JP2012236884A - Mixed refrigerant and air conditioner using the same - Google Patents

Mixed refrigerant and air conditioner using the same Download PDF

Info

Publication number
JP2012236884A
JP2012236884A JP2011105556A JP2011105556A JP2012236884A JP 2012236884 A JP2012236884 A JP 2012236884A JP 2011105556 A JP2011105556 A JP 2011105556A JP 2011105556 A JP2011105556 A JP 2011105556A JP 2012236884 A JP2012236884 A JP 2012236884A
Authority
JP
Japan
Prior art keywords
refrigerant
mixed refrigerant
air conditioner
mixed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011105556A
Other languages
Japanese (ja)
Inventor
Toshiyuki Fuji
利行 藤
Kayoko Maruyama
佳代子 丸山
Kazuya Funada
和也 船田
Masayoshi Sasano
雅恵 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011105556A priority Critical patent/JP2012236884A/en
Publication of JP2012236884A publication Critical patent/JP2012236884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixed refrigerant having a zero value of ODP and a small value of GWP, and to provide an air conditioner using the refrigerant.SOLUTION: The mixed refrigerant is a mixed refrigerant consisting of two kinds of refrigerants of R32 of a first refrigerant and R134a or R1234yf of a second refrigerant, regulated so that the mixed proportion of the first refrigerant may be higher than the mixed proportion of the second refrigerant. Preferably, the mixed proportion of the first refrigerant is 80-90 wt.%. As a result, the mixed refrigerant having the zero value of the ODP and the small value of the GWP is provided, and the air conditioner is provided by using the refrigerant.

Description

本発明は、混合冷媒とそれを用いた空気調和機に関するものである。   The present invention relates to a mixed refrigerant and an air conditioner using the mixed refrigerant.

従来、最高外気温度52℃程度の高外気温環境に対応した熱帯地域向けの空気調和機においては、作動冷媒としてR22が使用されている。図1の物性一覧に示すように、このR22は、オゾン層破壊係数(ODP)がゼロではないことから、先進国では2020年に全廃予定である。このため、ODPがゼロである代替冷媒への移行が急がれている。ODPがゼロである代替冷媒としては、R410A、R407Cなどの混合冷媒やR32などの単一冷媒が一般に知られている。   Conventionally, in an air conditioner for a tropical region corresponding to a high outside air temperature environment with a maximum outside air temperature of about 52 ° C., R22 is used as a working refrigerant. As shown in the list of physical properties in FIG. 1, R22 is scheduled to be abolished in 2020 in developed countries because the ozone depletion potential (ODP) is not zero. For this reason, there is an urgent need to shift to an alternative refrigerant having zero ODP. As alternative refrigerants with zero ODP, mixed refrigerants such as R410A and R407C and single refrigerants such as R32 are generally known.

R410Aは、外気温度が高くない温帯地域で一般に使用されている。図1に示すように、このR410Aは、臨界温度が71.4℃と比較的低いことから、高外気温(高凝縮温度)での冷房能力や成績係数が極端に低下し、熱帯地域向けの空気調和機で使用する場合には効率が著しく悪化するという問題がある。また近年、地球環境への配慮から、温室効果ガスによる温暖化の影響の程度を比較するための指標である温暖化係数(GWP)が小さな冷媒が望まれているが、R410AのGWPは2090であり、R22のGWP(=1810)よりも大きいという短所がある。   R410A is generally used in a temperate region where the outside air temperature is not high. As shown in FIG. 1, this R410A has a relatively low critical temperature of 71.4 ° C., so the cooling capacity and coefficient of performance at high outside air temperature (high condensation temperature) are extremely reduced, and it is intended for the tropical region. When used in an air conditioner, there is a problem that the efficiency is remarkably deteriorated. In recent years, a refrigerant with a small global warming potential (GWP), which is an index for comparing the degree of impact of global warming due to greenhouse gases, has been desired from the consideration of the global environment, but the GWP of R410A is 2090. There is a disadvantage that it is larger than the G22 (= 1810) of R22.

