A JP 35811092A JP H06241589 A JPH06241589 A JP H06241589A
Authority
JP
Japan
Prior art keywords
refrigerant
chlorofluorocarbon
butane
mixed
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358110A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kanao
満博 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4358110A priority Critical patent/JPH06241589A/en
Publication of JPH06241589A publication Critical patent/JPH06241589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To increase a quantity of chlorefluorocarbon and to prevent environment pollution of chlorofluorocarbon gas by adding, to chlorofluorocarbon refrigerant, a mixed refrigerant of butane chlorofluoro carbon and silicone, the quantity of the mixed refrigerant being almost the same as or less then that of the chlorofluoro carbon refrigerant. CONSTITUTION:Mixed refrigerant of butane chlorofluorocarbon and silicone are added to chlorofluorocarbon refrigerant contained in apparatuses using present chlorofluorocarbon. The quantity of the mixed refrigerant is almost the same as or less than that of the chlorofluorocarbon refrigerant. This newly produced refrigerant has no ozone environment pollution. If light chlorofluorocarbon refrigerant is bonded to heavy butane refrigerant to be increased in weight, it is rotatably accelerated by the solar light in the low- height air to be decomposed to solve the ozone problem. The chlorofluorocarbon to be mixed with the butane is not limited to low-cost R-22, but may include R-14CF4, R-23CHF3, or C2H4F2 of part of component of R-500.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾン層を破壊するフロ
ンの対策に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to countermeasures against CFCs that destroy the ozone layer.

【0002】[0002]

【従来の技術】従来オゾン層破壊の問題を起こす現在使
用中の機器内のすべてのフロン媒体に関する対策は今の
ところ見出せない。従来有機化合物にシリコーンを添加
した重い媒体と、重いブタンC10にフロン冷媒
C、H、Cl、Fを添加して重く難燃性にした媒体があ
り、この媒体は本発明人が開発している。特願平4−1
94490及び特願平4−2906609であり、いず
れも重い優秀な媒体である。次にC及びC
Clが公害の少ない冷媒として開発されたと聞き
及んでいる。しかし圧力が高くて従来の自動車用、一般
用には不向きで新フロンの高い圧力に合った新製品の機
器にしか使用できないとのことであるが、詳細は明らか
でない。Cは従来の塩素を持たないフロンC
(R−14)沸点−128.0、CHF(R−2
3)沸点−82.2があるので納得できる。一方C
の方は炭素原子数が多く、重く、圧力も低く、
一般には使用可能と思われるが塩素分も多くオゾン公害
が少ないとは云い難い結合である。又、単分子としての
原子の組合せには限界があり、公害のない単分子結合の
重合は極めて困難である。従って重合によるオゾン公害
のないフロン冷媒を得るには高価格という問題が生じて
くるのである。
2. Description of the Related Art It is not possible to find a countermeasure for all fluorocarbon media in equipment currently in use, which conventionally causes the problem of ozone depletion. Conventionally, there are a heavy medium in which silicone is added to an organic compound, and a medium in which a heavy butane C 4 H 10 is added with CFC H, Cl, and F refrigerants to make it heavy and flame-retardant. This medium was developed by the present inventor. is doing. Japanese Patent Application 4-1
94490 and Japanese Patent Application No. 4-2906609, both of which are excellent heavy media. Then C 2 F 4 H 3 and C 2
I hear that Cl 2 F 2 was developed as a low-pollution refrigerant. However, it is said that the high pressure makes it unsuitable for conventional automobiles and general use, and that it can only be used for new product equipment that meets the high pressure of the new Freon, but details are not clear. C 2 F 4 H 3 is a conventional chlorine-free Freon C
F 4 (R-14) boiling point-128.0, CHF 2 (R-2
3) The boiling point is -82.2, which is convincing. On the other hand C 2 C
l 2 F 2 has more carbon atoms, is heavier, and has lower pressure,
Generally, it can be used, but it is hard to say that it has a large amount of chlorine and little ozone pollution. Further, there is a limit to the combination of atoms as a single molecule, and it is extremely difficult to polymerize a single molecule bond without pollution. Therefore, in order to obtain a CFC refrigerant that does not cause ozone pollution due to polymerization, the problem of high price arises.

