JPS6112540Y2 - - Google Patents

Info

Publication number
JPS6112540Y2
JPS6112540Y2 JP11855379U JP11855379U JPS6112540Y2 JP S6112540 Y2 JPS6112540 Y2 JP S6112540Y2 JP 11855379 U JP11855379 U JP 11855379U JP 11855379 U JP11855379 U JP 11855379U JP S6112540 Y2 JPS6112540 Y2 JP S6112540Y2
Authority
JP
Japan
Prior art keywords
condenser
air
valve
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11855379U
Other languages
Japanese (ja)
Other versions
JPS5636063U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11855379U priority Critical patent/JPS6112540Y2/ja
Publication of JPS5636063U publication Critical patent/JPS5636063U/ja
Application granted granted Critical
Publication of JPS6112540Y2 publication Critical patent/JPS6112540Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 従来の冷凍装置は、第1図フローダイアグラム
に示すように、冷媒は圧縮機1→凝縮器2→受液
器3→膨張弁4→蒸発器5→圧縮機1と循環する
のであるが、このような冷媒の循環回路には、(i)
冬期外気温が低下したとき、高圧圧力(凝縮圧
力)が低下するため膨張弁4の前後の差圧が小に
なり冷媒が流れにくゝなるため蒸発器5へ十分な
冷媒が流れなくなり蒸発圧力が低下し冷凍能力が
大巾に減少する、(ii)冷媒流量が少ないため圧縮機
の潤滑油が蒸発器5から圧縮機1へうまく戻らず
軸受等摺動部の潤滑部の潤滑不良を起こし甚しい
場合には圧縮機1が焼損する等の欠点がある。
[Detailed description of the invention] In the conventional refrigeration system, as shown in the flow diagram in Fig. 1, the refrigerant is transferred through the compressor 1 → condenser 2 → liquid receiver 3 → expansion valve 4 → evaporator 5 → compressor 1. In this refrigerant circulation circuit, (i)
When the outside temperature drops in winter, the high pressure (condensation pressure) decreases, so the differential pressure across the expansion valve 4 becomes small, making it difficult for the refrigerant to flow, and therefore not enough refrigerant flows to the evaporator 5, which reduces the evaporation pressure. (ii) Due to the low refrigerant flow rate, the lubricating oil of the compressor does not return properly from the evaporator 5 to the compressor 1, resulting in poor lubrication of the lubricated parts of sliding parts such as bearings. In severe cases, there is a drawback that the compressor 1 may be burnt out.

そこで、これらの欠点を除去するために、第2
図に示すように、第1図の凝縮器2をバイパスす
る高圧コントロール弁6を付設した冷媒回路も知
られている。すなわち、この冷媒回路では、通
常、冷媒は圧縮機1→凝縮器2→高圧コントロー
ル弁6→受液器3→膨張弁4→蒸発器5→圧縮機
1と循環するが、冬期外気温度が低下すると、高
圧コントロール弁6が開き、一部冷媒は上記の循
環回路と並行して圧縮機1→バイパス配管7→高
圧コントロール弁6→受液器3→膨張弁4→蒸発
器5→圧縮機1と循環し、圧縮機1から吐出され
た冷媒ガスの一部が凝縮器2をバイパスしてバイ
パス配管7を流れ、高圧圧力が一定圧力以下にな
らないように高圧圧力を維持する。
Therefore, in order to eliminate these drawbacks, the second
As shown in the figure, a refrigerant circuit is also known which is provided with a high-pressure control valve 6 that bypasses the condenser 2 shown in FIG. That is, in this refrigerant circuit, refrigerant normally circulates as follows: compressor 1 → condenser 2 → high pressure control valve 6 → liquid receiver 3 → expansion valve 4 → evaporator 5 → compressor 1, but in winter when the outside air temperature drops Then, the high pressure control valve 6 opens, and a portion of the refrigerant flows in parallel with the above circulation circuit from the compressor 1 to the bypass pipe 7 to the high pressure control valve 6 to the liquid receiver 3 to the expansion valve 4 to the evaporator 5 to the compressor 1. A part of the refrigerant gas discharged from the compressor 1 bypasses the condenser 2 and flows through the bypass pipe 7, maintaining the high pressure so that the high pressure does not fall below a certain pressure.