R407Cは、図1に示すように、臨界温度が86.0℃と高く、R410Aよりも高外気温環境での使用に適するが、約6degという比較的大きい温度勾配を持つ非共沸混合冷媒であることから扱いにくく、GWPも比較的高いという短所がある。   As shown in FIG. 1, R407C is a non-azeotropic refrigerant mixture having a high critical temperature of 86.0 ° C. and suitable for use in a high outside air temperature environment than R410A, but having a relatively large temperature gradient of about 6 deg. There are disadvantages that it is difficult to handle because of certain things and GWP is relatively high.

R32は、図1に示すように、R410Aにも含まれている単一冷媒であり、概ねR22以上の性能を有している。しかし、凝縮圧力および吐出温度が比較的高いことから、R410A、R22などの冷媒を用いる従来型の空気調和機に使用することは難しい。   As shown in FIG. 1, R32 is a single refrigerant that is also included in R410A, and generally has a performance equal to or higher than R22. However, since the condensing pressure and the discharge temperature are relatively high, it is difficult to use the conventional air conditioner using refrigerants such as R410A and R22.

このため、ODPがゼロで、かつ、GWPが従来のR22よりも小さい冷媒の開発が望まれていた。このような冷媒として、比較的冷凍能力が高いR32を主成分とする混合冷媒を考えた場合には、R32の短所である凝縮圧力および吐出温度を低減するとともに、温度勾配を少なくとも2.5deg程度以下に抑える必要がある。   For this reason, it has been desired to develop a refrigerant having zero ODP and smaller GWP than the conventional R22. As such a refrigerant, when a mixed refrigerant mainly composed of R32 having a relatively high refrigerating capacity is considered, the condensation pressure and discharge temperature, which are disadvantages of R32, are reduced, and the temperature gradient is at least about 2.5 deg. It is necessary to keep it below.

本発明は、上記に鑑みてなされたものであって、ODPがゼロで、かつ、GWPが小さい混合冷媒とそれを用いた空気調和機を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the mixed refrigerant which ODP is zero and GWP is small, and an air conditioner using the same.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る混合冷媒は、第一の冷媒であるR32と第二の冷媒であるR134aまたはR1234yfとの2種の冷媒からなる混合冷媒であって、前記第一の冷媒の混合比を前記第二の冷媒の混合比より大きくしたことを特徴とする。   In order to solve the above-described problems and achieve the object, the mixed refrigerant according to claim 1 of the present invention is composed of two kinds of refrigerants, that is, the first refrigerant R32 and the second refrigerant R134a or R1234yf. The mixed refrigerant is characterized in that the mixing ratio of the first refrigerant is larger than the mixing ratio of the second refrigerant.

また、本発明の請求項2に係る混合冷媒は、上述した請求項1に記載の混合冷媒において、前記第一の冷媒の混合比を80〜90wt%としたことを特徴とする。   Moreover, the mixed refrigerant according to claim 2 of the present invention is characterized in that, in the mixed refrigerant according to claim 1 described above, the mixing ratio of the first refrigerant is 80 to 90 wt%.

また、本発明の請求項3に係る空気調和機は、上述した請求項1または2に記載の混合冷媒を用いたことを特徴とする。   An air conditioner according to a third aspect of the present invention uses the mixed refrigerant according to the first or second aspect described above.

本発明に係る混合冷媒によれば、第一の冷媒であるR32と第二の冷媒であるR134aまたはR1234yfとの2種の冷媒からなる混合冷媒であって、前記第一の冷媒の混合比を前記第二の冷媒の混合比より大きくしたので、図1に示すように、ODPがゼロで、かつ、GWPを従来のR22のGWP(=1810)よりも小さくすることができるという効果を奏する。   The mixed refrigerant according to the present invention is a mixed refrigerant composed of two types of refrigerants, that is, the first refrigerant R32 and the second refrigerant R134a or R1234yf, and the mixing ratio of the first refrigerant is Since it is larger than the mixing ratio of the second refrigerant, as shown in FIG. 1, there is an effect that the ODP is zero and the GWP can be made smaller than the conventional R22 GWP (= 1810).

また、本発明に係る空気調和機によれば、上述の混合冷媒を用いたので、R32の短所である凝縮圧力および吐出温度を低減するとともに、温度勾配を少なくとも2.5deg程度以下に抑えることができるという効果を奏する。また上述の混合冷媒を使ったときの冷房能力(同一の空調機において同一の凝縮温度、蒸発温度、過熱度、過冷却度の条件で運転させた場合)はR22よりも高い。   Further, according to the air conditioner according to the present invention, since the above-described mixed refrigerant is used, it is possible to reduce the condensing pressure and the discharge temperature, which are disadvantages of R32, and to suppress the temperature gradient to at least about 2.5 deg or less. There is an effect that can be done. Further, the cooling capacity when the above-described mixed refrigerant is used (when the same air conditioner is operated under the same condensing temperature, evaporation temperature, superheat degree, and supercooling condition) is higher than R22.

