JP4407582B2 - Thermal storage air conditioner and method of operating the thermal storage air conditioner - Google Patents

Thermal storage air conditioner and method of operating the thermal storage air conditioner Download PDF

Info

Publication number
JP4407582B2
JP4407582B2 JP2005199526A JP2005199526A JP4407582B2 JP 4407582 B2 JP4407582 B2 JP 4407582B2 JP 2005199526 A JP2005199526 A JP 2005199526A JP 2005199526 A JP2005199526 A JP 2005199526A JP 4407582 B2 JP4407582 B2 JP 4407582B2
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
refrigerant
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005199526A
Other languages
Japanese (ja)
Other versions
JP2007017089A (en
Inventor
繁則 松本
謙年 林
啓 岸本
仁司 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005199526A priority Critical patent/JP4407582B2/en
Publication of JP2007017089A publication Critical patent/JP2007017089A/en
Application granted granted Critical
Publication of JP4407582B2 publication Critical patent/JP4407582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、蓄熱槽の蓄熱材に蓄熱した冷温熱を利用して冷暖房運転を行う蓄熱式空気調和装置およびその運転方法に関する。   The present invention relates to a regenerative air conditioner that performs cooling / heating operation using cold / hot heat stored in a heat storage material of a heat storage tank, and an operation method thereof.

蓄熱槽を冷凍サイクルに設け、蓄熱槽に蓄熱した冷温熱を利用して冷暖房運転を行うことにより、ランニングコストの低下や夏場のピークカットの対応及び運転効率の高い省エネルギー運転を行わせることを目的として種々の蓄熱式空気調和装置に関する提案がなされている。
この中で蓄熱材として氷を用いた蓄熱式空気調和装置では、蓄熱する際に氷の凝固点以下まで冷却する必要がある。そのため、氷蓄熱用熱交換器において蒸発温度−10℃程度で蒸発した冷媒を、室外側熱交換器において凝縮温度40〜50℃で凝縮させる圧力まで圧縮しなければならないため、圧縮機の圧力比が大きくなるという問題がある。圧力比が大きくなると圧縮機の効率が低下し、消費電力が増加する問題が生じる。
The purpose is to provide a heat storage tank in the refrigeration cycle and perform cooling and heating operations using the cold and hot heat stored in the heat storage tank, thereby reducing running costs and responding to peak cuts in summer, and performing energy-saving operation with high operating efficiency. As described above, various heat storage type air conditioners have been proposed.
Among these, in a heat storage type air conditioner using ice as a heat storage material, it is necessary to cool to below the freezing point of ice when storing heat. Therefore, since the refrigerant evaporated at an evaporation temperature of about −10 ° C. in the ice heat storage heat exchanger must be compressed to a pressure at which the refrigerant is condensed at a condensation temperature of 40 to 50 ° C. in the outdoor heat exchanger, the pressure ratio of the compressor There is a problem that becomes larger. When the pressure ratio is increased, the efficiency of the compressor is lowered, and there is a problem that power consumption is increased.

この蓄冷時の消費電力を低減する目的で、2台の圧縮機を直列に配置した蓄熱式の空気調和装置として次のものが提案されている。
蓄熱媒体に蓄冷した冷熱を利用する冷房運転の際に、蒸発器で蒸発した冷媒を圧縮する第1の圧縮手段と、該第1の圧縮手段で圧縮した冷媒の一部を凝縮する第1の凝縮器と、前記第1の圧縮手段で圧縮した残りの冷媒を更に圧縮する第2の圧縮手段と、前記第2の圧縮手段で圧縮した冷媒を凝縮する第2の凝縮器と、前記第2の凝縮器で凝縮した冷媒を減圧する第1の減圧器と、前記第1の減圧器で減圧した冷媒および前記第1の凝縮器で凝縮した冷媒を取り込んで、該冷媒を更に減圧してから前記蒸発器に送る第2の減圧器とを備え、前記第1の凝縮器は冷媒を蓄熱媒体で冷却して凝縮し、前記第2の凝縮器は冷媒を外気または冷却水で冷却して凝縮することを特徴とする冷凍サイクルを構成するものである。(特許文献1参照)
特開2002−286257号公報(特許請求の範囲)
In order to reduce power consumption during cold storage, the following is proposed as a heat storage type air conditioner in which two compressors are arranged in series.
In the cooling operation using the cold energy stored in the heat storage medium, a first compression means for compressing the refrigerant evaporated by the evaporator, and a first part for condensing a part of the refrigerant compressed by the first compression means A condenser, a second compression means for further compressing the remaining refrigerant compressed by the first compression means, a second condenser for condensing the refrigerant compressed by the second compression means, and the second A first decompressor for decompressing the refrigerant condensed by the condenser, a refrigerant decompressed by the first decompressor and a refrigerant condensed by the first condenser, and further depressurizing the refrigerant A second decompressor for sending to the evaporator, wherein the first condenser cools the refrigerant with a heat storage medium to condense, and the second condenser cools the refrigerant with outside air or cooling water to condense. It constitutes a refrigeration cycle characterized by (See Patent Document 1)
JP 2002-286257 A (Claims)

確かに、特許文献1においては2台の圧縮機を直列に配置しているので、氷蓄熱用熱交換器で蒸発した冷媒を室外側熱交換器で凝縮させる圧力まで1台の圧縮機で圧縮するのに比較して圧縮機の効率はよいと言える。
しかしながら、蓄熱材として氷を用いているので蓄熱する際に−10℃程度にまで冷却する必要があることに変わりは無く、そのため、蓄熱用熱交換器において蒸発温度−10℃程度で蒸発した冷媒を圧縮する1段目の圧縮機では、大きな圧力比で圧縮しなければならず、圧縮機の効率の面から限界があり、消費電力を十分低下させることができないという問題がある。
Certainly, in Patent Document 1, two compressors are arranged in series, so that the refrigerant evaporated in the ice heat storage heat exchanger is compressed by one compressor up to the pressure to condense it in the outdoor heat exchanger. It can be said that the efficiency of the compressor is better than that.
However, since ice is used as the heat storage material, it is still necessary to cool to about −10 ° C. when storing heat. Therefore, the refrigerant evaporated at the evaporation temperature of about −10 ° C. in the heat storage heat exchanger. In the first-stage compressor that compresses the compressor, there is a problem that the compressor must be compressed with a large pressure ratio, and there is a limit in terms of the efficiency of the compressor, and the power consumption cannot be sufficiently reduced.

また、特許文献1に記載の空気調和装置では、蓄熱を利用して冷房運転を行う場合には、第1の圧縮機で圧縮した冷媒の一部を蓄冷熱用熱交換器で凝縮させ、残りの冷媒を第2の圧縮機で圧縮して室外側熱交換器で凝縮させ、これら2系統の冷媒液を合流させ室内側熱交換器へ送る。
しかし、室外側熱交換器で凝縮した冷媒と蓄冷熱用熱交換器で凝縮した冷媒は圧力が異なるため、これらの冷媒の系統を接続するには圧力調整装置が必要となり、運転制御が複雑かつ装置が高価なものになる。
Further, in the air conditioner described in Patent Document 1, when cooling operation is performed using heat storage, a part of the refrigerant compressed by the first compressor is condensed by the heat exchanger for cold storage heat, and the rest The refrigerant is compressed by the second compressor and condensed by the outdoor heat exchanger, and the two refrigerant liquids are merged and sent to the indoor heat exchanger.
However, since the refrigerant condensed in the outdoor heat exchanger and the refrigerant condensed in the cold storage heat exchanger have different pressures, a pressure regulator is required to connect these refrigerant systems, and operation control is complicated and The device becomes expensive.

また、従来の蓄熱式空気調和装置においては、外気温度が高く冷房負荷が高いため冷媒の凝縮圧力が比較的高くなる真夏昼間における蓄熱利用冷房運転と、外気温度がさほど高くなく冷房負荷もさほど高くないため凝縮圧力が比較的低い中間期における蓄熱利用冷房運転とを、同一の圧縮機で運転する必要があるため、圧縮機の圧縮比の運転範囲が広くなる。   In addition, in the conventional heat storage type air conditioner, heat storage-based cooling operation during midsummer day when the outside air temperature is high and the cooling load is high and the refrigerant condensing pressure is relatively high, and the outside air temperature is not so high and the cooling load is so high. Therefore, it is necessary to operate the regenerative cooling operation in the middle period where the condensing pressure is relatively low with the same compressor, so the operating range of the compression ratio of the compressor is widened.

このため、最適効率の設計点以外で圧縮機を運転することが多くなり、圧縮機の効率が低下して電力消費が多くなる。このように従来の蓄熱式空気調和装置では気温や環境に起因する空調負荷の状況に対応したきめの細かい省エネ運転を行い年間での合計消費電力の最小化を図ることは困難であった。   For this reason, the compressor is often operated at a point other than the optimum efficiency design point, and the efficiency of the compressor is lowered and the power consumption is increased. As described above, it has been difficult for conventional heat storage type air conditioners to perform fine energy-saving operation corresponding to the condition of air conditioning load caused by temperature and environment to minimize the total power consumption for the year.

本発明はかかる問題点を解決するためになされたものであり、装置構成が複雑でなく、かつ気温や室内環境に起因する空調負荷の状況に対応したきめの細かい省エネ運転を行うことができる蓄熱式空気調和装置およびその運転方法を提供することを目的としている。   The present invention has been made in order to solve such problems, and the heat storage is capable of performing fine energy-saving operation corresponding to the condition of air conditioning load caused by the air temperature and the indoor environment without complicated apparatus configuration. It aims at providing a type air conditioner and its operating method.

(1)本発明に係る蓄熱式空気調和装置は、直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
前記蓄熱装置を作動させないで冷房を行う一般冷房運転時と、蓄熱材に冷熱を蓄熱する蓄冷運転時と、室外側熱交換器で凝縮した冷媒を蓄熱材の冷熱を利用して過冷却する蓄冷利用過冷却冷房運転時には室外側熱交換器と第1、第2の圧縮機を運転する冷凍サイクル回路が形成でき、
蓄熱材の冷熱を利用して冷媒を凝縮させて冷房を行う蓄冷利用直接凝縮冷房運転時には室外側熱交換器を停止し第1の圧縮機を一段運転する冷凍サイクル回路が形成できるように、
冷媒配管および開閉弁が設けられていることを特徴とするものである。
(1) A regenerative air conditioner according to the present invention includes first and second compressors arranged in series to pressurize a refrigerant, a four-way switching valve for switching a refrigerant circuit, and heat exchange between outside air and a refrigerant in a refrigeration cycle. An outdoor heat exchanger, a heat source device having a first decompression device for decompressing the refrigerant flowing into the outdoor heat exchanger, and heat exchange between indoor air and the refrigerant of the refrigeration cycle installed indoors An indoor heat exchanger, an air conditioning load device having a second decompression device for decompressing the refrigerant flowing into the indoor heat exchanger, a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., and the heat storage material are stored. A heat storage tank, a heat storage heat exchanger for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, and a heat storage device having a third pressure reducing device for decompressing the refrigerant flowing into the heat storage heat exchanger,
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
Cold storage that cools the refrigerant condensed in the outdoor heat exchanger using the cold of the heat storage material during general cooling operation that performs cooling without operating the heat storage device, during the cold storage operation that stores cold heat in the heat storage material A refrigeration cycle circuit for operating the outdoor heat exchanger and the first and second compressors can be formed during use supercooling cooling operation,
In order to form a refrigeration cycle circuit that stops the outdoor heat exchanger and operates the first compressor in one stage at the time of cold storage direct condensation cooling operation in which cooling is performed by condensing the refrigerant using the cold heat of the heat storage material,
A refrigerant pipe and an on-off valve are provided.