しかしながら、この冷媒回路は、冬期に高圧圧
力を一定圧力以上に維持するため高圧コントロー
ル弁が動作すると冷凍能力は一定となり、また所
要動力も一定となるため、第1図の冷媒回路に比
べて、外気温度が低温のときの冷凍能力は小で所
要動力が大になり冷凍効率の悪い運転をすること
になる。
However, in this refrigerant circuit, when the high pressure control valve operates to maintain the high pressure above a certain pressure in winter, the refrigerating capacity is constant and the required power is also constant, so compared to the refrigerant circuit in Figure 1, When the outside temperature is low, the refrigeration capacity is small and the required power is large, resulting in operation with poor refrigeration efficiency.

本考案はこのような事情に鑑み、冬期低外気温
度下においてもEER(Energy Efficiency
Ratio)=冷凍能力/入力Kcal/h/wを大ならしめる
省 エネルギ型冷凍装置を提供することを目的とする
もので、圧縮機,空冷凝縮器,受液器,膨張弁,
蒸発器をこの順に接続して冷凍回路を構成してな
る冷凍装置において、前記空冷凝縮器を複数に分
設し、その間に切換弁を挿入するとともに上記切
換弁を介して順次前記複数の空冷凝縮器を経て前
記受液器に冷媒を流す回路と、前記空冷凝縮器の
一部で凝縮した冷媒を前記受液器に導入後残余の
空冷凝縮器を経て流す回路とを設け、外気温度に
応じて前記切換弁を切換えるようにしたことを特
徴とする。
In view of these circumstances, the present invention has been designed to achieve EER (Energy Efficiency) even under low outside temperatures in winter.
The purpose is to provide an energy-saving refrigeration system that increases the refrigerating capacity/input Kcal/h/w, and includes a compressor, air-cooled condenser, liquid receiver, expansion valve,
In a refrigeration system in which a refrigeration circuit is constructed by connecting evaporators in this order, the air-cooled condenser is divided into a plurality of parts, a switching valve is inserted between them, and the plurality of air-cooled condensers are sequentially connected via the switching valve. A circuit for flowing refrigerant into the liquid receiver through the air-cooled condenser, and a circuit for introducing the refrigerant condensed in a part of the air-cooled condenser into the liquid receiver and flowing it through the remaining air-cooled condenser, depending on the outside temperature. The present invention is characterized in that the switching valve is switched by the operator.

本考案の一実施例を図面について説明すると、
第3図はフロー線図、第4図は第3図のモリエル
線図、第5〜10図はそれぞれ第3図の凝縮器の
切換えを行なう種々の切換弁の組合せを示すフロ
ーダイアグラムである。
An embodiment of the present invention will be explained with reference to the drawings.
3 is a flow diagram, FIG. 4 is a Mollier diagram of FIG. 3, and FIGS. 5 to 10 are flow diagrams showing combinations of various switching valves for switching the condenser shown in FIG. 3, respectively.

まず、第3図において、11は圧縮機、12は
第1凝縮器、13は第2凝縮器、14は受液器、
15は膨張弁、16は蒸発器、17は第1凝縮器
12と第2凝縮器13と受液器14との間に介装
された四方弁である。
First, in FIG. 3, 11 is a compressor, 12 is a first condenser, 13 is a second condenser, 14 is a liquid receiver,
15 is an expansion valve, 16 is an evaporator, and 17 is a four-way valve interposed between the first condenser 12, the second condenser 13, and the liquid receiver 14.

