WO2020065999A1 - Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device - Google Patents

Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device Download PDF

Info

Publication number
WO2020065999A1
WO2020065999A1 PCT/JP2018/036524 JP2018036524W WO2020065999A1 WO 2020065999 A1 WO2020065999 A1 WO 2020065999A1 JP 2018036524 W JP2018036524 W JP 2018036524W WO 2020065999 A1 WO2020065999 A1 WO 2020065999A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
pipe
bypass circuit
refrigeration cycle
Prior art date
Application number
PCT/JP2018/036524
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
亮 築山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020547862A priority Critical patent/JP7196187B2/en
Priority to CN201880097188.2A priority patent/CN112714853B/en
Priority to PCT/JP2018/036524 priority patent/WO2020065999A1/en
Publication of WO2020065999A1 publication Critical patent/WO2020065999A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an outdoor unit of a refrigeration cycle device, a refrigeration cycle device, and an air conditioner.
  • WO 2016/135904 discloses a refrigeration system.
  • This refrigerating apparatus includes a heat source side unit and a use side unit (indoor unit) connected to the heat source side unit by a pipe.
  • the heat source side unit includes a compressor, a condenser, and a subcooler.
  • the use side unit includes an expansion valve and an evaporator.
  • the suitability of the amount of refrigerant charged in the refrigerant circuit is determined using the temperature efficiency of the subcooler.
  • the temperature efficiency is a value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the subcooler by the maximum temperature difference of the subcooler. According to this refrigeration apparatus, it is possible to detect a shortage of the refrigerant in the refrigerant circuit (see Patent Document 1).
  • the present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to provide an outdoor unit of a refrigeration cycle device capable of accurately detecting a shortage of refrigerant sealed in a refrigerant circuit, and a refrigeration cycle including the same. Device, as well as an air conditioner.
  • the outdoor unit of the present disclosure is an outdoor unit of a refrigeration cycle device, which is a compressor that compresses a refrigerant, a condenser that condenses a refrigerant output from the compressor, a bypass circuit, a control device, and a gas-liquid separator. And a mechanism.
  • the bypass circuit is branched from a pipe on the outlet side of the condenser, and is configured to return a part of the refrigerant flowing through the pipe to the compressor without passing through the indoor unit.
  • the bypass circuit includes a detection circuit for detecting a shortage of the refrigerant sealed in the refrigeration cycle device.
  • the detection circuit includes a flow rate adjusting unit configured to adjust a flow rate of the refrigerant flowing through the bypass circuit, and a heating unit configured to heat the refrigerant that has passed through the flow rate adjusting unit.
  • the control device determines that the refrigerant enclosed in the refrigeration cycle device is insufficient when the refrigerant that has passed through the heating unit has a degree of superheat.
  • the gas-liquid separation mechanism is configured to separate the gas refrigerant from the gas-liquid two-phase refrigerant and to flow to the bypass circuit when the gas-liquid two-phase refrigerant flows at the branch at a branch where the bypass circuit branches from the pipe. Is done.
  • the outdoor unit, the refrigeration cycle device, and the air conditioner of the present disclosure it is possible to accurately detect the shortage of the refrigerant sealed in the refrigerant circuit.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a ph diagram showing a relationship between the pressure of the refrigerant and the enthalpy in a normal state where the shortage of the refrigerant does not occur.
  • FIG. 4 is a ph diagram showing the state of the refrigerant when the refrigerant is insufficient.
  • 3 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 1.
  • FIG. 2 is a flowchart illustrating an example of a processing procedure of a refrigerant shortage determination executed by the control device illustrated in FIG. 1.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a ph diagram showing a relationship between the pressure of the refrigerant and the enthalpy in a normal state where the shortage of the refrig
  • FIG. 13 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 2.
  • FIG. 14 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 3.
  • FIG. 15 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to a fourth embodiment. It is a figure showing other composition of a gas-liquid separation mechanism. It is a figure showing composition of an outdoor unit in a modification.
  • 1 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit of the present disclosure is used.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. Note that FIG. 1 functionally illustrates the connection relationship and arrangement of each device in the refrigeration apparatus, and does not necessarily indicate the arrangement in a physical space.
  • refrigeration apparatus 1 includes outdoor unit 2 and indoor unit 3.
  • the outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, and pipes 80, 83, 85.
  • the outdoor unit 2 further includes pipes 86 and 87, a refrigerant shortage detection circuit 70, a pressure sensor 90, and a control device 100.
  • the indoor unit 3 includes an expansion valve 50, an evaporator 60, a fan 62, and a pipe 84.
  • the indoor unit 3 is connected to the outdoor unit 2 through pipes 83 and 85.
  • the pipe 80 connects the discharge port of the compressor 10 and the condenser 20.
  • the pipe 83 connects the condenser 20 and the expansion valve 50.
  • the pipe 84 connects the expansion valve 50 and the evaporator 60.
  • the pipe 85 connects the evaporator 60 and the suction port of the compressor 10.
  • the pipe 86 branches from a branch portion 88 of the pipe 83, and connects the pipe 83 and the refrigerant shortage detection circuit 70.
  • the pipe 87 connects the refrigerant shortage detection circuit 70 and the pipe 85.
  • the compressor 10 compresses the refrigerant sucked from the pipe 85 and outputs the compressed refrigerant to the pipe 80.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration apparatus 1 can be adjusted.
  • Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
  • the condenser 20 condenses the refrigerant output from the compressor 10 to the pipe 80 and outputs the refrigerant to the pipe 83.
  • the condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant output from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase.
  • the fan 22 supplies the outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high-pressure side pressure) on the outlet side of the compressor 10 can be adjusted.
  • the expansion valve 50 reduces the pressure of the refrigerant output from the condenser 20 to the pipe 83 and outputs the reduced pressure to the pipe 84.
  • the opening degree of the expansion valve 50 is changed in the closing direction, the refrigerant pressure on the exit side of the expansion valve 50 decreases, and the dryness of the refrigerant increases.
  • the opening of the expansion valve 50 is changed in the opening direction, the refrigerant pressure on the outlet side of the expansion valve 50 increases, and the dryness of the refrigerant decreases.
  • the evaporator 60 evaporates the refrigerant output from the expansion valve 50 to the pipe 84 and outputs the refrigerant to the pipe 85.
  • the evaporator 60 is configured such that the refrigerant decompressed by the expansion valve 50 performs heat exchange (heat absorption) with the air in the indoor unit 3.
  • the refrigerant evaporates by passing through the evaporator 60 to become superheated steam.
  • the fan 62 supplies to the evaporator 60 external air in which the refrigerant performs heat exchange in the evaporator 60.
  • the refrigerant shortage detection circuit 70 is provided between a pipe 86 branched from the pipe 83 and a pipe 87 connected to the pipe 85.
  • the pipe 86, the refrigerant shortage detection circuit 70, and the pipe 87 constitute a “bypass circuit” that returns a part of the refrigerant on the outlet side of the condenser 20 to the compressor 10 without passing through the indoor unit 3.
  • the refrigerant shortage detection circuit 70 includes a capillary tube 71, a heater 72, a temperature sensor 73, and an electromagnetic valve 74.
  • the capillary tube 71 is connected between the pipe 86 and the pipe 87, and adjusts the flow rate of the refrigerant flowing through the bypass circuit. As the refrigerant passes through the capillary tube 71, the pressure of the refrigerant decreases. Accordingly, when the liquid refrigerant is supplied from the pipe 86 (when the refrigerant amount is normal), the refrigerant that has passed through the capillary tube 71 is in a gas-liquid two-phase state with a low dryness.
  • the refrigerant that has passed through the capillary tube 71 is in a gas-liquid two-phase state with a high degree of dryness.
  • the heater 72 and the temperature sensor 73 are provided on the pipe 87.
  • the heater 72 heats the refrigerant that has passed through the capillary tube 71.
  • the enthalpy of the refrigerant is increased by being heated by the heater 72.
  • the heater 72 basically heats the refrigerant from outside the pipe 87, but may be installed inside the pipe 87 in order to more reliably transfer heat from the heater 72 to the refrigerant.
  • the temperature sensor 73 detects the temperature T of the refrigerant flowing through the pipe 87 downstream of the heating unit by the heater 72, and outputs the detected value to the control device 100.
  • the temperature sensor 73 is also installed outside the pipe 87, but may be installed inside the pipe 87 to more reliably detect the temperature of the refrigerant. The principle and method of refrigerant shortage detection by the refrigerant shortage detection circuit 70 will be described later in detail.
  • the electromagnetic valve 74 is provided in the pipe 86 upstream of the capillary tube 71 and opens and closes according to an instruction from the control device 100.
  • the solenoid valve 74 When the solenoid valve 74 is opened, the refrigerant flows through the bypass circuit, and the refrigerant shortage detection circuit 70 can detect the refrigerant shortage.
  • the solenoid valve 74 When the solenoid valve 74 is in the closed state, the flow of the refrigerant in the bypass circuit is shut off, so that the refrigerant shortage detection cannot be executed.
  • the solenoid valve 74 may be provided in a pipe 87 downstream of the capillary tube 71.
  • the pressure sensor 90 detects the refrigerant pressure (low pressure side pressure) LP on the suction side of the compressor 10 and outputs the detected value to the control device 100. Since the pipe 87 of the bypass circuit is connected to the pipe 85 on the suction side of the compressor 10, if there is no pressure loss at the connection between the pipe 87 and the pipe 85, the pressure sensor 90 detects the pressure inside the pipe 87 of the bypass circuit. Can be detected.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting and outputting various signals, and the like. It is comprised including.
  • the CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 controls each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the shortage of the refrigerant occurs when the initial charge amount of the refrigerant in the refrigerant circuit is insufficient or when the refrigerant leaks after the start of use.
  • FIG. 2 is a ph diagram showing the relationship between refrigerant pressure and enthalpy in a normal state where there is no shortage of refrigerant.
  • the refrigerant amount is referred to as “normal”.
  • the vertical axis represents pressure p
  • the horizontal axis represents specific enthalpy h (kJ / kg) (hereinafter, simply referred to as “enthalpy”).
  • a solid line S1 (hereinafter, referred to as "cycle 1") connecting points P11 to P14 indicates the state of the refrigerant when the refrigerant amount is normal.
  • cycle 1 point P14 ⁇ point P11 indicates compression of the refrigerant in the compressor 10 (isentropic change), and point P11 ⁇ point P12 indicates equal pressure cooling in the condenser 20.
  • a point P12 ⁇ point P13 indicates the pressure reduction in the expansion valve 50
  • a point P13 ⁇ point P14 indicates the equal pressure heating in the evaporator 60.
  • Points A1, B1, and C1 indicate states of the refrigerant at points A, B, and C on the bypass circuit shown in FIG. 1 when the refrigerant amount is normal.
  • a dotted line L11 connecting the point A1 and the point B1 indicates pressure reduction by the capillary tube 71 of the refrigerant shortage detection circuit 70.
  • a dotted line L12 connecting the point B1 and the point C1 indicates equal pressure heating by the heater 72 of the refrigerant shortage detection circuit 70. Since the outlet pipe 87 of the bypass circuit is connected to the outlet pipe 85 of the evaporator 60, the outlet pressure of the capillary tube 71 (the pressure at point B1) is equal to the pressure at the evaporator 60 (point P13). Pressure).
  • the refrigerant downstream of the heater 72 (point C1) is in a gas-liquid two-phase state, and the degree of superheat SH is zero.
  • FIG. 3 is a ph diagram showing the state of the refrigerant when the refrigerant is insufficient.
  • solid line S2 hereinafter, referred to as “cycle 2”
  • cycle 2 solid line S2 (hereinafter, referred to as “cycle 2”) connecting points P21 to P24 indicates the state of the refrigerant when the refrigerant amount is insufficient.
  • point P24 ⁇ point P21 indicates compression of the refrigerant in the compressor 10 (isentropic change)
  • point P21 ⁇ point P22 indicates equal pressure cooling in the condenser 20.
  • a point P22 ⁇ point P23 indicates pressure reduction in the expansion valve 50
  • a point P23 ⁇ point P24 indicates equal pressure heating in the evaporator 60.
  • a gas-liquid separation mechanism is provided at a branch portion 88 (FIG. 1) where the bypass circuit branches from the pipe 83 on the outlet side of the condenser 20, and there is insufficient refrigerant.
  • the gas refrigerant (gas-phase refrigerant) separated from the gas-liquid two-phase refrigerant output from the condenser 20 flows to the bypass circuit.
  • a gas refrigerant or a refrigerant having a very high degree of dryness flows into the bypass circuit (point A2).
  • the refrigerant on the outlet side (point B2) of the capillary tube 71 is also a gas refrigerant or a refrigerant having extremely high dryness. Therefore, the refrigerant downstream of the heater 72 (point C2) is heated by the heater 72 and surely becomes a gas refrigerant having a superheat degree SH (SH> 0).
  • the refrigerant that has passed through the heating unit of the heater 72 in the refrigerant shortage detection circuit 70 provided in the bypass circuit has a degree of superheat SH.