本発明においては、蓄熱材として氷でなく融点が0℃より高く20℃より低い蓄熱材を用いることにより、以下の効果が得られる。
蓄冷時の冷媒蒸発温度が氷蓄熱に比べて高くなるため、圧縮機は氷蓄熱に比べて圧力比の小さいものを用いることができ、消費電力が小さく省エネが実現できる。
また、融点が20℃より低い蓄熱材を用いているので、夏季の冷房高負荷時に蓄冷利用過冷却冷房運転する際に、室外熱交換器で凝縮された冷媒(凝縮温度は40〜50℃)を蓄熱材との熱交換により過冷却するのに潜熱を有効に使って十分に冷媒を過冷却させることができる。
In the present invention, the following effects can be obtained by using a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C. instead of ice as the heat storage material.
Since the refrigerant evaporation temperature at the time of cold storage is higher than that of ice heat storage, a compressor having a smaller pressure ratio than that of ice heat storage can be used, so that power consumption is small and energy saving can be realized.
In addition, since a heat storage material having a melting point lower than 20 ° C. is used, the refrigerant condensed in the outdoor heat exchanger (condensation temperature is 40 to 50 ° C.) during the cooling and supercooling cooling operation when the cooling is high in summer. The refrigerant can be sufficiently subcooled by effectively using latent heat to subcool the refrigerant by heat exchange with the heat storage material.

また、2つの圧縮機を運転して、一般冷房運転、蓄冷運転、過冷却方式蓄冷利用冷房運転する際に、2つの圧縮機を直列に接続して冷媒を分岐、合流させることなく流し圧縮するので、冷媒の分岐配管や流量調整バルブが不要であり、蓄熱式空気調和装置の簡素化が可能で省コストとすることができる。   In addition, when two compressors are operated to perform a general cooling operation, a cold storage operation, or a supercooling type cold storage cooling operation, the two compressors are connected in series, and the refrigerant is flowed and compressed without branching and joining. Therefore, a refrigerant branch pipe and a flow rate adjustment valve are not required, and the heat storage type air conditioner can be simplified and the cost can be reduced.

さらに、直列に配設した2つの圧縮機の二段または単独での運転を適宜選択して行うことにより、蓄冷利用冷房運転を過冷却方式と直接凝縮方式の2つの方式で運転可能であり、外気温や室内環境に起因する空調負荷の状況に対応して、消費電力を低減するのに適した省エネ運転を行うことができる。
すなわち、夏季昼間のような高負荷時には2つの圧縮機と室外側熱交換器を運転して過冷却方式蓄冷利用冷房運転を行い、夏季昼間の前後のような中負荷時には室外側熱交換器を停止し1つの圧縮機を運転して直接凝縮方式蓄冷利用冷房運転を行い、それぞれの場合の消費電力を低減して年間での合計消費電力を低減して省エネ化を実現できる。
なお、上記のような省エネの効果は後述の暖房運転においても同様に発揮できる。
Furthermore, by appropriately selecting the two-stage or single operation of two compressors arranged in series, the regenerative cooling operation can be operated in two systems, a supercooling system and a direct condensation system, Energy-saving operation suitable for reducing power consumption can be performed in accordance with the air conditioning load caused by the outside air temperature and the indoor environment.
In other words, the two compressors and the outdoor heat exchanger are operated during high loads such as summer daytime, and the cooling operation using the supercooling type cold storage is performed, and the outdoor heat exchanger is operated during medium loads such as before and after the summer daytime. It is possible to stop and operate one compressor to perform direct condensing type cold storage cooling operation, reduce power consumption in each case, and reduce the total power consumption for the year, thereby realizing energy saving.
In addition, the above energy-saving effects can be exhibited in the heating operation described later.

(2)また、上記(1)に記載のものにおいて、冷房運転と蓄冷運転を同時に行う冷房蓄冷同時運転時は室外側熱交換器と第1、第2の圧縮機を運転する冷凍サイクル回路を形成できるように、冷媒配管および開閉弁が設けられていることを特徴とするものである。 (2) Further, in the above-described (1), a refrigeration cycle circuit for operating the outdoor heat exchanger and the first and second compressors at the time of the cooling and accumulating simultaneous operation in which the cooling operation and the cold accumulating operation are performed simultaneously. A refrigerant pipe and an on-off valve are provided so that they can be formed.

本発明によれば、上記(2)の発明の効果に加えて、春、秋季中間期の昼間のような低負荷時には、直接凝縮方式蓄冷利用冷房運転を行いながら蓄冷利用冷房運転を一時停止し、2つまたは1つの圧縮機と室外側熱交換器を運転して昼間に追加蓄冷と冷房を行う冷房蓄冷同時運転を行うことができ、外気温や室内環境に起因する空調負荷の状況に対応した運転がさらにきめ細かに行うことができ、消費電力の低減効果をより高くすることができる。   According to the present invention, in addition to the effect of the invention of the above (2), at the time of low load such as the daytime in the middle of spring and autumn, the regenerative cooling use cooling operation is temporarily stopped while performing the direct condensing cool storage cooling operation. Can operate two or one compressors and outdoor heat exchangers to perform additional cooling and cooling in the daytime to store and cool, and responds to the air conditioning load caused by the outside air temperature and indoor environment The operation can be performed more finely, and the effect of reducing power consumption can be further increased.

(3)また、直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般冷房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第3の減圧装置、蓄熱用熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用過冷却冷房運転回路と、
第1の圧縮機、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用直接凝縮冷房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とするものである。
(3) Moreover, the 1st, 2nd compressor which is arrange | positioned in series and pressurizes a refrigerant | coolant, the four-way switching valve which switches a refrigerant circuit, the outdoor heat exchanger which performs heat exchange with the external air and the refrigerant | coolant of a refrigerating cycle, A heat source device having a first decompression device that decompresses the refrigerant flowing into the outdoor heat exchanger, an indoor heat exchanger that is installed indoors and performs heat exchange between the indoor air and the refrigerant of the refrigeration cycle, the indoor side An air conditioning load device having a second decompression device for decompressing the refrigerant flowing into the heat exchanger, a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., a heat storage tank for storing the heat storage material, the heat storage material and the refrigeration cycle A heat storage heat exchanger for exchanging heat with the refrigerant, and a heat storage device having a third decompression device for decompressing the refrigerant flowing into the heat storage heat exchanger,
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
As a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. General cooling circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the third decompressor, the heat storage heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A regenerator circuit,
First compressor, second compressor, four-way switching valve, outdoor heat exchanger, heat storage heat exchanger, second decompression device, indoor heat exchanger, four-way switching valve, and first compressor A regenerative use supercooling cooling operation circuit configured by connecting in order;
A first heat storage heat exchanger, a second pressure reducing device, an indoor heat exchanger, a four-way switching valve and a first compressor configured to be connected in this order, and a regenerative use direct condensation cooling operation circuit;
A refrigerant pipe and an on-off valve are provided so that can be formed.

本発明においては、過冷却方式蓄冷利用冷房運転時に室外熱交換器からの冷媒を分岐することなく蓄熱槽へ流すので、冷媒の合流がなく、合流配管やそのために必要な圧力調整機器が不要であり、蓄熱式空気調和装置の簡素化が可能で省コスト化を実現できる。   In the present invention, since the refrigerant from the outdoor heat exchanger is allowed to flow to the heat storage tank without branching during the cooling operation using the supercooling type regenerative cold storage, there is no refrigerant merging, and there is no need for a merging pipe and a pressure adjusting device necessary for that purpose. Yes, it is possible to simplify the heat storage type air conditioner and realize cost saving.

(4)また、上記(3)に記載のものにおいて、第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室外側熱交換器と第2の減圧装置を接続する回路から分岐して、第3の減圧装置、蓄熱用熱交換器の順に接続すると共に蓄熱用熱交換器の出側を室内側熱交換器の出側の回路に接続して構成される冷房蓄冷同時運転回路を形成できるように冷媒配管および開閉弁が設けられていることを特徴とするものである。 (4) Further, in the above-described (3), the first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second pressure reducing device, the indoor heat exchanger, the four-way Connect the switching valve and the first compressor in this order, branch off from the circuit connecting the outdoor heat exchanger and the second pressure reducing device, and connect the third pressure reducing device and the heat storage heat exchanger in this order. A refrigerant pipe and an on-off valve are provided so as to form a cooling and regenerative simultaneous operation circuit configured by connecting the outlet side of the heat storage heat exchanger to the outlet side circuit of the indoor heat exchanger. To do.

本発明においては、蓄熱材として氷でなく融点が0℃より高く20℃より低い蓄熱材を用いるので、冷房蓄冷同時運転において、室内熱交換器内での冷媒蒸発温度と同程度の温度(圧力)で蓄熱用熱交換器で冷媒を蒸発させて蓄冷することができるので、冷媒の分岐、合流時に圧力調整する必要がなく、圧力調整機器が不要であり、蓄熱式空気調和装置の簡素化が可能で省コストとすることができる。   In the present invention, since the heat storage material is not ice but a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., in the simultaneous cooling and cooling operation, a temperature (pressure) similar to the refrigerant evaporation temperature in the indoor heat exchanger is used. ), It is possible to store the refrigerant by evaporating the refrigerant in the heat storage heat exchanger, so there is no need to adjust the pressure at the time of branching or merging of the refrigerant, no pressure adjusting device is required, and the heat storage air conditioner can be simplified. Possible and cost saving.

(5)また、上記(3)または(4)に記載のものにおいて、冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般暖房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、蓄熱用熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄熱用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室内側熱交換器と第1の減圧装置を接続する回路から分岐して第3の減圧装置、蓄熱用熱交換器および第1の圧縮機の順に接続して構成される第1の蓄熱利用暖房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とするものである。
(5) Further, in the above (3) or (4), as the refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A general heating circuit,
The first compressor, the second compressor, the four-way switching valve, the heat storage heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A heat storage circuit,
Connect the first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first decompression device, the outdoor heat exchanger, the four-way switching valve, and the first compressor in this order, and further A first regenerative heating operation which branches from a circuit connecting the inner heat exchanger and the first pressure reducing device and is connected in order of the third pressure reducing device, the heat storage heat exchanger, and the first compressor. Circuit,
A refrigerant pipe and an on-off valve are provided so that can be formed.

(6)また、上記(3)または(4)に記載のものにおいて、冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般暖房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、蓄熱用熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄熱用回路と、
第1の圧縮機、四方切替弁、室内側熱交換器、第3の減圧装置、蓄熱用熱交換器、第1の圧縮機の順に接続して構成される第2の蓄熱利用暖房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とするものである。
(6) In the above (3) or (4), as the refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A general heating circuit,
The first compressor, the second compressor, the four-way switching valve, the heat storage heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A heat storage circuit,
A second heat storage utilization heating operation circuit configured by connecting in order of a first compressor, a four-way switching valve, an indoor heat exchanger, a third pressure reducing device, a heat storage heat exchanger, and a first compressor; ,
A refrigerant pipe and an on-off valve are provided so that can be formed.

