JPS59153075A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS59153075A
JPS59153075A JP2796183A JP2796183A JPS59153075A JP S59153075 A JPS59153075 A JP S59153075A JP 2796183 A JP2796183 A JP 2796183A JP 2796183 A JP2796183 A JP 2796183A JP S59153075 A JPS59153075 A JP S59153075A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
gas
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2796183A
Other languages
Japanese (ja)
Inventor
「よし」田 雄二
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2796183A priority Critical patent/JPS59153075A/en
Publication of JPS59153075A publication Critical patent/JPS59153075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いて加熱及び冷2′−i
’ 却を行なう冷凍ザイクル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides heating and cooling systems using non-azeotropic mixed refrigerants.
'Relating to a cryocycle device that performs refrigeration.

従来例の構成とその問題点 従来、非共沸混合冷媒を用いた冷凍サイクル装置として
第1図に示す構成が提案されている。第1図において、
1は圧縮機、2は耐縮器、3,4は絞り装置、5は蒸発
器で、図示する如く順次配管により連結すると共に、絞
り装置3,4の間の中間圧力よりインジェクション回路
6により冷媒の一部を圧縮機1のシリンダ内にLL人す
る如く構成している。かかる構成においては、圧縮機1
の吐出温度を低下でき、かつ加熱能力の増大が期待でき
る。しかしながら、冷却能力の増大は期待できず、また
高低圧力が冷却側及び加熱側の熱源温度に支配されるこ
とは、インジェクション回路6のない場合と同等である
。すなわち、加熱側を高l晶水を得る給湯とし冷却側の
熱源温度が極端に低下した場合や、冷却側を冷房として
利用し加熱側の熱源温度が極端に上昇した場合には、圧
縮機1の圧縮比は増大して過大な負荷がかかるばかりで
なく、ついにはその用をなさないものとなる。
Conventional Structure and Problems The structure shown in FIG. 1 has been proposed as a refrigeration cycle device using a non-azeotropic mixed refrigerant. In Figure 1,
1 is a compressor, 2 is a compressor, 3 and 4 are throttling devices, and 5 is an evaporator, which are successively connected by piping as shown in the figure, and the refrigerant is injected from an intermediate pressure between the throttling devices 3 and 4 through an injection circuit 6. A part of the compressor 1 is arranged to be placed inside the cylinder of the compressor 1. In such a configuration, the compressor 1
The discharge temperature can be lowered, and an increase in heating capacity can be expected. However, no increase in cooling capacity can be expected, and the fact that the high and low pressures are controlled by the heat source temperatures on the cooling side and the heating side is the same as in the case without the injection circuit 6. In other words, if the heating side is used to supply high-l crystal water and the temperature of the heat source on the cooling side drops extremely, or if the cooling side is used as an air conditioner and the heat source temperature on the heating side rises extremely, the compressor 1 Not only does the compression ratio of the engine increase, resulting in an excessive load, but it also becomes useless.

発明の目的 本発明は上記従来例の欠点を解消し、加熱側及び冷却側
を利用する場合にその能力を増大させ、かつ加熱側及び
冷却側の熱源温度差が増大した場合にも圧縮比の増大を
できるだけ押え安定した運転を可能ならしめるものであ
る。
Purpose of the Invention The present invention eliminates the drawbacks of the conventional example described above, increases the capacity when using the heating side and the cooling side, and improves the compression ratio even when the difference in heat source temperature between the heating side and the cooling side increases. This is to suppress the increase as much as possible and enable stable operation.

発明の構成 本発明の冷凍ザイクル装置は、非共沸混合冷媒を用いて
、凝縮過程の途中から分離した高沸点成分をより多く含
む液冷媒を、中間圧力まで減圧した後、その一部を圧縮
機のシリンダ内に注入すると共に、残りの高沸点成分を
より多く含みさらに低圧まで減圧される冷媒と、凝縮過
程の途中からガス状態で分離されさらに凝縮、減圧され
た低沸点成分をより多く含む冷媒を合流させて蒸発器に
導く如く構成したものである。
Structure of the Invention The refrigeration cycle device of the present invention uses a non-azeotropic mixed refrigerant to reduce the pressure of a liquid refrigerant containing a large amount of high-boiling components separated during the condensation process to an intermediate pressure, and then compresses a part of the liquid refrigerant. The refrigerant is injected into the cylinder of the machine and contains more of the remaining high-boiling components and is further depressurized to a low pressure, and the other is the refrigerant that is separated in a gaseous state during the condensation process and contains more of the low-boiling components that are further condensed and depressurized. It is constructed so that the refrigerant is combined and guided to the evaporator.