  • the outdoor unit 2 when the refrigerant is in a gas-liquid two-phase state at the outlet side of the condenser 20 due to a shortage of the refrigerant amount, the superheat degree SH is generated in the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70. Therefore, the shortage of the refrigerant can be immediately detected. Further, even in an operation state in which supercooling cannot be performed even when the refrigerant amount is normal, such as during an overload operation, a refrigerant shortage can be detected based on the degree of superheat SH.
  • the superheat degree SH of the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70 can be calculated from the detection value of the temperature sensor 73 and the detection value of the pressure sensor 90. That is, the detection value of the temperature sensor 73 indicates the temperature of the refrigerant heated by the heater 72. Further, the detection value of the pressure sensor 90 indicates the pressure of the refrigerant in the heating section by the heater 72. From the refrigerant pressure, the evaporation temperature of the refrigerant in the heating section (the saturation temperature of the refrigerant on the low pressure side in the refrigeration apparatus 1) can be calculated. Then, the superheat degree SH of the refrigerant heated by the heater 72 can be calculated by subtracting the evaporation temperature calculated from the detected value of the pressure sensor 90 from the detected value of the temperature sensor 73.
  • the refrigerant shortage is detected based on the degree of superheat SH of the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70. Specifically, if the superheat degree SH of the refrigerant passing through the heating unit is 0, the refrigerant amount is normal, and if the refrigerant passing through the heating unit has a superheat degree (SH> 0), the refrigerant shortage occurs. Is determined to have occurred.
  • the refrigerant heated by the heater 72 has the degree of superheat SH when the shortage of the refrigerant occurs.
  • the condensation of the refrigerant does not proceed in the condenser 20, and the refrigerant enters a gas-liquid two-phase state on the outlet side of the condenser 20.
  • the liquid refrigerant liquid-phase refrigerant
  • the refrigerant does not completely evaporate, and the refrigerant heated by the heater 72 may not have the degree of superheat SH. is there.
  • the bypass circuit is configured to branch upward from pipe 83 (gas and liquid). Separation mechanism).
  • the gas refrigerant can be separated from the gas-liquid two-phase refrigerant at the outlet side of the condenser 20 and flow to the bypass circuit. Since the gas refrigerant or the extremely dry refrigerant flows into the bypass circuit, when the refrigerant is heated by the heater 72, the superheat SH is definitely generated in the refrigerant. Thus, it is possible to suppress the erroneous detection that the refrigerant amount is normal due to the superheat degree SH not being generated in the refrigerant heated by the heater 72 despite the shortage of the refrigerant.
  • FIG. 4 is a diagram illustrating an example of a configuration of the gas-liquid separation mechanism according to the first embodiment.
  • the direction of arrow U indicates a vertically upward direction
  • the direction of arrow D indicates a vertically downward direction.
  • pipe 83 on the outlet side of condenser 20 is disposed at least in the vicinity of branch portion 88 where the bypass circuit (pipe 86) branches, and is arranged laterally with respect to the vertical direction.
  • the pipe 86 is connected to the pipe 83 so that the bypass circuit branches vertically upward from the pipe 83 at the branch portion 88.
  • a part of the liquid refrigerant may flow into the pipe 86 along with the gas refrigerant, but at least the dryness of the refrigerant flowing into the pipe 86 by such a gas-liquid separation mechanism. Can be made higher than the dryness of the refrigerant flowing through the pipe 83 upstream of the branch portion 88.
  • the inner diameter d of the pipe 86 be larger than the reference inner diameter d0.
  • the reference inner diameter d0 is the inner diameter d when the flow rate of the gas refrigerant flowing from the pipe 83 to the pipe 86 becomes zero penetration flow rate when the gas-liquid two-phase refrigerant flows through the pipe 83.
  • Zero penetration is a phenomenon in which when a gas-liquid two-phase refrigerant rises in a pipe and flows, the liquid refrigerant rises along the pipe wall with the gas refrigerant, and the zero penetration flow rate is It is the flow rate of the refrigerant when the refrigerant starts to rise on the tube wall.
  • the zero penetration flow rate can be calculated from the inner diameter of the pipe, the density of the gas refrigerant, and the density of the liquid refrigerant using a known method.
  • the liquid refrigerant cooled to a supercooled state flows through the pipe 83. Therefore, even if the gas-liquid separation mechanism as described above is provided, the liquid refrigerant Flows in. Therefore, even if the refrigerant is heated by the heater 72 in the refrigerant shortage detection circuit 70, the refrigerant does not entirely evaporate, and the refrigerant that has passed through the heating unit does not have a degree of superheat.
  • the pipe 86 constituting the bypass pipe is branched vertically upward from the pipe 83, but the branch direction of the pipe 86 does not necessarily have to be vertical.
  • the branching direction of the pipe 86 may be any direction as long as the liquid refrigerant having a large specific gravity can be prevented from flowing into the pipe 86 by gravity.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure for refrigerant shortage determination performed by the control device 100 illustrated in FIG. 1. A series of processes shown in this flowchart is repeatedly executed while the refrigeration apparatus 1 performs a steady operation.
  • control device 100 determines whether or not it is time to execute refrigerant shortage determination control (step S10).
  • the refrigerant shortage determination control is executed, for example, once a day.
  • control device 100 shifts the process to the return without executing the subsequent series of processes. Note that, without providing such a determination process in the flowchart, when it is time to execute the refrigerant shortage determination control, a series of processes from step S20 shown in the flowchart may be started.
  • control device 100 turns on (opens) solenoid valve 74 (step S20) and turns on heater 72. (Operation) (step S30).
  • control device 100 obtains a detected value of temperature T from temperature sensor 73.
  • the detection value of the pressure LP is obtained from the pressure sensor 90 (Step S50).
  • the control device 100 calculates the degree of superheat SH of the refrigerant that has passed through the heating unit, using the obtained detected values of the temperature T and the pressure LP (Step S60). Specifically, the relationship between the refrigerant pressure and the evaporation temperature (saturation temperature) is stored in advance in the ROM of the memory 104 as a map, a table, or the like, and the control device 100 uses the map or the like to Is calculated from the detected value of the pressure LP indicating the pressure of the refrigerant in the heating section. Then, control device 100 calculates the degree of superheat SH of the refrigerant heated by heater 72 by subtracting the calculated evaporation temperature from temperature T obtained in step S50.
  • the control device 100 determines whether the superheat degree SH is higher than a threshold value SHth (step S70).
  • This threshold value SHth is for determining whether or not the superheat degree SH has occurred in the refrigerant heated by the heater 72, and is appropriately set based on the calculation accuracy of the superheat degree SH.
  • control device 100 determines that the refrigerant amount is insufficient (step S80). An alarm indicating that a shortage of refrigerant has occurred is output (step S90). Thereafter, the control device 100 turns off (stops) the heater 72 (step S100) and turns off (closes) the solenoid valve 74 (step S110). Thereafter, control device 100 shifts the process to return, and the refrigerant shortage determination process ends.
  • control device 100 shifts the process to step S100 without executing steps S80 and S90. Then, the heater 72 is turned off (stopped) and the solenoid valve 74 is turned off (closed). That is, in this case, it is determined that the refrigerant amount is normal.
  • the first embodiment it is determined whether a refrigerant shortage has occurred based on the degree of superheat SH of the refrigerant heated by the heater 72 of the refrigerant shortage detection circuit 70.
  • the above-described degree of superheat SH is generated, so that the shortage of the refrigerant can be immediately detected.
  • a refrigerant shortage can be detected based on the degree of superheat SH.
  • the bypass circuit (the pipe 86) is configured to branch upward from the pipe 83. Accordingly, when a shortage of the refrigerant occurs, the gas refrigerant can be separated from the refrigerant in the gas-liquid two-phase at the outlet side of the condenser 20 and flow to the bypass circuit. Since the gas refrigerant or the extremely dry refrigerant flows into the bypass circuit, the refrigerant heated by the heater 72 surely generates the superheat degree SH. Accordingly, it is possible to suppress the erroneous detection that the refrigerant amount is normal due to the absence of the above-described degree of superheat SH despite the shortage of the refrigerant.
  • Embodiment 2 FIG.
  • the second embodiment differs from the first embodiment in the configuration of the gas-liquid separation mechanism.
  • FIG. 6 is a diagram showing an example of the configuration of the gas-liquid separation mechanism according to the second embodiment.
  • the direction of arrow U indicates a vertically upward direction
  • the direction of arrow D indicates a vertically downward direction.
  • piping 83 on the outlet side of condenser 20 includes a first portion 110 and a second portion 112.
  • the first portion 110 is disposed laterally with respect to the vertical direction.
  • the second portion 112 is provided downstream of the first portion 110 and is disposed to extend vertically downward from the branch portion 88 in a direction opposite to the pipe 86.
  • the inner diameter d of the pipe 86 be larger than the reference inner diameter d0. Accordingly, the flow rate of the gas refrigerant flowing into the pipe 86 can be made lower than the zero penetration flow rate, so that the flow of the liquid refrigerant from the pipe 83 to the pipe 86 when the shortage of the refrigerant occurs is suppressed. Can be.
  • the liquid refrigerant cooled to the supercooled state flows through the pipe 83, and thus the gas-liquid separation mechanism as described above is provided. Also, the liquid refrigerant flows into the bypass circuit. Therefore, even if the refrigerant is heated by the heater 72 in the refrigerant shortage detection circuit 70, the refrigerant does not completely evaporate, and the refrigerant that has passed through the heating unit does not have a degree of superheat.
  • the configuration of the outdoor unit 2 according to the second embodiment and the refrigerating apparatus 1 using the same are the same as the configuration shown in FIG. 1 except for the configuration of the gas-liquid separation mechanism described above.
  • the gas refrigerant when a shortage of refrigerant occurs, the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant flowing through the pipe 83 and flown to the bypass circuit. . As a result, it is possible to more stably detect the refrigerant shortage without erroneous detection.
  • the configuration of the gas-liquid separation mechanism in the second embodiment further includes a configuration in which a swirling flow is generated in the branch portion 88 in the refrigerant flowing through the pipe 83.
  • FIG. 7 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to the third embodiment.
  • FIG. 7 is a diagram when the branch portion 88 where the pipe 86 branches from the pipe 83 is viewed from vertically above.
  • the configuration of the gas-liquid separation mechanism when the branch portion 88 is viewed from the side is the same as that of the gas-liquid separation mechanism according to the second embodiment shown in FIG.
  • center line O1 of first portion 110 of pipe 83 and center line O2 of second portion 112 are offset. have. Therefore, when the refrigerant flows from the first portion 110 to the second portion 112 in the pipe 83, a swirling flow is generated around the center line O2.
  • the liquid refrigerant having a high specific gravity is centrifugally moved to the second portion 112.
  • the gas refrigerant flows along the inner wall and gathers at the center of the pipe.
  • the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant using the centrifugal separation by the swirling flow, and the separated gas refrigerant can flow into the pipe 86.
  • the gas refrigerant when a shortage of the refrigerant occurs, the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant flowing through the pipe 83 and flown to the bypass circuit. As a result, it is possible to more stably detect the shortage of the refrigerant without erroneous detection.
  • Embodiment 4 According to the gas-liquid separation mechanism described in each of the above embodiments, a part of the liquid refrigerant may become droplets and flow into the bypass circuit together with the gas refrigerant. Therefore, in the fourth embodiment, the pipe 86 is provided with a mesh-like member that captures droplets flowing into the bypass circuit together with the gas refrigerant from the branch portion 88.
  • FIG. 8 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to the fourth embodiment.
  • the gas-liquid separation mechanism further includes a mesh member 120 in the configuration of the first embodiment shown in FIG.
  • the mesh member 120 is provided on the pipe 86 of the bypass circuit, and is provided at a rising portion of the pipe 86 from the branch portion 88.
  • the mesh member 120 unexpectedly flies from the branch 88 while passing the gas refrigerant separated at the branch 88 through the mesh. Capture incoming droplets.
  • the mesh member 120 cannot capture all the droplets flying from the branch portion 88, but can capture at least a part of the droplets.
  • the trapped droplets fall into the branch portion 88 as a lump as the trapped amount increases.
  • the mesh member 120 when the gas-liquid two-phase refrigerant flows through the pipe 83 due to the shortage of the refrigerant, the liquid refrigerant (droplets) is supplied to the refrigerant shortage detection circuit 70. It is possible to avoid that the refrigerant that flows in and is heated by the heater 72 does not generate the degree of superheat SH.
  • the mesh member 120 is further provided in the configuration of the first embodiment shown in FIG. 4, but as shown in FIG. 9, the second embodiment or the second embodiment shown in FIG. A mesh member 120 may be further provided in the configuration of the third embodiment.
  • the temperature sensor 73 is provided downstream of the heater 72, and the superheat degree is calculated from the temperature T detected by the temperature sensor 73 and the evaporation temperature calculated from the pressure LP detected by the pressure sensor 90.
  • the SH is calculated, a temperature sensor for detecting the evaporation temperature (low pressure saturation temperature) is further provided between the capillary tube 71 and the heater 72, and the detected value of the temperature sensor is different from the detected value of the temperature sensor 73.
  • the degree of superheat SH may be measured by subtraction.
  • a refrigeration apparatus is generally provided with a pressure sensor for detecting the pressure on the suction side of the compressor.
  • a pressure sensor 90 for detecting the pressure on the suction side of the compressor.