このように、凝縮器が第1凝縮器12及び第2
凝縮器13の2つに分設されており、夏期外気温
度が高い場合は、四方弁17を実線で示す位置に
切換え、冷媒を、実線矢印で示すように、圧縮機
11→第1凝縮器12→四方弁17→第2凝縮器
13→受液器14→四方弁17→膨張弁15→蒸
発器16→圧縮機11の順で循環することにより
冷凍サイクルを行なうが、冬期外気温度が低い場
合は四方弁17を破線で示す位置に切換え、冷媒
を、破線矢印で示すように、圧縮機11→第1凝
縮器12→四方弁17→受液器14→第2凝縮器
13→四方弁17→膨張弁15→蒸発器16→圧
縮機11の順で循環することにより冷凍サイクル
を行なう。
In this way, the condensers are the first condenser 12 and the second condenser 12.
When the outside air temperature is high in summer, the four-way valve 17 is switched to the position shown by the solid line, and the refrigerant is transferred from the compressor 11 to the first condenser as shown by the solid line arrow. A refrigeration cycle is performed by circulating in the order of 12 → four-way valve 17 → second condenser 13 → liquid receiver 14 → four-way valve 17 → expansion valve 15 → evaporator 16 → compressor 11, but the outside air temperature is low in winter. In this case, the four-way valve 17 is switched to the position shown by the broken line, and the refrigerant is transferred from the compressor 11 to the first condenser 12 to the four-way valve 17 to the liquid receiver 14 to the second condenser 13 to the four-way valve as shown by the broken line arrow. A refrigeration cycle is performed by circulating in the order of 17→expansion valve 15→evaporator 16→compressor 11.

したがつて、夏期の高外気温度時における冷凍
運転は凝縮器として第1凝縮器12及び第2凝縮
器13を使用するので一般の冷凍装置と何ら変わ
るところはない。
Therefore, since the first condenser 12 and the second condenser 13 are used as condensers during the refrigeration operation during high outside air temperatures in summer, there is no difference from a general refrigeration system.

しかしながら、冬期低外気温度には、第1凝縮
器のみを凝縮器として使用することにより、凝縮
能力は減少し高圧圧力(凝縮圧力)は高く維持さ
れるので高圧コントロールが行なわれることにな
る。
However, when the outside air temperature is low in winter, by using only the first condenser as a condenser, the condensing capacity is reduced and the high pressure (condensing pressure) is maintained high, so that high pressure control is performed.

一方、第2凝縮器13は受液器14を出た液冷
媒を冷却し、凝縮器としてではなくサブクールコ
イルとして機能することになり、そのために冷凍
能力は大巾に増加することができる。
On the other hand, the second condenser 13 cools the liquid refrigerant that has exited the liquid receiver 14 and functions not as a condenser but as a sub-cooling coil, so that the refrigerating capacity can be greatly increased.

一例として冷媒R502を使用した冷凍装置で
冬期冷凍運転時における冷凍能力を第2図に示し
た公知の冷凍装置と比較すると下記の通りであ
る。
As an example, the refrigeration capacity of a refrigeration system using refrigerant R502 during winter refrigeration operation is compared with that of the known refrigeration system shown in FIG. 2 as follows.

すなわち、外気温度と凝縮温度の差を15℃、蒸
発温度を−40℃、外気温度0℃とすれば、第4図
のモリエル線図に破線で示すように、第2図の冷
凍装置の場合、高圧コントロール弁で凝縮温度を
+30℃にコントロールすると 凝縮温度…+30℃ 蒸発温度…−40℃ 膨張弁前液温度(5゜過冷却)…+25℃…エン
タルピ107.05kcal/Kg 蒸発器出口ガス温度(5゜過熱)…−35℃…エ
ンタルピ131.35kcal/Kg であるから、冷凍効果は131.35−107.05=
24.3kcal/Kgである。
In other words, if the difference between the outside air temperature and the condensation temperature is 15°C, the evaporation temperature is -40°C, and the outside air temperature is 0°C, then as shown by the broken line in the Mollier diagram in Figure 4, in the case of the refrigeration system in Figure 2, When the condensing temperature is controlled to +30℃ using the high pressure control valve, Condensing temperature...+30℃ Evaporation temperature...-40℃ Liquid temperature before expansion valve (5° supercooled)...+25℃...Enthalpy 107.05kcal/Kg Evaporator outlet gas temperature ( 5° overheating)...-35℃...The enthalpy is 131.35kcal/Kg, so the freezing effect is 131.35-107.05=
It is 24.3kcal/Kg.