(7)また、上記(3)〜(6)に記載のものにおいて、冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに第2の圧縮機と室内側熱交換器とを接続する回路から分岐して蓄熱用熱交換器を接続すると共に蓄熱用熱交換器の出側を室内側熱交換器と第1の減圧装置を結ぶ回路に接続して構成される暖房蓄熱同時運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とするものである。
(7) Moreover, in the thing as described in said (3)-(6), as a refrigerating cycle circuit,
The first compressor, the second compressor, the indoor heat exchanger, the first decompressor, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order, and the second compressor Branch from the circuit connecting the indoor heat exchanger and the indoor heat exchanger, connect the heat storage heat exchanger, and connect the outlet side of the heat storage heat exchanger to the circuit connecting the indoor heat exchanger and the first decompressor. Heating and heat storage simultaneous operation circuit,
A refrigerant pipe and an on-off valve are provided so that can be formed.

(8)また、上記(1)〜(7)に記載の蓄熱式空気調和装置の運転方法であって、第2の圧縮機をバイバスする回路を設け、外気温が所定範囲外であるときに、第1の圧縮機だけの単段圧縮運転を行うことを特徴とするものである。
一般冷房運転時、蓄冷運転、蓄冷利用過冷却冷房運転時、冷房蓄冷同時運転時に、第1の圧縮機から吐出された冷媒が室外側熱交換器で凝縮できる程度に外気温度が低い場合は、第2の圧縮機をバイパスして第2の圧縮機の運転を停止し、第1の圧縮機だけの単段圧縮運転を行うことにより、省エネ運転が実現できる。
また、一般暖房運転時、蓄熱運転時、蓄熱利用第1の暖房運転時、暖房蓄熱同時運転時に、室外側熱交換器で蒸発し第1の圧縮機から吐出された冷媒が室内側熱交換器で暖房できる程度または蓄熱用熱交換器で蓄熱できる程度に外気温度が高い場合は、第2の圧縮機をバイパスして第2の圧縮機の運転を停止し、第1の圧縮機だけの単段圧縮運転を行うことにより、省エネ運転が実現できる。
(8) Moreover, it is a driving | running method of the thermal storage type air conditioning apparatus as described in said (1)-(7), Comprising: The circuit which bypasses a 2nd compressor is provided, When outside temperature is outside a predetermined range The single-stage compression operation of only the first compressor is performed.
When the outside air temperature is low enough to allow the refrigerant discharged from the first compressor to condense in the outdoor heat exchanger during general cooling operation, cold storage operation, cold storage use supercooling cooling operation, cooling storage storage simultaneous operation, By bypassing the second compressor and stopping the operation of the second compressor, and performing the single-stage compression operation of only the first compressor, an energy saving operation can be realized.
Also, during general heating operation, during heat storage operation, during the first heating operation using heat storage, and during simultaneous heating and storage operation, the refrigerant evaporated from the outdoor heat exchanger and discharged from the first compressor is converted into the indoor heat exchanger. If the outside air temperature is high enough to heat with the heat exchanger or to store heat with the heat storage heat exchanger, the second compressor is bypassed and the operation of the second compressor is stopped, and only the first compressor is Energy saving operation can be realized by performing stage compression operation.

(9)また、本発明に係る蓄熱式空気調和装置の運転方法は、直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、
室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、
融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般冷房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用過冷却冷房運転回路と、
第1の圧縮機、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用直接凝縮冷房運転回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室外側熱交換器と第2の減圧装置を接続する回路から分岐して、第3の減圧装置、蓄熱用熱交換器の順に接続すると共に蓄熱用熱交換器の出側を室内側熱交換器の出側の回路に接続して構成される冷房蓄冷同時運転回路と、
を形成できるように冷媒配管および開閉弁が設けられてなる蓄熱式空気調和装置の運転方法であって、
予め定めた空調負荷の推移又は空調負荷の推移をモニタリングした結果に応じて、一般冷房運転、蓄冷利用過冷却冷房運転、蓄冷利用直接凝縮冷房運転及び冷房蓄冷同時運転のうちいずれか一つを選択して運転を行うことを特徴とするものである。
(9) In addition, the operation method of the regenerative air conditioner according to the present invention includes first and second compressors that are arranged in series to pressurize the refrigerant, a four-way switching valve that switches the refrigerant circuit, an outside air and a refrigeration cycle. An outdoor heat exchanger that performs heat exchange with the refrigerant, a heat source device having a first decompression device that decompresses the refrigerant flowing into the outdoor heat exchanger,
An indoor heat exchanger that is installed indoors and performs heat exchange between the indoor air and the refrigerant of the refrigeration cycle, an air conditioning load device having a second decompression device that decompresses the refrigerant flowing into the indoor heat exchanger,
Heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., a heat storage tank for storing the heat storage material, a heat storage heat exchanger for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, and flowing into the heat storage heat exchanger A heat storage device having a third decompression device for decompressing the refrigerant to be
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. General cooling circuit,
First compressor, second compressor, four-way switching valve, outdoor heat exchanger, heat storage heat exchanger, second decompression device, indoor heat exchanger, four-way switching valve, and first compressor A regenerative use supercooling cooling operation circuit configured by connecting in order;
A first heat storage heat exchanger, a second pressure reducing device, an indoor heat exchanger, a four-way switching valve and a first compressor configured to be connected in this order, and a regenerative use direct condensation cooling operation circuit;
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order, and the chamber Branch from the circuit connecting the outer heat exchanger and the second pressure reducing device, connect the third pressure reducing device and the heat storage heat exchanger in this order, and connect the outlet side of the heat storage heat exchanger to the indoor heat exchanger. A cooling and regenerating simultaneous operation circuit configured by connecting to the circuit on the output side,
A heat storage type air conditioner having a refrigerant pipe and an on-off valve so that can be formed,
Select either one of general cooling operation, supercooling cooling supercooling cooling operation, cool storage direct condensing cooling operation, and simultaneous cooling and cooling operation according to the result of monitoring the transition of air conditioning load or air conditioning load And driving.

本発明においては、融点が0℃より高く20℃より低い蓄熱材を用いて、第1、第2の圧縮機の二段または単独での運転を選択して行うことにより、外気温や空調負荷の状況に応じたきめの細かい省エネ運転が可能となる。   In the present invention, by using a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., the first and second compressors are selectively operated in two stages, or the outside air temperature or the air conditioning load. Detailed energy-saving operation according to the situation becomes possible.

図1は本発明の一実施の形態に係る蓄熱式空気調和装置の構成を説明する説明図である。本実施の形態の蓄熱式空気調和装置は、直列に配置されて冷媒を加圧する第1の圧縮機1、第2の圧縮機3、冷媒回路を切り替える四方切替弁4、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器5、室外側熱交換器に流入する冷媒を減圧する第1の減圧装置6を有する熱源装置と、室内側熱交換器に流入する冷媒を減圧する第2の減圧装置7a、7b、室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器8a、8bを有する空調負荷装置と、融点が0℃より高く20℃より低い蓄熱材、蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器10、蓄熱用熱交換器10を収容する蓄熱槽11、蓄熱用熱交換器10に流入する冷媒を減圧する第3の減圧装置9を有する蓄熱装置と、を備えて構成され、これら熱源装置と空調負荷装置と蓄熱装置の各構成機器を冷媒配管と冷媒の流路を切替える開閉弁12、13、14、15、16で連結して冷凍サイクル回路を構成している。   FIG. 1 is an explanatory view illustrating the configuration of a heat storage type air conditioner according to an embodiment of the present invention. The regenerative air conditioner of the present embodiment includes a first compressor 1, a second compressor 3, a four-way switching valve 4 for switching a refrigerant circuit, refrigerant in the outside air and the refrigeration cycle, which are arranged in series to pressurize the refrigerant. An outdoor heat exchanger 5 that exchanges heat with the heat source device, a heat source device that has a first decompression device 6 that decompresses the refrigerant flowing into the outdoor heat exchanger, and a first one that decompresses the refrigerant that flows into the indoor heat exchanger. 2 decompression devices 7a and 7b, an air-conditioning load device having indoor heat exchangers 8a and 8b that are installed indoors and perform heat exchange between the indoor air and the refrigerant in the refrigeration cycle, and a melting point higher than 0 ° C and higher than 20 ° C Low heat storage material, heat storage heat exchanger 10 for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, a heat storage tank 11 for storing the heat storage heat exchanger 10, and a pressure reducing the refrigerant flowing into the heat storage heat exchanger 10 A heat storage device having three decompression devices 9. Each constituent device of the heat source unit and the air conditioning load device and the heat storage device coupled with off valve 12,13,14,15,16 for switching the flow path of the refrigerant pipe and the refrigerant constitute a refrigeration cycle.

蓄熱槽内の蓄熱材は、融点が0℃より高く20℃より低い蓄熱材が用いられる。これにより、夜間蓄冷時や昼間蓄冷利用冷房時あるいは冷房蓄冷同時運転において、蓄冷や冷熱放出の際に相変化時の潜熱を有効に活用でき、また、従来の氷蓄熱に比べて圧縮機の圧力比を低くできるので、蓄熱式空気調和装置の省エネルギー化を図ることが可能となる。
このような蓄熱材として融点が0℃より高く20℃より低い水和物からなる水和物蓄熱材が好適であり、例えば、テトラn−ブチルアンモニウム塩を主材とする水溶液を冷却して水和物を形成させて用いる。テトラn−ブチルアンモニウム塩として臭化テトラn−ブチルアンモニウムの水溶液中の濃度が約40wt%の場合、凝固融解温度は約12℃であり、0℃で凝固融解する氷に比べて高い温度で潜熱蓄冷熱が可能である。
融点が0℃より高く20℃より低い水和物からなる水和物蓄熱材の他の例としては、臭化トリnブチルnペンチルアンモニウム水和物などのトリn−ブチルnペンチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラn−ブチルフォスフォニウム塩、トリisoアミルサルフォニウム塩などが挙げられる。
また、融点が0℃より高く20℃より低い蓄熱材として、水和物蓄熱材の他にテトラデカンなどパラフィン系や、トリメチロールエタンや、無機塩を用いてもよい。
As the heat storage material in the heat storage tank, a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C. is used. This makes it possible to effectively use the latent heat during phase change during cold storage or during daytime cold storage cooling or simultaneous cooling and cold storage, and during the cold storage and discharge, and the compressor pressure compared to conventional ice storage. Since the ratio can be lowered, it is possible to save energy in the regenerative air conditioner.
As such a heat storage material, a hydrate heat storage material composed of a hydrate having a melting point higher than 0 ° C. and lower than 20 ° C. is suitable. For example, an aqueous solution containing a tetra n-butylammonium salt as a main material is cooled to produce water. A Japanese product is formed and used. When the concentration of tetra-n-butylammonium bromide in the aqueous solution is about 40 wt% as the tetra-n-butylammonium salt, the solidification melting temperature is about 12 ° C, and the latent heat is higher than that of ice that solidifies and melts at 0 ° C. Cold storage heat is possible.
Other examples of the hydrate heat storage material comprising a hydrate having a melting point higher than 0 ° C. and lower than 20 ° C. include tri n-butyl n pentyl ammonium salt such as tri n-butyl n pentyl ammonium bromide hydrate, tetra Examples include iso-amyl ammonium salt, tetra n-butyl phosphonium salt, triiso amyl sulfonium salt, and the like.
Further, as the heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., paraffin such as tetradecane, trimethylolethane, or inorganic salt may be used in addition to the hydrate heat storage material.

