JPS6230691Y2 - - Google Patents

Info

Publication number
JPS6230691Y2
JPS6230691Y2 JP7114181U JP7114181U JPS6230691Y2 JP S6230691 Y2 JPS6230691 Y2 JP S6230691Y2 JP 7114181 U JP7114181 U JP 7114181U JP 7114181 U JP7114181 U JP 7114181U JP S6230691 Y2 JPS6230691 Y2 JP S6230691Y2
Authority
JP
Japan
Prior art keywords
refrigerant
cooler
stage compressor
intercooler
pressure liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7114181U
Other languages
Japanese (ja)
Other versions
JPS57184471U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7114181U priority Critical patent/JPS6230691Y2/ja
Publication of JPS57184471U publication Critical patent/JPS57184471U/ja
Application granted granted Critical
Publication of JPS6230691Y2 publication Critical patent/JPS6230691Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は2段圧縮形のスクリユー冷凍機、詳
しくは低段側圧縮機と高段側圧縮機とを備えたス
クリユー冷凍機に関する。
[Detailed Description of the Invention] This invention relates to a two-stage compression screw refrigerator, and more specifically, to a screw refrigerator equipped with a lower stage compressor and a higher stage compressor.

一般に低温で使用する冷凍機の冷凍能力は、圧
縮機に吸入されるガス冷媒の比体積と重要な関係
があり、この比体積が増加すると、圧縮機に吸入
される冷媒量が減少し、かつ蒸発器での冷媒のエ
ンタルピー差が減少して、能力低下を招くのであ
る。
Generally, the refrigerating capacity of a refrigerator used at low temperatures has an important relationship with the specific volume of the gas refrigerant sucked into the compressor, and as this specific volume increases, the amount of refrigerant sucked into the compressor decreases, and The enthalpy difference between the refrigerants in the evaporator decreases, leading to a decrease in capacity.

例えば冷媒としてフロン22を使用し、40℃の
凝縮温度で−40℃の蒸発を行なうときと、0℃で
蒸発を行なうときとの冷凍能力について具体的に
説明すれば、第3図のモリエル線図に明らかにし
たごとく、飽和蒸気線上に位置するガス冷媒の0
℃におおける比体積は0.047m3/Kgで、そのエン
タルピーが149.05kcal/Kgであるのに対し、−40
℃の比体積は0.206m3//Kgでエンタルピーが
145.05kcal/Kgであり、また液冷媒のエンタルピ
ー111.87kcal/Kgである。
For example, if we use Freon 22 as a refrigerant and specifically explain the refrigerating capacity when performing evaporation at -40°C at a condensation temperature of 40°C and when performing evaporation at 0°C, the Mollier curve shown in Figure 3 As shown in the figure, the 0 of the gas refrigerant located on the saturated vapor line
The specific volume at ℃ is 0.047m 3 /Kg, and its enthalpy is 149.05kcal/Kg, while -40
The specific volume in °C is 0.206m 3 //Kg and the enthalpy is
It is 145.05kcal/Kg, and the enthalpy of liquid refrigerant is 111.87kcal/Kg.

しかして圧縮機の吸入流量をm3/hとすれば、
冷凍能力Qは冷媒のガス液域間におけるエンタル
ピー差×流量×1/比体積であり、従つて 0℃蒸発時の冷凍能力 Q1=(149.05−111.87) ×v/0.047=791.1v kcal/h−40゜蒸発時の冷凍能力 Q2=(145.05−111.87) ×v/0.206=161.1vkcal/h となり、−40℃蒸発時の冷凍能力は0℃蒸発時に
較べ、約20%にまで低下するのである。
However, if the suction flow rate of the compressor is m 3 /h,
The refrigerating capacity Q is the enthalpy difference between the gas and liquid regions of the refrigerant x flow rate x 1/specific volume. Therefore, the refrigerating capacity when evaporating at 0°C Q 1 = (149.05-111.87) x v/0.047 = 791.1v kcal/h Refrigeration capacity at -40° evaporation Q 2 = (145.05-111.87) x v/0.206 = 161.1 vkcal/h, and the refrigeration capacity at -40°C evaporation decreases to about 20% compared to 0°C evaporation. be.