  • an existing pressure sensor 90 can be used without separately providing a temperature sensor between the capillary tube 71 and the heater 72. Refrigerant shortage detection can be performed.
  • the bypass circuit is branched from the pipe 83 on the outlet side of the condenser 20, but as shown in FIG.
  • a bypass circuit may be branched from a pipe 82 between the liquid reservoir 30 and the heat exchanger 40.
  • such a liquid reservoir and a heat exchanger are often provided in a refrigerator. If the refrigerant amount is normal, the liquid refrigerant is stored in the liquid reservoir 30, and the liquid refrigerant flows through the pipe 82 and the pipe 86 of the bypass circuit. On the other hand, when a shortage of the refrigerant occurs, the liquid refrigerant is not stored in the liquid reservoir 30, so that a gas-liquid two-phase or gas-phase single-phase refrigerant flows through the pipe 86 of the bypass circuit. Therefore, even with such a configuration, the refrigerant shortage can be detected by the refrigerant shortage detection circuit 70 provided in the bypass circuit.
  • the outdoor unit and the refrigeration apparatus mainly used for a warehouse, a showcase, and the like have been representatively described.
  • the outdoor unit according to the present disclosure may be configured as shown in FIG.
  • the present invention is applicable to an air conditioner 200 using a refrigeration cycle.
  • Refrigerator 2 outdoor unit, 3 indoor unit, 10 compressor, 20 condenser, 22, 42, 62 fan, 30 reservoir, 40 heat exchanger, 50 expansion valve, 60 evaporator, 70 refrigerant shortage detection circuit , 71 capillary tube, 72 heater, 73 temperature sensor, 74 solenoid valve, 80-87 pipe, 88 branch, 90 pressure sensor, 100 control device, 102 CPU, 104 memory, 110 first part, 112 second part, 120 Mesh member, 200 ° air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A bypass circuit is branched from piping (83) and is configured to return a part of a refrigerant flowing through the piping (83), to a compressor (10) without causing the part of the refrigerant to flow through an indoor unit (3). The bypass circuit includes a refrigerant shortage detection circuit (70). The refrigerant shortage detection circuit (70) includes a capillary tube (71) and a heater (72). When a refrigerant having flowed through the heating section of the heater (72) is in a superheated state, a control section (100) determines that there is a shortage of the refrigerant. A gas-liquid separation mechanism is configured so that, when a gas-liquid two-phase refrigerant flows through the piping (83), the gas-liquid separation mechanism separates the gas refrigerant from the gas-liquid two-phase refrigerant at a branch section (88), where the bypass circuit branches from the piping (83), and causes the separated gas refrigerant to flow to the bypass circuit.

Description

冷凍サイクル装置の室外機、冷凍サイクル装置、及び空気調和装置Outdoor unit of refrigeration cycle device, refrigeration cycle device, and air conditioner
 本開示は、冷凍サイクル装置の室外機、冷凍サイクル装置、及び空気調和装置に関する。 The present disclosure relates to an outdoor unit of a refrigeration cycle device, a refrigeration cycle device, and an air conditioner.
 国際公開第2016/135904号パンフレットは、冷凍装置を開示する。この冷凍装置は、熱源側ユニットと、熱源側ユニットに配管で接続される利用側ユニット(室内ユニット)とを備える。熱源側ユニットは、圧縮機と、凝縮器と、過冷却器とを含む。利用側ユニットは、膨張弁と、蒸発器とを含む。この冷凍装置においては、過冷却器の温度効率を用いて、冷媒回路に充填された冷媒量の適否が判定される。温度効率は、過冷却器の出口における冷媒の過冷却度を過冷却器の最大温度差で除算した値である。この冷凍装置によれば、冷媒回路における冷媒不足を検知することができる(特許文献1参照)。 WO 2016/135904 discloses a refrigeration system. This refrigerating apparatus includes a heat source side unit and a use side unit (indoor unit) connected to the heat source side unit by a pipe. The heat source side unit includes a compressor, a condenser, and a subcooler. The use side unit includes an expansion valve and an evaporator. In this refrigeration apparatus, the suitability of the amount of refrigerant charged in the refrigerant circuit is determined using the temperature efficiency of the subcooler. The temperature efficiency is a value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the subcooler by the maximum temperature difference of the subcooler. According to this refrigeration apparatus, it is possible to detect a shortage of the refrigerant in the refrigerant circuit (see Patent Document 1).
国際公開第2016/135904号パンフレットWO 2016/135904 pamphlet
 特許文献1に記載の冷凍装置では、冷媒の減少量がある程度大きくならないと、冷媒不足の状況が過冷却度或いは温度効率に顕著に表れないため、冷媒不足を精度良く検知できない可能性がある。また、過負荷運転中など、冷媒量が正常であっても過冷却をとることができない運転状態においては、上記の冷凍装置では、過冷却度の低下に基づく冷媒量の減少を精度良く検知できず、検知精度が低下する可能性がある。 冷凍 In the refrigeration apparatus described in Patent Document 1, unless the amount of decrease in the refrigerant becomes large to some extent, the state of the refrigerant shortage does not remarkably appear in the degree of supercooling or the temperature efficiency, so that the refrigerant shortage may not be accurately detected. Further, in an operation state in which supercooling cannot be performed even when the refrigerant amount is normal, such as during overload operation, the above-described refrigeration apparatus can accurately detect a decrease in the refrigerant amount based on a decrease in the degree of subcooling. Detection accuracy may be reduced.
 本開示は、かかる問題を解決するためになされたものであり、本開示の目的は、冷媒回路に封入された冷媒の不足を精度良く検知可能な冷凍サイクル装置の室外機及びそれを備える冷凍サイクル装置、並びに空気調和装置を提供することである。 The present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to provide an outdoor unit of a refrigeration cycle device capable of accurately detecting a shortage of refrigerant sealed in a refrigerant circuit, and a refrigeration cycle including the same. Device, as well as an air conditioner.
 本開示の室外機は、冷凍サイクル装置の室外機であって、冷媒を圧縮する圧縮機と、圧縮機から出力される冷媒を凝縮する凝縮器と、バイパス回路と、制御装置と、気液分離機構とを備える。バイパス回路は、凝縮器の出側の配管から分岐され、当該配管を流れる冷媒の一部を、室内機を通過することなく圧縮機へ戻すように構成される。バイパス回路は、冷凍サイクル装置に封入された冷媒の不足を検知するための検知回路を含む。検知回路は、バイパス回路に流れる冷媒の流量を調整するように構成された流量調整部と、流量調整部を通過した冷媒を加熱するように構成された加熱部とを含む。制御装置は、加熱部を通過した冷媒に過熱度が生じている場合に、冷凍サイクル装置に封入された冷媒が不足しているものと判定する。気液分離機構は、上記配管からバイパス回路が分岐する分岐部において、上記配管に気液二相冷媒が流れる場合に、気液二相冷媒からガス冷媒を分離してバイパス回路へ流すように構成される。 The outdoor unit of the present disclosure is an outdoor unit of a refrigeration cycle device, which is a compressor that compresses a refrigerant, a condenser that condenses a refrigerant output from the compressor, a bypass circuit, a control device, and a gas-liquid separator. And a mechanism. The bypass circuit is branched from a pipe on the outlet side of the condenser, and is configured to return a part of the refrigerant flowing through the pipe to the compressor without passing through the indoor unit. The bypass circuit includes a detection circuit for detecting a shortage of the refrigerant sealed in the refrigeration cycle device. The detection circuit includes a flow rate adjusting unit configured to adjust a flow rate of the refrigerant flowing through the bypass circuit, and a heating unit configured to heat the refrigerant that has passed through the flow rate adjusting unit. The control device determines that the refrigerant enclosed in the refrigeration cycle device is insufficient when the refrigerant that has passed through the heating unit has a degree of superheat. The gas-liquid separation mechanism is configured to separate the gas refrigerant from the gas-liquid two-phase refrigerant and to flow to the bypass circuit when the gas-liquid two-phase refrigerant flows at the branch at a branch where the bypass circuit branches from the pipe. Is done.
 この室外機においては、冷媒不足が生じていなければ、加熱部を流れる冷媒は気液二相状態になるため、加熱部を通過した冷媒に過熱度は生じにくい。一方、冷媒不足が生じている場合には、加熱部を流れる冷媒は蒸発してガス冷媒(ガス単相状態)になるため、加熱部を通過した冷媒に過熱度が生じる。そこで、この室外機では、加熱部を通過した冷媒に過熱度が生じている場合に、冷媒が不足しているものと判定される。 な け れ ば In this outdoor unit, if the refrigerant is not short, the refrigerant flowing through the heating unit is in a gas-liquid two-phase state, so that the refrigerant passing through the heating unit is unlikely to have a degree of superheat. On the other hand, when the shortage of the refrigerant occurs, the refrigerant flowing through the heating unit evaporates and becomes a gas refrigerant (single-phase gas), and the refrigerant that has passed through the heating unit has a degree of superheat. Therefore, in this outdoor unit, when the degree of superheat is generated in the refrigerant that has passed through the heating unit, it is determined that the refrigerant is insufficient.
 冷媒不足が生じると、凝縮器において冷媒の凝縮が進まず、凝縮器の出側において冷媒が気液二相状態となる。この場合に、バイパス回路に液冷媒が流入すると、冷媒が加熱部を通過しても全て蒸発せず、加熱部を通過した冷媒に過熱度が生じない可能性がある。そこで、この室外機においては、バイパス回路が分岐する分岐部に気液分離機構が設けられ、冷媒不足が生じている場合に、気液二相冷媒から分離されたガス冷媒がバイパス回路へ流される。これにより、冷媒不足が生じている場合、バイパス回路には、ガス冷媒か、極めて乾き度の高い冷媒が流入するので、加熱部を通過した冷媒に確実に過熱度を生じさせることができる。したがって、この室外機によれば、冷媒不足が生じているにも拘わらず冷媒不足は生じていないと誤検知してしまうのを抑制することができる。 (4) When a shortage of the refrigerant occurs, the refrigerant does not condense in the condenser, and the refrigerant enters a gas-liquid two-phase state on the outlet side of the condenser. In this case, when the liquid refrigerant flows into the bypass circuit, even if the refrigerant passes through the heating unit, the refrigerant does not completely evaporate, and the refrigerant that has passed through the heating unit may not have a degree of superheat. Therefore, in this outdoor unit, a gas-liquid separation mechanism is provided at a branch portion where the bypass circuit branches, and when refrigerant shortage occurs, gas refrigerant separated from the gas-liquid two-phase refrigerant flows to the bypass circuit. . Accordingly, when a shortage of the refrigerant occurs, a gas refrigerant or a refrigerant having an extremely high degree of dryness flows into the bypass circuit, so that the degree of superheat can be reliably generated in the refrigerant that has passed through the heating unit. Therefore, according to this outdoor unit, it is possible to suppress erroneous detection that the shortage of the refrigerant has not occurred even though the shortage of the refrigerant has occurred.
 なお、冷媒不足が生じていない場合には、凝縮器の出側は液冷媒となり、バイパス回路には液冷媒が流入するので、加熱部を通過した冷媒が全て蒸発することにより過熱度が生じる可能性は低い。 In addition, when the refrigerant shortage does not occur, the outlet side of the condenser becomes the liquid refrigerant, and the liquid refrigerant flows into the bypass circuit, so that all the refrigerant passing through the heating unit evaporates, which may cause a degree of superheat. Sex is low.
 本開示の室外機、冷凍サイクル装置、及び空気調和装置によれば、冷媒回路に封入された冷媒の不足を精度良く検知することができる。 According to the outdoor unit, the refrigeration cycle device, and the air conditioner of the present disclosure, it is possible to accurately detect the shortage of the refrigerant sealed in the refrigerant circuit.
本開示の実施の形態1に従う室外機が用いられる冷凍装置の全体構成図である。1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. 冷媒不足が発生していない正常時における、冷媒の圧力とエンタルピとの関係を示すp-h線図である。FIG. 7 is a ph diagram showing a relationship between the pressure of the refrigerant and the enthalpy in a normal state where the shortage of the refrigerant does not occur. 冷媒不足時の冷媒の状態を示すp-h線図である。FIG. 4 is a ph diagram showing the state of the refrigerant when the refrigerant is insufficient. 実施の形態1における気液分離機構の構成の一例を示す図である。3 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 1. FIG. 図1に示す制御装置により実行される冷媒不足判定の処理手順の一例を示すフローチャートである。2 is a flowchart illustrating an example of a processing procedure of a refrigerant shortage determination executed by the control device illustrated in FIG. 1. 実施の形態2における気液分離機構の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 2. 実施の形態3における気液分離機構の構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to Embodiment 3. 実施の形態4における気液分離機構の構成の一例を示す図である。FIG. 15 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to a fourth embodiment. 気液分離機構の他の構成を示す図である。It is a figure showing other composition of a gas-liquid separation mechanism. 変形例における室外機の構成を示す図である。It is a figure showing composition of an outdoor unit in a modification. 本開示の室外機が用いられる冷凍サイクルを備える空気調和装置の全体構成図である。1 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit of the present disclosure is used.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
 実施の形態1.
 図1は、本開示の実施の形態1に従う室外機が用いられる冷凍装置の全体構成図である。なお、この図1は、冷凍装置における各機器の接続関係及び配置構成を機能的に示したものであり、物理的な空間における配置を必ずしも示すものではない。
Embodiment 1 FIG.
FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. Note that FIG. 1 functionally illustrates the connection relationship and arrangement of each device in the refrigeration apparatus, and does not necessarily indicate the arrangement in a physical space.
 図1を参照して、冷凍装置1は、室外機2と、室内機3とを備える。室外機2は、圧縮機10と、凝縮器20と、ファン22と、配管80,83,85とを含む。また、室外機2は、配管86,87と、冷媒不足検知回路70と、圧力センサ90と、制御装置100とをさらに含む。室内機3は、膨張弁50と、蒸発器60と、ファン62と、配管84とを含む。室内機3は、配管83,85を通じて室外機2に接続されている。 冷凍 Referring to FIG. 1, refrigeration apparatus 1 includes outdoor unit 2 and indoor unit 3. The outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, and pipes 80, 83, 85. The outdoor unit 2 further includes pipes 86 and 87, a refrigerant shortage detection circuit 70, a pressure sensor 90, and a control device 100. The indoor unit 3 includes an expansion valve 50, an evaporator 60, a fan 62, and a pipe 84. The indoor unit 3 is connected to the outdoor unit 2 through pipes 83 and 85.
 配管80は、圧縮機10の吐出ポートと凝縮器20とを接続する。配管83は、凝縮器20と膨張弁50とを接続する。配管84は、膨張弁50と蒸発器60とを接続する。配管85は、蒸発器60と圧縮機10の吸入ポートとを接続する。配管86は、配管83の分岐部88から分岐し、配管83と冷媒不足検知回路70とを接続する。配管87は、冷媒不足検知回路70と配管85とを接続する。 The pipe 80 connects the discharge port of the compressor 10 and the condenser 20. The pipe 83 connects the condenser 20 and the expansion valve 50. The pipe 84 connects the expansion valve 50 and the evaporator 60. The pipe 85 connects the evaporator 60 and the suction port of the compressor 10. The pipe 86 branches from a branch portion 88 of the pipe 83, and connects the pipe 83 and the refrigerant shortage detection circuit 70. The pipe 87 connects the refrigerant shortage detection circuit 70 and the pipe 85.
 圧縮機10は、配管85から吸入される冷媒を圧縮して配管80へ出力する。圧縮機10は、制御装置100からの制御信号に従って回転数を調整するように構成される。圧縮機10の回転数を調整することで冷媒の循環量が調整され、冷凍装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 compresses the refrigerant sucked from the pipe 85 and outputs the compressed refrigerant to the pipe 80. The compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration apparatus 1 can be adjusted. Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
 凝縮器20は、圧縮機10から配管80に出力された冷媒を凝縮して配管83へ出力する。凝縮器20は、圧縮機10から出力された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転数を調整することにより、圧縮機10出側の冷媒圧力(高圧側圧力)を調整することができる。 The condenser 20 condenses the refrigerant output from the compressor 10 to the pipe 80 and outputs the refrigerant to the pipe 83. The condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant output from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase. The fan 22 supplies the outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high-pressure side pressure) on the outlet side of the compressor 10 can be adjusted.
 膨張弁50は、凝縮器20から配管83へ出力された冷媒を減圧して配管84へ出力する。膨張弁50の開度を閉方向に変化させると、膨張弁50出側の冷媒圧力は低下し、冷媒の乾き度は上昇する。膨張弁50の開度を開方向に変化させると、膨張弁50出側の冷媒圧力は上昇し、冷媒の乾き度は低下する。 (4) The expansion valve 50 reduces the pressure of the refrigerant output from the condenser 20 to the pipe 83 and outputs the reduced pressure to the pipe 84. When the opening degree of the expansion valve 50 is changed in the closing direction, the refrigerant pressure on the exit side of the expansion valve 50 decreases, and the dryness of the refrigerant increases. When the opening of the expansion valve 50 is changed in the opening direction, the refrigerant pressure on the outlet side of the expansion valve 50 increases, and the dryness of the refrigerant decreases.
 蒸発器60は、膨張弁50から配管84へ出力された冷媒を蒸発させて配管85へ出力する。蒸発器60は、膨張弁50により減圧された冷媒が室内機3内の空気と熱交換(吸熱)を行なうように構成される。冷媒は、蒸発器60を通過することにより蒸発して過熱蒸気となる。ファン62は、蒸発器60において冷媒が熱交換を行なう外気を蒸発器60に供給する。 The evaporator 60 evaporates the refrigerant output from the expansion valve 50 to the pipe 84 and outputs the refrigerant to the pipe 85. The evaporator 60 is configured such that the refrigerant decompressed by the expansion valve 50 performs heat exchange (heat absorption) with the air in the indoor unit 3. The refrigerant evaporates by passing through the evaporator 60 to become superheated steam. The fan 62 supplies to the evaporator 60 external air in which the refrigerant performs heat exchange in the evaporator 60.
 冷媒不足検知回路70は、配管83から分岐する配管86と、配管85に接続される配管87との間に設けられる。配管86、冷媒不足検知回路70、及び配管87は、凝縮器20の出側の冷媒の一部を、室内機3を通過することなく圧縮機10へ戻す「バイパス回路」を構成する。 The refrigerant shortage detection circuit 70 is provided between a pipe 86 branched from the pipe 83 and a pipe 87 connected to the pipe 85. The pipe 86, the refrigerant shortage detection circuit 70, and the pipe 87 constitute a “bypass circuit” that returns a part of the refrigerant on the outlet side of the condenser 20 to the compressor 10 without passing through the indoor unit 3.
 冷媒不足検知回路70は、キャピラリチューブ71と、ヒータ72と、温度センサ73と、電磁弁74とを含む。キャピラリチューブ71は、配管86と配管87との間に接続され、バイパス回路に流れる冷媒の流量を調整する。冷媒がキャピラリチューブ71を通過することによって冷媒の圧力は低下する。これにより、配管86から液冷媒が供給される場合は(冷媒量正常時)、キャピラリチューブ71を通過した冷媒は、乾き度の低い気液二相状態となる。一方、配管86から気液二相の冷媒が供給される場合は(冷媒不足時)、キャピラリチューブ71を通過した冷媒は、乾き度の高い気液二相状態となる。 The refrigerant shortage detection circuit 70 includes a capillary tube 71, a heater 72, a temperature sensor 73, and an electromagnetic valve 74. The capillary tube 71 is connected between the pipe 86 and the pipe 87, and adjusts the flow rate of the refrigerant flowing through the bypass circuit. As the refrigerant passes through the capillary tube 71, the pressure of the refrigerant decreases. Accordingly, when the liquid refrigerant is supplied from the pipe 86 (when the refrigerant amount is normal), the refrigerant that has passed through the capillary tube 71 is in a gas-liquid two-phase state with a low dryness. On the other hand, when the gas-liquid two-phase refrigerant is supplied from the pipe 86 (when the refrigerant is insufficient), the refrigerant that has passed through the capillary tube 71 is in a gas-liquid two-phase state with a high degree of dryness.
 ヒータ72及び温度センサ73は、配管87に設けられる。ヒータ72は、キャピラリチューブ71を通過した冷媒を加熱する。冷媒は、ヒータ72によって加熱されることによりエンタルピが上昇する。ヒータ72は、基本的には、配管87の外部から冷媒を加熱するものとするが、ヒータ72から冷媒への伝熱をより確実にするために配管87の内部に設置されてもよい。 The heater 72 and the temperature sensor 73 are provided on the pipe 87. The heater 72 heats the refrigerant that has passed through the capillary tube 71. The enthalpy of the refrigerant is increased by being heated by the heater 72. The heater 72 basically heats the refrigerant from outside the pipe 87, but may be installed inside the pipe 87 in order to more reliably transfer heat from the heater 72 to the refrigerant.
 温度センサ73は、ヒータ72による加熱部の下流において配管87を流れる冷媒の温度Tを検出し、その検出値を制御装置100へ出力する。温度センサ73も、配管87の外部に設置されるものとするが、冷媒の温度をより確実に検出するために配管87の内部に設置されてもよい。冷媒不足検知回路70による冷媒不足検知の原理及び方法については、後ほど詳しく説明する。 (4) The temperature sensor 73 detects the temperature T of the refrigerant flowing through the pipe 87 downstream of the heating unit by the heater 72, and outputs the detected value to the control device 100. The temperature sensor 73 is also installed outside the pipe 87, but may be installed inside the pipe 87 to more reliably detect the temperature of the refrigerant. The principle and method of refrigerant shortage detection by the refrigerant shortage detection circuit 70 will be described later in detail.
 電磁弁74は、キャピラリチューブ71の上流の配管86に設けられ、制御装置100からの指示に従って開閉する。電磁弁74が開状態になると、バイパス回路に冷媒が流れ、冷媒不足検知回路70による冷媒不足が検知可能になる。電磁弁74が閉状態のときは、バイパス回路における冷媒の流れが遮断されるので、冷媒不足検知は実行不可となる。なお、電磁弁74は、キャピラリチューブ71の下流の配管87に設けてもよい。 The electromagnetic valve 74 is provided in the pipe 86 upstream of the capillary tube 71 and opens and closes according to an instruction from the control device 100. When the solenoid valve 74 is opened, the refrigerant flows through the bypass circuit, and the refrigerant shortage detection circuit 70 can detect the refrigerant shortage. When the solenoid valve 74 is in the closed state, the flow of the refrigerant in the bypass circuit is shut off, so that the refrigerant shortage detection cannot be executed. Note that the solenoid valve 74 may be provided in a pipe 87 downstream of the capillary tube 71.
 圧力センサ90は、圧縮機10の吸入側の冷媒圧力(低圧側圧力)LPを検出し、その検出値を制御装置100へ出力する。バイパス回路の配管87は、圧縮機10の吸入側の配管85に接続されているので、配管87と配管85との接続部において圧損がないとすれば、圧力センサ90によってバイパス回路の配管87内の冷媒の圧力を検出することができる。 The pressure sensor 90 detects the refrigerant pressure (low pressure side pressure) LP on the suction side of the compressor 10 and outputs the detected value to the control device 100. Since the pipe 87 of the bypass circuit is connected to the pipe 85 on the suction side of the compressor 10, if there is no pressure loss at the connection between the pipe 87 and the pipe 85, the pressure sensor 90 detects the pressure inside the pipe 87 of the bypass circuit. Can be detected.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)及びRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外機2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting and outputting various signals, and the like. It is comprised including. The CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 controls each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 <冷媒不足検知の説明>
 以下、冷媒不足検知回路70を用いた冷媒不足の検知方法について説明する。なお、冷媒不足は、冷媒回路への冷媒の初期充填量が不足していたり、使用開始後に冷媒漏れが生じた場合等に発生する。
<Explanation of refrigerant shortage detection>
Hereinafter, a method of detecting a refrigerant shortage using the refrigerant shortage detection circuit 70 will be described. The shortage of the refrigerant occurs when the initial charge amount of the refrigerant in the refrigerant circuit is insufficient or when the refrigerant leaks after the start of use.
 図2は、冷媒不足が発生していない正常時における、冷媒の圧力とエンタルピとの関係を示すp-h線図である。なお、以下では、冷媒不足が発生しておらず、冷媒量が適正な範囲内であるときを、冷媒量が「正常」であると称する。図2を参照して、縦軸は圧力pを示し、横軸は比エンタルピh(kJ/kg)(以下、単に「エンタルピ」と称する。)を示す。 FIG. 2 is a ph diagram showing the relationship between refrigerant pressure and enthalpy in a normal state where there is no shortage of refrigerant. Hereinafter, when the shortage of the refrigerant has not occurred and the refrigerant amount is within an appropriate range, the refrigerant amount is referred to as “normal”. Referring to FIG. 2, the vertical axis represents pressure p, and the horizontal axis represents specific enthalpy h (kJ / kg) (hereinafter, simply referred to as “enthalpy”).
 点P11~P14を結ぶ実線S1(以下「サイクル1」と称する。)は、冷媒量が正常である場合の冷媒の状態を示す。サイクル1において、点P14→点P11は、圧縮機10における冷媒の圧縮を示し(等エントロピ変化)、点P11→点P12は、凝縮器20における等圧冷却を示す。また、点P12→点P13は、膨張弁50における減圧を示し、点P13→点P14は、蒸発器60における等圧加熱を示す。 A solid line S1 (hereinafter, referred to as "cycle 1") connecting points P11 to P14 indicates the state of the refrigerant when the refrigerant amount is normal. In cycle 1, point P14 → point P11 indicates compression of the refrigerant in the compressor 10 (isentropic change), and point P11 → point P12 indicates equal pressure cooling in the condenser 20. Further, a point P12 → point P13 indicates the pressure reduction in the expansion valve 50, and a point P13 → point P14 indicates the equal pressure heating in the evaporator 60.