実施例の説明 本発明になる冷凍サイクル装置の一実施例を第2図に示
す。第2図において、11は圧縮機、12は第1凝縮器
、13は気液分離器であり、非共沸混合冷媒を用いると
、気液分離器13内の液冷媒はより多くの高沸点成分を
含み、ガス冷媒はより多くの低沸点成分を含むことにな
る。14は気液分離器13で分離されるガス冷媒を凝縮
させる第2のa縮型、15は第1絞り装置、16は蒸発
器である。丑た17は気液分離器13で分離される液冷
媒を蒸発器16に導くバイパス管であり、その途中には
第2及び第3の絞り装置18.19を設けると共に、そ
の中間圧力よりインジェクション回路20により冷媒の
一部を圧縮機11のシリンダ(図示せず)内に注入する
如く構成している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the refrigeration cycle apparatus according to the present invention is shown in FIG. In FIG. 2, 11 is a compressor, 12 is a first condenser, and 13 is a gas-liquid separator. When a non-azeotropic mixed refrigerant is used, the liquid refrigerant in the gas-liquid separator 13 has a higher boiling point. gas refrigerant will contain more low-boiling components. 14 is a second a-condensing type for condensing the gas refrigerant separated by the gas-liquid separator 13, 15 is a first throttle device, and 16 is an evaporator. Ushita 17 is a bypass pipe that guides the liquid refrigerant separated by the gas-liquid separator 13 to the evaporator 16, and second and third throttle devices 18 and 19 are installed in the middle of the pipe, and injection is carried out from the intermediate pressure. The circuit 20 is configured to inject a portion of the refrigerant into a cylinder (not shown) of the compressor 11.

かかる装置において、その作用様態を第3図をもって説
明する。第3図は高圧・中間圧・低圧がそれぞれ一定に
おける非共沸混合冷媒の温度対組成線図であり、非共沸
混合冷媒の場合、第3図に示す如くレンズ形となり、上
側が飽和ガス線、下側が飽和液線である。第3図の線図
−J二では、第2図に示した装置の各部の圧力及び温度
が示されている。第3図において、圧縮機11出口の高
圧状態のガス冷媒aは第1び縮型12で部分的に凝縮 
  −− された状態すとなり、気液分離器13でガス冷媒Cと液
冷媒dに分離される。ガス冷媒Cは低沸点成分に富むが
、さらに第2凝縮器14により過冷却状態eまでa縮液
化され、第1絞り装置15により低圧のガス・液共存状
態5まで減圧される。
The mode of operation of such a device will be explained with reference to FIG. Figure 3 is a temperature versus composition diagram of a non-azeotropic mixed refrigerant at constant high pressure, intermediate pressure, and low pressure.In the case of a non-azeotropic mixed refrigerant, it has a lens shape as shown in Figure 3, and the upper side is saturated gas. The line below is the saturated liquid line. Diagram J2 in FIG. 3 shows the pressure and temperature of each part of the apparatus shown in FIG. In FIG. 3, gas refrigerant a in a high pressure state at the outlet of the compressor 11 is partially condensed in the first compression type 12.
-- Once the refrigerant is in the state, it is separated into gas refrigerant C and liquid refrigerant d in the gas-liquid separator 13. The gas refrigerant C, which is rich in low boiling point components, is further condensed and liquefied to a supercooled state e by the second condenser 14, and then reduced in pressure to a low-pressure gas-liquid coexistence state 5 by the first expansion device 15.