そこで従来では、−30℃程度の低温で使用する
冷凍機の場合、低段側圧縮機と高段側圧縮機とを
用いて2段圧縮を行ない、凝縮器から流出した液
冷媒の一部を過冷却して、蒸発器に供給すること
により、冷凍機を循環する冷媒の利用エンタルピ
ー差を大として、冷凍能力を増大させるべくして
いる。
Conventionally, in the case of refrigerators used at temperatures as low as -30°C, two-stage compression is performed using a low-stage compressor and a high-stage compressor, and a portion of the liquid refrigerant flowing out from the condenser is removed. By supercooling the refrigerant and supplying it to the evaporator, the difference in utilization enthalpy of the refrigerant circulating through the refrigerator is increased, thereby increasing the refrigerating capacity.

即ち、第4図に示すごとき冷凍サイクルにおい
て、低段側圧縮機c1と高段側圧縮機c2とを直列状
に接続すると共に、前記凝縮器bの冷媒流出側に
おける高圧液管に中間冷却器dを設け、該冷却器
dの冷却部eを前記高段側圧縮機c2の冷媒吸入側
に連通する一方、この冷却器dにより凝縮器bか
ら流出した液冷媒を過冷却して蒸発器aに供給
し、前記冷凍サイクルの高圧液管内における冷媒
温度を低下させて、該サイクルにおける循環冷媒
の利用エンタルピー差を大となすようにしてい
る。
That is, in the refrigeration cycle as shown in FIG. 4, the low-stage compressor c1 and the high-stage compressor c2 are connected in series, and an intermediate pipe is connected to the high-pressure liquid pipe on the refrigerant outlet side of the condenser b. A cooler d is provided, and the cooling part e of the cooler d is communicated with the refrigerant suction side of the high-stage compressor c2 , while the liquid refrigerant flowing out from the condenser b is supercooled by the cooler d. The refrigerant is supplied to the evaporator a to lower the refrigerant temperature in the high-pressure liquid pipe of the refrigeration cycle, thereby increasing the enthalpy difference between the circulating refrigerants in the cycle.

尚、第4図において、fは前記中間冷却器dと
蒸発器aとを接続する配管途中に設けた第1膨張
弁、gは前記凝縮器bの流出側配管と中間冷却器
dの冷却部eとを接続する分岐配管の途中に設け
た第2膨張弁である。
In FIG. 4, f is the first expansion valve provided in the middle of the pipe connecting the intercooler d and the evaporator a, and g is the cooling section between the outlet pipe of the condenser b and the intercooler d. This is the second expansion valve provided in the middle of the branch pipe connecting to e.

しかして前記冷凍サイクルにおいて、高段側圧
縮機c2からの冷媒流出点をA、凝縮器bからの冷
媒流出点をB、中間冷却器dからの流出点をc、
第1膨張弁fからの流出点をD、蒸発器aからの
流出点をE、及び前記低高段側圧縮機c1,c2の中
間で前記冷却器dの冷却部eが連通される点をF
とすれば、前記冷凍サイクルのモリエル線図は、
第5図に示すごとくなる。
Therefore, in the refrigeration cycle, the refrigerant outflow point from the high-stage compressor c2 is A, the refrigerant outflow point from the condenser b is B, and the outflow point from the intercooler d is c,
The outflow point from the first expansion valve f is connected to D, the outflow point from the evaporator a is connected to E, and the cooling part e of the cooler d is communicated between the low and high stage compressors c 1 and c 2 . Point F
Then, the Mollier diagram of the refrigeration cycle is
The result is as shown in FIG.