図1は、本発明に係る混合冷媒および従来の冷媒の物性を例示する一覧図である。FIG. 1 is a list illustrating physical properties of a mixed refrigerant according to the present invention and a conventional refrigerant. 図2は、飽和蒸気圧力と凝縮温度の関係の一例を示す図である。FIG. 2 is a diagram illustrating an example of the relationship between the saturated vapor pressure and the condensation temperature. 図3は、凝縮温度68℃を想定した場合の吐出温度の比較図である。FIG. 3 is a comparison diagram of the discharge temperature when a condensation temperature of 68 ° C. is assumed. 図4は、凝縮温度68℃を想定した場合の冷凍能力の比較図である。FIG. 4 is a comparison diagram of refrigerating capacity when a condensation temperature of 68 ° C. is assumed. 図5は、凝縮温度68℃を想定した場合の成績係数の比較図である。FIG. 5 is a comparison chart of coefficient of performance when a condensation temperature of 68 ° C. is assumed. 図6は、本発明に係る混合冷媒を用いた空気調和機の実施例を示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram showing an embodiment of an air conditioner using a mixed refrigerant according to the present invention. 図7は、図6の回路に関するp−h線図である。FIG. 7 is a ph diagram for the circuit of FIG. 図8は、凝縮温度68℃を想定した場合の、凝縮器内の二相域における液冷媒の組成を示す図である。FIG. 8 is a diagram showing the composition of the liquid refrigerant in the two-phase region in the condenser when a condensation temperature of 68 ° C. is assumed.

以下に、本発明に係る混合冷媒とそれを用いた空気調和機の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a mixed refrigerant and an air conditioner using the same according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

[混合冷媒]
まず、本発明に係る混合冷媒について説明する。
本発明に係る混合冷媒は、第一の冷媒であるR32と第二の冷媒であるR134aまたはR1234yfとの2種の冷媒からなる混合冷媒であって、前記第一の冷媒の混合比を前記第二の冷媒の混合比より大きくしたものである。以下では、R32とR134aのみからなる混合冷媒の場合を例にとり説明する。
[Mixed refrigerant]
First, the mixed refrigerant according to the present invention will be described.
The mixed refrigerant according to the present invention is a mixed refrigerant composed of two kinds of refrigerants, that is, R32 which is a first refrigerant and R134a or R1234yf which is a second refrigerant, and the mixing ratio of the first refrigerant is the first refrigerant. It is larger than the mixing ratio of the two refrigerants. Below, the case of the mixed refrigerant which consists only of R32 and R134a will be described as an example.

図1の「R32+R134a」の欄には、R32とR134aのみからなる混合冷媒の物性値をR32の含有比率毎に示してある。R32の含有比率は90、80、70wt%の3種である。図1に示すように、これら3種の混合冷媒のODPはゼロである。また、GWPは751〜902で、R22のGWP(=1810)よりも小さくなることが判る。ここで、図1中のSLは標準条件を示し、凝縮温度48℃を想定したものである。OLは熱帯地域向けを想定した条件を示し、凝縮温度68℃を想定したものである。   In the column of “R32 + R134a” in FIG. 1, the physical property values of the mixed refrigerant composed only of R32 and R134a are shown for each content ratio of R32. The content ratio of R32 is three types of 90, 80, and 70 wt%. As shown in FIG. 1, the ODP of these three mixed refrigerants is zero. Moreover, GWP is 751-902, and it turns out that it is smaller than GWP of R22 (= 1810). Here, SL in FIG. 1 indicates standard conditions and assumes a condensation temperature of 48 ° C. OL shows the conditions for the tropical region and assumes a condensation temperature of 68 ° C.