これに対して、本考案冷凍装置では、第1凝縮
器12の大きさを第2図のそれの50%、外気温度
と凝縮温度の差は30℃すなわち外気温度0℃の場
合凝縮温度は30℃、またサブクールコイルとして
作用する第2凝縮器13で冷却される液冷媒は、
20℃過冷却されるとすると、凝縮器出口で5゜過
冷却されているから膨張弁液冷媒温度は、30゜−
20゜+5゜=5℃となり、この場合の状態をまと
めると、下記の通りとなる(第4図実線参照)。
すなわち 凝縮温度…+30℃ 蒸発温度…−40℃ 第1凝縮器出口液温度(5゜過冷却)…25℃ サブクールコイル出口液温度(20゜過冷却)…
+5℃…エンタルピ101.37kcal/Kg 蒸発器出口温度(5゜過熱)…−35℃…エンタ
ルピ131.35kcal/Kg であるから、冷凍効果は131.35−101.37=
29.98kcal/Kgである。
On the other hand, in the refrigeration system of the present invention, the size of the first condenser 12 is 50% of that shown in Fig. 2, and the difference between the outside air temperature and the condensing temperature is 30°C, that is, when the outside air temperature is 0°C, the condensing temperature is 30°C. ℃, and the liquid refrigerant cooled by the second condenser 13, which acts as a subcooling coil, is
Assuming that it is supercooled by 20°C, the expansion valve liquid refrigerant temperature is 30°-30° because it is supercooled by 5° at the condenser outlet.
20° + 5° = 5°C, and the situation in this case can be summarized as follows (see solid line in Figure 4).
That is, condensing temperature...+30℃ Evaporation temperature...-40℃ First condenser outlet liquid temperature (5° supercooling)...25°C Subcooling coil outlet liquid temperature (20° supercooling)...
+5℃...enthalpy 101.37kcal/Kg Evaporator outlet temperature (5° superheated)...-35℃...enthalpy 131.35kcal/Kg, so the refrigeration effect is 131.35-101.37=
It is 29.98kcal/Kg.

したがつて、本考案冷凍装置と第2図のそれと
を比較すると 冷凍能力=29.98/24.3=0.234 すなわち、低外気温度下では本考案冷凍装置は
第2図のそれに比べて冷凍能力は23.4%増加する
ことになる。因みに所要動力は凝縮温度及び蒸発
温度がそれぞれ同一であるから、同一である。
Therefore, when comparing the refrigeration system of the present invention with that shown in Fig. 2, the refrigerating capacity = 29.98/24.3 = 0.234 In other words, under low outside temperature, the refrigeration system of the present invention has a lower refrigerating capacity than that shown in Fig. 2. will increase by 23.4%. Incidentally, the required power is the same since the condensing temperature and the evaporation temperature are the same.

上記実施例では、四方弁をもつて凝縮器を流過
する冷媒回路を切換えたが、四方弁の代わりに、
3方弁を用いる、電磁弁(2方弁)を用いる、逆
止弁と三方弁又は電磁弁を組合せて用いる等種々
の組合せができるのでその若干の例を下記に挙げ
る。
In the above embodiment, a four-way valve was used to switch the refrigerant circuit that flows through the condenser, but instead of the four-way valve,
Various combinations can be made, such as using a 3-way valve, using a solenoid valve (2-way valve), and using a combination of a check valve and a 3-way valve or a solenoid valve. Some examples are listed below.