【003】[003]

【発明が解決しようとする課題】フロン公害を起こす現
在使用中のフロンをフロン公害のない媒体にする。
[Problems to be Solved by the Invention] CFCs which cause CFC pollution are used as a medium free from CFC pollution.

【004】[004]

【課題を解決するための手段】従来の技術、特願平4−
194490及び特願平4−290669により現フロ
ンを使用する機器に内蔵するフロン媒体に適量のブタ
ン、フロン、シリコーンからなるブタン混合冷媒を添加
してオゾン公害のない媒体に変化させる。自動車用のル
ームクーラー、これから老朽化していく家電用機器の冷
凍装置、営業用の大型冷凍機、ビルの大型ルームクーラ
ーの老朽化とこれから大変なフロン公害が発生すること
になる。現在使用中のオゾン問題を起こすフロン媒体に
は全く対策をしていないと云っても過言ではないので、
一刻も早い対処が必要である。次に塩素は岩塩としても
存在し、フロンの組成のフッ素は岩石の形で珪素と共存
していたのであるからこれ等の元素を共存させれば重い
物質になる。又、塩化ビニールを焼却して大量の塩素を
発散させてもオゾン層の問題は起こしていない。単体の
塩素は空気中の水分と結合して塩酸となり、海水や地中
に溶け込んでいるからである。炭素原子数の少ないフロ
ン媒体は軽くオゾン層に到達しやすく、重い塩素まで運
んでオゾンの破壊問題を起こしているのである。そこで
媒体の炭素原子数を多くすれば重いガスとなって問題は
解決してくれるのである。又、フッ素と珪素とは岩石の
形で元々共存していたのであるから馴染み易く、難燃性
の重いブタン混合媒体にしているのである。又、ブタン
とフロンを混合して媒体の圧力が変化しているのは分子
結合を示しているのである。又、分子結合が起きている
証拠はR−22にもブタンにも属さない圧力を示すこと
である。次に炭化水素の炭素の原子数が多くなる程重
く、粘い潤滑油に近づいていく。そこで例えば軽油に灯
油を混合すると軽油が持つ強い引力圏内に入って灯油の
揮発性は失われると同様、極めて揮発性の高いフロン冷
媒も揮発の遅いブタンと混合すれば容易に分子結合して
ブタンの強い引力圏内に入り、分解の遅いブタン並の重
い冷媒となってしまうのである。又、異なる液体を混合
して層状になるのであれば分離しているのであって、完
全に透明体になっているのであれば分離ではない。いず
れにしても問題を起こすフロンの成分はブタンで希釈さ
れるのでフロンの絶対量は少なくなり問題を少なくする
のである。問題は自動車用クーラー及び一般用クーラー
に内蔵されている旧冷媒の対策である。自動車用クーラ
ーの場合の圧縮機が持つ高速回転するメカニカルシール
は基本的に完全シールできるものではない。従ってガス
漏れの差、冷媒の補充の時期の差はあってもいずれは冷
媒の補充が必要であるので、補充の主旨を公開してブタ
ン混合冷媒の補充をすれば割合簡単にオゾン公害対策の
実施が可能となるのである。又、家庭用クーラーの場合
でもクーラーの内蔵する旧フロンの多少にかかわらず老
朽化を考えて対処しなければならないので、旧冷媒の一
部を抜き取りブタン混合冷媒の適量を添加すればフロン
問題は解消されていくことになるのである。次に塩素原
子のふるまいについて説明する。燃焼を与える酸素分子
と塩素原子Clは強大な原子回転を持ち、他の原子
と結合する際に極めて多量の熱が発生したり爆発するこ
とは知られている。そこで例えばR−12 CCl
の分子結合を見ると2個のCl原子を球形のモーター
と仮定すれば分子結合の接合部を介して(歯車を連想)
2個のF原子を加速するから軽くなっているのである。
原子が高速回転に移行して軽くなるのは原子の質量(物
性又は質量性)が速度に変化していくためである。この
軽い問題を重くしてくれるのが炭素原子である。次にオ
ゾンOがOより軽いのはOの電子の結合度が浅く
接触している程度であるから結合部の電子干渉は少なく
抵抗が少ないので各原子の原子回転は早く軽い。電子接
触程度の結合にしているのは、2個の分子には容易にな
れても3個では3個並んだ中心の原子の重力は半減され
るので分子としての結合引力は弱い。又、引力結合が弱
いのは割り切れない奇数が原因の一つである。従ってこ
の結合の弱いOで構成されるオゾン層は軽いフロン冷
媒と分子結合をしてオゾン層の破壊が生じているのであ
る。従って軽いフロン冷媒も重いブタン冷媒と結合させ
て重くしてやれば低空に於いて太陽光で回転加速され分
解することになり、オゾン問題は解決することになるの
である。ブタン冷媒にはブタンとプロパンとの混合冷媒
がドイツで実施中であるが燃焼の問題が残る。軽い重い
の説明できる論説や原子物理学はない。現象の解明を不
明にしているのは論文の後おいをする物理学にも数学に
も属さない微分積分であることを公開中である。次にR
−12 CClは水分の溶解度が低く、R−22
の1/10にすぎない。従って空気中の水分と結合し難
く軽い冷媒となってオゾンの破壊問題を起こしているの
である。一方冷媒R−22 CHClFは水分の溶解
度は高く未乾燥のまま冷凍機に使用すると塩酸が発生し
て発錆する実例によっても明らかなようにR−22を空
気中に放出しても同様であって、大気中の水分と反応し
て重い塩酸が生じるのであるから塩化ビニールを焼却し
たと同様R−22は地上で一時的に極めて僅かな塩素公
害を起こしてもオゾンの破壊公害はおこさないのであ
る。又、このR−22の発錆性も油性を持つブタンC
10が潤滑油と共に改良してくれるのである。R−2
2の冷却能力はR−12の50〜60%増であることに
よりブタン、R−22、R−12との混合冷媒の冷却能
力を知ることができる。この三成分になった混合冷媒は
分解に当ってブタンC10の水素はR−12CCl
のClと結合してオゾン公害につながらない重
い塩酸になる可能性がありR−22のHClが更に塩酸
になる可能性を強くしている。次に現在使用中の冷凍機
器内の冷媒の抜取り作業である。パッキン系が完全でガ
ス漏れを起こしていない冷凍機器に於いては旧冷媒の一
部を抜き取らなくてはならない。しかし抜き取った冷媒
の多くはガス状態であるのでガスのままでは巨大な容器
が必要となるのでガスを抜き取ると同時に液化できる液
化装置付の公害対策車が必要である。このようにして集
められたR−12は販売店からメーカーに買いとっても
らい冷媒メーカーに処理してもらわなければならない
が、現在フロンの抜取りは逆に代金を支払って抜取り作
業をしてもらわなくてはならないことと、たちまち身体
には障害が生じていないので代金まで支払ってR−12
の抜取りや交換に応じる人はいないと思われるが、義務
化すれば問題は別である。又R−12の生産を中止した
との情報はあってもR−12を公害のない冷媒に作りか
える技術及び処分方法についての情報はない。現在莫大
な自動車、冷凍機器等に保有されているR−12につい
ては全く未解決のままで野放しに破壊されている今、新
冷媒を使用する新車や新冷凍機器や新冷媒の生産が先か
R−12の処理が先かよく考えなくてはならないのであ
る。尚、ブタンと混合するフロンは安価なR−22に限
ったものではなくR−14 CF、R−23CH
、その他R−500の成分の一部であるC
でもよいのであるが、価格の問題がある。次に家庭用
クーラーのガス漏れを起こし易い圧縮機、凝縮機は屋外
にあるので、燃え易い冷媒を使用しても問題は少ない。
又、漏れがあったとしても普通はきわめて僅かであり、
地震でもない限り大きな漏れはない一方、火災に至るよ
うな自動車事故の場合はガソリンが引火しているのであ
るから、冷媒であっても同様である。冷媒の消炎試験の
ようにわざわざ着火燃焼させるような人為的事故はあま
り考えられないので、不燃対策となるフッ素系冷媒のブ
タンへの添加はできるだけ少ないほうがよい。火災事故
の想定にこだわりすぎると地球サイドの大きな公害対策
を失うことになるのである。尚、ブタン等の炭化水素を
難燃性にしてくれるのはフッ素原子であり、フッ素原子
以外は見出せない。
[Means for Solving the Problems] Prior art, Japanese Patent Application No. 4-
According to 194490 and Japanese Patent Application No. 4-290669, an appropriate amount of butane, freon, and butane mixed refrigerant composed of silicone is added to a freon medium incorporated in a device that uses the present freon to change to a medium that does not cause ozone pollution. Room coolers for automobiles, refrigeration equipment for aging household appliances, large refrigerators for commercial use, and large room coolers for buildings will become obsolete and will cause serious CFC pollution. It is no exaggeration to say that we are not taking any measures against the CFC media that cause the ozone problem that we are currently using.