図2は、各冷媒の飽和蒸気圧力と凝縮温度の関係の一例を示す図である。
本発明の混合冷媒を熱帯地域向けのR410A用の既存の空気調和機で用いることを考えた場合、図2に示すように、凝縮温度65℃以上の時の圧力を、空気調和機の一般的な設計圧力(4.15MPa)以下に抑えるためには、R32にR134a(またはR1234yf)を10wt%以上混ぜる必要があることが判る。
FIG. 2 is a diagram illustrating an example of the relationship between the saturated vapor pressure and the condensation temperature of each refrigerant.
When considering using the mixed refrigerant of the present invention in an existing air conditioner for R410A for the tropical region, as shown in FIG. 2, the pressure when the condensation temperature is 65 ° C. or higher is It can be seen that it is necessary to mix R134a (or R1234yf) with R32 in an amount of 10 wt% or more in order to suppress the pressure to less than the desired design pressure (4.15 MPa).

この場合、例えば、R32が80〜90wt%含まれる混合冷媒を用い、凝縮温度65〜68℃程度で空気調和機を運転すれば、R32を単独で用いる場合に比べて圧力をR410Aの設計圧力程度まで下げることが可能である。しかも、図1に示すように、R32の弱点である高い凝縮圧力および吐出温度を低減するとともに、蒸発器での温度勾配を少なくとも2.5deg程度以下に抑えることができる。つまり、使用可能な凝縮温度の上限が68℃程度までであれば、R32が80〜90wt%含まれる本発明の混合冷媒を熱帯地域向けの既存の製品に利用することができる。   In this case, for example, if a mixed refrigerant containing 80 to 90 wt% of R32 is used and the air conditioner is operated at a condensation temperature of about 65 to 68 ° C., the pressure is about the design pressure of R410A compared to the case where R32 is used alone. Can be lowered to Moreover, as shown in FIG. 1, the high condensing pressure and discharge temperature, which are weak points of R32, can be reduced, and the temperature gradient in the evaporator can be suppressed to at least about 2.5 deg or less. That is, if the upper limit of the usable condensing temperature is up to about 68 ° C., the mixed refrigerant of the present invention containing R32 of 80 to 90 wt% can be used for existing products for the tropical region.

図3は、高凝縮温度時の吐出温度を比較した図である。図中、R32+R134a(90/10)等の表記は、R32が90wt%、R134aが10wt%の混合冷媒であること等を示している。この図3に示すように、R32にR134a(またはR1234yf)を混ぜると吐出温度が抑制されることが判る。なお、この図3は、後述の液インジェクション方式を使用しない方式を想定して得たものである。   FIG. 3 is a diagram comparing the discharge temperature at the time of high condensation temperature. In the figure, the notation such as R32 + R134a (90/10) indicates that R32 is a mixed refrigerant of 90 wt% and R134a is 10 wt%. As shown in FIG. 3, it can be seen that mixing R134a (or R1234yf) with R32 suppresses the discharge temperature. Note that FIG. 3 is obtained assuming a method that does not use the liquid injection method described later.

図4は、高凝縮温度時の冷凍能力(理論値:圧縮機排除容積/回転数を同じとした場合)を比較した図であり、R22を100%としたときの能力で表している。この図4及び図1に示すように、R22より冷凍能力が高い冷媒(R410A、R32およびR32+R134aが20wt%以下の冷媒)は、R22より圧力が高いことが判る。また、R32とR134aのみからなる本発明の混合冷媒において、R410Aと同等以上の冷凍能力を得るためには、R32の含有比率は少なくとも80wt%が必要であることが判る。   FIG. 4 is a diagram comparing the refrigeration capacity at high condensing temperature (theoretical value: when the compressor displacement volume / rotation speed is the same), and is represented by the capacity when R22 is 100%. As shown in FIGS. 4 and 1, it can be seen that the refrigerant having a higher refrigeration capacity than R22 (the refrigerant having R410A, R32 and R32 + R134a of 20 wt% or less) has a higher pressure than R22. In addition, in the mixed refrigerant of the present invention consisting only of R32 and R134a, it can be seen that the content ratio of R32 needs to be at least 80 wt% in order to obtain a refrigerating capacity equal to or higher than R410A.