図1に示す本実施の形態の蓄熱式空気調和装置は、四方切替弁4、開閉弁12、13、14、15、16の開閉によって流路を切替えること、および減圧装置6、7a、7b、9の絞り開度の調整によって複数のパターンの運転を行うことができる。
複数の運転パターンとしては、(1)蓄熱用熱交換器と蓄熱槽をバイパスした一般冷房運転、(2)主に夜間に実施する冷房用の蓄冷運転、(3)2台の圧縮機を運転し室外側熱交換器で凝縮した冷媒を蓄熱用熱交換器で過冷却させることにより蓄冷を利用した冷房を実施する蓄冷利用過冷却冷房運転、(4)1台の圧縮機を運転し室外側熱交換器を停止し蓄熱用熱交換器のみで冷媒を凝縮させることにより蓄冷を利用した冷房を実施する蓄冷利用凝縮冷房運転、(5)冷房と蓄冷を同時に実施する冷房蓄冷同時運転、(6)蓄熱用熱交換器と蓄熱槽をバイパスした一般暖房運転、(7)主に夜間に実施する暖房用の蓄熱運転、(8)一般暖房運転での暖房能力以上の暖房負荷が存在したときに選択される2台の圧縮機を運転する第1の蓄熱利用暖房運転(9)1台の圧縮機を運転し室外側熱交換器を停止し蓄熱用熱交換器のみで冷媒を蒸発させることにより蓄熱を利用した暖房を実施する第2の蓄熱利用暖房運転、(10)暖房と蓄熱を同時に実施する暖房蓄熱同時運転、が可能である。
The regenerative air conditioner of the present embodiment shown in FIG. 1 switches the flow path by opening and closing the four-way switching valve 4, the on-off valves 12, 13, 14, 15, and 16, and the decompression devices 6, 7a, 7b, The operation of a plurality of patterns can be performed by adjusting the throttle opening of 9.
There are several operation patterns: (1) General cooling operation bypassing the heat storage heat exchanger and the heat storage tank, (2) Cooling operation for cooling mainly performed at night, and (3) Operating two compressors Cooling storage-based supercooling cooling operation in which cooling using the cold storage is performed by supercooling the refrigerant condensed in the outdoor heat exchanger with the heat storage heat exchanger, and (4) operating one compressor (5) Cooling and regenerative cooling operation for simultaneously performing cooling and cold storage, (6) Cooling and regenerative cooling operation for simultaneously performing cooling and cold storage, by stopping the heat exchanger and condensing the refrigerant only with the heat storage heat exchanger. ) General heating operation bypassing the heat storage heat exchanger and the heat storage tank, (7) Heat storage operation for heating mainly performed at night, (8) When there is a heating load exceeding the heating capacity in general heating operation First heat storage that drives the two selected compressors Heating operation (9) The second heat storage use heating operation that performs heating using heat storage by operating one compressor, stopping the outdoor heat exchanger, and evaporating the refrigerant only with the heat storage heat exchanger (10) Heating and heat storage simultaneous operation for simultaneously performing heating and heat storage is possible.

前日夜間の蓄冷運転により蓄冷した蓄冷熱を利用して冷房運転をする場合、上記(3)の過冷却方式と上記(4)の直接凝縮方式のいずれかが可能である。
夏季昼間のような高負荷時には2つの圧縮機と室外側熱交換器を運転して上記(3)の過冷却方式蓄冷利用冷房運転を行い、終日ヒートポンプの運転動力を抑制して消費電力を低減できる。
夏季昼間の前後のような中負荷時には室外側熱交換器を停止し1つの圧縮機を運転して上記(4)の直接凝縮方式蓄冷利用冷房運転を行い、一時的ではあるが大幅にヒートポンプの運転動力を抑制して消費電力を低減できる。
When the cooling operation is performed using the regenerative heat stored by the cold storage operation on the night before the previous day, either the supercooling method (3) or the direct condensation method (4) is possible.
During high loads such as summer daytime, the compressor and the outdoor heat exchanger are operated to perform the cooling operation using the supercooling type regenerative cooling system (3) above, and the power consumption is reduced by suppressing the operating power of the heat pump throughout the day. it can.
During medium loads such as before and after summer daytime, the outdoor heat exchanger is stopped and one compressor is operated to perform the direct condensing type regenerative cooling operation using (4) above. Driving power can be suppressed and power consumption can be reduced.

さらに、春、秋季中間期の昼間のような低負荷時には、直接凝縮方式蓄冷利用冷房運転を行いながら蓄冷利用冷房運転を一時停止し、2つまたは1つの圧縮機と室外側熱交換器を運転して昼間に追加蓄冷と冷房を行う上記(5)の冷房蓄冷同時運転を行う。
ここで直接凝縮方式で蓄冷利用冷房運転している間は圧縮機を1台運転して室外側熱交換器を停止し、冷房蓄冷同時運転の間は常に高効率な運転ポイントで2台の圧縮機を運転できるので、従来に比べて大幅な省エネが可能となる。
一方、前日夜間の蓄熱を利用して暖房空調する場合、暖房負荷が高い場合は上記(8)に示した2台の圧縮機を運転する第1の蓄熱利用暖房運転を行い、暖房負荷が中程度であれば上記(9)に示した1台の圧縮機を運転し室外側熱交換器を停止する蓄熱利用暖房運転を行い、また暖房負荷が低い場合は上記(10)の暖房蓄熱同時運転を行うことで常に高効率な運転ポイントで圧縮機を運転できるので、省エネルギーな暖房が可能となる。
Furthermore, at low loads such as in the middle of the spring and autumn seasons, the cooling operation using the cold storage is temporarily stopped while the cooling operation using the direct condensation method is performed, and two or one compressor and the outdoor heat exchanger are operated. Then, the cooling and storage simultaneous operation of the above (5) for performing additional cold storage and cooling in the daytime is performed.
Here, during the cooling operation using the direct condensing method, one compressor is operated and the outdoor heat exchanger is stopped. During the simultaneous cooling and accumulating operation, two compressors are always compressed at a highly efficient operating point. Since the machine can be operated, significant energy savings can be achieved compared to the conventional system.
On the other hand, when heating and air-conditioning is performed using the heat storage of the night before the first day, if the heating load is high, the first heat storage heating operation that operates the two compressors shown in (8) above is performed, and the heating load is medium. If it is about the same level, operate the single compressor shown in (9) above and stop the outdoor heat exchanger and use the heat storage heating operation. If the heating load is low, (10) Heating heat storage simultaneous operation Since the compressor can be operated at a highly efficient operating point at all times, energy-saving heating is possible.

また、図示していないが、本発明の蓄熱式空気調和装置には、あらかじめ予測し定めた空調負荷の推移パターンに基づき消費電力を最小化するように、あるいは空調負荷の推移をモニタリングした結果に応じて、前記運転パターンから少なくとも一つの運転パターンを選択する手段を備えている。
空調負荷の推移パターンをあらかじめ予測するとは、例えば暦、空気調和装置が設置された地域の公表されている代表的な気象や空調設計データベースあるいはイベントなどの利用形態といった建物固有の影響因子に基づいて、運転対象日の時刻ごとの代表的な空調負荷を予測する。その空調負荷の推移パターン予測に基づき、運転対象日の冷房または暖房運転パターンを選択し、前日夜間に蓄冷運転もしくは蓄熱運転を選択する。
Although not shown in the figure, the regenerative air conditioner of the present invention is based on the result of monitoring the transition of the air conditioning load so as to minimize the power consumption based on the transition pattern of the air conditioning load predicted and determined in advance. Accordingly, there is provided means for selecting at least one operation pattern from the operation patterns.
Predicting the air-conditioning load transition pattern in advance is based on the building-specific influence factors such as the calendar, the typical weather published in the area where the air conditioner is installed, the air-conditioning design database, or the usage pattern of events, etc. The typical air-conditioning load for each time on the operation target day is predicted. Based on the transition pattern prediction of the air conditioning load, a cooling or heating operation pattern on the operation target day is selected, and a cold storage operation or a heat storage operation is selected on the night before the previous day.

以下、上述した10の運転パターンを説明する。
(1)一般冷房運転
図2は一般冷房運転における冷媒の流れを説明する説明図であり、冷媒の流れる経路を太線で示している。また、開閉弁に関しては「開」状態のものを白抜きで示し、「閉」状態のものを黒塗りで示している。以下、図2に基づいて一般冷房運転における冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して室外側熱交換器5で凝縮する。液化した冷媒は開弁した第1の減圧装置6と開閉弁13を経由して第2の減圧装置7a、7bで減圧する。室内側熱交換器8a、8bで冷媒は蒸発して室内を冷房し、四方切替弁4を経由して第1の圧縮機1に戻る。
Hereinafter, the ten operation patterns described above will be described.
(1) General cooling operation FIG. 2 is an explanatory diagram for explaining the flow of the refrigerant in the general cooling operation, and the path through which the refrigerant flows is indicated by a bold line. As for the on-off valves, those in the “open” state are shown in white, and those in the “closed” state are shown in black. Hereinafter, the flow of the refrigerant in the general cooling operation will be described with reference to FIG.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to the outdoor heat exchanger. Condensate at 5. The liquefied refrigerant is decompressed by the second decompression devices 7a and 7b via the opened first decompression device 6 and the on-off valve 13. The refrigerant evaporates in the indoor heat exchangers 8 a and 8 b to cool the room, and returns to the first compressor 1 via the four-way switching valve 4.

上記の場合において、第1の圧縮機1から吐出された冷媒が室外側熱交換器5で凝縮できる程度に外気温度が低い場合は、開閉弁2を閉弁し、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止する。このようにすることで省エネ運転が実現できる。
なお、通常一般冷房運転が選択されるのは蓄熱槽11に蓄冷熱がない場合、蓄熱槽11に蓄冷熱は存在するがそれを他の時間帯で利用したい場合、あるいはメンテナンスなどで蓄熱槽11を利用できないときなどが考えられる。
In the above case, when the outside air temperature is low enough that the refrigerant discharged from the first compressor 1 can be condensed in the outdoor heat exchanger 5, the on-off valve 2 is closed and the on-off valve 16 is opened. Then, the operation of the second compressor 3 is stopped by bypassing the second compressor 3. By doing so, energy-saving operation can be realized.
In general, the general cooling operation is selected when there is no cold storage heat in the heat storage tank 11, when there is cold storage heat in the heat storage tank 11, but it is desired to use it in other time zones, or for maintenance or the like. It is possible that you cannot use.