このモリエル線図から明らかな通り、中間冷却
器dを設けない場合は、利用エンタルピー差△i1
=iE−iBであるのに対して、前記冷却器dを設け
た場合には、利用エンタルピー差△i2=iE−iCで
あり、前記冷却器dを設けない場合に較べ、△i2
−△i1=iB−iC、つまりこのiB−iCの分だけ利用
エンタルピー差が大となり、冷凍能力を増大させ
ることができるのである。
As is clear from this Mollier diagram, if the intercooler d is not provided, the difference in available enthalpy △i 1
= iE−iB, whereas when the cooler d is provided, the difference in utilization enthalpy is △i 2 = iE−iC, and compared to the case where the cooler d is not provided, △i 2
−Δi 1 = iB−iC, that is, the utilization enthalpy difference increases by this iB−iC, and the refrigeration capacity can be increased.

ところが前記場合よりさらに低温、例えば−60
℃程度で使用する冷凍機にあつては、前記中間冷
却器dを設けたとしても、前述したごとく冷媒の
比体積の増加と、利用エンタルピー差の減少とに
より、冷凍能力が著しく低下するのである。
However, the temperature is even lower than in the above case, for example -60
In the case of refrigerators used at temperatures around ℃, even if the intercooler d is installed, the refrigerating capacity will significantly decrease due to the increase in the specific volume of the refrigerant and the decrease in the difference in available enthalpy, as described above. .

以上の理由から使用温度が極めて低い冷凍機の
場合には、圧縮機を多数設けた多段圧縮冷凍方式
や2元冷凍方式などを採用しているが、これら方
式の冷凍機は構造が極めて複雑で、保守管理が難
しいばかりか、外形寸法及び重量が増大し、かつ
高価格となる問題があつた。
For the above reasons, in the case of refrigerators that operate at extremely low temperatures, multi-stage compression refrigeration systems with multiple compressors or binary refrigeration systems are used, but these systems have extremely complex structures. However, there were problems in that not only maintenance was difficult, but also the external dimensions and weight increased, and the price was high.

本考案は以上の各種問題に鑑みて考案したもの
で、圧縮機を2段としながら冷凍サイクルにおけ
る冷媒の利用エンタルピー差を増大させ、たとえ
極めて低温で使用する場合にも、圧縮機を多数設
けた多段圧縮方式と同様高い冷凍能力で冷凍でき
る2段圧縮形のスクリユー冷凍機を提供せんとす
るものである。
This invention was devised in view of the various problems mentioned above, and it increases the difference in enthalpy of refrigerant utilization in the refrigeration cycle by using two stages of compressors. It is an object of the present invention to provide a two-stage compression type screw-refrigerator capable of freezing with a high refrigerating capacity similar to the multi-stage compression type.

即ち本考案は、高圧液管に、第1中間冷却器を
設けて、該冷却器の冷却部を、前記高圧液管にお
ける前記冷却器の上流側と、前記高段側圧縮機の
吸入側との間に接続すると共に、前記高圧液管に
おける前記冷却器の下流側に第2中間冷却器を設
け、この第2中間冷却器の冷却部を前記高圧液管
における前記第1中間冷却器の上流側と、前記低
段側圧縮機の圧縮工程中間に設けた中間圧ポート
との間に接続したことを特徴とするものである。
That is, in the present invention, a first intercooler is provided in the high-pressure liquid pipe, and the cooling section of the cooler is connected to the upstream side of the cooler in the high-pressure liquid pipe and the suction side of the high-stage compressor. A second intercooler is provided downstream of the cooler in the high-pressure liquid pipe, and a cooling part of the second intercooler is connected to the high-pressure liquid pipe upstream of the first intercooler. It is characterized in that it is connected between the side and an intermediate pressure port provided in the middle of the compression process of the low-stage compressor.

以下本考案の2段圧縮形スクリユー冷凍機を図
面の実施例によつて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The two-stage compression type screw refrigerator of the present invention will be explained below with reference to the drawings.