 点A1,B1,C1は、冷媒量が正常である場合に、図1に示したバイパス回路上の点A,B,Cにおける冷媒の状態をそれぞれ示す。点A1と点B1とを結ぶ点線L11は、冷媒不足検知回路70のキャピラリチューブ71による減圧を示す。点B1と点C1とを結ぶ点線L12は、冷媒不足検知回路70のヒータ72による等圧加熱を示す。バイパス回路の出側の配管87は、蒸発器60の出側の配管85に接続されているので、キャピラリチューブ71の出側の圧力(点B1の圧力)は、蒸発器60における圧力(点P13の圧力)と同じになる。ヒータ72の下流(点C1)における冷媒は、気液二相状態であり、過熱度SHは0である。 Points A1, B1, and C1 indicate states of the refrigerant at points A, B, and C on the bypass circuit shown in FIG. 1 when the refrigerant amount is normal. A dotted line L11 connecting the point A1 and the point B1 indicates pressure reduction by the capillary tube 71 of the refrigerant shortage detection circuit 70. A dotted line L12 connecting the point B1 and the point C1 indicates equal pressure heating by the heater 72 of the refrigerant shortage detection circuit 70. Since the outlet pipe 87 of the bypass circuit is connected to the outlet pipe 85 of the evaporator 60, the outlet pressure of the capillary tube 71 (the pressure at point B1) is equal to the pressure at the evaporator 60 (point P13). Pressure). The refrigerant downstream of the heater 72 (point C1) is in a gas-liquid two-phase state, and the degree of superheat SH is zero.
 図3は、冷媒不足時の冷媒の状態を示すp-h線図である。図3を参照して、点P21~P24を結ぶ実線S2(以下「サイクル2」と称する。)は、冷媒量が不足している場合の冷媒の状態を示す。サイクル2において、点P24→点P21は、圧縮機10における冷媒の圧縮を示し(等エントロピ変化)、点P21→点P22は、凝縮器20における等圧冷却を示す。また、点P22→点P23は、膨張弁50における減圧を示し、点P23→点P24は、蒸発器60における等圧加熱を示す。 FIG. 3 is a ph diagram showing the state of the refrigerant when the refrigerant is insufficient. Referring to FIG. 3, solid line S2 (hereinafter, referred to as “cycle 2”) connecting points P21 to P24 indicates the state of the refrigerant when the refrigerant amount is insufficient. In cycle 2, point P24 → point P21 indicates compression of the refrigerant in the compressor 10 (isentropic change), and point P21 → point P22 indicates equal pressure cooling in the condenser 20. In addition, a point P22 → point P23 indicates pressure reduction in the expansion valve 50, and a point P23 → point P24 indicates equal pressure heating in the evaporator 60.
 図示されるように、冷媒量が不足した状態で冷凍装置1が運転されると、凝縮器20において冷媒の凝縮が進まず、冷媒の過冷却度が減少し、凝縮器20の出側において冷媒が気液二相状態となる(点p22)。点A2,B2,C2は、冷媒量が不足している場合に、図1に示したバイパス回路上の点A,B,Cにおける冷媒の状態をそれぞれ示す。点A2と点B2とを結ぶ点線L21は、冷媒不足検知回路70のキャピラリチューブ71による減圧を示す。点B2と点C2とを結ぶ点線L22は、冷媒不足検知回路70のヒータ72による等圧加熱を示す。 As illustrated, when the refrigeration apparatus 1 is operated in a state where the amount of the refrigerant is insufficient, the condensation of the refrigerant in the condenser 20 does not proceed, the degree of supercooling of the refrigerant decreases, and the refrigerant at the outlet side of the condenser 20 decreases. Is in a gas-liquid two-phase state (point p22). Points A2, B2, and C2 indicate states of the refrigerant at points A, B, and C on the bypass circuit shown in FIG. 1 when the refrigerant amount is insufficient. A dotted line L21 connecting the points A2 and B2 indicates the pressure reduction by the capillary tube 71 of the refrigerant shortage detection circuit 70. A dotted line L22 connecting the points B2 and C2 indicates equal pressure heating by the heater 72 of the refrigerant shortage detection circuit 70.
 後ほど詳しく説明するが、本開示の室外機2では、凝縮器20の出側の配管83からバイパス回路が分岐する分岐部88(図1)に気液分離機構が設けられており、冷媒不足が生じている場合に、凝縮器20から出力される気液二相の冷媒から分離されたガス冷媒(気相の冷媒)がバイパス回路へ流される。これにより、冷媒不足が生じている場合、バイパス回路には、ガス冷媒か、極めて乾き度の高い冷媒が流入する(点A2)。キャピラリチューブ71の出側(点B2)における冷媒も、ガス冷媒か、極めて乾き度の高い冷媒となる。したがって、ヒータ72の下流(点C2)における冷媒は、ヒータ72により加熱されて確実に過熱度SHを有するガス冷媒となる(SH>0)。 As will be described in detail later, in the outdoor unit 2 of the present disclosure, a gas-liquid separation mechanism is provided at a branch portion 88 (FIG. 1) where the bypass circuit branches from the pipe 83 on the outlet side of the condenser 20, and there is insufficient refrigerant. When this occurs, the gas refrigerant (gas-phase refrigerant) separated from the gas-liquid two-phase refrigerant output from the condenser 20 flows to the bypass circuit. As a result, when a shortage of refrigerant occurs, a gas refrigerant or a refrigerant having a very high degree of dryness flows into the bypass circuit (point A2). The refrigerant on the outlet side (point B2) of the capillary tube 71 is also a gas refrigerant or a refrigerant having extremely high dryness. Therefore, the refrigerant downstream of the heater 72 (point C2) is heated by the heater 72 and surely becomes a gas refrigerant having a superheat degree SH (SH> 0).
 このように、冷媒量が不足している場合、バイパス回路に設けられる冷媒不足検知回路70においてヒータ72による加熱部を通過した冷媒に過熱度SHが生じる。一方、冷媒量が正常である場合は、加熱部を通過した冷媒に過熱度SHは生じない(SH=0)。そこで、この冷凍装置1では、冷媒不足検知回路70の加熱部を通過した冷媒の過熱度SHに基づいて、冷媒不足が生じているか否かが判定される。 As described above, when the refrigerant amount is insufficient, the refrigerant that has passed through the heating unit of the heater 72 in the refrigerant shortage detection circuit 70 provided in the bypass circuit has a degree of superheat SH. On the other hand, when the refrigerant amount is normal, the superheat degree SH does not occur in the refrigerant that has passed through the heating unit (SH = 0). Therefore, in the refrigeration apparatus 1, it is determined whether or not the refrigerant is short based on the degree of superheat SH of the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70.
 この室外機2によれば、冷媒量が不足することにより凝縮器20の出側において冷媒が気液二相状態になると、冷媒不足検知回路70の加熱部を通過した冷媒に過熱度SHが生じるので、冷媒不足を直ちに検知することができる。また、過負荷運転中など、冷媒量が正常であっても過冷却をとることができない運転状態においても、上記の過熱度SHに基づいて冷媒不足を検知することができる。 According to the outdoor unit 2, when the refrigerant is in a gas-liquid two-phase state at the outlet side of the condenser 20 due to a shortage of the refrigerant amount, the superheat degree SH is generated in the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70. Therefore, the shortage of the refrigerant can be immediately detected. Further, even in an operation state in which supercooling cannot be performed even when the refrigerant amount is normal, such as during an overload operation, a refrigerant shortage can be detected based on the degree of superheat SH.
 なお、冷媒不足検知回路70の加熱部を通過した冷媒の過熱度SHは、温度センサ73の検出値と、圧力センサ90の検出値とから算出することができる。すなわち、温度センサ73の検出値は、ヒータ72により加熱された冷媒の温度を示す。また、圧力センサ90の検出値は、ヒータ72による加熱部における冷媒の圧力を示す。この冷媒圧力から、加熱部における冷媒の蒸発温度(冷凍装置1における低圧側の冷媒の飽和温度)を算出することができる。そして、圧力センサ90の検出値から算出される蒸発温度を温度センサ73の検出値から差引くことによって、ヒータ72により加熱された冷媒の過熱度SHを算出することができる。 The superheat degree SH of the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70 can be calculated from the detection value of the temperature sensor 73 and the detection value of the pressure sensor 90. That is, the detection value of the temperature sensor 73 indicates the temperature of the refrigerant heated by the heater 72. Further, the detection value of the pressure sensor 90 indicates the pressure of the refrigerant in the heating section by the heater 72. From the refrigerant pressure, the evaporation temperature of the refrigerant in the heating section (the saturation temperature of the refrigerant on the low pressure side in the refrigeration apparatus 1) can be calculated. Then, the superheat degree SH of the refrigerant heated by the heater 72 can be calculated by subtracting the evaporation temperature calculated from the detected value of the pressure sensor 90 from the detected value of the temperature sensor 73.
 <気液分離機構の構成>
 上述のように、この室外機2では、冷媒不足検知回路70の加熱部を通過した冷媒の過熱度SHに基づいて冷媒不足が検知される。具体的には、加熱部を通過した冷媒の過熱度SHが0であれば、冷媒量は正常であり、加熱部を通過した冷媒が過熱度を有する場合には(SH>0)、冷媒不足が生じているものと判定される。
<Configuration of gas-liquid separation mechanism>
As described above, in the outdoor unit 2, the refrigerant shortage is detected based on the degree of superheat SH of the refrigerant that has passed through the heating unit of the refrigerant shortage detection circuit 70. Specifically, if the superheat degree SH of the refrigerant passing through the heating unit is 0, the refrigerant amount is normal, and if the refrigerant passing through the heating unit has a superheat degree (SH> 0), the refrigerant shortage occurs. Is determined to have occurred.
 そのため、冷媒不足を精度良く検知するには、冷媒不足が生じている場合に、ヒータ72により加熱された冷媒が確実に過熱度SHを有するようにすることが必要である。冷媒不足が生じると、凝縮器20において冷媒の凝縮が進まず、凝縮器20の出側において冷媒が気液二相状態となる。この場合に、バイパス回路に液冷媒(液相の冷媒)が流入すると、ヒータ72により冷媒が加熱されても全て蒸発せず、ヒータ72により加熱された冷媒に過熱度SHが生じない可能性がある。 Therefore, in order to accurately detect the shortage of the refrigerant, it is necessary to ensure that the refrigerant heated by the heater 72 has the degree of superheat SH when the shortage of the refrigerant occurs. When the shortage of the refrigerant occurs, the condensation of the refrigerant does not proceed in the condenser 20, and the refrigerant enters a gas-liquid two-phase state on the outlet side of the condenser 20. In this case, when the liquid refrigerant (liquid-phase refrigerant) flows into the bypass circuit, even if the refrigerant is heated by the heater 72, the refrigerant does not completely evaporate, and the refrigerant heated by the heater 72 may not have the degree of superheat SH. is there.
 そこで、この実施の形態1に従う室外機2では、バイパス回路が配管83から分岐する分岐部88(図1)において、バイパス回路が配管83から上方へ向けて分岐するように構成される(気液分離機構)。このような構成により、冷媒不足が生じている場合に、凝縮器20の出側において気液二相となった冷媒からガス冷媒を分離してバイパス回路へ流すことができる。バイパス回路には、ガス冷媒又は極めて乾き度の高い冷媒が流入するので、ヒータ72により冷媒が加熱されると、冷媒には確実に過熱度SHが生じる。これにより、冷媒不足が生じているにも拘わらず、ヒータ72により加熱された冷媒に過熱度SHが生じないことにより冷媒量は正常であると誤検知してしまうのを抑制することができる。 Therefore, in outdoor unit 2 according to the first embodiment, at a branch portion 88 (FIG. 1) where the bypass circuit branches off from pipe 83, the bypass circuit is configured to branch upward from pipe 83 (gas and liquid). Separation mechanism). With such a configuration, when a shortage of the refrigerant occurs, the gas refrigerant can be separated from the gas-liquid two-phase refrigerant at the outlet side of the condenser 20 and flow to the bypass circuit. Since the gas refrigerant or the extremely dry refrigerant flows into the bypass circuit, when the refrigerant is heated by the heater 72, the superheat SH is definitely generated in the refrigerant. Thus, it is possible to suppress the erroneous detection that the refrigerant amount is normal due to the superheat degree SH not being generated in the refrigerant heated by the heater 72 despite the shortage of the refrigerant.
 図4は、実施の形態1における気液分離機構の構成の一例を示す図である。図中、矢印U方向は、鉛直上向きを示し、矢印D方向は、鉛直下向きを示す。図4を参照して、凝縮器20の出側の配管83は、バイパス回路(配管86)が分岐する分岐部88の少なくとも近傍において、鉛直方向に対して横向きに配設されている。そして、分岐部88においてバイパス回路が配管83から鉛直上方へ向けて分岐するように、配管86が配管83に接続されている。 FIG. 4 is a diagram illustrating an example of a configuration of the gas-liquid separation mechanism according to the first embodiment. In the figure, the direction of arrow U indicates a vertically upward direction, and the direction of arrow D indicates a vertically downward direction. Referring to FIG. 4, pipe 83 on the outlet side of condenser 20 is disposed at least in the vicinity of branch portion 88 where the bypass circuit (pipe 86) branches, and is arranged laterally with respect to the vertical direction. The pipe 86 is connected to the pipe 83 so that the bypass circuit branches vertically upward from the pipe 83 at the branch portion 88.