第5図は電磁弁21,22,23と逆止弁3
1,32を用いたもの、第6図は3方弁41,電
磁弁21,22,逆止弁31,32を用いたも
の、第7図は電磁弁21,22,23,24,逆
止弁31,32を用いたもの、第8図は3方弁4
1,42,逆止弁31,32を用いたもの、第9
図は3方弁41,42,電磁弁21,逆止弁31
を用いたもの、第10図は3方弁41,42,電
磁弁21を用いたものをそれぞれ示し、夏期の高
外気温度時の冷媒の流れは実線矢印で、冬期の低
外気温度時の四方弁の流れは破線矢印でそれぞれ
示している。
Figure 5 shows solenoid valves 21, 22, 23 and check valve 3.
1, 32, Fig. 6 shows a 3-way valve 41, solenoid valves 21, 22, check valves 31, 32, and Fig. 7 shows a solenoid valve 21, 22, 23, 24, check valve. One using valves 31 and 32, Fig. 8 shows a three-way valve 4
1, 42, one using check valves 31, 32, No. 9
The figure shows three-way valves 41, 42, solenoid valve 21, and check valve 31.
Fig. 10 shows one using three-way valves 41, 42, and a solenoid valve 21, respectively.The solid arrow indicates the flow of refrigerant during high outside air temperature in summer, and the flow in all directions during low outside air temperature in winter is shown in Fig. 10. Flow through the valves is indicated by dashed arrows, respectively.

更に、凝縮器は2ケに分設する代わりに3ケ以
上にこれを分設することにより、下記するように
冷凍能力の細かい制御を行なうこともできる。す
なわち 夏期…第1凝縮器→第2凝縮器→第3凝縮器→
受液器 中間期…第1凝縮器→第2凝縮器→受液器→第
3凝縮器(第1サブクールコイル) 冬期…第1凝縮器→受液器→第2凝縮器(第1
サブクールコイル)→第3凝縮器(第2
サブクールコイル) 要するに本考案によれば、圧縮機,空冷凝縮
器,受液器,膨張弁,蒸発器をこの順に接続して
冷凍回路を構成してなる冷凍装置において、前記
空冷凝縮器を複数に分設し、その間に切換弁を挿
入するとともに上記切換弁を介して順次前記複数
の空冷凝縮器を経て前記受液器に冷媒を流す回路
と、前記空冷凝縮器の一部で凝縮した冷媒を前記
受液器に導入後残余の空冷凝縮器を経て流す回路
とを設け、外気温度に応じて前記切換弁を切換え
るようにしたことにより、省エネルギ型冷凍装置
を得るから、本考案は産業上極めて有益なもので
ある。
Furthermore, by dividing the condenser into three or more instead of two, it is possible to finely control the refrigerating capacity as described below. In other words, summer...1st condenser → 2nd condenser → 3rd condenser →
Receiver Intermediate period: 1st condenser → 2nd condenser → Receiver → 3rd condenser (1st sub-cooling coil) Winter period: 1st condenser → Receiver → 2nd condenser (1st
subcool coil) → 3rd condenser (2nd
In short, according to the present invention, in a refrigeration system in which a refrigeration circuit is constructed by connecting a compressor, an air-cooled condenser, a liquid receiver, an expansion valve, and an evaporator in this order, the air-cooled condenser can be connected to a plurality of air-cooled condensers. a circuit in which a switching valve is inserted between the switching valves and the refrigerant is sequentially passed through the plurality of air-cooled condensers to the liquid receiver; The present invention is industrially advantageous because an energy-saving refrigeration system is obtained by providing a circuit for flowing the remaining liquid through an air-cooled condenser after introducing it into the receiver, and switching the switching valve according to the outside temperature. It is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図はそれぞれ公知の冷凍装置にお
ける冷媒のフローダイアグラム、第3図は本考案
による冷媒のフローダイアグラム、第4図は第3
図の冷凍サイクルと第2図のそれとを比較するモ
リエル線図、第5〜10図はそれぞれ第3図の凝
縮器の切換えを行なうための種々の切換弁の組合
せを示すフローダイアグラムである。 11……圧縮機、12……第1凝縮器、13…
…第2凝縮器、14……受液器、15……膨張
弁、16……蒸発器、17……四方弁、21,2
2,23,24……電磁弁、31,32……逆止
弁、41,42……3方弁。
1 and 2 are refrigerant flow diagrams in a known refrigeration system, FIG. 3 is a refrigerant flow diagram according to the present invention, and FIG.
A Mollier diagram comparing the refrigeration cycle shown in the figure with that of FIG. 2, and FIGS. 5 to 10 are flow diagrams showing combinations of various switching valves for switching the condenser shown in FIG. 3, respectively. 11... Compressor, 12... First condenser, 13...
...Second condenser, 14...Liquid receiver, 15...Expansion valve, 16...Evaporator, 17...Four-way valve, 21,2
2, 23, 24... Solenoid valve, 31, 32... Check valve, 41, 42... 3-way valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、空冷凝縮器,受液器,膨張弁,蒸発器
をこの順に接続して冷凍回路を構成してなる冷凍
装置において、前記空冷凝縮器を複数に分設し、
その間に切換弁を挿入するとともに上記切換弁を
介して順次前記複数の空冷凝縮器を経て前記受液
器に冷媒を流す回路と、前記空冷凝縮器の一部で
凝縮した冷媒を前記受液器に導入後残余の空冷凝
縮器を経て流す回路とを設け、外気温度に応じて
前記切換弁を切換えるようにしたことを特徴とす
る冷凍装置。
In a refrigeration system configured by connecting a compressor, an air-cooled condenser, a liquid receiver, an expansion valve, and an evaporator in this order to form a refrigeration circuit, the air-cooled condenser is divided into a plurality of parts,
a circuit in which a switching valve is inserted between the switching valves and the refrigerant is sequentially passed through the plurality of air-cooled condensers to the liquid receiver; A refrigeration system characterized in that a circuit is provided in which the remaining air flows through an air-cooled condenser after being introduced into the air, and the switching valve is switched in accordance with outside air temperature.
JP11855379U 1979-08-30 1979-08-30 Expired JPS6112540Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11855379U JPS6112540Y2 (en) 1979-08-30 1979-08-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11855379U JPS6112540Y2 (en) 1979-08-30 1979-08-30