It is necessary to deal with it as soon as possible. Next, chlorine also exists as rock salt, and fluorine in the composition of CFC coexisted with silicon in the form of rock, so if these elements coexist, it becomes a heavy substance. Moreover, the problem of the ozone layer does not occur even if vinyl chloride is incinerated to release a large amount of chlorine. This is because elemental chlorine combines with water in the air to form hydrochloric acid, which dissolves in seawater and the ground. The CFC medium, which has a small number of carbon atoms, is light and easily reaches the ozone layer, and even carries heavy chlorine to cause ozone depletion. Therefore, if the number of carbon atoms in the medium is increased, it becomes a heavy gas and the problem is solved. Further, since fluorine and silicon originally coexisted in the form of rock, they are made into a butane mixed medium which is easy to be familiar with and is flame retardant and heavy. Also, the fact that the pressure of the medium changes when butane and freon are mixed indicates a molecular bond. Evidence that a molecular bond has occurred is to show a pressure that does not belong to R-22 or butane. Next, as the number of carbon atoms in the hydrocarbon increases, it becomes heavier and closer to a viscous lubricating oil. Therefore, for example, if kerosene is mixed with diesel oil, it will enter the strong attraction range of diesel oil and lose the volatility of kerosene. It enters the strong attraction range of and becomes a heavy refrigerant as slow as decomposition of butane. Further, if different liquids are mixed to form a layer, they are separated, and if they are completely transparent, they are not separated. In any case, the CFC component causing the problem is diluted with butane, so that the absolute amount of CFC is reduced and the problem is reduced. The problem is how to deal with the old refrigerant contained in the automobile cooler and the general-purpose cooler. In the case of an automobile cooler, the mechanical seal that a compressor rotates at high speed is basically not a perfect seal. Therefore, even if there is a difference in gas leakage or a difference in the timing of replenishing the refrigerant, it is necessary to replenish the refrigerant eventually. It can be implemented. Also, even in the case of household coolers, it is necessary to consider the deterioration of the old CFC built in the cooler regardless of how much it is, so if you extract a part of the old refrigerant and add an appropriate amount of butane mixed refrigerant, the CFC problem will not occur. It will be resolved. Next, the behavior of the chlorine atom will be described. It is known that the oxygen molecule O 2 which gives combustion and the chlorine atom Cl have a strong atomic rotation, and generate an extremely large amount of heat or explode when they combine with other atoms. So, for example, R-12 CCl 2 F
See 2 of molecular bonds the two Cl atoms through the junction of the molecular bonds assuming spherical motor (associative gear)
It becomes lighter because it accelerates two F atoms.
Atoms shift to high-speed rotation and become lighter because the mass (physical properties or mass properties) of atoms changes to speed. It is the carbon atom that exacerbates this minor problem. Next, the reason why ozone O 3 is lighter than O 2 is that the degree of electron bonding of O 3 is shallow and in contact with each other. Therefore, the electron rotation of each atom is fast and light because the electron interference of the bond is small and the resistance is small. Although it is easy for two molecules to be bonded by the degree of electron contact, the gravity of the central atom arranged in three is reduced by half in three, so the bond attraction as a molecule is weak. One of the reasons why the attractive force coupling is weak is an indivisible odd number. Therefore, the ozone layer composed of O 3, which has a weak bond, is molecularly bonded to the light CFC refrigerant, and the ozone layer is destroyed. Therefore, if a light chlorofluorocarbon refrigerant is combined with a heavy butane refrigerant to make it heavier, it will be rotationally accelerated and decomposed by sunlight in the low sky, and the ozone problem will be solved. As a butane refrigerant, a mixed refrigerant of butane and propane is being implemented in Germany, but the problem of combustion remains. There is no narrative or atomic physics that can explain light and heavy. It is open to the public that what makes the elucidation of the phenomenon unknown is the calculus that does not belong to physics or mathematics that follows the paper. Then R