 このような構成により、冷媒不足によって液冷媒とガス冷媒とから成る気液二相の冷媒76が配管83を流れている場合に、重力によって比重の大きい液冷媒が配管86に流入するのを抑制するとともに、比重の小さいガス冷媒を配管86へ流すことができる。ガス冷媒が配管86へ流れるのは、バイパス回路出側の配管87は、圧縮機10の吸入側すなわち冷凍装置1の低圧側に接続されているので、高圧側の配管83に対して配管86には負圧が生じているからである。 With such a configuration, when the gas-liquid two-phase refrigerant 76 composed of the liquid refrigerant and the gas refrigerant flows through the pipe 83 due to the shortage of the refrigerant, the gravity prevents the liquid refrigerant having a large specific gravity from flowing into the pipe 86. At the same time, a gas refrigerant having a small specific gravity can flow through the pipe 86. The gas refrigerant flows to the pipe 86 because the pipe 87 on the outlet side of the bypass circuit is connected to the suction side of the compressor 10, that is, the low pressure side of the refrigerating apparatus 1. Is because a negative pressure is generated.
 なお、冷媒の流速によっては、ガス冷媒に伴なって液冷媒の一部が配管86に流入することもあるが、少なくとも、このような気液分離機構によって、配管86に流入する冷媒の乾き度を、分岐部88よりも上流の配管83を流れる冷媒の乾き度よりも高くすることができる。 Note that, depending on the flow rate of the refrigerant, a part of the liquid refrigerant may flow into the pipe 86 along with the gas refrigerant, but at least the dryness of the refrigerant flowing into the pipe 86 by such a gas-liquid separation mechanism. Can be made higher than the dryness of the refrigerant flowing through the pipe 83 upstream of the branch portion 88.
 冷媒不足によって配管83内を気液二相冷媒が流れている場合に、液冷媒が配管86に流入するのを抑制するには、配管86の内径dを基準内径d0よりも大きくすることが好ましい。ここで、基準内径d0は、配管83に気液二相冷媒が流れている場合に、配管83から配管86に流入するガス冷媒の流速がゼロペネトレーション流速となるときの内径dである。ゼロペネトレーションとは、気液二相冷媒が配管内を上昇して流れる場合、ガス冷媒に伴なって液冷媒が管壁を上昇する現象であり、ゼロペネトレーション流速は、ガス冷媒に伴なって液冷媒が管壁を上昇し始めるときの冷媒の流速である。ゼロペネトレーション流速は、配管の内径、ガス冷媒の密度、液冷媒の密度から、公知の手法を用いて算出することができる。配管86の内径dを基準内径d0よりも大きくすることにより、配管86に流入するガス冷媒の流速はゼロペネトレーション流速よりも低くなるため、液冷媒が配管86に流入するのを抑制することができる。 In order to prevent the liquid refrigerant from flowing into the pipe 86 when the gas-liquid two-phase refrigerant is flowing through the pipe 83 due to lack of the refrigerant, it is preferable that the inner diameter d of the pipe 86 be larger than the reference inner diameter d0. . Here, the reference inner diameter d0 is the inner diameter d when the flow rate of the gas refrigerant flowing from the pipe 83 to the pipe 86 becomes zero penetration flow rate when the gas-liquid two-phase refrigerant flows through the pipe 83. Zero penetration is a phenomenon in which when a gas-liquid two-phase refrigerant rises in a pipe and flows, the liquid refrigerant rises along the pipe wall with the gas refrigerant, and the zero penetration flow rate is It is the flow rate of the refrigerant when the refrigerant starts to rise on the tube wall. The zero penetration flow rate can be calculated from the inner diameter of the pipe, the density of the gas refrigerant, and the density of the liquid refrigerant using a known method. By making the inner diameter d of the pipe 86 larger than the reference inner diameter d0, the flow rate of the gas refrigerant flowing into the pipe 86 becomes lower than the zero penetration flow rate, so that the liquid refrigerant can be suppressed from flowing into the pipe 86. .
 このような気液分離機構を設けることにより、冷媒不足が生じている場合、バイパス回路には、ガス冷媒か、極めて乾き度の高い冷媒が流入するので、ヒータ72により加熱された冷媒に確実に過熱度を生じさせることができる。 By providing such a gas-liquid separation mechanism, when a refrigerant shortage occurs, a gas refrigerant or an extremely dry refrigerant flows into the bypass circuit. Superheat can be created.
 一方、冷媒量が正常である場合には、配管83には過冷却状態まで冷却された液冷媒が流れるので、上記のような気液分離機構が設けられていても、バイパス回路には液冷媒が流入する。そのため、冷媒不足検知回路70においてヒータ72により冷媒が加熱されても冷媒が全て蒸発することはなく、加熱部を通過した冷媒に過熱度は生じない。 On the other hand, when the refrigerant amount is normal, the liquid refrigerant cooled to a supercooled state flows through the pipe 83. Therefore, even if the gas-liquid separation mechanism as described above is provided, the liquid refrigerant Flows in. Therefore, even if the refrigerant is heated by the heater 72 in the refrigerant shortage detection circuit 70, the refrigerant does not entirely evaporate, and the refrigerant that has passed through the heating unit does not have a degree of superheat.
 なお、上記では、バイパス管を構成する配管86は、配管83から鉛直上方へ向けて分岐するものとしたが、配管86の分岐の方向は、必ずしも鉛直方向でなくてもよい。配管86の分岐方向は、重力によって比重の大きい液冷媒が配管86に流入するのを抑制できる程度に上向きであればよい。なお、配管86の分岐方向を鉛直上方とすることにより、重力を用いて最も効果的に気液二相冷媒からガス冷媒を分離させることができる。 In the above description, the pipe 86 constituting the bypass pipe is branched vertically upward from the pipe 83, but the branch direction of the pipe 86 does not necessarily have to be vertical. The branching direction of the pipe 86 may be any direction as long as the liquid refrigerant having a large specific gravity can be prevented from flowing into the pipe 86 by gravity. By setting the branching direction of the pipe 86 to be vertically upward, the gas refrigerant can be most effectively separated from the gas-liquid two-phase refrigerant by using gravity.
 図5は、図1に示した制御装置100により実行される冷媒不足判定の処理手順の一例を示すフローチャートである。このフローチャートに示される一連の処理は、冷凍装置1が定常的な運転を行なっている間、繰り返し実行される。 FIG. 5 is a flowchart illustrating an example of a processing procedure for refrigerant shortage determination performed by the control device 100 illustrated in FIG. 1. A series of processes shown in this flowchart is repeatedly executed while the refrigeration apparatus 1 performs a steady operation.
 図5を参照して、制御装置100は、冷媒不足判定制御を実行するタイミングであるか否かを判定する(ステップS10)。冷媒不足判定制御は、たとえば、1日に1回の頻度で実行される。冷媒不足判定制御を実行するタイミングではないと判定されたときは(ステップS10においてNO)、制御装置100は、以降の一連の処理を実行することなくリターンへと処理を移行する。なお、フローチャート内にこのような判定処理を設けることなく、冷媒不足判定制御を実行するタイミングとなった場合に、当該フローチャートに示されるステップS20以降の一連の処理をスタートさせるようにしてもよい。 制 御 Referring to FIG. 5, control device 100 determines whether or not it is time to execute refrigerant shortage determination control (step S10). The refrigerant shortage determination control is executed, for example, once a day. When it is determined that it is not time to execute the refrigerant shortage determination control (NO in step S10), control device 100 shifts the process to the return without executing the subsequent series of processes. Note that, without providing such a determination process in the flowchart, when it is time to execute the refrigerant shortage determination control, a series of processes from step S20 shown in the flowchart may be started.
 ステップS10において冷媒不足判定制御を実行するタイミングであると判定されると(ステップS10においてYES)、制御装置100は、電磁弁74をON(開)にするとともに(ステップS20)、ヒータ72をON(作動)にする(ステップS30)。 If it is determined in step S10 that it is time to execute the refrigerant shortage determination control (YES in step S10), control device 100 turns on (opens) solenoid valve 74 (step S20) and turns on heater 72. (Operation) (step S30).
 次いで、制御装置100は、ヒータ72による冷媒の加熱が定常状態となるのに十分な所定時間が経過すると(ステップS40においてYES)、制御装置100は、温度センサ73から温度Tの検出値を取得するとともに、圧力センサ90から圧力LPの検出値を取得する(ステップS50)。 Next, when a predetermined time sufficient for heating of the refrigerant by heater 72 to reach a steady state has elapsed (YES in step S40), control device 100 obtains a detected value of temperature T from temperature sensor 73. At the same time, the detection value of the pressure LP is obtained from the pressure sensor 90 (Step S50).
 そして、制御装置100は、取得された温度T及び圧力LPの各検出値を用いて、加熱部を通過した冷媒の過熱度SHを算出する(ステップS60)。具体的には、冷媒の圧力と蒸発温度(飽和温度)との関係が、予めマップやテーブル等としてメモリ104のROMに記憶されており、制御装置100は、当該マップ等を用いて、加熱部における冷媒の圧力を示す圧力LPの検出値から、加熱部における冷媒の蒸発温度を算出する。そして、制御装置100は、その算出された蒸発温度を、ステップS50において取得された温度Tから差引くことによって、ヒータ72により加熱された冷媒の過熱度SHを算出する。 Then, the control device 100 calculates the degree of superheat SH of the refrigerant that has passed through the heating unit, using the obtained detected values of the temperature T and the pressure LP (Step S60). Specifically, the relationship between the refrigerant pressure and the evaporation temperature (saturation temperature) is stored in advance in the ROM of the memory 104 as a map, a table, or the like, and the control device 100 uses the map or the like to Is calculated from the detected value of the pressure LP indicating the pressure of the refrigerant in the heating section. Then, control device 100 calculates the degree of superheat SH of the refrigerant heated by heater 72 by subtracting the calculated evaporation temperature from temperature T obtained in step S50.
 ヒータ72の下流における冷媒の過熱度SHが算出されると、制御装置100は、過熱度SHがしきい値SHthよりも高いか否かを判定する(ステップS70)。このしきい値SHthは、ヒータ72により加熱された冷媒に過熱度SHが生じているか否かを判定するためのものであり、過熱度SHの算出精度に基づいて適宜設定される。 When the superheat degree SH of the refrigerant downstream of the heater 72 is calculated, the control device 100 determines whether the superheat degree SH is higher than a threshold value SHth (step S70). This threshold value SHth is for determining whether or not the superheat degree SH has occurred in the refrigerant heated by the heater 72, and is appropriately set based on the calculation accuracy of the superheat degree SH.
 そして、ステップS70において、過熱度SHがしきい値SHthよりも高いと判定されると(ステップS70においてYES)、制御装置100は、冷媒量が不足しているものと判定し(ステップS80)、冷媒不足が生じている旨のアラームを出力する(ステップS90)。その後、制御装置100は、ヒータ72をOFF(停止)にするとともに(ステップS100)、電磁弁74をOFF(閉)にする(ステップS110)。その後、制御装置100は、リターンへと処理を移行し、冷媒不足判定処理が終了する。 If it is determined in step S70 that superheat degree SH is higher than threshold value SHth (YES in step S70), control device 100 determines that the refrigerant amount is insufficient (step S80). An alarm indicating that a shortage of refrigerant has occurred is output (step S90). Thereafter, the control device 100 turns off (stops) the heater 72 (step S100) and turns off (closes) the solenoid valve 74 (step S110). Thereafter, control device 100 shifts the process to return, and the refrigerant shortage determination process ends.
 なお、ステップS70において、過熱度SHがしきい値SHth以下であると判定されると(ステップS70においてNO)、制御装置100は、ステップS80,S90を実行することなくステップS100へ処理を移行し、ヒータ72をOFF(停止)にするとともに電磁弁74をOFF(閉)にする。すなわち、この場合は、冷媒量は正常であると判断される。 If it is determined in step S70 that superheat degree SH is equal to or smaller than threshold value SHth (NO in step S70), control device 100 shifts the process to step S100 without executing steps S80 and S90. Then, the heater 72 is turned off (stopped) and the solenoid valve 74 is turned off (closed). That is, in this case, it is determined that the refrigerant amount is normal.
 以上のように、この実施の形態1においては、冷媒不足検知回路70のヒータ72により加熱された冷媒の過熱度SHに基づいて、冷媒不足が生じているかが判定される。これにより、冷媒不足が生じて凝縮器20の出側において冷媒が気液二相状態になると、上記の過熱度SHが生じるので、冷媒不足を直ちに検知することができる。また、過負荷運転中など、冷媒量が正常であっても過冷却をとることができない運転状態においても、上記の過熱度SHに基づいて冷媒不足を検知することができる。 As described above, in the first embodiment, it is determined whether a refrigerant shortage has occurred based on the degree of superheat SH of the refrigerant heated by the heater 72 of the refrigerant shortage detection circuit 70. As a result, when the refrigerant becomes short in gas-liquid two-phase state on the outlet side of the condenser 20 due to the shortage of the refrigerant, the above-described degree of superheat SH is generated, so that the shortage of the refrigerant can be immediately detected. Further, even in an operation state in which supercooling cannot be performed even when the refrigerant amount is normal, such as during an overload operation, a refrigerant shortage can be detected based on the degree of superheat SH.