(2)蓄冷運転
以下、蓄冷運転の冷媒の流れを示す図3に基づいて蓄冷運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して室外側熱交換器5で凝縮する。液化した冷媒は開弁した第1の減圧装置6を経由して第3の減圧装置9で減圧する。冷媒は蓄熱用熱交換器10で蒸発して蓄熱材を冷却し蓄冷する。
本発明の蓄熱材は、融点が0℃より高く20℃より低い蓄熱材が用いられる。例えば、テトラn−ブチルアンモニウム塩を主材とする水溶液を冷却して水和物を形成させて用いる。テトラn−ブチルアンモニウム塩として臭化テトラn−ブチルアンモニウムの水溶液中の濃度が約40wt%の場合、凝固融解温度は約12℃であり、0℃で凝固融解する氷に比べて高い温度で潜熱蓄冷熱が可能である。
(2) Cold Storage Operation Hereinafter, the refrigerant flow in the cold storage operation will be described based on FIG. 3 showing the refrigerant flow in the cold storage operation.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to the outdoor heat exchanger. Condensate at 5. The liquefied refrigerant is decompressed by the third decompression device 9 via the opened first decompression device 6. The refrigerant evaporates in the heat storage heat exchanger 10 to cool and store the heat storage material.
As the heat storage material of the present invention, a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C. is used. For example, an aqueous solution mainly composed of tetra n-butylammonium salt is cooled to form a hydrate. When the concentration of tetra-n-butylammonium bromide in the aqueous solution is about 40 wt% as the tetra-n-butylammonium salt, the solidification melting temperature is about 12 ° C, and the latent heat is higher than that of ice that solidifies and melts at 0 ° C. Cold storage heat is possible.

蓄熱材として氷でなく融点が0℃より高く20℃より低い蓄熱材を用いるので、蓄冷時の冷媒蒸発温度が0℃より高いため、圧縮機は氷蓄熱に比べて圧力比の小さいものを用いることができるので消費電力が小さく省エネが実現できる。
また、冷房蓄冷同時運転において、室内熱交換器内での冷媒蒸発温度と同程度の温度(圧力)で蓄熱用熱交換器で冷媒を蒸発させて蓄冷することができるので、冷媒の分岐、合流時に圧力調整する必要がなく、圧力調整機器が不要であり、蓄熱式空気調和装置の簡素化が可能で省コストとすることができる。
Since a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C. is used as the heat storage material, the refrigerant evaporation temperature at the time of cold storage is higher than 0 ° C., so that the compressor has a smaller pressure ratio than ice heat storage. Energy consumption can be realized with low power consumption.
In simultaneous cooling and storage operation, the refrigerant can be stored by evaporating the refrigerant in the heat storage heat exchanger at the same temperature (pressure) as the refrigerant evaporation temperature in the indoor heat exchanger. Sometimes there is no need to adjust the pressure, no pressure adjusting device is required, the heat storage air conditioner can be simplified, and the cost can be reduced.

蓄熱用熱交換器11で蒸発した冷媒は四方切替弁4を経由して第1の圧縮機1に戻る。第1の圧縮機1から吐出された冷媒が室外側熱交換器5で凝縮できる程度に外気温度が低い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止することもできる。このようにすることで省エネ運転が実現できる。
なお、通常蓄冷運転が選択されるのは夜間電力を利用して蓄熱槽に蓄冷熱する場合である。蓄冷運転時に、センサなどの信号で所定の蓄冷熱量に達したと判断した場合は蓄冷運転を停止する。
The refrigerant evaporated in the heat storage heat exchanger 11 returns to the first compressor 1 via the four-way switching valve 4. When the outside air temperature is low enough that the refrigerant discharged from the first compressor 1 can be condensed in the outdoor heat exchanger 5, the on-off valve 2 is closed and the on-off valve 16 is opened to open the second compressor. The operation of the second compressor 3 can be stopped by bypassing 3. By doing so, energy-saving operation can be realized.
The normal cold storage operation is selected when cold energy is stored in the heat storage tank using nighttime power. During the cold storage operation, if it is determined that a predetermined amount of cold storage heat has been reached by a signal from a sensor or the like, the cold storage operation is stopped.

(3)蓄冷利用過冷却冷房運転
以下、蓄冷利用過冷却冷房運転の冷媒の流れを示す図4に基づいて蓄冷利用過冷却冷房運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して室外側熱交換器5で凝縮する。液化した冷媒は開弁した第1の減圧装置6と第3の減圧装置9を経由して蓄熱用熱交換器10で蓄熱材と熱交換して過冷却状態になる。
(3) Regenerative Supercooling Cooling Operation Hereinafter, the refrigerant flow in the regenerative supercooling cooling operation will be described with reference to FIG. 4 showing the refrigerant flow in the regenerative supercooling cooling operation.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to the outdoor heat exchanger. Condensate at 5. The liquefied refrigerant exchanges heat with the heat storage material in the heat storage heat exchanger 10 via the first decompression device 6 and the third decompression device 9 that have opened the valve, and enters a supercooled state.

蓄熱用熱交換器10を経由して過冷却状態になった冷媒は、第2の減圧装置7a、7bで減圧して室内側熱交換器8a、8bで蒸発して室内を冷房し、四方切替弁4を経由して第1の圧縮機1に戻る。
上記の場合において、第1の圧縮機3から吐出された冷媒が室外側熱交換器5で凝縮できる程度に外気温度が低い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止することもでき、この場合には省エネ運転が実現できる。
The refrigerant that has been supercooled via the heat storage heat exchanger 10 is depressurized by the second decompression devices 7a and 7b, evaporated by the indoor heat exchangers 8a and 8b, and the interior is cooled, and the four-way switching is performed. Return to the first compressor 1 via the valve 4.
In the above case, when the outside air temperature is low enough that the refrigerant discharged from the first compressor 3 can be condensed in the outdoor heat exchanger 5, the on-off valve 2 is closed and the on-off valve 16 is opened. The operation of the second compressor 3 can be stopped by bypassing the second compressor 3, and in this case, an energy saving operation can be realized.

(4)蓄冷利用凝縮冷房運転
以下、蓄冷利用凝縮冷房運転の冷媒の流れを示す図5に基づいて蓄冷利用凝縮冷房運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は開弁した第3の減圧装置9を経由して蓄熱用熱交換器10で蓄熱槽11の蓄熱材により冷却され凝縮する。
(4) Cold Storage Condensation Cooling Operation Hereinafter, the refrigerant flow in the cold storage condensation cooling operation will be described with reference to FIG. 5 showing the refrigerant flow in the cold storage condensation cooling operation.
The refrigerant discharged from the first compressor 1 is cooled and condensed by the heat storage material in the heat storage tank 11 in the heat storage heat exchanger 10 via the opened third decompression device 9.

蓄熱用熱交換器10を通過して液化した冷媒は第2の減圧装置7a、7bで減圧し、室内側熱交換器8a、8bで蒸発して室内を冷房し、四方切替弁4を経由して第1の圧縮機1に戻る。   The refrigerant liquefied after passing through the heat storage heat exchanger 10 is decompressed by the second decompression devices 7 a and 7 b, evaporated by the indoor heat exchangers 8 a and 8 b, and cooled indoors, via the four-way switching valve 4. To return to the first compressor 1.

第1の圧縮機1から吐出された冷媒は蓄熱材の温度で凝縮できる状態にあるので、この運転パターンでは第2の圧縮機3は常に停止している。
蓄冷利用過冷却冷房運転は電力ピーク時間に使用する電力の一部を夜間蓄冷として他の時間へ移行するいわゆるピークシフトと呼ばれる運転方法で、蓄冷利用凝縮冷房運転は圧縮機を1台のみ運転し室外熱交換器を停止して電力ピーク時間帯の電気使用量を抑えるいわゆるピークカットと呼ばれる運転方法である。ここで蓄冷利用過冷却冷房運転と蓄冷利用凝縮冷房運転の選択については、空調負荷パターンや蓄熱式空気調和装置の仕様に応じて総合的に判断されるものである。
またこれらの蓄冷利用冷房運転においてセンサなどで蓄冷量がなくなったと判断された場合は、蓄冷熱空調装置の運転停止あるいは前記一般冷房運転あるいは後述の冷房蓄冷同時運転のいずれの運転へ切換える。
Since the refrigerant discharged from the first compressor 1 can be condensed at the temperature of the heat storage material, the second compressor 3 is always stopped in this operation pattern.
Cold storage-based supercooling cooling operation is a so-called peak shift operation in which part of the power used during peak power hours is stored as nighttime storage and transferred to another time. Cold storage-based condensation cooling operation operates only one compressor. This is an operation method called so-called peak cut, in which the outdoor heat exchanger is stopped to reduce the amount of electricity used during the peak power hours. Here, the selection of the regenerative use supercooling cooling operation and the regenerative use condensing cooling operation is comprehensively determined according to the air conditioning load pattern and the specifications of the regenerative air conditioner.
Further, when it is determined by the sensor or the like that the amount of cold storage has been lost in these cold storage-based cooling operations, the operation is switched to the operation of stopping the cold-storage heat air-conditioning apparatus, the general cooling operation, or the cooling-cooling simultaneous operation described later.

(5)冷房蓄冷同時運転
以下、冷房蓄冷同時運転の冷媒の流れを示す図6に基づいて冷房蓄冷同時運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して室外側熱交換器5で凝縮する。液化した冷媒は開弁した第1の減圧装置6を経由して、第2の減圧装置7a、7bと室内側熱交換器8a、8bならびに第3の減圧装置9と蓄熱用熱交換器10へ並列に流れる。
(5) Cooling and regenerative simultaneous operation Hereinafter, the refrigerant flow in the refrigerating and regenerating simultaneous operation will be described with reference to FIG.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to the outdoor heat exchanger. Condensate at 5. The liquefied refrigerant passes through the opened first decompression device 6 to the second decompression devices 7a and 7b and the indoor heat exchangers 8a and 8b, and the third decompression device 9 and the heat storage heat exchanger 10. Flow in parallel.

室内側熱交換器8a、8b内の冷媒の蒸発温度は一般的に約10℃であり、他方、本実施の形態の蓄熱材は約12℃で凝固融解するので、室内側熱交換器8a、8bと蓄熱用熱交換器10に並列に冷媒を送り、それぞれにおいて同温度圧力で冷媒を蒸発させることができ、冷房と同時に蓄冷が可能である。室内側熱交換器8a、8bと蓄熱用熱交換器10からの冷媒は四方切替弁4を経由して第1の圧縮機1に戻る。
もちろん室内側熱交換器8a、8bの出側に第4の減圧装置を設けて蓄熱用熱交換器10からの冷媒と合流させてもよい。
The evaporation temperature of the refrigerant in the indoor side heat exchangers 8a and 8b is generally about 10 ° C. On the other hand, the heat storage material of the present embodiment is solidified and melted at about 12 ° C. Therefore, the indoor side heat exchanger 8a, The refrigerant can be sent in parallel to 8b and the heat storage heat exchanger 10, and the refrigerant can be evaporated at the same temperature and pressure in each of them. The refrigerant from the indoor side heat exchangers 8 a and 8 b and the heat storage heat exchanger 10 returns to the first compressor 1 via the four-way switching valve 4.
Of course, a fourth decompression device may be provided on the outlet side of the indoor heat exchangers 8a and 8b to join the refrigerant from the heat storage heat exchanger 10.