図5は、高凝縮温度時の成績係数(理論値)を比較した図である。この図5に示すように、R22より冷凍能力が高い冷媒のうち、R410Aの成績係数が特に低く、運転効率が悪いことが判る。R32とR134aのみからなる本発明の混合冷媒の成績係数は、R32の成績係数とほぼ同じである。   FIG. 5 is a diagram comparing the coefficient of performance (theoretical value) at a high condensation temperature. As shown in FIG. 5, among the refrigerants having higher refrigerating capacity than R22, it can be seen that the coefficient of performance of R410A is particularly low and the operation efficiency is poor. The coefficient of performance of the mixed refrigerant of the present invention consisting only of R32 and R134a is almost the same as the coefficient of performance of R32.

[混合冷媒を用いた空気調和機]
次に、本発明に係る混合冷媒を用いた空気調和機について、冷房運転時を例にとり図6〜図8を参照しながら説明する。
[Air conditioner using mixed refrigerant]
Next, an air conditioner using the mixed refrigerant according to the present invention will be described with reference to FIGS.

図6は冷房運転時の冷媒回路図である。図6に示すように、本発明に係る空気調和機10の冷凍サイクル回路は、圧縮機12と、凝縮器(室外機)14と、減圧手段16と、蒸発器(室内機)18と、四方弁20とからなる。作動冷媒としては、R32とR134aのみ、または、R32とR1234yfのみからなる混合冷媒を用いる。   FIG. 6 is a refrigerant circuit diagram during cooling operation. As shown in FIG. 6, the refrigeration cycle circuit of the air conditioner 10 according to the present invention includes a compressor 12, a condenser (outdoor unit) 14, a decompression means 16, an evaporator (indoor unit) 18, and a four-way system. It consists of a valve 20. As the working refrigerant, a mixed refrigerant consisting of only R32 and R134a or only R32 and R1234yf is used.

この冷凍サイクル回路は、凝縮器14の所定位置からR134a(またはR1234yf)リッチな液冷媒を分離して、分離した液冷媒を圧縮機12の中間圧にインジェクションするようになっている。   This refrigeration cycle circuit separates R134a (or R1234yf) rich liquid refrigerant from a predetermined position of the condenser 14 and injects the separated liquid refrigerant into the intermediate pressure of the compressor 12.

具体的には、気液分離器22が凝縮器14の容積比A%:(100−A)%となる位置に取り付けてあり、これにより凝縮器14は凝縮器全体に対する容積割合がA%の第一凝縮器14aと(100−A)%の第二凝縮器14bとで構成されることになる。気液分離器22の取り付け位置としては、想定される運転条件下で冷媒が二相域にある位置を選定する必要がある。R32とR134aのみからなる混合冷媒でR32の混合割合が80wt%の場合を例とする。凝縮温度68℃で運転するときに吐出温度が従来冷媒のR410Aを使った機器と同じ90℃になるように液インジェクションを制御し、また凝縮器出口での過冷却度が一般的な冷凍サイクルと同じ5degになるように冷凍サイクル全体を制御すると、図7に示すように、凝縮器で冷媒が放出するエネルギーの割合はガス域:24%、二相域:69%、過冷却域:7%となる。凝縮器の単位容積あたりの熱交換量は概ね一様とみなせるので、上述した熱交換器の容積割合よりAを決めるとAの値は24〜93%の範囲になる。なお混合比によって冷媒の物性(上記放熱量の割合)が変わるため混合比に応じた位置を選定することが望ましい。   Specifically, the gas-liquid separator 22 is attached at a position where the volume ratio A% :( 100−A)% of the condenser 14 is obtained, whereby the condenser 14 has a volume ratio of A% with respect to the whole condenser. The first condenser 14a and the (100-A)% second condenser 14b are configured. As the attachment position of the gas-liquid separator 22, it is necessary to select a position where the refrigerant is in the two-phase region under the assumed operation conditions. An example is a case where a mixed refrigerant composed of only R32 and R134a and the mixing ratio of R32 is 80 wt%. When operating at a condensing temperature of 68 ° C, the liquid injection is controlled so that the discharge temperature is 90 ° C, which is the same as the equipment using the conventional refrigerant R410A, and the degree of supercooling at the condenser outlet is a general refrigeration cycle. When the entire refrigeration cycle is controlled to be the same 5 deg, as shown in FIG. 7, the ratio of energy released by the refrigerant in the condenser is as follows: gas region: 24%, two-phase region: 69%, supercooling region: 7% It becomes. Since the heat exchange amount per unit volume of the condenser can be regarded as substantially uniform, when A is determined from the volume ratio of the heat exchanger described above, the value of A is in the range of 24 to 93%. In addition, since the physical property of the refrigerant (the ratio of the heat release amount) varies depending on the mixing ratio, it is desirable to select a position corresponding to the mixing ratio.