一方、気液分離器13で分離された高沸点成分に富む液
冷媒dは、第2絞り装置18により中間圧力まで減圧さ
れた状態qとなり、その一部はさらに第3絞り装置19
により低圧まで減圧されて、ガス・液共存状態りとなる
。ここで中間圧力の冷媒qの一部は圧縮機11内に注入
されており、状態りの高沸点成分に富む冷媒の質量が減
少するため、蒸発器16人口の状態f、hが混合された
状態1は、圧縮機1出口の状態aに比べより低沸点成分
が富むことになる。ガス・液共存状態の冷媒1は蒸発器
16により蒸発され、過熱ガス状態jとなると共に、圧
縮機11に吸入され中間圧力のガス状態に−iで圧縮さ
れる。圧縮機11内部の状態は図示していないが、状態
にのガス冷媒は、インジェクション回路20から導かれ
るガス・液共6′−ジ 浮状態の冷媒qと混合され、状態lの低温化されたガス
冷媒となり、さらに圧縮され−C圧縮機11の出口冷媒
dとなる。
On the other hand, the liquid refrigerant d rich in high-boiling components separated by the gas-liquid separator 13 is in a state q where the pressure is reduced to an intermediate pressure by the second throttle device 18, and a part of it is further transferred to the third throttle device 19.
The pressure is reduced to a low pressure, resulting in a state where gas and liquid coexist. Here, a part of the intermediate pressure refrigerant q is injected into the compressor 11, and since the mass of the refrigerant rich in high boiling point components in the state decreases, the states f and h of the evaporator 16 are mixed. In state 1, lower boiling point components are more abundant than in state a at the outlet of the compressor 1. The refrigerant 1 in a gas-liquid coexistence state is evaporated by the evaporator 16 to become a superheated gas state j, and is sucked into the compressor 11 and compressed to an intermediate pressure gas state at -i. Although the state inside the compressor 11 is not shown, the gas refrigerant in the state is mixed with the refrigerant q in the 6'-di-floating state, both gas and liquid, led from the injection circuit 20, and the temperature is reduced to the state l. It becomes a gas refrigerant and is further compressed to become an outlet refrigerant d of the -C compressor 11.

ここでガス・液共存状態の冷媒qが圧縮機1のシリンダ
内に注入されるため、状態1及び吐出状態aの温度が低
下され、圧縮機1の吐出冷媒量が増大して、第1及び第
2凝縮器12.i4における加熱能力が増大することは
、第1図に示した従来例とほぼ同等である。
Here, since the refrigerant q in the gas-liquid coexistence state is injected into the cylinder of the compressor 1, the temperatures in the state 1 and the discharge state a are lowered, and the amount of refrigerant discharged from the compressor 1 is increased. Second condenser 12. The increase in heating capacity in i4 is almost the same as in the conventional example shown in FIG.

本発明の特徴とする所は、蒸発器16を流れる冷媒が、
圧縮機11から吐出される冷媒に比べより低沸点成分に
富むことである。すなわち、蒸発器16を流れる冷媒温
度は、冷却側熱源温度に大きく支配され、熱源温度が同
一のとき一般に低沸点成分に富む程圧縮機11の吸入ガ
ス比容積は小さくなるため、圧縮機11はより多くの冷
媒を循環させることが可能となり、蒸発器16での冷却
能力が増大することとなる。なおこの冷却能力の制御は
、インジェクション回路20を流れる冷媒量を制御する
ことにより可能となるものであり、77  ・ 第2図に示した実施例においては、主に第2及び第3の
絞り装置18.19の抵抗を冷却側負荷に合せて調節す
ることにより可能となり、同時に加熱能力を制御するこ
とも可能となるものである。
The feature of the present invention is that the refrigerant flowing through the evaporator 16
The refrigerant discharged from the compressor 11 is richer in low boiling point components than the refrigerant discharged from the compressor 11. That is, the temperature of the refrigerant flowing through the evaporator 16 is largely controlled by the temperature of the cooling side heat source, and when the heat source temperature is the same, the specific volume of the suction gas of the compressor 11 becomes smaller as the amount of low boiling point components increases. It becomes possible to circulate more refrigerant, and the cooling capacity of the evaporator 16 increases. The cooling capacity can be controlled by controlling the amount of refrigerant flowing through the injection circuit 20, and in the embodiment shown in FIG. This becomes possible by adjusting the resistance of 18 and 19 according to the cooling side load, and at the same time it becomes possible to control the heating capacity.