 そして、この実施の形態1では、バイパス回路(配管86)が配管83から上方へ向けて分岐するように構成される。これにより、冷媒不足が生じている場合に、凝縮器20の出側において気液二相となった冷媒からガス冷媒を分離してバイパス回路へ流すことができる。バイパス回路には、ガス冷媒又は極めて乾き度の高い冷媒が流入するので、ヒータ72により加熱された冷媒には確実に過熱度SHが生じる。これにより、冷媒不足が生じているにも拘わらず上記の過熱度SHが生じないことにより冷媒量は正常であると誤検知してしまうのを抑制することができる。 In the first embodiment, the bypass circuit (the pipe 86) is configured to branch upward from the pipe 83. Accordingly, when a shortage of the refrigerant occurs, the gas refrigerant can be separated from the refrigerant in the gas-liquid two-phase at the outlet side of the condenser 20 and flow to the bypass circuit. Since the gas refrigerant or the extremely dry refrigerant flows into the bypass circuit, the refrigerant heated by the heater 72 surely generates the superheat degree SH. Accordingly, it is possible to suppress the erroneous detection that the refrigerant amount is normal due to the absence of the above-described degree of superheat SH despite the shortage of the refrigerant.
 実施の形態2.
 この実施の形態2は、気液分離機構の構成が実施の形態1と異なる。
Embodiment 2 FIG.
The second embodiment differs from the first embodiment in the configuration of the gas-liquid separation mechanism.
 図6は、実施の形態2における気液分離機構の構成の一例を示す図である。図4と同様に、矢印U方向は、鉛直上向きを示し、矢印D方向は、鉛直下向きを示す。図6を参照して、凝縮器20の出側の配管83は、第1部位110と、第2部位112とを含んで構成される。第1部位110は、鉛直方向に対して横向きに配設される。第2部位112は、第1部位110の下流に設けられ、分岐部88から配管86と反対方向の鉛直下向きへ延びるように配設されている。 FIG. 6 is a diagram showing an example of the configuration of the gas-liquid separation mechanism according to the second embodiment. As in FIG. 4, the direction of arrow U indicates a vertically upward direction, and the direction of arrow D indicates a vertically downward direction. Referring to FIG. 6, piping 83 on the outlet side of condenser 20 includes a first portion 110 and a second portion 112. The first portion 110 is disposed laterally with respect to the vertical direction. The second portion 112 is provided downstream of the first portion 110 and is disposed to extend vertically downward from the branch portion 88 in a direction opposite to the pipe 86.
 このような構成により、冷媒不足によって液冷媒とガス冷媒とから成る気液二相の冷媒が配管83を流れている場合に、比重の大きい液冷媒は、重力によって第2部位112へ流れやすくなる。これにより、図4に示した構成よりも、より効果的に気液分離が行なわれる。したがって、実施の形態1よりも顕著にガス冷媒を配管86に流入させることができる。 With such a configuration, when the gas-liquid two-phase refrigerant including the liquid refrigerant and the gas refrigerant flows through the pipe 83 due to the shortage of the refrigerant, the liquid refrigerant having a large specific gravity easily flows to the second portion 112 by gravity. . Thereby, gas-liquid separation is performed more effectively than the configuration shown in FIG. Therefore, the gas refrigerant can flow into the pipe 86 more remarkably than in the first embodiment.
 なお、この実施の形態2においても、配管86の内径dを基準内径d0よりも大きくすることが好ましい。これにより、配管86に流入するガス冷媒の流速をゼロペネトレーション流速よりも低くすることができるので、冷媒不足が発生している場合に配管83から配管86へ液冷媒が流入するのを抑制することができる。 Note that, also in the second embodiment, it is preferable that the inner diameter d of the pipe 86 be larger than the reference inner diameter d0. Accordingly, the flow rate of the gas refrigerant flowing into the pipe 86 can be made lower than the zero penetration flow rate, so that the flow of the liquid refrigerant from the pipe 83 to the pipe 86 when the shortage of the refrigerant occurs is suppressed. Can be.
 なお、この実施の形態2においても、冷媒量が正常である場合には、配管83には過冷却状態まで冷却された液冷媒が流れるので、上記のような気液分離機構が設けられていても、バイパス回路には液冷媒が流入する。したがって、冷媒不足検知回路70においてヒータ72により冷媒が加熱されても冷媒が全て蒸発することはなく、加熱部を通過した冷媒に過熱度は生じない。 In the second embodiment as well, when the refrigerant amount is normal, the liquid refrigerant cooled to the supercooled state flows through the pipe 83, and thus the gas-liquid separation mechanism as described above is provided. Also, the liquid refrigerant flows into the bypass circuit. Therefore, even if the refrigerant is heated by the heater 72 in the refrigerant shortage detection circuit 70, the refrigerant does not completely evaporate, and the refrigerant that has passed through the heating unit does not have a degree of superheat.
 なお、この実施の形態2に従う室外機2及びそれが用いられる冷凍装置1の構成は、上述した気液分離機構の構成を除いて、図1に示した構成と同じである。 The configuration of the outdoor unit 2 according to the second embodiment and the refrigerating apparatus 1 using the same are the same as the configuration shown in FIG. 1 except for the configuration of the gas-liquid separation mechanism described above.
 以上のように、この実施の形態2によれば、冷媒不足が生じている場合に、配管83を流れる気液二相冷媒からより効果的にガス冷媒を分離してバイパス回路に流すことができる。その結果、より安定的に誤検知なく冷媒不足を検知することができる。 As described above, according to the second embodiment, when a shortage of refrigerant occurs, the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant flowing through the pipe 83 and flown to the bypass circuit. . As a result, it is possible to more stably detect the refrigerant shortage without erroneous detection.
 実施の形態3.
 この実施の形態3は、実施の形態2における気液分離機構の構成において、配管83を流れる冷媒に分岐部88において旋回流を生じさせる構成をさらに有する。これにより、冷媒不足が生じている場合に、旋回流による遠心分離も加わってより効果的な気液分離が行なわれ、より顕著にガス冷媒を配管86に流入させることができる。
Embodiment 3 FIG.
In the third embodiment, the configuration of the gas-liquid separation mechanism in the second embodiment further includes a configuration in which a swirling flow is generated in the branch portion 88 in the refrigerant flowing through the pipe 83. Thus, when a refrigerant shortage occurs, centrifugal separation by a swirling flow is added, so that more effective gas-liquid separation is performed, and gas refrigerant can flow into the pipe 86 more remarkably.
 図7は、実施の形態3における気液分離機構の構成の一例を示す図である。この図7は、配管83から配管86が分岐する分岐部88を鉛直上方から視たときの図である。なお、分岐部88を側方から視たときの気液分離機構の構成は、図6に示した実施の形態2における気液分離機構と同じである。 FIG. 7 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to the third embodiment. FIG. 7 is a diagram when the branch portion 88 where the pipe 86 branches from the pipe 83 is viewed from vertically above. The configuration of the gas-liquid separation mechanism when the branch portion 88 is viewed from the side is the same as that of the gas-liquid separation mechanism according to the second embodiment shown in FIG.
 図7を参照して、この実施の形態3では、分岐部88を鉛直上方から視た場合に、配管83の第1部位110の中心線O1と、第2部位112の中心線O2とがオフセットを有している。このため、配管83において第1部位110から第2部位112へ冷媒が流入すると、中心線O2を中心に旋回流が生じる。 Referring to FIG. 7, in the third embodiment, when branch portion 88 is viewed from vertically above, center line O1 of first portion 110 of pipe 83 and center line O2 of second portion 112 are offset. have. Therefore, when the refrigerant flows from the first portion 110 to the second portion 112 in the pipe 83, a swirling flow is generated around the center line O2.
 これにより、冷媒不足によって凝縮器20の出側で気液二相となった冷媒が第1部位110から第2部位112へ流入すると、比重の高い液冷媒は、遠心力によって第2部位112の内壁に沿って流れ、ガス冷媒は、配管の中心部に集まる。このように、旋回流による遠心分離を用いて気液二相冷媒からガス冷媒をより効果的に分離し、分離されたガス冷媒を配管86へ流入させることができる。 Thereby, when the refrigerant that has become a gas-liquid two-phase at the outlet side of the condenser 20 due to the shortage of the refrigerant flows from the first portion 110 to the second portion 112, the liquid refrigerant having a high specific gravity is centrifugally moved to the second portion 112. The gas refrigerant flows along the inner wall and gathers at the center of the pipe. As described above, the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant using the centrifugal separation by the swirling flow, and the separated gas refrigerant can flow into the pipe 86.
 この実施の形態3によれば、冷媒不足が生じている場合に、配管83を流れる気液二相冷媒からさらに効果的にガス冷媒を分離してバイパス回路に流すことができる。その結果、さらに安定的に誤検知なく冷媒不足を検知することができる。 According to the third embodiment, when a shortage of the refrigerant occurs, the gas refrigerant can be more effectively separated from the gas-liquid two-phase refrigerant flowing through the pipe 83 and flown to the bypass circuit. As a result, it is possible to more stably detect the shortage of the refrigerant without erroneous detection.
 実施の形態4.
 上記の各実施の形態で説明した気液分離機構によっても、液冷媒の一部が液滴となってガス冷媒とともにバイパス回路に流入することがあり得る。そこで、この実施の形態4では、分岐部88からガス冷媒とともにバイパス回路に流入した液滴を捕捉するメッシュ状部材が配管86に設けられる。
Embodiment 4 FIG.
According to the gas-liquid separation mechanism described in each of the above embodiments, a part of the liquid refrigerant may become droplets and flow into the bypass circuit together with the gas refrigerant. Therefore, in the fourth embodiment, the pipe 86 is provided with a mesh-like member that captures droplets flowing into the bypass circuit together with the gas refrigerant from the branch portion 88.
 図8は、実施の形態4における気液分離機構の構成の一例を示す図である。図8を参照して、この気液分離機構は、図4に示した実施の形態1の構成において、メッシュ状部材120をさらに備える。メッシュ状部材120は、バイパス回路の配管86に設けられ、分岐部88からの配管86の立上り部分に配設されている。 FIG. 8 is a diagram illustrating an example of a configuration of a gas-liquid separation mechanism according to the fourth embodiment. Referring to FIG. 8, the gas-liquid separation mechanism further includes a mesh member 120 in the configuration of the first embodiment shown in FIG. The mesh member 120 is provided on the pipe 86 of the bypass circuit, and is provided at a rising portion of the pipe 86 from the branch portion 88.
 メッシュ状部材120は、冷媒不足によって配管83に気液二相冷媒が流れている場合に、分岐部88において分離されたガス冷媒はメッシュの目を通じて通過させつつ、分岐部88から不意に飛翔してくる液滴を捕捉する。メッシュ状部材120は、分岐部88から飛翔してくる液滴の全てを捕捉できるわけではないが、少なくとも一部を捕捉することができる。捕捉された液滴は、捕捉量が増えると塊となって分岐部88へ落下する。 When the gas-liquid two-phase refrigerant is flowing through the pipe 83 due to the shortage of the refrigerant, the mesh member 120 unexpectedly flies from the branch 88 while passing the gas refrigerant separated at the branch 88 through the mesh. Capture incoming droplets. The mesh member 120 cannot capture all the droplets flying from the branch portion 88, but can capture at least a part of the droplets. The trapped droplets fall into the branch portion 88 as a lump as the trapped amount increases.
 なお、メッシュ状部材120は、冷媒量が正常であって配管83から配管86へ液冷媒が流れる場合には、目を通じて液冷媒を通過させる。 (4) When the amount of the refrigerant is normal and the liquid refrigerant flows from the pipe 83 to the pipe 86, the mesh member 120 allows the liquid refrigerant to pass through the eye.
 この実施の形態4によれば、メッシュ状部材120が設けられることにより、冷媒不足によって気液二相冷媒が配管83を流れている場合に、冷媒不足検知回路70に液冷媒(液滴)が流入し、ヒータ72により加熱された冷媒に過熱度SHが生じなくなることを回避することができる。 According to the fourth embodiment, by providing the mesh member 120, when the gas-liquid two-phase refrigerant flows through the pipe 83 due to the shortage of the refrigerant, the liquid refrigerant (droplets) is supplied to the refrigerant shortage detection circuit 70. It is possible to avoid that the refrigerant that flows in and is heated by the heater 72 does not generate the degree of superheat SH.
 なお、上記においては、図4に示した実施の形態1の構成にメッシュ状部材120がさらに設けられるものとしたが、図9に示されるように、図6に示した実施の形態2又は実施の形態3の構成にメッシュ状部材120をさらに設けてもよい。 In the above description, the mesh member 120 is further provided in the configuration of the first embodiment shown in FIG. 4, but as shown in FIG. 9, the second embodiment or the second embodiment shown in FIG. A mesh member 120 may be further provided in the configuration of the third embodiment.
 その他の変形例.
 上記の各実施の形態では、ヒータ72の下流に温度センサ73が設けられ、温度センサ73により検出される温度Tと、圧力センサ90により検出される圧力LPから算出される蒸発温度とから過熱度SHを算出するものとしたが、キャピラリチューブ71とヒータ72との間に蒸発温度(低圧飽和温度)を検出する温度センサをさらに設け、当該温度センサの検出値を温度センサ73の検出値から差引くことによって過熱度SHを測定してもよい。
Other modified examples.