Publications (2)

Publication Number Publication Date
JPS5636063U JPS5636063U (en) 1981-04-07
JPS6112540Y2 true JPS6112540Y2 (en) 1986-04-18

Family

ID=29350764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11855379U Expired JPS6112540Y2 (en) 1979-08-30 1979-08-30

Country Status (1)

Country Link
JP (1) JPS6112540Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531574U (en) * 1976-06-25 1978-01-09

Also Published As

Publication number Publication date
JPS5636063U (en) 1981-04-07

Similar Documents

Publication Publication Date Title
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
WO2004027326A3 (en) Refrigeration system with de-superheating bypass
CN114111313B (en) Dehumidification drying heat pump system fusing compressor driving type quasi loop heat pipe
JP4407582B2 (en) Thermal storage air conditioner and method of operating the thermal storage air conditioner
KR102173814B1 (en) Cascade heat pump system
US3065610A (en) Charge stabilizer for heat pump
JPS6112540Y2 (en)
CN212274333U (en) Defrosting device for secondary condensation and supercooling of main path refrigerant
CN112815578A (en) High-temperature type gas heat pump system with mechanical supercooling function
KR102014457B1 (en) A combined refrigerating and air conditioning system
CN106705478B (en) Hot gas bypass enhanced vapor injection air conditioning system
JP2001033110A (en) Refrigerator
CN111536723A (en) Defrosting method and device for secondary condensation and supercooling of main path refrigerant
JP2002327969A (en) Refrigerating system
GB2562495A (en) Refrigeration system
KR20190120115A (en) Refrigeration system of refrigerator vehicle for low-temperature transportation
JPS58178159A (en) Multistage cascade cooling system
CN217110104U (en) Vapor compression type refrigeration heat pump circulating system with surrounding type heat regenerator
JPH0285649A (en) Refrigerator
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
CN216924800U (en) Split type refrigerating unit
JP2003329316A (en) Cold generation system
KR910002808Y1 (en) Throttle type super cooler
JPS5852460Y2 (en) Refrigeration equipment
JP2001304619A (en) Ice storage type air conditioner