-12 CCl 2 F 2 has a low water solubility, and R-22
It is only 1/10 of that. Therefore, it becomes a light refrigerant that is hard to combine with the water in the air and causes a problem of ozone destruction. On the other hand, the refrigerant R-22 CHClF 2 has a high water solubility, and when it is used in a refrigerator without being dried, hydrochloric acid is generated to cause rusting. There is heavy hydrochloric acid that reacts with the moisture in the atmosphere, so R-22 does not cause ozone depletion even if it causes a very slight chlorine pollution on the ground just like incinerating vinyl chloride. Of. In addition, butane C 4 which has oily rust resistance of R-22
H 10 improves with the lubricating oil. R-2
Since the cooling capacity of No. 2 is 50 to 60% higher than that of R-12, the cooling capacity of the mixed refrigerant with butane, R-22 and R-12 can be known. Upon decomposition, the mixed refrigerant containing these three components was converted to hydrogen of butane C 4 H 10 by R-12CCl.
2 in combination with Cl 2 in F 2 may become heavy hydrochloride does not lead to the ozone pollution HCl of R-22 is further strongly likely to be hydrochloric acid. Next, it is the work of extracting the refrigerant from the refrigeration equipment currently in use. In refrigeration equipment where the packing system is perfect and does not leak gas, some of the old refrigerant must be extracted. However, since most of the extracted refrigerant is in a gas state, a huge container is required if the gas remains as it is, so a pollution control vehicle with a liquefaction device that can liquefy the gas at the same time is required. The R-12 collected in this way has to be purchased by a manufacturer from a store and processed by a refrigerant manufacturer. Currently, however, the removal of CFCs is not done by paying the price for the removal work. It should not happen, and as soon as there is no physical disability, pay the price and pay R-12
It seems that no one is willing to pick up or replace the, but if it becomes mandatory, the problem will be different. Moreover, even though there is information that production of R-12 was discontinued, there is no information about technology and disposal method for converting R-12 into a pollution-free refrigerant. R-12, which is currently held in huge automobiles and refrigeration equipment, has been left undissolved and has been destroyed. Now, the production of new vehicles that use new refrigerants, new refrigeration equipment, and new refrigerants It is necessary to carefully consider whether the R-12 process is to be performed first. Incidentally, R-14 CF 4 Freon is not limited to the inexpensive R-22 to be mixed with butane, R-23CH
F 3 , C 2 H 4 F which is a part of other components of R-500
Although 2 is acceptable, there is a price problem. Next, since the compressor and the condenser, which are likely to cause gas leakage of the domestic cooler, are located outdoors, there is little problem even if a flammable refrigerant is used.
Also, if there is a leak, it is usually very small,
Unless there is a large leak unless it is an earthquake, gasoline is ignited in the case of a car accident that leads to a fire. Since it is unlikely that a human accident such as the purpose of causing ignition and combustion, such as a refrigerant extinguishing test, is considered, it is better to add as little fluorine-containing refrigerant to butane as a non-combustion countermeasure. If you stick to the assumption of a fire accident too much, you will lose the major pollution countermeasures on the earth side. Incidentally, it is the fluorine atom that makes the hydrocarbon such as butane flame-retardant, and no other than the fluorine atom can be found.