第1図は前記冷凍機の冷凍サイクルを示し、該
図中1はスクリユー式の低段側圧縮機、2はその
冷媒吐出側に連結したスクリユー式の高段側圧縮
機であり、この高段側圧縮機2の冷媒吐出側に高
圧ガス管31を介して、オイルセパレーター4と
凝縮器5を接続すると共に、前記凝縮器5の出口
側を、高圧液管32、膨張弁18及び低圧液管3
3を介して蒸発器6を接続し、かつ前記蒸発器6
と低段側圧縮機1との間を低圧ガス管34により
接続している。
FIG. 1 shows the refrigeration cycle of the refrigerator, in which 1 is a screw-type low-stage compressor, 2 is a screw-type high-stage compressor connected to the refrigerant discharge side, and 2 is a screw-type high-stage compressor connected to the refrigerant discharge side. An oil separator 4 and a condenser 5 are connected to the refrigerant discharge side of the side compressor 2 via a high-pressure gas pipe 31, and the outlet side of the condenser 5 is connected to a high-pressure liquid pipe 32, an expansion valve 18, and a low-pressure liquid pipe. 3
3 through which an evaporator 6 is connected, and said evaporator 6
and the low-stage compressor 1 are connected by a low-pressure gas pipe 34.

前記オイルセパレーター4には、水又は液冷媒
により冷却すべくしたクーラー4aを付設し1対
の連絡管4b,4bにより連結し、吐出冷媒から
分離し、かつ冷却した油を給油管4cにより被給
油部に供給している。
The oil separator 4 is equipped with a cooler 4a for cooling with water or liquid refrigerant, which is connected by a pair of communication pipes 4b, 4b, and is separated from the discharged refrigerant, and the cooled oil is supplied to the oil supply pipe 4c. supply to the department.

しかして前記高圧液管32に、コイル状の冷却
部8aをもつ第1中間冷却器8を介装し、この冷
却部8aの一端を、前記高圧液管32における凝
縮器5の出口側に、途中に第1膨張弁9をもつ第
1分岐管10を介して接続すると共に、前記冷却
部8aの他端を配管11を介して前記両圧縮機
1,2の中間に連結することにより、冷却器8の
冷却部8aを、高圧液管3における冷却器8の上
流側と、高段側圧縮機2の吸入側との間に接続し
ている。
Therefore, a first intercooler 8 having a coil-shaped cooling section 8a is interposed in the high-pressure liquid pipe 32, and one end of this cooling section 8a is placed on the outlet side of the condenser 5 in the high-pressure liquid pipe 32. Cooling is achieved by connecting via a first branch pipe 10 having a first expansion valve 9 in the middle, and by connecting the other end of the cooling section 8a to an intermediate point between the two compressors 1 and 2 via a pipe 11. The cooling section 8a of the cooler 8 is connected between the upstream side of the cooler 8 in the high-pressure liquid pipe 3 and the suction side of the high-stage compressor 2.

前記配管11の途中には感温筒12を設け、該
感温筒12により配管11内の冷媒温度を検出
し、前記第1膨張弁10の開度調節により冷媒の
過熱度を調整するのである。
A temperature sensing cylinder 12 is provided in the middle of the pipe 11, the temperature of the refrigerant in the pipe 11 is detected by the temperature sensing cylinder 12, and the degree of superheating of the refrigerant is adjusted by adjusting the opening degree of the first expansion valve 10. .