In each of the above embodiments, the temperature sensor 73 is provided downstream of the heater 72, and the superheat degree is calculated from the temperature T detected by the temperature sensor 73 and the evaporation temperature calculated from the pressure LP detected by the pressure sensor 90. Although the SH is calculated, a temperature sensor for detecting the evaporation temperature (low pressure saturation temperature) is further provided between the capillary tube 71 and the heater 72, and the detected value of the temperature sensor is different from the detected value of the temperature sensor 73. The degree of superheat SH may be measured by subtraction.
 このような温度センサを設けることによって、過熱度SHの測定精度を向上させ、ひいては冷媒不足の検知精度を向上し得る。一方、冷凍装置においては、一般的に、圧縮機の吸入側の圧力を検出する圧力センサが設けられている。このような圧力センサ90を過熱度SHの導出に用いる上記の各実施の形態によれば、キャピラリチューブ71とヒータ72との間に温度センサを別途設けることなく、既設の圧力センサ90を用いて冷媒不足検知を行なうことができる。 設 け る By providing such a temperature sensor, the measurement accuracy of the degree of superheat SH can be improved, and the accuracy of detecting the shortage of the refrigerant can be improved. On the other hand, a refrigeration apparatus is generally provided with a pressure sensor for detecting the pressure on the suction side of the compressor. According to each of the above-described embodiments in which such a pressure sensor 90 is used for deriving the degree of superheat SH, an existing pressure sensor 90 can be used without separately providing a temperature sensor between the capillary tube 71 and the heater 72. Refrigerant shortage detection can be performed.
 また、上記の各実施の形態では、凝縮器20の出側の配管83からバイパス回路を分岐させるものとしたが、図10に示すように、凝縮器20の出側に液溜器30及び熱交換器40がさらに設けられている場合には、液溜器30と熱交換器40との間の配管82からバイパス回路を分岐させてもよい。 Further, in each of the above-described embodiments, the bypass circuit is branched from the pipe 83 on the outlet side of the condenser 20, but as shown in FIG. When the exchanger 40 is further provided, a bypass circuit may be branched from a pipe 82 between the liquid reservoir 30 and the heat exchanger 40.
 冷凍装置においては、一般的に、このような液溜器及び熱交換器が設けられることが多い。そして、冷媒量が正常であれば、液溜器30に液冷媒が貯留されており、配管82及びバイパス回路の配管86には液冷媒が流れる。一方、冷媒不足が発生すると、液溜器30に液冷媒が貯留されなくなるため、バイパス回路の配管86には、気液二相或いは気相単体の冷媒が流れる。したがって、このような構成によっても、バイパス回路に設けられる冷媒不足検知回路70によって冷媒不足を検知することができる。 (4) Generally, such a liquid reservoir and a heat exchanger are often provided in a refrigerator. If the refrigerant amount is normal, the liquid refrigerant is stored in the liquid reservoir 30, and the liquid refrigerant flows through the pipe 82 and the pipe 86 of the bypass circuit. On the other hand, when a shortage of the refrigerant occurs, the liquid refrigerant is not stored in the liquid reservoir 30, so that a gas-liquid two-phase or gas-phase single-phase refrigerant flows through the pipe 86 of the bypass circuit. Therefore, even with such a configuration, the refrigerant shortage can be detected by the refrigerant shortage detection circuit 70 provided in the bypass circuit.
 また、上記の各実施の形態及び変形例では、倉庫やショーケース等に主に用いられる室外機及び冷凍装置について代表的に説明したが、本開示に従う室外機は、図11に示されるように、冷凍サイクルを用いた空気調和装置200にも適用可能である。 Further, in each of the above-described embodiments and modifications, the outdoor unit and the refrigeration apparatus mainly used for a warehouse, a showcase, and the like have been representatively described. However, the outdoor unit according to the present disclosure may be configured as shown in FIG. Also, the present invention is applicable to an air conditioner 200 using a refrigeration cycle.
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 冷凍装置、2 室外機、3 室内機、10 圧縮機、20 凝縮器、22,42,62 ファン、30 液溜器、40 熱交換器、50 膨張弁、60 蒸発器、70 冷媒不足検知回路、71 キャピラリチューブ、72 ヒータ、73 温度センサ、74 電磁弁、80~87 配管、88 分岐部、90 圧力センサ、100 制御装置、102 CPU、104 メモリ、110 第1部位、112 第2部位、120 メッシュ状部材、200 空気調和装置。 1 Refrigerator, 2 outdoor unit, 3 indoor unit, 10 compressor, 20 condenser, 22, 42, 62 fan, 30 reservoir, 40 heat exchanger, 50 expansion valve, 60 evaporator, 70 refrigerant shortage detection circuit , 71 capillary tube, 72 heater, 73 temperature sensor, 74 solenoid valve, 80-87 pipe, 88 branch, 90 pressure sensor, 100 control device, 102 CPU, 104 memory, 110 first part, 112 second part, 120 Mesh member, 200 ° air conditioner.

Claims (8)

  1.  冷凍サイクル装置の室外機であって、
     冷媒を圧縮する圧縮機と、
     前記圧縮機から出力される冷媒を凝縮する凝縮器と、
     前記凝縮器の出側の配管から分岐され、前記配管を流れる冷媒の一部を、室内機を通過することなく前記圧縮機へ戻すように構成されたバイパス回路とを備え、
     前記バイパス回路は、前記冷凍サイクル装置に封入された冷媒の不足を検知するための検知回路を含み、
     前記検知回路は、
     前記バイパス回路に流れる冷媒の流量を調整するように構成された流量調整部と、
     前記流量調整部を通過した冷媒を加熱するように構成された加熱部とを含み、さらに、
     前記加熱部を通過した冷媒に過熱度が生じている場合に、前記冷凍サイクル装置に封入された冷媒が不足しているものと判定する制御装置と、
     前記配管から前記バイパス回路が分岐する分岐部において、前記配管に気液二相冷媒が流れる場合に、前記気液二相冷媒からガス冷媒を分離して前記バイパス回路へ流すように構成された気液分離機構とを備える、冷凍サイクル装置の室外機。
    An outdoor unit of a refrigeration cycle device,
    A compressor for compressing the refrigerant,
    A condenser for condensing the refrigerant output from the compressor,
    A bypass circuit branched from a pipe on the outlet side of the condenser and configured to return a part of the refrigerant flowing through the pipe to the compressor without passing through an indoor unit,
    The bypass circuit includes a detection circuit for detecting a shortage of the refrigerant sealed in the refrigeration cycle device,
    The detection circuit includes:
    A flow rate adjustment unit configured to adjust the flow rate of the refrigerant flowing through the bypass circuit,
    A heating unit configured to heat the refrigerant that has passed through the flow rate adjustment unit,
    When the degree of superheat has occurred in the refrigerant that has passed through the heating unit, a control device that determines that the refrigerant enclosed in the refrigeration cycle device is insufficient,
    In a branch portion where the bypass circuit branches from the pipe, when a gas-liquid two-phase refrigerant flows through the pipe, a gas refrigerant configured to separate the gas refrigerant from the gas-liquid two-phase refrigerant and flow the gas refrigerant to the bypass circuit. An outdoor unit of a refrigeration cycle device, comprising: a liquid separation mechanism.
  2.  前記気液分離機構において、前記バイパス回路は、前記配管から上方へ向けて分岐するように構成される、請求項1に記載の冷凍サイクル装置の室外機。 The outdoor unit of the refrigeration cycle apparatus according to claim 1, wherein in the gas-liquid separation mechanism, the bypass circuit is configured to branch upward from the pipe.
  3.  前記バイパス回路の内径は、前記配管から前記バイパス回路に流入するガス冷媒の流速がゼロペネトレーション流速となる場合の前記内径を示す基準内径よりも大きい、請求項2に記載の冷凍サイクル装置の室外機。 The outdoor unit of the refrigeration cycle apparatus according to claim 2, wherein an inner diameter of the bypass circuit is larger than a reference inner diameter indicating the inner diameter when the flow rate of the gas refrigerant flowing from the pipe into the bypass circuit is zero penetration flow rate. .
  4.  前記気液分離機構において、前記配管は、前記分岐部から下方へ向けて配設される、請求項2又は請求項3に記載の冷凍サイクル装置の室外機。 4. The outdoor unit of the refrigeration cycle device according to claim 2, wherein, in the gas-liquid separation mechanism, the pipe is disposed downward from the branch portion. 5.
  5.  前記配管は、
     横向きに配設される第1部位と、
     前記第1部位に接続され、前記分岐部から下方へ向けて配設される第2部位とを含み、
     前記第1部位の中心線は、前記第2部位の中心線に対してオフセットを有する、請求項4に記載の冷凍サイクル装置の室外機。
    The piping is
    A first portion disposed laterally;
    A second portion connected to the first portion and disposed downward from the branch portion;
    The outdoor unit of the refrigeration cycle apparatus according to claim 4, wherein a center line of the first portion has an offset with respect to a center line of the second portion.
  6.  前記気液分離機構は、前記分岐部から前記バイパス回路に流入した液滴を捕捉するように構成されたメッシュ状部材を含む、請求項2から請求項5のいずれか1項に記載の冷凍サイクル装置の室外機。 The refrigeration cycle according to any one of claims 2 to 5, wherein the gas-liquid separation mechanism includes a mesh-shaped member configured to capture droplets flowing into the bypass circuit from the branch portion. Equipment outdoor unit.
  7.  請求項1から請求項6のいずれか1項に記載の室外機と、
     前記室外機に接続される室内機とを備える冷凍サイクル装置。
    An outdoor unit according to any one of claims 1 to 6,
    A refrigeration cycle device comprising: an indoor unit connected to the outdoor unit.
  8.  請求項7に記載の冷凍サイクル装置を備える空気調和装置。 An air conditioner comprising the refrigeration cycle device according to claim 7.
PCT/JP2018/036524 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device WO2020065999A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020547862A JP7196187B2 (en) 2018-09-28 2018-09-28 Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
CN201880097188.2A CN112714853B (en) 2018-09-28 2018-09-28 Outdoor unit of refrigeration cycle device, and air conditioning device
PCT/JP2018/036524 WO2020065999A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036524 WO2020065999A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2020065999A1 true WO2020065999A1 (en) 2020-04-02

Family

ID=69949336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036524 WO2020065999A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Country Status (3)

Country Link
JP (1) JP7196187B2 (en)
CN (1) CN112714853B (en)
WO (1) WO2020065999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240645A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Cold heat source unit, refrigeration cycle device, and refrigerating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154388B2 (en) * 2019-03-26 2022-10-17 三菱電機株式会社 Outdoor unit and refrigeration cycle device provided with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292213A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008765B2 (en) * 1993-09-30 2000-02-14 三菱電機株式会社 Refrigeration cycle
JP3541798B2 (en) 2000-11-13 2004-07-14 ダイキン工業株式会社 Refrigeration equipment
JP3719246B2 (en) 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
CN101310154B (en) * 2005-11-14 2012-12-05 日冷工业株式会社 Gas-liquid separator and refrigerating apparatus equipped therewith
JP4975052B2 (en) * 2009-03-30 2012-07-11 三菱電機株式会社 Refrigeration cycle equipment
JP5582773B2 (en) 2009-12-10 2014-09-03 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
JP5780166B2 (en) * 2011-02-11 2015-09-16 株式会社デンソー Heat pump cycle
WO2015178097A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Air-conditioning device
WO2016125239A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Refrigeration/air-conditioning device
JP2017044454A (en) 2015-08-28 2017-03-02 三菱重工業株式会社 Refrigeration cycle device and control method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292213A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240645A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Cold heat source unit, refrigeration cycle device, and refrigerating machine
JPWO2021240645A1 (en) * 2020-05-26 2021-12-02
JP7341337B2 (en) 2020-05-26 2023-09-08 三菱電機株式会社 Cold heat source unit, refrigeration cycle equipment, and refrigerator

Also Published As

Publication number Publication date
JP7196187B2 (en) 2022-12-26
JPWO2020065999A1 (en) 2021-08-30
CN112714853B (en) 2022-11-29
CN112714853A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
EP3819564B1 (en) Refrigeration cycle device
EP4015945A1 (en) Refrigerant leakage determination system
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
KR20180011259A (en) Control method of refrigeration cycle device and refrigeration cycle device
WO2020208714A1 (en) Refrigeration device
JP2007139244A (en) Refrigeration device
WO2020065999A1 (en) Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device
JP2005282885A (en) Air conditioner
EP3591311B1 (en) Refrigeration cycle device
JP4462436B2 (en) Refrigeration equipment
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
EP3023711A1 (en) Energy control for vapour injection
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP7282157B2 (en) Outdoor unit and refrigeration cycle device provided with the same
EP3819555A1 (en) Refrigeration cycle equipment
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP7196186B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
WO2021192275A1 (en) Outdoor unit and refrigeration cycle device equipped with same
CN113614473B (en) Outdoor unit and refrigeration cycle device provided with same
GB2560455A (en) Air-conditioning device
JP2020085269A (en) Refrigeration cycle device
EP3819565B1 (en) Refrigeration cycle device
WO2021095115A1 (en) Outdoor unit and refrigeration cycle device
JP2017150676A (en) Dehumidifying dryer
JPH03170753A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934628

Country of ref document: EP

Kind code of ref document: A1