【0005】[0005]

【発明の効果】このように本発明の方法を実施すれば既
に使用中のオゾン公害をもたらす冷媒を簡単で急速に重
い冷媒に変化させることができるのでオゾン層を破壊す
る物質は消失することになるのであるから、一刻も早い
実施が必要である。
As described above, by carrying out the method of the present invention, a refrigerant which is already in use and which causes ozone pollution can be easily and rapidly changed to a heavy refrigerant, so that a substance that destroys the ozone layer disappears. Therefore, it is necessary to implement it as soon as possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フロンを内蔵する機器において使用中のフ
ロン媒体にフロン媒体とほぼ同量又は同量以上のブタ
ン、フロン、シリコーンから成る混合冷媒を添加してフ
ロンの重量の増大を計り、フロンガスによる公害を防止
する方法。
1. A freon gas is measured by adding a mixed refrigerant composed of butane, freon and silicone in an amount equal to or greater than that of the freon medium to a freon medium being used in a device containing freon. How to prevent pollution by.
JP4358110A 1992-12-04 1992-12-04 Counter measure for chlorofludrocarbon in apparatus Pending JPH06241589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358110A JPH06241589A (en) 1992-12-04 1992-12-04 Counter measure for chlorofludrocarbon in apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358110A JPH06241589A (en) 1992-12-04 1992-12-04 Counter measure for chlorofludrocarbon in apparatus