なお、最も割f111I幅が大きくなると予想されるの
は、気液分離器13で分離される液冷媒全部を、第2絞
り装置18により減圧後圧縮機11に注入する場合であ
り、このときは第3絞り装置19は不要となる。
Note that the width of the fraction f111I is expected to be the largest when all of the liquid refrigerant separated by the gas-liquid separator 13 is injected into the compressor 11 after being decompressed by the second expansion device 18. The third aperture device 19 becomes unnecessary.

丑だ第3図において低圧力が一定のとき、蒸発器16の
入口及び出口状態l+]の温度は、低沸点成分に富む程
低温側に移行するが、逆に状態i。
In FIG. 3, when the low pressure is constant, the temperature at the inlet and outlet state l+ of the evaporator 16 shifts to the lower temperature side as the low-boiling point components are richer, but conversely, the temperature at the state i+ shifts to the lower temperature side.

jの温度とほぼ一定に保つときは、低沸点成分に富む程
低圧圧力を上昇させることが可能となる。
When the temperature is kept almost constant at j, the richer the low boiling point components are, the more the low pressure can be increased.

すなわち、加熱側を高温水を得る給湯とし冷却側の熱源
温度が極端に低下した場合や、冷却側を冷房として利用
し加熱側の熱源温度が極端に上昇した場合等において、
本発明になる装置においては、第2及び第3の絞り装置
18.19をm節してインジェクション回路2oを流れ
る冷媒量を増大させると共に、さらに第1絞り装置15
の開度を調節して低圧圧力が上昇する如く制御してやる
ことにより、装置に充填した組成は一定であるので、蒸
発器16側では低沸点成分がより多く滞留し、第1耐縮
器12側では高沸点成分がより多く滞留することになる
。すなわち、そのときの熱源温度状態において、低圧は
上昇・高圧は低下して圧縮比を減少させることが可能と
なり、圧縮機11にかかる負荷を低減させるものとなる
In other words, when the heating side is used to supply high-temperature water and the temperature of the heat source on the cooling side drops dramatically, or when the cooling side is used as an air conditioner and the heat source temperature on the heating side rises extremely,
In the device according to the present invention, the second and third throttle devices 18 and 19 are set to m to increase the amount of refrigerant flowing through the injection circuit 2o, and the first throttle device 15
By controlling the opening of the evaporator so that the low pressure increases, the composition filled in the device remains constant, so more low boiling point components stay on the evaporator 16 side, and the low boiling point components stay on the first condenser 12 side. In this case, more high-boiling components will remain. That is, in the heat source temperature state at that time, the low pressure increases and the high pressure decreases, making it possible to reduce the compression ratio and reduce the load on the compressor 11.

なお、第2図に示した実施例においては、インジェクシ
ョン回路2oを第2及び第3の絞り装置18.19の間
より導いているが、必要なことはインジェクション回路
20の圧力を高圧及び低圧の中間圧力に設定することで
ある。従ってインジェクション回路20中に別の絞り装
置(図示せず)や流量制御弁(図示せず)を設けたり、
第2及び第3の絞り装置18.19間に別の気液分離器
(図示せず)を設けて圧縮機1に注入するガスと液の配
分を制御する如く構成したものも本発明に含まれるもの
である。また第2図の実施例においては、圧縮機11を
1台として、そのシリンダ内の中間圧力となる位置に、
インジェクション回路20からの冷媒を導いているが、
低段用圧縮機と高段用圧縮機の複数の圧縮機(図示せず
)を用いて、その中間に冷媒を注入する如く構成しても
よいことはもちろんのことであり、注入する冷媒量を必
要がなければ閉止する如く制御してもよい。
In the embodiment shown in FIG. 2, the injection circuit 2o is led from between the second and third throttle devices 18, 19, but what is necessary is to control the pressure of the injection circuit 20 between high pressure and low pressure. Set it to an intermediate pressure. Therefore, another throttle device (not shown) or a flow control valve (not shown) may be provided in the injection circuit 20, or
The present invention also includes a configuration in which another gas-liquid separator (not shown) is provided between the second and third throttling devices 18 and 19 to control the distribution of gas and liquid injected into the compressor 1. It is something that can be done. In addition, in the embodiment shown in FIG. 2, one compressor 11 is provided, and the compressor 11 is placed at a position where the pressure is intermediate within the cylinder.
Although the refrigerant is guided from the injection circuit 20,
Of course, it is possible to use a plurality of compressors (not shown), such as a low-stage compressor and a high-stage compressor, and to inject refrigerant between them, and the amount of refrigerant to be injected may vary. may be controlled to close if not necessary.