第1の圧縮機1から吐出された冷媒が室外側熱交換器5で凝縮できる程度に外気温度が低い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機の運転を停止することができ、この場合には省エネ運転が実現できる。
通常、冷房蓄冷同時運転は、第1から第3のいずれかの蓄冷利用冷房運転において蓄熱槽11に蓄冷可能でかつ冷房負荷が装置の冷房能力より小さいときに実施される。運転は蓄熱槽11に蓄冷可能な最大熱量が蓄えられたとき、あるいは蓄熱槽11には蓄冷余力があっても残りの時間帯で冷房負荷の全量を蓄冷熱で賄えるときに、第1から第3のいずれかの蓄冷利用冷房運転へ切換える。
When the outside air temperature is low enough that the refrigerant discharged from the first compressor 1 can be condensed in the outdoor heat exchanger 5, the on-off valve 2 is closed and the on-off valve 16 is opened to open the second compressor. 3 can be bypassed and the operation of the second compressor can be stopped. In this case, energy-saving operation can be realized.
Normally, the simultaneous cooling and storage operation is performed when any one of the first to third cooling storage-based cooling operations can store heat in the heat storage tank 11 and the cooling load is smaller than the cooling capacity of the apparatus. When the maximum amount of heat that can be stored in the heat storage tank 11 is stored, or when the heat storage tank 11 has the cold storage capacity, the entire cooling load can be covered by the cold storage heat in the remaining time zone. Switch to any one of 3 cold storage cooling operations.

(6)一般暖房運転
以下、一般暖房運転の冷媒の流れを示す図7に基づいて一般暖房運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して室内側熱交換器8a、8bで凝縮し室内を暖房する。液化した冷媒は開弁した第2の減圧装置7a、7bと開閉弁13を経由して第1の減圧装置6で減圧する。室外側熱交換器5で冷媒は蒸発し、四方切替弁4を経由して第1の圧縮機1に戻る。
室外側熱交換器5で蒸発し第1の圧縮機1から吐出された冷媒が室内側熱交換器で暖房できる程度に外気温度が高い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止することができ、これによって省エネ運転が実現できる。
通常一般暖房運転が選択されるのは蓄熱槽11に蓄熱がない場合、蓄熱槽11に蓄熱は存在するがそれを他の時間帯で利用したい場合、蓄熱槽内の蓄熱材温度が外気温度よりも低い場合、あるいはメンテナンスなどで蓄熱槽を利用できないときなどが考えられる。
(6) General Heating Operation Hereinafter, the refrigerant flow in the general heating operation will be described based on FIG. 7 showing the flow of the refrigerant in the general heating operation.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to the indoor heat exchanger. Condensate at 8a and 8b to heat the room. The liquefied refrigerant is decompressed by the first decompression device 6 via the opened second decompression devices 7a and 7b and the on-off valve 13. The refrigerant evaporates in the outdoor heat exchanger 5 and returns to the first compressor 1 via the four-way switching valve 4.
When the outside air temperature is high enough that the refrigerant evaporated by the outdoor heat exchanger 5 and discharged from the first compressor 1 can be heated by the indoor heat exchanger, the on-off valve 2 is closed and the on-off valve 16 is opened. The second compressor 3 can be bypassed and the operation of the second compressor 3 can be stopped, whereby an energy saving operation can be realized.
Generally, the general heating operation is selected when there is no heat storage in the heat storage tank 11, and there is heat storage in the heat storage tank 11, but when it is desired to use it in other time zones, the temperature of the heat storage material in the heat storage tank is higher than the outside air temperature. Is low, or when the heat storage tank cannot be used for maintenance or the like.

(7)蓄熱運転
以下、蓄熱運転の冷媒の流れを示す図8に基づいて蓄熱運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して蓄熱用熱交換器10で凝縮し蓄熱材を加熱して蓄熱する。このとき、蓄熱材は温水溶液として蓄熱される。
蓄熱用熱交換器10で凝縮して液化した冷媒は開弁した第3の減圧装置9を経由して第1の減圧装置6で減圧する。そして、減圧した冷媒は室外側熱交換器5で蒸発し、四方切替弁4を経由して第1の圧縮機1に戻る。
室外側熱交換器5で蒸発し第1の圧縮機1から吐出された冷媒が所定の温度で蓄熱できる程度に外気温度が高い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止することができ、これによって省エネ運転を実現できる。
通常蓄熱運転が選択されるのは夜間電力を利用して蓄熱槽に蓄熱する場合である。蓄熱運転時に、センサなどの信号で所定の蓄熱量に達したと判断した場合は蓄熱運転を停止する。
(7) Thermal Storage Operation Hereinafter, the refrigerant flow in the thermal storage operation will be described based on FIG. 8 showing the refrigerant flow in the thermal storage operation.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to store heat. 10 condenses and heats the heat storage material to store heat. At this time, the heat storage material is stored as a warm aqueous solution.
The refrigerant condensed and liquefied in the heat storage heat exchanger 10 is decompressed by the first decompression device 6 via the third decompression device 9 opened. The decompressed refrigerant evaporates in the outdoor heat exchanger 5 and returns to the first compressor 1 via the four-way switching valve 4.
When the outside air temperature is high enough that the refrigerant evaporated in the outdoor heat exchanger 5 and discharged from the first compressor 1 can store heat at a predetermined temperature, the on-off valve 2 is closed and the on-off valve 16 is opened. Thus, the second compressor 3 can be bypassed and the operation of the second compressor 3 can be stopped, whereby an energy saving operation can be realized.
The normal heat storage operation is selected when heat is stored in the heat storage tank using nighttime power. During the heat storage operation, if it is determined that a predetermined heat storage amount has been reached by a signal from a sensor or the like, the heat storage operation is stopped.

(8)第1の蓄熱利用暖房運転
以下、第1の蓄熱利用暖房運転の冷媒の流れを示す図9に基づいて第1の蓄熱利用暖房運転における冷媒の流れを説明する。
図12に示すように、室内側熱交換器8a、8bで凝縮して室内を暖房し、液化した冷媒を蓄熱用熱交換器10と室外側熱交換器5に並列に流して蒸発させ、第1の圧縮機1に戻すことにより、第2の蓄熱利用暖房運転の実施も可能となる。この運転モードは一般暖房運転での暖房能力以上の暖房負荷が存在したときに選択される。
さらに、本発明の蓄熱材は融点が0℃より高く20℃より低い蓄熱材が用いられ、例えば、臭化テトラn−ブチルアンモニウムの約40wt%濃度水溶液であって、その凝固融解温度は約12℃である。このような蓄熱材の温水溶液で温熱を蓄えることにより、蓄熱利用時には12℃までは顕熱を放出し、12℃で潜熱を放出するため、従来より知られている水のような顕熱のみの場合に比べて大量の熱を放出することができ、圧縮機の圧力比を低くできるので効率の高い蓄熱利用暖房運転ができる。
(8) First Heat Storage Use Heating Operation Hereinafter, the refrigerant flow in the first heat storage use heating operation will be described based on FIG. 9 showing the flow of the refrigerant in the first heat storage use heating operation.
As shown in FIG. 12, the indoor heat exchangers 8a and 8b condense and heat the room, and the liquefied refrigerant flows through the heat storage heat exchanger 10 and the outdoor heat exchanger 5 in parallel to evaporate. By returning to the compressor 1 of 1, the second heat storage use heating operation can be performed. This operation mode is selected when there is a heating load exceeding the heating capacity in the general heating operation.
Further, the heat storage material of the present invention uses a heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., for example, an aqueous solution of about 40 wt% tetra n-butylammonium bromide having a solidification melting temperature of about 12%. ° C. By storing warm heat with such a warm aqueous solution of a heat storage material, sensible heat is released up to 12 ° C. and latent heat is released at 12 ° C. at the time of heat storage use. Compared to the case, a large amount of heat can be released, and the pressure ratio of the compressor can be lowered, so that a highly efficient heat storage and heating operation can be performed.

(9)第2の蓄熱利用暖房運転
以下、第2の蓄熱利用暖房運転の冷媒の流れを示す図10に基づいて第2の蓄熱利用暖房運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3をバイパスして四方切替弁4を経由して室内側熱交換器8a、8bで凝縮し室内を暖房する。液化した冷媒は開弁した第2の減圧装置7a、7bを経由して第3の減圧装置9で減圧する。冷媒は蓄熱用熱交換器10で蓄熱材と熱交換して蒸発し、第1の圧縮機1に戻る。蓄熱用熱交換器10における熱交換では蓄熱材に蓄えられた外気温度よりも高い温度の温熱を利用して冷媒の蒸発が行われるため、第1の圧縮機1の吸込み圧力が高くなり、効率的な暖房運転ができる。また、第2の圧縮機3と室外側熱交換器5のファンは停止しているので、この点でも省エネルギーとなる。
(9) Second Heat Storage Use Heating Operation Hereinafter, the refrigerant flow of the second heat storage use heating operation will be described based on FIG. 10 showing the flow of refrigerant in the second heat storage use heating operation.
The refrigerant discharged from the first compressor 1 bypasses the second compressor 3 and condenses in the indoor heat exchangers 8a and 8b via the four-way switching valve 4 to heat the room. The liquefied refrigerant is decompressed by the third decompression device 9 via the opened second decompression devices 7a and 7b. The refrigerant exchanges heat with the heat storage material in the heat storage heat exchanger 10 and evaporates, and returns to the first compressor 1. The heat exchange in the heat storage heat exchanger 10 evaporates the refrigerant by using the temperature higher than the outside air temperature stored in the heat storage material, so that the suction pressure of the first compressor 1 is increased and the efficiency is increased. Heating operation is possible. Moreover, since the fan of the 2nd compressor 3 and the outdoor side heat exchanger 5 has stopped, it becomes energy saving also in this point.

(10)暖房蓄熱同時運転
以下、暖房蓄熱同時運転の冷媒の流れを示す図11に基づいて暖房蓄熱同時運転の冷媒の流れを説明する。
第1の圧縮機1から吐出された冷媒は第2の圧縮機3へ全量流れ、第2の圧縮機3から吐出された高温高圧の冷媒は四方切替弁4を経由して、室内側熱交換器8a、8bと蓄熱用熱交換器10へ並列に流れる。室内側熱交換器8a、8bに流れた冷媒は凝縮することによって室内を暖房して凝縮し、蓄熱用熱交換器10へ流れた冷媒は蓄熱材と熱交換して凝縮する。液化した冷媒は経路途中で合流し、第1の減圧装置6で減圧して室外側熱交換器5で蒸発し、第1の圧縮機1へ戻る。
(10) Heating / heat storage simultaneous operation Hereinafter, the refrigerant flow in the heating / heat storage simultaneous operation will be described based on FIG. 11 showing the refrigerant flow in the heating / heat storage simultaneous operation.
The entire amount of refrigerant discharged from the first compressor 1 flows to the second compressor 3, and the high-temperature and high-pressure refrigerant discharged from the second compressor 3 passes through the four-way switching valve 4 to exchange heat indoors. Flows in parallel to the heat exchangers 8a and 8b and the heat storage heat exchanger 10. The refrigerant flowing into the indoor heat exchangers 8a and 8b condenses to heat and condense the room, and the refrigerant flowing to the heat storage heat exchanger 10 exchanges heat with the heat storage material and condenses. The liquefied refrigerant joins in the middle of the path, is decompressed by the first decompressor 6, is evaporated by the outdoor heat exchanger 5, and returns to the first compressor 1.