なお凝縮器を通過する混合冷媒は、沸点の高い冷媒の方が先に液化する。ここで図8は、図7における二相域の冷媒内の液相冷媒の組成を示すものであり、二相域のうち凝縮器の入口側に近い方が、高沸点冷媒の割合が多くなることを示している。よって、二相域にあるB区間(図7参照)の液を取り出す際には、上記Aを凝縮器の入口側に配置することが望ましい。   In addition, the mixed refrigerant passing through the condenser is liquefied first in the refrigerant having a higher boiling point. Here, FIG. 8 shows the composition of the liquid-phase refrigerant in the refrigerant in the two-phase region in FIG. 7, and the proportion of the high-boiling refrigerant increases in the two-phase region closer to the inlet side of the condenser. It is shown that. Therefore, when taking out the liquid of B section (refer FIG. 7) in a two-phase area | region, it is desirable to arrange | position said A to the inlet side of a condenser.

上記構成の動作を説明する。
圧縮機12からの混合冷媒は、配管26を通って第一凝縮器14aに入り、気液分離器22で気液に分離される。気液分離器22に溜まったR134a(またはR1234yf)リッチな液冷媒は、流量調整弁24を通って配管32で圧縮機12にインジェクションされる。一方、気液分離器22で分離された飽和蒸気冷媒は第二凝縮器14bから配管28および減圧手段16を通って蒸発器18に入る。この蒸発器18に入る冷媒としてはR32の割合が多くなる。蒸発器18からの冷媒は配管30を通じて圧縮機12に送られる。
The operation of the above configuration will be described.
The mixed refrigerant from the compressor 12 enters the first condenser 14 a through the pipe 26 and is separated into gas and liquid by the gas-liquid separator 22. The R134a (or R1234yf) rich liquid refrigerant accumulated in the gas-liquid separator 22 is injected into the compressor 12 through the flow rate adjustment valve 24 and through the pipe 32. On the other hand, the saturated vapor refrigerant separated by the gas-liquid separator 22 enters the evaporator 18 from the second condenser 14 b through the pipe 28 and the decompression means 16. The ratio of R32 as the refrigerant entering the evaporator 18 is increased. The refrigerant from the evaporator 18 is sent to the compressor 12 through the pipe 30.

このように、二相域から先に液化しやすいR134a(またはR1234yf)の液冷媒を予め分離することで、蒸発器18に回る冷媒のうちR32の割合がより大きくなり、蒸発器18での温度勾配を小さくすることができる。このため、本発明の空気調和機10によれば、非共沸混合冷媒の持つ短所の影響を小さくすることができる。   Thus, by separating in advance the liquid refrigerant of R134a (or R1234yf) that is liable to liquefy first from the two-phase region, the ratio of R32 in the refrigerant that goes to the evaporator 18 becomes larger, and the temperature at the evaporator 18 The gradient can be reduced. For this reason, according to the air conditioner 10 of this invention, the influence of the fault which a non-azeotropic refrigerant mixture has can be made small.

一方、圧縮機12にインジェクションされた冷媒は液状態のため、それが気化する熱により最終的に吐出される冷媒の温度を抑制することができる。さらにこの液冷媒はR32に比べて吐出温度が低いR134a(またはR1234yf)を多く含むので、R134a(またはR1234yf)を多く含まない液冷媒をインジェクションするよりも大きな吐出温度抑制効果を持つ。   On the other hand, since the refrigerant injected into the compressor 12 is in a liquid state, the temperature of the refrigerant finally discharged can be suppressed by the heat that it vaporizes. Further, since this liquid refrigerant contains a larger amount of R134a (or R1234yf) having a lower discharge temperature than R32, the liquid refrigerant has a greater discharge temperature suppression effect than injection of a liquid refrigerant that does not contain much R134a (or R1234yf).

なお、上記の実施の形態においては、主にR32とR134aのみからなる混合冷媒の場合について説明したが、図1及び図2に示すようなR134aに物性が類似しているR1234yfを用いて、R32とR1234yfのみからなる混合冷媒とした場合であっても、ODPがゼロで、かつ、GWPがR22よりも小さくなるなど、R32とR134aのみからなる混合冷媒の場合と同様の効果を奏する。   In the above-described embodiment, the case of the mixed refrigerant mainly composed of only R32 and R134a has been described. However, using R1234yf having similar physical properties to R134a as shown in FIGS. 1 and 2, R32 is used. And R1234yf, the same effect as in the case of the mixed refrigerant consisting only of R32 and R134a is obtained, such as ODP being zero and GWP being smaller than R22.

以上説明したように、本発明に係る混合冷媒によれば、第一の冷媒であるR32と第二の冷媒であるR134aまたはR1234yfとの2種の冷媒からなる混合冷媒であって、前記第一の冷媒の混合比を前記第二の冷媒の混合比より大きくしたので、図1に示すように、ODPがゼロで、かつ、GWPを従来のR22のGWP(=1810)よりも小さくすることができるという効果を奏する。   As described above, the mixed refrigerant according to the present invention is a mixed refrigerant composed of two kinds of refrigerants, that is, the first refrigerant R32 and the second refrigerant R134a or R1234yf. As shown in FIG. 1, the ODP is zero and the GWP can be made smaller than the conventional R22 GWP (= 1810) because the mixing ratio of the refrigerant is larger than the mixing ratio of the second refrigerant. There is an effect that can be done.

また、本発明に係る空気調和機によれば、上述の混合冷媒を用いたので、R32の短所である凝縮圧力および吐出温度を低減するとともに、温度勾配を少なくとも2.5deg程度以下に抑えることができる。また上述の混合冷媒を使ったときの冷房能力(同一の空調機において同一の凝縮温度、蒸発温度、過熱度、過冷却度の条件で運転させた場合)はR22よりも高い。   Further, according to the air conditioner according to the present invention, since the above-described mixed refrigerant is used, it is possible to reduce the condensing pressure and the discharge temperature, which are disadvantages of R32, and to suppress the temperature gradient to at least about 2.5 deg or less. it can. Further, the cooling capacity when the above-described mixed refrigerant is used (when the same air conditioner is operated under the same condensing temperature, evaporation temperature, superheat degree, and supercooling condition) is higher than R22.

また、凝縮圧力及び吐出温度を低減することができるため、外気温が52℃以上となるような高外気温時であっても、従来使用していた冷媒(R410A)と同等以下の圧力で運転できるため、膨張弁や配管等の設計圧力を変えずにすみ、部品を共用しコストを低減できる。 In addition, since the condensing pressure and the discharge temperature can be reduced, operation is performed at a pressure equal to or lower than that of the refrigerant (R410A) conventionally used even at a high outside temperature where the outside temperature is 52 ° C. or higher. As a result, it is not necessary to change the design pressure of the expansion valve, piping, etc., and parts can be shared to reduce costs.

以上のように、本発明に係る混合冷媒とそれを用いた空気調和機は、熱帯地域向けの空気調和機に有用であり、特に、混合冷媒のODPがゼロで、かつ、GWPを小さくするのに適している。   As described above, the mixed refrigerant and the air conditioner using the mixed refrigerant according to the present invention are useful for an air conditioner for a tropical region, and in particular, the ODP of the mixed refrigerant is zero and the GWP is reduced. Suitable for

10 空気調和機
12 圧縮機
14 凝縮器(室外機)
16 減圧手段
18 蒸発器(室内機)
20 四方弁
22 気液分離器
24 流量調整弁
26,28,30,32 配管

10 Air Conditioner 12 Compressor 14 Condenser (Outdoor Unit)
16 Pressure reducing means 18 Evaporator (indoor unit)
20 Four-way valve 22 Gas-liquid separator 24 Flow control valve 26, 28, 30, 32 Piping

Claims (3)

第一の冷媒であるR32と第二の冷媒であるR134aまたはR1234yfとの2種の冷媒からなる混合冷媒であって、
前記第一の冷媒の混合比を前記第二の冷媒の混合比より大きくしたことを特徴とする混合冷媒。
A mixed refrigerant composed of two kinds of refrigerants, that is, a first refrigerant R32 and a second refrigerant R134a or R1234yf,
A mixed refrigerant, wherein a mixing ratio of the first refrigerant is larger than a mixing ratio of the second refrigerant.
前記第一の冷媒の混合比を80〜90wt%としたことを特徴とする請求項1に記載の混合冷媒。   The mixed refrigerant according to claim 1, wherein a mixing ratio of the first refrigerant is 80 to 90 wt%. 請求項1または2に記載の混合冷媒を用いたことを特徴とする空気調和機。
An air conditioner using the mixed refrigerant according to claim 1.
JP2011105556A 2011-05-10 2011-05-10 Mixed refrigerant and air conditioner using the same Pending JP2012236884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105556A JP2012236884A (en) 2011-05-10 2011-05-10 Mixed refrigerant and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105556A JP2012236884A (en) 2011-05-10 2011-05-10 Mixed refrigerant and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2012236884A true JP2012236884A (en) 2012-12-06

Family

ID=47460084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105556A Pending JP2012236884A (en) 2011-05-10 2011-05-10 Mixed refrigerant and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP2012236884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396273A4 (en) * 2016-03-25 2019-01-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerating cycle apparatus
JP2022070188A (en) * 2020-10-26 2022-05-12 グリーンアース株式会社 Global warming alleviation method by air conditioner using coolant r410a

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153075A (en) * 1983-02-22 1984-08-31 松下電器産業株式会社 Refrigeration cycle device
JPS6479288A (en) * 1987-09-21 1989-03-24 Daikin Ind Ltd Cooling medium
JP2001304621A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air- conditioning equipment
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2010047754A (en) * 2008-07-30 2010-03-04 Honeywell Internatl Inc Composition containing difluoromethane and fluorine-substituted olefin
WO2011084813A1 (en) * 2009-12-21 2011-07-14 E. I. Du Pont De Nemours And Company Compositions comprising tetrafluoropropene and difluoromethane and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153075A (en) * 1983-02-22 1984-08-31 松下電器産業株式会社 Refrigeration cycle device
JPS6479288A (en) * 1987-09-21 1989-03-24 Daikin Ind Ltd Cooling medium
JP2001304621A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air- conditioning equipment
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2010047754A (en) * 2008-07-30 2010-03-04 Honeywell Internatl Inc Composition containing difluoromethane and fluorine-substituted olefin
WO2011084813A1 (en) * 2009-12-21 2011-07-14 E. I. Du Pont De Nemours And Company Compositions comprising tetrafluoropropene and difluoromethane and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Performance and Reliability Evaluation of a Room Air Conditioner with Low GWP Refrigerant", 2010 INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION AIR CONDITIONING AND REFRIGERATION TECHNOLOGY, JPN6015031518, 2010, pages 27, ISSN: 0003130153 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396273A4 (en) * 2016-03-25 2019-01-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerating cycle apparatus
JP2022070188A (en) * 2020-10-26 2022-05-12 グリーンアース株式会社 Global warming alleviation method by air conditioner using coolant r410a

Similar Documents

Publication Publication Date Title
JP5132772B2 (en) Non-azeotropic refrigerant mixture and refrigeration cycle equipment
Yan et al. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle
GB2530915B (en) Air-conditioning apparatus
JP6177424B2 (en) Refrigeration cycle equipment
JP6279069B2 (en) Refrigeration cycle equipment
WO2014030236A1 (en) Refrigeration device
JP5990972B2 (en) Air conditioner
JP5995990B2 (en) Refrigeration equipment
JP5049888B2 (en) Refrigeration cycle equipment
JP5409715B2 (en) Air conditioner
JP2001241780A (en) Refrigerating air conditioner
Zheng et al. Performance analysis of a novel vapor injection cycle enhanced by cascade condenser for zeotropic mixtures
JP2009300001A (en) Refrigerating cycle device
JP2022125358A (en) Refrigeration device
KR20170085936A (en) Refrigerator for super-freezing a storing chamber
JP2012236884A (en) Mixed refrigerant and air conditioner using the same
JP5770157B2 (en) Refrigeration equipment
JP5990973B2 (en) Air conditioner
JP6393181B2 (en) Refrigeration cycle equipment
WO2002077543A1 (en) Freezing system using non-azeotropic type mixed refrigerant
JP6725639B2 (en) Refrigeration cycle equipment
JP5009530B2 (en) Non-azeotropic refrigerant for ultra-low temperature
US20190024948A1 (en) Deep freezer
JP4042064B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP2014129899A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151222