Publications (1)

Publication Number Publication Date
JPH06241589A true JPH06241589A (en) 1994-08-30

Family

ID=18457597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358110A Pending JPH06241589A (en) 1992-12-04 1992-12-04 Counter measure for chlorofludrocarbon in apparatus

Country Status (1)

Country Link
JP (1) JPH06241589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624595A (en) * 1995-01-25 1997-04-29 Eiichi Sato Refrigerant composition
WO2002077543A1 (en) * 1999-09-30 2002-10-03 Dairei Co.,Ltd. Freezing system using non-azeotropic type mixed refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624595A (en) * 1995-01-25 1997-04-29 Eiichi Sato Refrigerant composition
WO2002077543A1 (en) * 1999-09-30 2002-10-03 Dairei Co.,Ltd. Freezing system using non-azeotropic type mixed refrigerant

Similar Documents

Publication Publication Date Title
JP3843326B2 (en) Alternative refrigerant composition
EP0739402B1 (en) Mixed gas refrigerant
AU641740B2 (en) Ternary blended refrigerant
JP3814295B2 (en) Mixed gas refrigerant
EP0772659B1 (en) Refrigerant compositions
US9359541B2 (en) Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
KR20210045402A (en) Refrigerant composition and its use
US9845419B2 (en) Low GWP heat transfer compositions containing difluoromethane and 1,3,3,3-tetrafluoropropene
JP2021511425A (en) Heat transfer compositions, methods, and systems
NO329112B1 (en) Dressing medium to replace R22
JPH06241589A (en) Counter measure for chlorofludrocarbon in apparatus
JPH05140547A (en) Refrigerant composed of octafluorobutane
CN104797677A (en) Low GWP heat transfer compositions
JPH10265771A (en) Hydraulic medium
Lee et al. Investigation into the Performance and Safety of Alternative Refrigerants to Ammonia for Integrated OTEC Application
AU728403B2 (en) Refrigerant compositions
Shiflett et al. Property and Performance Evaluation of" SUVA" HP Refrigerants as R-502 Alternatives
JP4238383B2 (en) Refrigerant gas
Devotta et al. Theoretical assessments of HFC134a and alternatives to CFC12 as working fluids for heat pumps
Devotta et al. Comparative assessment of some flammable refrigerants as alternatives to CFC12
Kumar et al. Performance analysis of vapour compression refrigeration system by using Azeotrops
Singh et al. Some Issues in the Use of Refrigerant Mixtures
dos Santos et al. An Experimental Study of Synthetics and Natural Refrigerants Gases
JPH0875279A (en) Cooling device
CN115038771A (en) Composition comprising a metal oxide and a metal oxide