壕だ別の実施例として、第4図に冷暖房装置としての適
用例を示す。第4図においては、圧縮機21、四方弁2
2、熱源側交換器23 、24、負荷側熱交換器25,
26、気液分離器27 、28、絞り装置29,30,
31、インジェクション回路32等から構成されており
、冷房時は熱源側熱交換器23.24はa縮型、負荷側
熱交換器25゜26は蒸発器として働き、暖房時は逆の
働きをなす。第4図の実施例において第2図の実施例と
異なる所は、四方弁22を切換えて冷房及び暖房の両機
能を発揮させるに際して本発明の主旨を生かすために、
熱源側熱交換器23.24及び負荷側熱交換器25.2
6の間に、それぞれ別個の気液10’−・−ジ 分離器27.28を設けたことであり、第2図の実施例
と同等の効果を期待できるものである。
As another embodiment of the trench, FIG. 4 shows an example of its application as a heating and cooling device. In Fig. 4, compressor 21, four-way valve 2
2, heat source side exchangers 23, 24, load side heat exchanger 25,
26, gas-liquid separator 27, 28, throttle device 29, 30,
31, consists of an injection circuit 32, etc. During cooling, the heat source side heat exchangers 23 and 24 are a compression type, and the load side heat exchangers 25 and 26 function as evaporators, and during heating they function in the opposite way. . The difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 2 is that the gist of the present invention is utilized when switching the four-way valve 22 to perform both cooling and heating functions.
Heat source side heat exchanger 23.24 and load side heat exchanger 25.2
6, separate gas/liquid separators 10', .

発明の詳細 な説明した如く、本発明になる冷凍サイクル装置は、非
共沸混合冷媒を用いた冷凍サイクルにおいて、a縮過程
の液冷媒をガス冷媒と分離し、液冷媒を高圧及び低圧の
中間圧力に減圧した後、その一部又は全部を圧縮機の中
間圧力となる位置に注入すると共に、残りを低圧まで減
圧して、凝縮過程で分離されるガス冷媒を液化・減圧し
たものに合流させて蒸発器に流入させる如く構成したも
のであり、蒸発器に低沸点成分を多く流す如く制御する
ことにより冷却能力を増大したり、圧縮比を低減させた
りすることができるはかりでなく、吐出温度の低下や加
熱能力の増大等も可能となる      、ものである
。従って、加熱側及び冷却側の用途は   −特に限定
するものではなく、その用途向に応じ−た制御を行うこ
とにより、熱源側の広い温度変化に対しても運転を保証
ず′ることか可能となるものである。
As described in detail, the refrigeration cycle device of the present invention separates the liquid refrigerant in the a-condensation process from the gas refrigerant in a refrigeration cycle using a non-azeotropic mixed refrigerant, and separates the liquid refrigerant into an intermediate between high pressure and low pressure. After reducing the pressure to low pressure, part or all of it is injected into the intermediate pressure position of the compressor, and the remaining pressure is reduced to low pressure, and the gas refrigerant separated in the condensation process is combined with the liquefied and reduced pressure. It is configured so that the low boiling point components flow into the evaporator in large quantities, increasing the cooling capacity or reducing the compression ratio. This also makes it possible to reduce the heating capacity and increase the heating capacity. Therefore, the applications on the heating side and the cooling side are not particularly limited, and by performing control according to the application, it is possible to guarantee operation even under wide temperature changes on the heat source side. This is the result.