室外側熱交換器5で蒸発し第1の圧縮機1から吐出された冷媒が所定の温度で暖房、蓄熱できる程度に外気温度が高い場合は、開閉弁2を閉弁、開閉弁16を開弁して第2の圧縮機3をバイパスして第2の圧縮機3の運転を停止することができ、これによって省エネ運転を実現できる。
通常、暖房蓄熱同時運転は、蓄熱利用暖房運転において蓄熱槽11に蓄熱可能でかつ暖房負荷が装置の暖房能力より小さいときに実施され、蓄熱槽に蓄熱可能な最大熱量が蓄えられたとき、あるいは蓄熱槽11には蓄熱余力があっても残りの時間帯で必要と予測される暖房負荷に対して蓄熱利用暖房運転が可能であるとき、蓄熱利用暖房運転へ切換える。
When the outside air temperature is high enough that the refrigerant evaporated in the outdoor heat exchanger 5 and discharged from the first compressor 1 can be heated and stored at a predetermined temperature, the on-off valve 2 is closed and the on-off valve 16 is opened. Therefore, the second compressor 3 can be bypassed and the operation of the second compressor 3 can be stopped, whereby an energy saving operation can be realized.
Normally, the heating and heat storage simultaneous operation is performed when the heat storage tank 11 can store heat and the heating load is smaller than the heating capacity of the apparatus in the heat storage use heating operation, and when the maximum amount of heat that can be stored in the heat storage tank is stored, or Even if the heat storage tank 11 has the heat storage capacity, when the heat storage use heating operation is possible for the heating load predicted to be necessary in the remaining time zone, the heat storage tank 11 is switched to the heat storage use heating operation.

以下においては、蓄熱材として氷を用いた場合と、融点が12℃の水和物蓄熱材を用いた場合における蓄熱式空気調和装置の各圧縮機の圧縮機前後の圧力比を比較した。
表1〜表3はこの比較結果をまとめた表である。
表1には蓄熱材として氷を用いた場合の第1の圧縮機(第1段目)の圧力比が示されている。また、表2には蓄熱材として上記の水和物蓄熱材を用いた場合の第1の圧縮機(第1段目)の圧力比が示されている。さらに、表3には氷蓄熱材と水和物蓄熱材を用いた場合の第2の圧縮機(第2段目)の圧力比が示されている。
各表においては、運転モード、蒸発温度、出口飽和圧相当温度、圧縮機前後の圧力比がそれぞれ示されている。また、冷媒として各表に示されるようにR134a、R407C、R410Aの3種類の場合について示されている。
Below, the pressure ratio before and behind the compressor of each compressor of the heat storage type air conditioner in the case of using ice as the heat storage material and the case of using the hydrate heat storage material having a melting point of 12 ° C. was compared.
Tables 1 to 3 summarize the comparison results.
Table 1 shows the pressure ratio of the first compressor (first stage) when ice is used as the heat storage material. Table 2 shows the pressure ratio of the first compressor (first stage) when the hydrate heat storage material is used as the heat storage material. Further, Table 3 shows the pressure ratio of the second compressor (second stage) when the ice heat storage material and the hydrate heat storage material are used.
In each table, an operation mode, an evaporation temperature, an outlet saturation pressure equivalent temperature, and a pressure ratio before and after the compressor are shown. Further, as shown in the respective tables as refrigerants, three types of R134a, R407C, and R410A are shown.

Figure 0004407582
Figure 0004407582

氷蓄熱材を用いた場合の蓄冷における第1段圧縮機前後の圧力比は、表1に示されるように2.7〜3.0である。これに対して、水和物蓄熱材を用いた場合の蓄冷における第1段圧縮機前後の圧力比は表2に示されるように1.8〜1.9である。
このように、水和物蓄熱材を用いることで、第1段圧縮機における圧力比を小さくすることができ、圧縮能力の小さい圧縮機を採用できることから、設備費のコストを低減できる。また、運転状態においても圧力比が小さくなるため、第1の圧縮機が効率化され、省エネ運転が実現される。
As shown in Table 1, the pressure ratio before and after the first stage compressor in cold storage when using an ice heat storage material is 2.7 to 3.0. On the other hand, as shown in Table 2, the pressure ratio before and after the first stage compressor in the cold storage when the hydrate heat storage material is used is 1.8 to 1.9.
Thus, by using a hydrate heat storage material, the pressure ratio in the first stage compressor can be reduced, and a compressor having a small compression capacity can be adopted, so that the cost of equipment costs can be reduced. In addition, since the pressure ratio becomes small even in the operating state, the first compressor is made more efficient and energy saving operation is realized.

本発明の一実施の形態に係る蓄熱式空気調和装置の説明図である。It is explanatory drawing of the thermal storage type air conditioner which concerns on one embodiment of this invention. 図1に示した蓄熱式空気調和装置における一般暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the general heating operation in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における蓄冷運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the cool storage operation | movement in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における蓄冷利用過冷却冷房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the cool storage utilization supercooling air_conditionaing | cooling operation in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における蓄冷利用凝縮冷房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the cool storage utilization condensation cooling operation in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における冷房蓄冷同時運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of air_conditioning | cooling storage simultaneous operation in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における一般暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the general heating operation in the thermal storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における蓄熱運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the thermal storage driving | operation in the thermal storage-type air conditioning apparatus shown in FIG. 図1に示した蓄熱式空気調和装置における第1の蓄熱利用暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the 1st heat storage utilization heating operation in the heat storage type air conditioner shown in FIG. 図1に示した蓄熱式空気調和装置における第2の蓄熱利用暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the 2nd heat storage utilization heating operation in the heat storage type air conditioning apparatus shown in FIG. 図1に示した蓄熱式空気調和装置における暖房蓄熱同時運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of heating heat storage simultaneous operation in the thermal storage type air conditioner shown in FIG.

符号の説明Explanation of symbols

1 第1の圧縮機、2 開閉弁、3 第2の圧縮機、4 四方切替弁、5 室外機側熱交換器、6 第1の減圧装置、7a、7b 第2の減圧装置、8a、8b 室内側熱交換器、9 第3の減圧装置、10 蓄熱用熱交換器、11 蓄熱槽、12、13、14、15、16 開閉弁。     DESCRIPTION OF SYMBOLS 1 1st compressor, 2 On-off valve, 3 2nd compressor, 4 way switching valve, 5 Outdoor unit side heat exchanger, 6 1st decompression device, 7a, 7b 2nd decompression device, 8a, 8b Indoor side heat exchanger, 9 3rd decompression device, 10 heat storage heat exchanger, 11 heat storage tank, 12, 13, 14, 15, 16 on-off valve.

Claims (9)