また前記高圧液管32における前記第1冷却器
8の下流側であつて前記膨張弁18の上流側に、
冷却部13aをもつ第2中間冷却器13を介装
し、この冷却部13aの一端を前記凝縮器5の出
口側における高圧液管32に、途中に第2膨張弁
14をもつ第2分岐管15を介して接続すると共
に、前記冷却部13aの他端を配管16を介し
て、前記低段側圧縮機1の冷媒圧縮工程中間に形
成した中間圧ポート1aに連結することにより、
第2中間冷却器13の冷却部13aを、高圧液管
32における第1中間冷却器8の上流側と、低段
側圧縮機1の圧縮工程中間に設けた中間圧ポート
1aとの間に接続している。
Further, on the downstream side of the first cooler 8 in the high pressure liquid pipe 32 and upstream of the expansion valve 18,
A second intercooler 13 having a cooling section 13a is interposed, one end of which is connected to the high pressure liquid pipe 32 on the outlet side of the condenser 5, and a second branch pipe having a second expansion valve 14 in the middle. 15, and the other end of the cooling part 13a is connected to the intermediate pressure port 1a formed in the middle of the refrigerant compression process of the low-stage compressor 1 through the pipe 16.
The cooling part 13a of the second intercooler 13 is connected between the upstream side of the first intercooler 8 in the high pressure liquid pipe 32 and the intermediate pressure port 1a provided in the middle of the compression process of the low stage compressor 1. are doing.

前記配管16の途中には、前記第1冷却器8と
同様に感温筒17を設け、この感温筒17により
配管16内の冷媒温度を検出し前記第2膨張弁1
4の開度調節により冷媒の過熱度を調整するので
ある。
A temperature sensing cylinder 17 is provided in the middle of the pipe 16, similar to the first cooler 8, and the temperature sensing cylinder 17 detects the temperature of the refrigerant in the pipe 16.
The degree of superheating of the refrigerant is adjusted by adjusting the opening degree in step 4.

尚、図中19は前記膨張弁18の感温筒で、前
記低圧ガス管34に設け、この感温筒19により
冷媒の過熱度を調整すべくしている。
In the figure, reference numeral 19 denotes a temperature-sensitive tube of the expansion valve 18, which is provided in the low-pressure gas pipe 34, and is used to adjust the degree of superheat of the refrigerant.

本考案のスクリユー冷凍機は以上の構成を有す
るのであり、低段側圧縮機1で圧縮された冷媒
は、高段側圧縮機2によりさらに高圧に圧縮され
て、オイルセパレーター4、凝縮器5、第1及び
第2冷却器8,13を経て蒸発器6に至り、ここ
で冷媒が蒸発して冷凍庫内を冷却し、冷媒は低段
側圧縮機1に還流され、以上のサイクルを繰返し
て冷凍庫内の冷凍が行なわれる。
The screw refrigerator of the present invention has the above configuration, and the refrigerant compressed by the low-stage compressor 1 is further compressed to a high pressure by the high-stage compressor 2, and the refrigerant is compressed to an oil separator 4, a condenser 5, The refrigerant passes through the first and second coolers 8 and 13 and reaches the evaporator 6, where the refrigerant evaporates and cools the inside of the freezer.The refrigerant is then returned to the low stage compressor 1, and the above cycle is repeated. Freezing is carried out inside.

しかして前記凝縮器5を通過した高圧液管32
内の冷媒の一部は、第1分岐管10を経て第1冷
却器8の冷却部8aに至り、ここで蒸発して前記
高圧液管32を流れる冷媒を過冷却させるのであ
り、また、前記冷却部8aで蒸発したガス冷媒
は、配管11から低、高段側圧縮機1,2の中間
に供給され、低段側圧縮機1から吐出される冷媒
と共に高段側圧縮機2に吸入されるのである。
The high pressure liquid pipe 32 that has passed through the condenser 5
A part of the refrigerant inside reaches the cooling section 8a of the first cooler 8 through the first branch pipe 10, where it evaporates and supercools the refrigerant flowing through the high-pressure liquid pipe 32. The gas refrigerant evaporated in the cooling section 8a is supplied from the pipe 11 to the middle of the low and high stage compressors 1 and 2, and is sucked into the high stage compressor 2 together with the refrigerant discharged from the low stage compressor 1. It is.

しかも前記凝縮器5を通過した高圧液管32内
の冷媒の一部が、第2分岐管15から第2冷却器
13の冷却部13aに至り、ここで蒸発して前記
第1冷却器13から前記高圧液管32を通る冷媒
を更に過冷却するのである。又前記冷却部13a
で蒸発したガス冷媒は、前記配管16を介し低段
側圧縮機1の中間圧ポート1aに供給され、該圧
縮機1による圧縮工程中間の冷媒を冷却するので
ある。
In addition, a part of the refrigerant in the high-pressure liquid pipe 32 that has passed through the condenser 5 reaches the cooling part 13a of the second cooler 13 from the second branch pipe 15, evaporates there, and leaves the first cooler 13. The refrigerant passing through the high-pressure liquid pipe 32 is further supercooled. Moreover, the cooling section 13a
The evaporated gas refrigerant is supplied to the intermediate pressure port 1a of the low-stage compressor 1 through the pipe 16, and cools the refrigerant in the middle of the compression process by the compressor 1.

以上の如く凝縮器5を通過した液冷媒は、第1
冷却器8で過冷却された後、第2冷却器13で再
び過冷却されるのであつて、その過冷却度を大き
くでき、そのエンタルピー差を増大できるのであ
る。即ち前記高段側圧縮機2の冷媒吐出点をA、
凝縮器5の冷媒流出点をB、第1冷却器8の流出
点をC、第2冷却器13の流出点をD、蒸発器6
の流入点をE、低段側圧縮機1の吸入点をF、低
高段側圧縮機1,2の中間で前記第1冷却器8の
冷却部8aが連通される点をG、第1冷却器8の
冷却部8aへの流入点をH、その流出点をI、第
2冷却器13の冷却部13aへの流入点をJ、そ
の流出点をK、低段側圧縮機1における吸入直前
(合流前)の中間圧ポート1aの点をL、吸入直
後(合流後)の中間圧ポート1aの点をM、及び
その吐出点をNとすれば、前記冷凍サイクルのモ
リエル線図は、第2図に示すごとくなる。
The liquid refrigerant that has passed through the condenser 5 as described above is
After being supercooled in the cooler 8, it is supercooled again in the second cooler 13, and the degree of supercooling can be increased and the enthalpy difference can be increased. That is, the refrigerant discharge point of the high-stage compressor 2 is set to A,
The refrigerant outflow point of the condenser 5 is B, the outflow point of the first cooler 8 is C, the outflow point of the second cooler 13 is D, and the evaporator 6
E is the inflow point of the lower stage compressor 1, F is the suction point of the lower stage compressor 1, G is the point where the cooling part 8a of the first cooler 8 is communicated between the lower and higher stage compressors 1 and 2, and the first The inflow point to the cooling part 8a of the cooler 8 is H, the outflow point is I, the inflow point to the cooling part 13a of the second cooler 13 is J, the outflow point is K, and the suction in the low stage compressor 1 If the point at the intermediate pressure port 1a immediately before (before merging) is L, the point at the intermediate pressure port 1a immediately after suction (after merging) is M, and the discharge point is N, the Mollier diagram of the refrigeration cycle is as follows: The result is as shown in Figure 2.

このモリエル線図から明らかな通り、第1中間
冷却器8のみを設けた場合には、前述した従来例
にも説明したごとく、利用エンタルピー差△i2
iE−iCであるのに対して、第1及び第2冷却器
8,13を設けた場合、利用エンタルピー差△i2
=iE−iDであり、従つて第1冷却器8のみを設
けた場合に較べ、△i3−△i2=iC−iDの分だけ利
用エンタルピー差が大となり、冷凍能力が著しく
増大されるのである。
As is clear from this Mollier diagram, when only the first intercooler 8 is provided, as explained in the conventional example above, the difference in available enthalpy △i 2 =
In contrast to iE−iC, when the first and second coolers 8 and 13 are provided, the difference in enthalpy used is △i 2
= iE - iD, therefore, compared to the case where only the first cooler 8 is provided, the difference in available enthalpy is larger by △i 3 - △i 2 = iC - iD, and the refrigerating capacity is significantly increased. It is.

以上説明したごとく本考案では、第1冷却器8
とは別に、更に第2中間冷却器13を用い、前記
第1冷却器8により過冷却された冷媒を前記第2
冷却器13により更に過冷却するごとく成し、前
記第1冷却器8の冷却部8aを高段側圧縮機2の
吸入側に、また第2冷却器13の冷却部13a
を、前記低段側圧縮機1に形成した中間圧ポート
にそれぞれ連通させたので、冷凍サイクルにおけ
る冷媒の利用エンタルピー差を、従来のごとく1
つの中間冷却器を用いるものに較べて増大させる
ことができ、従つて冷凍機の冷凍能力を著しく高
め、かつ冷凍機の成積係数を向上させることがで
きるに至つたのである。
As explained above, in the present invention, the first cooler 8
Separately, a second intercooler 13 is further used to transfer the refrigerant supercooled by the first cooler 8 to the second intercooler 13.
The cooling section 8a of the first cooler 8 is placed on the suction side of the high-stage compressor 2, and the cooling section 13a of the second cooler 13 is placed on the suction side of the high-stage compressor 2.
are communicated with the intermediate pressure ports formed in the low-stage compressor 1, so the difference in enthalpy of refrigerant utilization in the refrigeration cycle is reduced to 1 as in the conventional case.
This makes it possible to increase the number of intercoolers compared to one that uses two intercoolers, thereby significantly increasing the refrigerating capacity of the refrigerator and improving the build-up coefficient of the refrigerator.

しかも、本考案では、2つの中間冷却器を用
い、2段圧縮形の冷凍機で、多段圧縮形冷凍機に
相当する高い冷凍能力が得られるのであり、従つ
て従来の多段圧縮形冷凍機に較べ、保守管理が非
常に簡単で、小形軽量にできるばかりか、安価な
提供が可能となつたのである。
Moreover, in this invention, by using two intercoolers, a two-stage compression type refrigerator can obtain a high refrigeration capacity equivalent to that of a multi-stage compression type refrigerator. Therefore, compared to conventional multi-stage compression type refrigerators, maintenance is very easy, and the refrigerator can be made small and lightweight, and can also be provided at a low price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる冷凍機の冷凍サイクル
を示す図、第2図は同サイクルのモリエル線図、
第3図は従来例を説明するモリエル線図、第4図
は従来の冷凍機を示す冷凍サイクル図、第5図は
そのモリエル線図である。 1……低段側圧縮機、1a……中間圧ポート、
2……高段側圧縮機、8……第1中間冷却器、8
a……冷却部、13……第2中間冷却器、13a
……冷却部、32……高圧液管。
Fig. 1 is a diagram showing a refrigeration cycle of a refrigerator according to the present invention, Fig. 2 is a Mollier diagram of the same cycle,
FIG. 3 is a Mollier diagram explaining a conventional example, FIG. 4 is a refrigeration cycle diagram showing a conventional refrigerator, and FIG. 5 is a Mollier diagram thereof. 1...Low stage side compressor, 1a...Intermediate pressure port,
2...High stage side compressor, 8...First intercooler, 8
a...Cooling section, 13...Second intercooler, 13a
...Cooling section, 32...High pressure liquid pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 低段側圧縮機1と高段側圧縮機2とを備えた2
段圧縮形スクリユー冷凍機において、高圧液管3
2に、第1中間冷却器8を設けて、該冷却器8の
冷却部8aを、前記高圧液管32における前記冷
却器8の上流側と、前記高段側圧縮機2の吸入側
との間に接続すると共に、前記高圧液管32にお
ける前記冷却器8の下流側に第2中間冷却器13
を設け、この第2中間冷却器13の冷却部13a
を、前記高圧液管32における前記第1中間冷却
器8の上流側と、前記低段側圧縮機1の圧縮工程
中間に設けた中間圧ポート1aとの間に接続した
ことを特徴とする2段圧縮形スクリユー冷凍機。
2 comprising a low-stage compressor 1 and a high-stage compressor 2
In a stage compression screw refrigerator, high pressure liquid pipe 3
2, a first intercooler 8 is provided, and the cooling section 8a of the cooler 8 is connected between the upstream side of the cooler 8 in the high-pressure liquid pipe 32 and the suction side of the high-stage compressor 2. A second intercooler 13 is connected to the high-pressure liquid pipe 32 downstream of the cooler 8.
A cooling section 13a of this second intercooler 13 is provided.
is connected between the upstream side of the first intercooler 8 in the high-pressure liquid pipe 32 and the intermediate pressure port 1a provided in the middle of the compression process of the low-stage compressor 1. Stage compression screw refrigerator.
JP7114181U 1981-05-15 1981-05-15 Expired JPS6230691Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114181U JPS6230691Y2 (en) 1981-05-15 1981-05-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114181U JPS6230691Y2 (en) 1981-05-15 1981-05-15

Publications (2)

Publication Number Publication Date
JPS57184471U JPS57184471U (en) 1982-11-22
JPS6230691Y2 true JPS6230691Y2 (en) 1987-08-06

Family

ID=29866939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114181U Expired JPS6230691Y2 (en) 1981-05-15 1981-05-15

Country Status (1)

Country Link
JP (1) JPS6230691Y2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258397A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Refrigerator
DE102007013485B4 (en) * 2007-03-21 2020-02-20 Gea Refrigeration Germany Gmbh Process for controlling a CO2 refrigeration system with two-stage compression
JP4569708B2 (en) * 2008-12-05 2010-10-27 ダイキン工業株式会社 Refrigeration equipment
KR101249898B1 (en) * 2011-01-21 2013-04-09 엘지전자 주식회사 Heat pump
JP6152176B2 (en) * 2016-01-13 2017-06-21 三菱重工業株式会社 Turbo refrigerator
JP2018009565A (en) * 2016-06-30 2018-01-18 株式会社デンソー Multi-stage compressor
WO2018003431A1 (en) * 2016-06-30 2018-01-04 株式会社デンソー Multi-stage compressor

Also Published As

Publication number Publication date
JPS57184471U (en) 1982-11-22

Similar Documents

Publication Publication Date Title
DK1895246T3 (en) Cooling circuits and method for operating a cooling circuit
US6519967B1 (en) Arrangement for cascade refrigeration system
JPH03164664A (en) Refrigeration system
EP3364128B1 (en) Heat pump unit control system
US5381665A (en) Refrigerating system with compressor cooled by liquid refrigerant
JPH10103800A (en) Composite type refrigerating plant
US6018958A (en) Dry suction industrial ammonia refrigeration system
JPS6230691Y2 (en)
JP2003130477A (en) Refrigeration device
TW201217729A (en) characterized by making the gas refrigerant from the second outer route and the inner route join at the refrigerant route to flow into the compressor
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
US6644068B2 (en) Refrigeration system and method of operation therefor
CN102997527A (en) Gas-liquid heat exchange type refrigeration device
JPH03105155A (en) Freezer with economizer
JP2001033110A (en) Refrigerator
JP2708925B2 (en) Multi-source refrigeration equipment
KR20190120115A (en) Refrigeration system of refrigerator vehicle for low-temperature transportation
JP2615496B2 (en) Two-stage compression refrigeration cycle
JPH04263746A (en) Refrigerator
JP2766356B2 (en) Refrigeration system with double evaporator for home refrigerator
JPS58178159A (en) Multistage cascade cooling system
US11466902B2 (en) Vapor compression refrigeration system
JPH07127934A (en) Cascade freezing device
WO2022144946A4 (en) Improvement of reverse liquid defrosting system and method
JPS5865Y2 (en) Refrigeration equipment