1111

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍ザイクル装置を示す冷媒回路図、第
2図1d:本発明にかかる冷凍ツーイクル装置の一実施
例を示す冷媒回路図、第3図は第2図の冷凍サイクル装
置の作用を示す説明図、第4図は本発明の他の実施例に
かかる冷媒回路図である。 11・・・・圧縮機、12.14・・・・・・θ結盟、
13・・・・・・気液分離器、17・・・・・バイパス
管、16゜18.19 ・・・・絞り装置、16・・・
・・・蒸発器、20・・・・・・インジェクション回路
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 イ氏調5.屯、〃\分の糸1p\ 第4図
Fig. 1 is a refrigerant circuit diagram showing a conventional refrigeration cycle device, Fig. 2 1d: a refrigerant circuit diagram showing an embodiment of the refrigeration cycle device according to the present invention, and Fig. 3 is an operation of the refrigeration cycle device shown in Fig. 2. FIG. 4 is a refrigerant circuit diagram according to another embodiment of the present invention. 11... Compressor, 12.14... θ alliance,
13... Gas-liquid separator, 17... Bypass pipe, 16°18.19... Squeezing device, 16...
...Evaporator, 20...Injection circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Mr. Lee style 5. Tun, 〃\Minute thread 1p\ Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)非共沸混合冷媒を用い、圧縮機、凝縮器、絞り装
置、蒸発器を連結してなる冷凍サイクル装置において、
凝縮過程の液冷媒を気液分離器にてガス冷媒と分離し、
前記液冷媒を絞り装置にて高圧及び低圧の中間圧力に減
圧し、その一部又は全部をインジェクション回路にて圧
縮機の中間圧力となる位置に注入すると共に、残りを絞
り装置にて低圧丑で減圧して、凝縮過程で分離されるガ
ス冷媒を液化、減圧したものに合流させて蒸発器に流入
させた冷凍サイクル装置。
(1) In a refrigeration cycle device using a non-azeotropic mixed refrigerant and connecting a compressor, a condenser, a throttle device, and an evaporator,
The liquid refrigerant in the condensation process is separated from the gas refrigerant in a gas-liquid separator.
The liquid refrigerant is reduced in pressure to an intermediate pressure between high pressure and low pressure using a throttling device, and part or all of it is injected into the intermediate pressure position of the compressor through an injection circuit, and the remainder is reduced to a low pressure using a throttling device. A refrigeration cycle device in which the gas refrigerant separated during the condensation process is liquefied, combined with the reduced pressure, and then flows into the evaporator.
(2)圧縮機の中間圧力となる位置に注入される冷媒量
を制御する特許請求の範囲第1項記載の冷凍サイクル装
置。
(2) The refrigeration cycle device according to claim 1, which controls the amount of refrigerant injected into the intermediate pressure position of the compressor.
JP2796183A 1983-02-22 1983-02-22 Refrigeration cycle device Pending JPS59153075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2796183A JPS59153075A (en) 1983-02-22 1983-02-22 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2796183A JPS59153075A (en) 1983-02-22 1983-02-22 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPS59153075A true JPS59153075A (en) 1984-08-31

Family

ID=12235481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2796183A Pending JPS59153075A (en) 1983-02-22 1983-02-22 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS59153075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236884A (en) * 2011-05-10 2012-12-06 Fujitsu General Ltd Mixed refrigerant and air conditioner using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236884A (en) * 2011-05-10 2012-12-06 Fujitsu General Ltd Mixed refrigerant and air conditioner using the same

Similar Documents

Publication Publication Date Title
JPH0718602B2 (en) Operation method and apparatus for supercritical vapor compression cycle
JPH10332212A (en) Refrigeration cycle of air conditioner
CN108895694A (en) A kind of improvement self-cascade refrigeration system system and its control method
JPS59157446A (en) Refrigeration cycle device
JPH01273959A (en) Air conditioner for vehicle
JPS59153075A (en) Refrigeration cycle device
JPH07332814A (en) Heat pump system
JPH10220880A (en) Air conditioner
JPS59153074A (en) Refrigeration cycle device
JPH10148412A (en) Refrigerating system
JP2711879B2 (en) Low temperature refrigerator
JPH0639979B2 (en) Refrigeration cycle equipment
JPH07198215A (en) Freezer
JPH0432663A (en) Refrigeration cycle arrangement
JPH0339866A (en) Refrigerator
JPH04268165A (en) Double-stage compression and freezing cycle device
JPS5966664A (en) Heat pump type refrigerator
JP2574545B2 (en) Refrigeration cycle device
JPS61217659A (en) Heat pump device
JP2532754B2 (en) Refrigeration cycle equipment
JPH10306947A (en) Refrigerator
JPH07167508A (en) Refrigerator
JPH0237261A (en) Heat pump type air conditioner
JPH08210716A (en) Refrigerator
JPH06103128B2 (en) Heat pump device