直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、
室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、
融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
前記蓄熱装置を作動させないで冷房を行う一般冷房運転時と、蓄熱材に冷熱を蓄熱する蓄冷運転時と、室外側熱交換器で凝縮した冷媒を蓄熱材の冷熱を利用して過冷却する蓄冷利用過冷却冷房運転時には室外側熱交換器と第1、第2の圧縮機を運転する冷凍サイクル回路が形成でき、
蓄熱材の冷熱を利用して冷媒を凝縮させて冷房を行う蓄冷利用直接凝縮冷房運転時には室外側熱交換器を停止し第1の圧縮機を一段運転する冷凍サイクル回路が形成できるように、
冷媒配管および開閉弁が設けられていることを特徴とする蓄熱式空気調和装置。
First and second compressors arranged in series to pressurize the refrigerant, a four-way switching valve for switching the refrigerant circuit, an outdoor heat exchanger for exchanging heat between the outside air and the refrigerant in the refrigeration cycle, the outdoor heat exchanger A heat source device having a first decompression device for decompressing the refrigerant flowing into
An indoor heat exchanger that is installed indoors and performs heat exchange between the indoor air and the refrigerant of the refrigeration cycle, an air conditioning load device having a second decompression device that decompresses the refrigerant flowing into the indoor heat exchanger,
Heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., a heat storage tank for storing the heat storage material, a heat storage heat exchanger for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, and flowing into the heat storage heat exchanger A heat storage device having a third decompression device for decompressing the refrigerant to be
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
Cold storage that cools the refrigerant condensed in the outdoor heat exchanger using the cold of the heat storage material during general cooling operation that performs cooling without operating the heat storage device, during the cold storage operation that stores cold heat in the heat storage material A refrigeration cycle circuit for operating the outdoor heat exchanger and the first and second compressors can be formed during use supercooling cooling operation,
In order to form a refrigeration cycle circuit that stops the outdoor heat exchanger and operates the first compressor in one stage at the time of cold storage direct condensation cooling operation in which cooling is performed by condensing the refrigerant using the cold heat of the heat storage material,
A regenerative air conditioner comprising a refrigerant pipe and an on-off valve.
冷房運転と蓄冷運転を同時に行う冷房蓄冷同時運転時は室外側熱交換器と第1、第2の圧縮機を運転する冷凍サイクル回路を形成できるように、
冷媒配管および開閉弁が設けられていることを特徴とする請求項1に記載の蓄熱式空気調和装置。
In order to be able to form a refrigeration cycle circuit for operating the outdoor heat exchanger and the first and second compressors during the cooling and accumulating simultaneous operation in which the cooling operation and the regenerative operation are performed simultaneously
The regenerative air conditioner according to claim 1, wherein a refrigerant pipe and an on-off valve are provided.
直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、
室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、
融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般冷房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第3の減圧装置、蓄熱用熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用過冷却冷房運転回路と、
第1の圧縮機、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用直接凝縮冷房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とする蓄熱式空気調和装置。
First and second compressors arranged in series to pressurize the refrigerant, a four-way switching valve for switching the refrigerant circuit, an outdoor heat exchanger for exchanging heat between the outside air and the refrigerant in the refrigeration cycle, the outdoor heat exchanger A heat source device having a first decompression device for decompressing the refrigerant flowing into
An indoor heat exchanger that is installed indoors and performs heat exchange between the indoor air and the refrigerant of the refrigeration cycle, an air conditioning load device having a second decompression device that decompresses the refrigerant flowing into the indoor heat exchanger,
Heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., a heat storage tank for storing the heat storage material, a heat storage heat exchanger for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, and flowing into the heat storage heat exchanger A heat storage device having a third decompression device for decompressing the refrigerant to be
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
As a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. General cooling circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the third decompressor, the heat storage heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A regenerator circuit,
First compressor, second compressor, four-way switching valve, outdoor heat exchanger, heat storage heat exchanger, second decompression device, indoor heat exchanger, four-way switching valve, and first compressor A regenerative use supercooling cooling operation circuit configured by connecting in order;
A first heat storage heat exchanger, a second pressure reducing device, an indoor heat exchanger, a four-way switching valve and a first compressor configured to be connected in this order, and a regenerative use direct condensation cooling operation circuit;
The regenerative air conditioner is provided with a refrigerant pipe and an on-off valve.
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室外側熱交換器と第2の減圧装置を接続する回路から分岐して、第3の減圧装置、蓄熱用熱交換器の順に接続すると共に蓄熱用熱交換器の出側を室内側熱交換器の出側の回路に接続して構成される冷房蓄冷同時運転回路を形成できるように冷媒配管および開閉弁が設けられていることを特徴とする請求項3に記載の蓄熱式空気調和装置。 The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order, and the chamber Branch from the circuit connecting the outer heat exchanger and the second pressure reducing device, connect the third pressure reducing device and the heat storage heat exchanger in this order, and connect the outlet side of the heat storage heat exchanger to the indoor heat exchanger. The regenerative air conditioner according to claim 3, wherein a refrigerant pipe and an on-off valve are provided so as to form a cooling and regenerating simultaneous operation circuit configured by being connected to a circuit on the outlet side. 冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般暖房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、蓄熱用熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄熱用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室内側熱交換器と第1の減圧装置を接続する回路から分岐して第3の減圧装置、蓄熱用熱交換器および第1の圧縮機の順に接続して構成される第1の蓄熱利用暖房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とする請求項3または4に記載の蓄熱式空気調和装置。
As a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A general heating circuit,
The first compressor, the second compressor, the four-way switching valve, the heat storage heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A heat storage circuit,
Connect the first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first decompression device, the outdoor heat exchanger, the four-way switching valve, and the first compressor in this order, and further A first regenerative heating operation which branches from a circuit connecting the inner heat exchanger and the first pressure reducing device and is connected in order of the third pressure reducing device, the heat storage heat exchanger, and the first compressor. Circuit,
The regenerative air conditioner according to claim 3 or 4, wherein a refrigerant pipe and an on-off valve are provided.
冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、四方切替弁、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般暖房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、蓄熱用熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄熱用回路と、
第1の圧縮機、四方切替弁、室内側熱交換器、第3の減圧装置、蓄熱用熱交換器、第1の圧縮機の順に接続して構成される第2の蓄熱利用暖房運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とする請求項3または4に記載の蓄熱式空気調和装置。
As a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the indoor heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A general heating circuit,
The first compressor, the second compressor, the four-way switching valve, the heat storage heat exchanger, the first pressure reducing device, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. A heat storage circuit,
A second heat storage utilization heating operation circuit configured by connecting in order of a first compressor, a four-way switching valve, an indoor heat exchanger, a third pressure reducing device, a heat storage heat exchanger, and a first compressor; ,
The regenerative air conditioner according to claim 3 or 4, wherein a refrigerant pipe and an on-off valve are provided.
冷凍サイクル回路として、
第1の圧縮機、第2の圧縮機、室内側熱交換器、第1の減圧装置、室外側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに第2の圧縮機と室内側熱交換器とを接続する回路から分岐して蓄熱用熱交換器を接続すると共に蓄熱用熱交換器の出側を室内側熱交換器と第1の減圧装置を結ぶ回路に接続して構成される暖房蓄熱同時運転回路と、
を形成できるように冷媒配管および開閉弁が設けられていることを特徴とする請求項3〜6の何れか一項に記載の蓄熱式空気調和装置。
As a refrigeration cycle circuit,
The first compressor, the second compressor, the indoor heat exchanger, the first decompressor, the outdoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order, and the second compressor Branch from the circuit connecting the indoor heat exchanger and the indoor heat exchanger, connect the heat storage heat exchanger, and connect the outlet side of the heat storage heat exchanger to the circuit connecting the indoor heat exchanger and the first decompressor. Heating and heat storage simultaneous operation circuit,
The regenerative air conditioner according to any one of claims 3 to 6, wherein a refrigerant pipe and an on-off valve are provided.
請求項1から7のいずれかに記載の蓄熱式空気調和装置の運転方法であって、
第2の圧縮機をバイバスする回路を設け、外気温が所定範囲外であるときに、第1の圧縮機だけの単段圧縮運転を行うことを特徴とする蓄熱式空気調和装置の運転方法。
The operation method of the regenerative air conditioner according to any one of claims 1 to 7,
A method for operating a regenerative air conditioner, wherein a circuit for bypassing the second compressor is provided, and single-stage compression operation is performed only for the first compressor when the outside air temperature is outside a predetermined range.
直列に配置されて冷媒を加圧する第1、第2の圧縮機、冷媒回路を切り替える四方切替弁、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器、該室外側熱交換器に流入する冷媒を減圧する第1の減圧装置を有する熱源装置と、
室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う室内側熱交換器、該室内側熱交換器に流入する冷媒を減圧する第2の減圧装置を有する空調負荷装置と、
融点が0℃より高く20℃より低い蓄熱材、該蓄熱材を貯留する蓄熱槽、該蓄熱材と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器と、該蓄熱用熱交換器に流入する冷媒を減圧する第3の減圧装置を有する蓄熱装置と、を備え、
これら熱源装置と、空調負荷装置と、蓄熱装置の全部または一部が開閉弁を介して冷媒配管で接続されて冷凍サイクル回路を構成し、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される一般冷房用回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用過冷却冷房運転回路と、
第1の圧縮機、蓄熱用熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続して構成される蓄冷利用直接凝縮冷房運転回路と、
第1の圧縮機、第2の圧縮機、四方切替弁、室外側熱交換器、第2の減圧装置、室内側熱交換器、四方切替弁および第1の圧縮機の順に接続し、さらに室外側熱交換器と第2の減圧装置を接続する回路から分岐して、第3の減圧装置、蓄熱用熱交換器の順に接続すると共に蓄熱用熱交換器の出側を室内側熱交換器の出側の回路に接続して構成される冷房蓄冷同時運転回路と、
を形成できるように冷媒配管および開閉弁が設けられてなる蓄熱式空気調和装置の運転方法であって、
予め定めた空調負荷の推移又は空調負荷の推移をモニタリングした結果に応じて、一般冷房運転、蓄冷利用過冷却冷房運転、蓄冷利用直接凝縮冷房運転及び冷房蓄冷同時運転のうちいずれか一つを選択して運転を行うことを特徴とする蓄熱式空気調和装置の運転方法。
First and second compressors arranged in series to pressurize the refrigerant, a four-way switching valve for switching the refrigerant circuit, an outdoor heat exchanger for exchanging heat between the outside air and the refrigerant in the refrigeration cycle, the outdoor heat exchanger A heat source device having a first decompression device for decompressing the refrigerant flowing into
An indoor heat exchanger that is installed indoors and performs heat exchange between the indoor air and the refrigerant of the refrigeration cycle, an air conditioning load device having a second decompression device that decompresses the refrigerant flowing into the indoor heat exchanger,
Heat storage material having a melting point higher than 0 ° C. and lower than 20 ° C., a heat storage tank for storing the heat storage material, a heat storage heat exchanger for exchanging heat between the heat storage material and the refrigerant of the refrigeration cycle, and flowing into the heat storage heat exchanger A heat storage device having a third decompression device for decompressing the refrigerant to be
All or a part of these heat source device, air conditioning load device, and heat storage device are connected by refrigerant piping via an on-off valve to constitute a refrigeration cycle circuit,
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order. General cooling circuit,
First compressor, second compressor, four-way switching valve, outdoor heat exchanger, heat storage heat exchanger, second decompression device, indoor heat exchanger, four-way switching valve, and first compressor A regenerative use supercooling cooling operation circuit configured by connecting in order;
A first heat storage heat exchanger, a second pressure reducing device, an indoor heat exchanger, a four-way switching valve and a first compressor configured to be connected in this order, and a regenerative use direct condensation cooling operation circuit;
The first compressor, the second compressor, the four-way switching valve, the outdoor heat exchanger, the second decompression device, the indoor heat exchanger, the four-way switching valve, and the first compressor are connected in this order, and the chamber Branch from the circuit connecting the outer heat exchanger and the second pressure reducing device, connect the third pressure reducing device and the heat storage heat exchanger in this order, and connect the outlet side of the heat storage heat exchanger to the indoor heat exchanger. A cooling and regenerating simultaneous operation circuit configured by connecting to the circuit on the output side,
A heat storage type air conditioner having a refrigerant pipe and an on-off valve so that can be formed,
Select either one of general cooling operation, supercooling cooling supercooling cooling operation, cool storage direct condensing cooling operation, and simultaneous cooling and cooling operation according to the result of monitoring the transition of air conditioning load or air conditioning load The operation method of the regenerative air conditioner is characterized in that the operation is performed.
JP2005199526A 2005-07-08 2005-07-08 Thermal storage air conditioner and method of operating the thermal storage air conditioner Expired - Fee Related JP4407582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199526A JP4407582B2 (en) 2005-07-08 2005-07-08 Thermal storage air conditioner and method of operating the thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199526A JP4407582B2 (en) 2005-07-08 2005-07-08 Thermal storage air conditioner and method of operating the thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JP2007017089A JP2007017089A (en) 2007-01-25
JP4407582B2 true JP4407582B2 (en) 2010-02-03

Family

ID=37754401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199526A Expired - Fee Related JP4407582B2 (en) 2005-07-08 2005-07-08 Thermal storage air conditioner and method of operating the thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP4407582B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125727A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
US10718540B2 (en) 2014-12-26 2020-07-21 Daikin Industries, Ltd. Thermal storage air conditioner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169157B2 (en) * 2007-11-09 2013-03-27 東京電力株式会社 Hot water system
JP6376866B2 (en) * 2014-07-07 2018-08-22 株式会社前川製作所 Vegetable vacuum cooling system and vacuum cooling method
KR101591188B1 (en) 2014-07-07 2016-02-18 엘지전자 주식회사 A a regenerative air-conditioning apparatus and a method controlling the same
JP2016125717A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
US10539335B2 (en) 2014-12-26 2020-01-21 Daikin Industries, Ltd. Regenerative air conditioner
JP6679840B2 (en) * 2015-05-12 2020-04-15 ダイキン工業株式会社 Heat storage type air conditioner
JP2017141981A (en) * 2016-02-08 2017-08-17 ダイキン工業株式会社 Storage type air conditioner
GB201803841D0 (en) * 2018-03-09 2018-04-25 Sunamp Ltd Heat pumps

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125727A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
US10718540B2 (en) 2014-12-26 2020-07-21 Daikin Industries, Ltd. Thermal storage air conditioner

Also Published As

Publication number Publication date
JP2007017089A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4407582B2 (en) Thermal storage air conditioner and method of operating the thermal storage air conditioner
CA2829246C (en) Thermal energy system and method of operation
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP5963971B2 (en) Air conditioner
JP4241662B2 (en) Heat pump system
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP4650086B2 (en) Thermal storage heat recovery device
JP2001227837A (en) Regenerative refrigerating cycle and method for operating heat regenerative refrigeration cycle
JP2001296068A (en) Regenerative refrigerating device
JP4902585B2 (en) Air conditioner
JP2007100987A (en) Refrigerating system
KR102014457B1 (en) A combined refrigerating and air conditioning system
JP4660334B2 (en) Refrigeration system
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
KR101118137B1 (en) Air cooling type heat pump system
JP5517333B2 (en) Refrigeration apparatus and operation method thereof
WO2015177852A1 (en) Refrigeration cycle device
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2006177619A (en) Air conditioner, and its operation method
JP2013092342A (en) Refrigerating device
JP2001280729A (en) Refrigerating device
JP2006125761A (en) Indoor machine and air conditioner comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees