JP4115414B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4115414B2
JP4115414B2 JP2004079342A JP2004079342A JP4115414B2 JP 4115414 B2 JP4115414 B2 JP 4115414B2 JP 2004079342 A JP2004079342 A JP 2004079342A JP 2004079342 A JP2004079342 A JP 2004079342A JP 4115414 B2 JP4115414 B2 JP 4115414B2
Authority
JP
Japan
Prior art keywords
gas
compressor
heat
refrigerant
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004079342A
Other languages
Japanese (ja)
Other versions
JP2005265317A (en
Inventor
悟 今井
晃 菅原
博之 齋
和明 水上
悦史 長江
洋 向山
一朗 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004079342A priority Critical patent/JP4115414B2/en
Priority to KR1020050018959A priority patent/KR100642709B1/en
Priority to EP05005611A priority patent/EP1577622A3/en
Priority to US11/080,422 priority patent/US20050204773A1/en
Priority to CNB2005100563939A priority patent/CN100338409C/en
Publication of JP2005265317A publication Critical patent/JP2005265317A/en
Application granted granted Critical
Publication of JP4115414B2 publication Critical patent/JP4115414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators

Description

本発明は、気液分離器で分離されたガス冷媒を圧縮機の中間圧部に導入可能な手段を備える冷凍装置に関する。   The present invention relates to a refrigeration apparatus including means capable of introducing a gas refrigerant separated by a gas-liquid separator into an intermediate pressure portion of a compressor.

一般に、圧縮機、放熱器、減圧装置、気液分離器を備え、この気液分離器で分離されたガス冷媒を、上記圧縮機の中間圧部に導入可能な手段を備える冷凍装置が知られている(特許文献1参照)。この種の冷凍装置では、上記気液分離器で分離されたガス冷媒を、ガスの状態のまま、上記圧縮機の中間圧部に導入するため、当該圧縮機における効率を向上させることができるといった効果が得られる。
特開2003−106693号公報
In general, a refrigeration apparatus including a compressor, a radiator, a decompression device, and a gas-liquid separator and having means capable of introducing the gas refrigerant separated by the gas-liquid separator into the intermediate pressure portion of the compressor is known. (See Patent Document 1). In this type of refrigeration apparatus, since the gas refrigerant separated by the gas-liquid separator is introduced into the intermediate pressure portion of the compressor in a gas state, the efficiency of the compressor can be improved. An effect is obtained.
JP 2003-106693 A

ところで、この種の従来の冷凍装置において、冷凍サイクル中に選択的に異なる温度帯で機能する吸熱器を含む吸熱手段を設ける場合がある。   By the way, in this kind of conventional refrigeration apparatus, a heat absorption means including a heat absorber that selectively functions in different temperature zones may be provided during the refrigeration cycle.

例えば、これを冷蔵室、冷凍室を備える冷蔵庫に適用する場合、冷凍サイクル中に冷蔵用、或いは冷凍用として機能する吸熱器を配置し、いずれか一の吸熱器の機能を利用して冷蔵、或いは冷凍運転を行うことになるが、この場合には、いずれの運転時にも、その効率を落とすことなく高効率で運転することが重要になる。   For example, when this is applied to a refrigerator having a refrigerator compartment or a freezer compartment, a heat absorber functioning as a refrigerator or a refrigerator is arranged in the refrigeration cycle, and the refrigerator is refrigerated using the function of any one of the heat absorbers. Alternatively, the refrigeration operation is performed. In this case, it is important to operate at a high efficiency without reducing the efficiency at any operation.

そこで、本発明の目的は、選択的に異なる温度帯で機能する吸熱手段を、冷凍サイクル中に設けた場合、いずれの温度帯においても、その効率を落とすことなく高効率の運転を可能にした冷凍装置を提供することにある。   Therefore, an object of the present invention is to enable high-efficiency operation without reducing the efficiency in any temperature zone when heat absorption means that selectively function in different temperature zones is provided in the refrigeration cycle. It is to provide a refrigeration apparatus.

上記目的を達成するため、本発明は、1段圧縮部と2段圧縮部とを含み、前記1段圧縮部と2段圧縮部との間に中間冷却器を備える圧縮機、放熱器、減圧装置、気液分離器と、この気液分離器で分離された、超臨界圧力となるガス冷媒を前記圧縮機の中間冷却器と2段圧縮部との間に導入可能な手段と、前記気液分離器で分離された液冷媒を循環させる低圧側回路と、この低圧側回路には選択的に異なる温度帯で機能する吸熱手段と、この吸熱手段を高い温度帯で機能させる場合、前記気液分離器で分離された前記ガス冷媒の前記圧縮機の中間冷却器と2段圧縮部との間への導入を禁止する禁止手段を備え、前記吸熱手段が互いに異なる温度帯で機能する複数の吸熱器を備え、夫々の吸熱器が選択的に機能し、当該吸熱器を経た冷風を、夫々対応する温度帯に制御される室に導く手段を備えたことを特徴とする。 To achieve the above object, the present invention includes a first-stage compressing section and the second-stage compressing section, a compressor having an intermediate cooler between the first-stage compressing section and the second-stage compressing section, a radiator A decompressor , a gas-liquid separator , and a means capable of introducing a gas refrigerant separated by the gas-liquid separator and having a supercritical pressure between the intermediate cooler and the two-stage compression unit of the compressor ; , a low pressure side circuit for circulating the separated liquid refrigerant in the gas-liquid separator, a heat absorbing means which function in selected distinct temperature zone in the low pressure side circuit, the field to work the endothermic device with high temperature zone if, comprising a prohibiting means for prohibiting the introduction to between the intermediate cooler and the second-stage compressing section of the compressor of the gas refrigerant separated in the gas-liquid separator, the heat absorbing means mutually different temperature zones It has a plurality of functioning heat sinks, each of the heat sinks functions selectively, and cool air that has passed through the heat sinks Further, it is characterized in that means for guiding to a chamber controlled in a corresponding temperature zone is provided.

この場合において、前記禁止手段が開閉弁で構成されていてもよい。また、前記吸熱手段が互いに異なる温度帯で機能する複数の吸熱器を備え、夫々の吸熱器が選択的に機能し、当該吸熱器を経た冷風を、夫々対応する温度帯に制御される室に導く手段を備えていてもよい。前記吸熱器が夫々対応する温度帯に制御される室に設置されていてもよい。前記吸熱手段が選択的に異なる温度帯で機能する一つの吸熱器を備え、この吸熱器を経た冷風を、夫々異なる温度帯に制御される複数の室に切換ダンパを介して選択的に導く手段を備えていてもよい。前記吸熱器が低い温度帯に制御される室に設置されていてもよい。すべての場合において、運転中に高圧側が超臨界圧力となる冷媒を封入してもよい。   In this case, the prohibiting means may be constituted by an on-off valve. In addition, the heat absorption means includes a plurality of heat absorbers that function in different temperature zones, each of the heat absorbers selectively functions, and the cold air that has passed through the heat absorber is controlled in a corresponding temperature zone. Means for guiding may be provided. Each of the heat absorbers may be installed in a room controlled in a corresponding temperature zone. The heat absorption means includes one heat absorber that selectively functions in different temperature zones, and the cool air that has passed through the heat absorber is selectively guided to a plurality of chambers that are controlled in different temperature zones through switching dampers. May be provided. The heat absorber may be installed in a chamber controlled in a low temperature zone. In all cases, a refrigerant whose high pressure side becomes supercritical pressure during operation may be enclosed.

本発明では、選択的に異なる温度帯で機能する吸熱手段を、液冷媒を循環させる低圧側回路に備え、この吸熱手段を高い温度帯で機能させる場合には、気液分離器で分離されたガス冷媒の圧縮機の中間圧部への導入を禁止する禁止手段を備えたため、夫々の温度帯において、高効率の運転が可能になる。   In the present invention, the heat absorption means that selectively function in different temperature zones is provided in the low-pressure circuit that circulates the liquid refrigerant, and when this heat absorption means functions in the high temperature zone, it is separated by the gas-liquid separator. Since the prohibiting means for prohibiting the introduction of the gas refrigerant to the intermediate pressure portion of the compressor is provided, high-efficiency operation is possible in each temperature range.

以下、本発明の実施の形態を、図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す冷媒回路図である。この冷凍装置30は、圧縮機1、放熱器2、第1膨張弁(減圧装置)3、並びに気液分離器4を順に備えて構成される。この圧縮機1から、放熱器2を経て第1膨張弁3の入口に至るまでの冷媒回路が高圧側回路を構成する。上記圧縮機1は2段圧縮機であり、1段圧縮部1Aと、2段圧縮部1Bとを含み、1段圧縮部1Aと、2段圧縮部1Bとの間に中間冷却器1Cを備える。8は逆止弁である。また、この冷凍装置30は、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部に導入可能な手段5を備える。本構成では、中間圧部は、中間冷却器1Cと2段圧縮部1Bとの間である。ここでの圧縮機1は、2段圧縮機に限定するものではなく、それが、例えば、1段圧縮機であれば、導入手段5は、1段圧縮機の中間圧部に戻すものであればよい。この導入手段5はガス管6と、このガス管6に設けられた開閉弁91とで構成される。従って、開閉弁91の開閉によって、ガス冷媒の中間圧部への導入が開始され、或いは停止される。   FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention. The refrigeration apparatus 30 includes a compressor 1, a radiator 2, a first expansion valve (decompression apparatus) 3, and a gas-liquid separator 4 in this order. The refrigerant circuit from the compressor 1 through the radiator 2 to the inlet of the first expansion valve 3 constitutes a high-pressure side circuit. The compressor 1 is a two-stage compressor, includes a first-stage compressor 1A and a two-stage compressor 1B, and includes an intermediate cooler 1C between the first-stage compressor 1A and the two-stage compressor 1B. . 8 is a check valve. The refrigeration apparatus 30 includes means 5 that can introduce the gas refrigerant separated by the gas-liquid separator 4 into the intermediate pressure portion of the compressor 1. In this configuration, the intermediate pressure part is between the intermediate cooler 1C and the two-stage compression part 1B. The compressor 1 here is not limited to a two-stage compressor. For example, if the compressor 1 is a one-stage compressor, the introduction means 5 may return to the intermediate pressure section of the first-stage compressor. That's fine. The introduction means 5 includes a gas pipe 6 and an opening / closing valve 91 provided in the gas pipe 6. Therefore, the opening / closing of the on-off valve 91 starts or stops the introduction of the gas refrigerant into the intermediate pressure portion.

また、この冷凍装置30は、気液分離器4で分離された液冷媒を循環させるための低圧側回路9が設けられ、この低圧側回路9には、選択的に異なる温度帯で機能する吸熱手段10が設けられる。この吸熱手段10は、第2膨張弁11と、一つの吸熱器14とを備えて構成される。この第2膨張弁11の弁開度を制御することにより、一つの吸熱器14における蒸発圧力が制御される。ここでの蒸発圧力が上昇すれば、吸熱器14での蒸発温度が高くなり、冷蔵運転となる。また、ここでの蒸発圧力が低下すれば、吸熱器14での蒸発温度が低くなり、冷凍運転となる。この吸熱器14を経た冷媒は、逆止弁8を経て、圧縮機1の吸込部に戻される。   Further, the refrigeration apparatus 30 is provided with a low-pressure side circuit 9 for circulating the liquid refrigerant separated by the gas-liquid separator 4, and the low-pressure side circuit 9 selectively absorbs heat that functions in different temperature zones. Means 10 are provided. The heat absorbing means 10 includes a second expansion valve 11 and one heat absorber 14. By controlling the valve opening degree of the second expansion valve 11, the evaporation pressure in one heat absorber 14 is controlled. If the evaporating pressure here increases, the evaporating temperature in the heat absorber 14 becomes higher, and the refrigeration operation is performed. Moreover, if the evaporation pressure here falls, the evaporation temperature in the heat absorber 14 will become low, and it will become a freezing operation. The refrigerant that has passed through the heat absorber 14 is returned to the suction portion of the compressor 1 through the check valve 8.

本実施形態では、吸熱器14を経た冷風を、夫々異なる温度帯に制御される複数の室(冷蔵室21、冷凍室22)に選択的に導く手段23を備えて構成される。この手段23は、送風ダクト24、並びに切換ダンパ25を含み、この切換ダンパ25には、冷蔵、冷凍運転を切り換えるコントローラ26が接続されている。このコントローラ26は、膨張弁3,11と開閉弁91にも接続されており、例えば、冷凍室22の負荷が増大した場合、切換ダンパ25を、図示の位置に倒し、冷風を、冷凍室22に導く(冷凍運転)。この冷凍運転時には、開閉弁91を開いて、破線矢印で示すように、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部に導入する。また、冷蔵室21の負荷が増大した場合、切換ダンパ25を、図示の位置と反対の位置に倒し、冷風を、冷蔵室21に導く(冷蔵運転)。この冷蔵運転時には、開閉弁91を閉じ、圧縮機1の中間圧部へのガス冷媒の導入を禁止する。開閉弁91は禁止手段を構成する。   In this embodiment, it comprises a means 23 that selectively guides the cold air that has passed through the heat absorber 14 to a plurality of chambers (the refrigerator compartment 21 and the freezer compartment 22) that are controlled to different temperature zones. The means 23 includes a blower duct 24 and a switching damper 25, and a controller 26 that switches between refrigeration and freezing operation is connected to the switching damper 25. The controller 26 is also connected to the expansion valves 3 and 11 and the on-off valve 91. For example, when the load on the freezer compartment 22 increases, the switching damper 25 is brought down to the position shown in the figure, and the cool air is supplied to the freezer compartment 22. Lead to (freezing operation). During this refrigeration operation, the on-off valve 91 is opened, and the gas refrigerant separated by the gas-liquid separator 4 is introduced into the intermediate pressure portion of the compressor 1 as indicated by a broken line arrow. Moreover, when the load of the refrigerator compartment 21 increases, the switching damper 25 is brought down to a position opposite to the illustrated position, and the cold air is guided to the refrigerator compartment 21 (refrigeration operation). During this refrigeration operation, the on-off valve 91 is closed and the introduction of the gas refrigerant to the intermediate pressure portion of the compressor 1 is prohibited. The on-off valve 91 constitutes prohibiting means.

上述した冷媒回路内には、夏場で、外気温度が30℃以上になった場合、或いは、負荷が大きくなった場合等の条件によって、運転中に高圧側が超臨界圧力となる冷媒、例えば、二酸化炭素冷媒が封入されている。高圧側回路内が超臨界圧力で運転される冷媒には、ほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられる。   In the refrigerant circuit described above, a refrigerant in which the high pressure side becomes a supercritical pressure during operation, for example, when the outside air temperature becomes 30 ° C. or higher in summer or when the load becomes large, for example, Carbon refrigerant is enclosed. Other examples of the refrigerant that is operated at a supercritical pressure in the high-pressure side circuit include ethylene, diborane, ethane, nitrogen oxide, and the like.

上記構成において、気液分離器4で分離されたガス冷媒は、これを低圧側回路9に循環させたとしても、冷却に使用することができず、これを1段圧縮部1Aの吸い込みに戻すことは、冷凍サイクルの効率を低下させる。   In the above configuration, even if the gas refrigerant separated by the gas-liquid separator 4 is circulated to the low-pressure circuit 9, it cannot be used for cooling, and is returned to the suction of the first-stage compression unit 1A. This reduces the efficiency of the refrigeration cycle.

そこで、ガス冷媒を、圧縮機1の中間圧部に導入することになるが、本実施形態では、上述したコントローラ26による制御に基づいて、当該ガス冷媒を、温度帯の低い冷凍運転時には、圧縮機1の中間圧部に導入する一方で、温度帯の高い冷蔵運転時には、その中間圧部へのガス冷媒の導入を禁止する。   Therefore, although the gas refrigerant is introduced into the intermediate pressure portion of the compressor 1, in the present embodiment, the gas refrigerant is compressed during the refrigeration operation in a low temperature zone based on the control by the controller 26 described above. While being introduced into the intermediate pressure portion of the machine 1, the introduction of the gas refrigerant to the intermediate pressure portion is prohibited during refrigeration operation in a high temperature zone.

図2は、冷蔵、冷凍運転に係わらず、共に、ガス冷媒を圧縮機1の第1中間圧部Xに導入した場合における、2段圧縮2段膨張サイクルを示すph線図である。   FIG. 2 is a ph diagram showing a two-stage compression and two-stage expansion cycle when a gas refrigerant is introduced into the first intermediate pressure portion X of the compressor 1 regardless of whether the operation is refrigeration or refrigeration.

図2において、冷凍運転時(冷凍−26℃付近)には、実線で示すサイクルが形成される。(1)は、1段圧縮部1Aの吸い込み、(2)は、1段圧縮部1Aの吐出、(3)は、中間冷却器1Cの出口であり、2段圧縮部1Bの吸い込み、(4)は、2段圧縮部1Aの吐出である。圧縮機1から吐出された冷媒は、放熱器2を通って循環し冷却される。(5)は、第1膨張弁3の入口、(6)は、第1膨張弁3の出口であり、この状態では、ガス/液体の2相混合体になる。   In FIG. 2, a cycle indicated by a solid line is formed during the freezing operation (freezing at around −26 ° C.). (1) is the suction of the first-stage compression unit 1A, (2) is the discharge of the first-stage compression unit 1A, (3) is the outlet of the intercooler 1C, and the suction of the two-stage compression unit 1B, (4 ) Is the discharge of the two-stage compression section 1A. The refrigerant discharged from the compressor 1 circulates through the radiator 2 and is cooled. (5) is an inlet of the first expansion valve 3, and (6) is an outlet of the first expansion valve 3. In this state, a gas / liquid two-phase mixture is formed.

ここでのガスと液体の比率は、L1(ガス)の線分の長さと、L2(液体)の線分の長さとの比に相当する。この冷媒は2相混合体の状態で気液分離器4に入る。そして、ここで分離されたガス冷媒は、圧縮機1の中間圧部、即ち、中間冷却器1Cと2段圧縮部1Bとの間に導入される。(21)は、気液分離器4の出口であり、ここを経た冷媒は、(3)の2段圧縮部1Bの吸い込みに至り、2段圧縮部1Bで圧縮される。一方、気液分離器4で分離された液冷媒は低圧側回路9を循環する。(7)は、気液分離器4の出口であり、第2膨張弁11の入口、(8)は、第2膨張弁11の出口、(22)は、吸熱器14の出口である。この吸熱器14に入った液冷媒は、蒸発して熱を吸収する。(1)は、1段圧縮部1Aの吸い込みである。   The ratio of gas to liquid here corresponds to the ratio between the length of the line segment of L1 (gas) and the length of the line segment of L2 (liquid). This refrigerant enters the gas-liquid separator 4 in the state of a two-phase mixture. And the gas refrigerant isolate | separated here is introduce | transduced between the intermediate pressure parts of the compressor 1, ie, the intermediate cooler 1C, and the two-stage compression part 1B. (21) is the outlet of the gas-liquid separator 4, and the refrigerant that has passed through this reaches the suction of the two-stage compression section 1B of (3) and is compressed by the two-stage compression section 1B. On the other hand, the liquid refrigerant separated by the gas-liquid separator 4 circulates in the low-pressure side circuit 9. (7) is the outlet of the gas-liquid separator 4, the inlet of the second expansion valve 11, (8) is the outlet of the second expansion valve 11, and (22) is the outlet of the heat absorber 14. The liquid refrigerant that has entered the heat absorber 14 evaporates and absorbs heat. (1) is the suction of the first stage compression unit 1A.

これに対し、冷蔵運転時(冷蔵−5℃付近)には、破線で示すサイクルが形成される。即ち、(9)1段圧縮部1Aの吸い込み、(10)1段圧縮部1Aの吐出、(11)中間冷却器1Cの出口であり、2段圧縮部1Bの吸い込み、(12)2段圧縮部1Bの吐出、(5)第1膨張弁3の入口、(13)第1膨張弁3の出口、(14)気液分離器4の出口であり、第2膨張弁11の入口、(15)第2膨張弁11の出口、(9)1段圧縮部1Aの吸い込み、の順に状態が変化する。   On the other hand, the cycle shown with a broken line is formed at the time of refrigeration operation (refrigeration -5 degreeC vicinity). That is, (9) suction of the first stage compression unit 1A, (10) discharge of the first stage compression unit 1A, (11) outlet of the intermediate cooler 1C, suction of the second stage compression unit 1B, (12) two stage compression (5) Inlet of the first expansion valve 3, (13) Outlet of the first expansion valve 3, (14) Outlet of the gas-liquid separator 4, and inlet of the second expansion valve 11, (15 The state changes in the order of :) the outlet of the second expansion valve 11, and (9) the suction of the first stage compression unit 1A.

ところで、図2を参照すると、破線のサイクル(冷蔵運転時)での、第1膨張弁3の出口の圧力(13)は、実線のサイクル(冷凍運転時)での、第1膨張弁3の出口の圧力(6)に比べ、かなり高くなる。第1膨張弁3の出口の圧力が高くなると、気液分離器4に入る前の冷媒中のガス分が少なくなる。上述したように、気液分離器4の入口でのガスと液体との比率は、L1(ガス)とL2(液体)の比、或いはL3(ガス)とL4(液体)の比に相当するからである。これに従うと、実線のサイクル時(冷凍運転時)には、かなりの量のガス冷媒が、圧縮機1の中間圧部に導入されるが、破線のサイクル時(冷蔵運転時)には、導入されるガス冷媒量がわずかになる。   By the way, referring to FIG. 2, the pressure (13) at the outlet of the first expansion valve 3 in the broken line cycle (during refrigeration operation) is the same as that of the first expansion valve 3 in the solid line cycle (during refrigeration operation). Compared to the outlet pressure (6), it is considerably higher. When the pressure at the outlet of the first expansion valve 3 increases, the gas content in the refrigerant before entering the gas-liquid separator 4 decreases. As described above, the ratio of gas and liquid at the inlet of the gas-liquid separator 4 corresponds to the ratio of L1 (gas) and L2 (liquid) or the ratio of L3 (gas) and L4 (liquid). It is. According to this, a considerable amount of gas refrigerant is introduced into the intermediate pressure part of the compressor 1 during the solid line cycle (refrigeration operation), but is introduced during the broken line cycle (refrigeration operation). The amount of gas refrigerant to be used becomes small.

即ち、冷凍運転時には、圧縮機1の中間圧部に導入されるガスの冷媒量が多くなり、冷却に寄与しないガス分を低圧回路9に循環させない分だけ、冷凍サイクルの効率を向上させることができる。特に、本構成では、冷媒回路内に二酸化炭素冷媒が封入されているため、気液分離器4で分離されるガス及び液体の比率において、フロン系冷媒に比べ、ガス分が多くなり、その多くのガス分を、圧縮機1の中間圧部に導入することで、より高い効率向上が図られる。これに対して、温度帯の高い冷蔵運転時には、圧縮機1の中間圧部に導入される、ガス冷媒の発生量(L3)自体が少なくなるため、仮に、そこにガス冷媒を導入させる構成にしたとしても、例えば、配管構成等が複雑化するだけで、それほど圧縮機1の圧縮効率を向上させることができない。   That is, during the refrigeration operation, the refrigerant amount of the gas introduced into the intermediate pressure portion of the compressor 1 increases, and the efficiency of the refrigeration cycle can be improved by the amount that does not circulate the gas component that does not contribute to cooling to the low-pressure circuit 9. it can. In particular, in this configuration, since the carbon dioxide refrigerant is sealed in the refrigerant circuit, the ratio of gas and liquid separated by the gas-liquid separator 4 is larger than that of the chlorofluorocarbon refrigerant. By introducing this gas component into the intermediate pressure part of the compressor 1, higher efficiency can be improved. On the other hand, during the refrigeration operation in a high temperature zone, the amount of gas refrigerant generated (L3) itself that is introduced into the intermediate pressure portion of the compressor 1 is reduced. Even so, for example, the compression efficiency of the compressor 1 cannot be improved so much only by complicating the piping configuration and the like.

本実施形態では、より効果の高い冷凍運転時に限って、ガス冷媒を圧縮機1の中間圧部に導入する一方で、温度帯の高い冷蔵運転時には、その中間圧部へのガス冷媒の導入を禁止する構成としたため、簡単な配管構成で、しかも簡単な制御によって、可変サイクルが実現され、圧縮機1の効率向上が図られる。   In the present embodiment, the gas refrigerant is introduced into the intermediate pressure portion of the compressor 1 only during a more effective refrigeration operation, while the gas refrigerant is introduced into the intermediate pressure portion during a refrigeration operation in a high temperature zone. Since the configuration is prohibited, a variable cycle is realized with a simple piping configuration and simple control, and the efficiency of the compressor 1 is improved.

また、本実施形態では、選択的に異なる温度帯で機能する吸熱手段10の全て、即ち、第2膨張弁11、及び吸熱器14が、低圧側回路9に設けられているため、例えば、冷蔵運転を行う場合も、或いは冷凍運転を行う場合も、その効率を落とすことなく、きわめて高効率な運転を行うことが可能になる。   In the present embodiment, all of the heat absorbing means 10 that selectively function in different temperature zones, that is, the second expansion valve 11 and the heat absorber 14 are provided in the low-pressure side circuit 9. Even when the operation is performed or the refrigeration operation is performed, it is possible to perform an extremely efficient operation without reducing the efficiency.

図3は、冷蔵庫への適用例を示す。   FIG. 3 shows an application example to a refrigerator.

この冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。この冷凍室42の奥部には、庫内仕切り壁43が設けられ、この庫内仕切り壁43で仕切られた風路44内には、上述した吸熱器14が設置されている。上記風路44の入口Aには、第1切換ダンパ45が配置され、この第1切換ダンパ45は、風路44の入口Aを閉じる位置(破線位置)と、開く位置(実線位置)との間において切り換えられる。また、冷蔵庫40の背壁47には、背側風路46が形成され、第1切換ダンパ45が、破線位置に切り換えられた場合、この背側風路46を介して、風路44の入口Aと冷蔵室41とが連通する。また、上記風路44の出口Bには、ファン48と第2切換ダンパ49が配置され、この第2切換ダンパ49は、風路44の出口Bを閉じる位置(破線位置)と、開く位置(実線位置)との間で切り換えられ、この実線位置では、第2切換ダンパ49が中間仕切り壁50の開口51を塞ぐ。   The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. An interior partition wall 43 is provided at the back of the freezer compartment 42, and the above-described heat absorber 14 is installed in the air passage 44 partitioned by the interior partition wall 43. A first switching damper 45 is disposed at the inlet A of the air passage 44, and the first switching damper 45 is located between a position (broken line position) for closing the inlet A of the air path 44 and a position (solid line position) for opening. Be switched between. Further, when the back side air passage 46 is formed in the back wall 47 of the refrigerator 40 and the first switching damper 45 is switched to the position of the broken line, the entrance of the air passage 44 is connected via the back side air passage 46. A communicates with the refrigerator compartment 41. A fan 48 and a second switching damper 49 are disposed at the outlet B of the air passage 44, and the second switching damper 49 closes the outlet B of the air passage 44 (broken line position) and opens ( The second switching damper 49 closes the opening 51 of the intermediate partition wall 50 at this solid line position.

上記構成では、冷凍運転中において、圧縮機1がオンし、ファン48がオンし、開閉弁91が開かれ、各ダンパ45,49が実線位置に切り換えられる。これによって、冷凍室42内の空気が吸熱器14を循環し、冷凍室42に供給される。冷蔵運転中には、開閉弁91が閉じられ、各ダンパ45,49が破線位置に切り換えられる。これによって、冷蔵室41内の空気が、背側風路46を介して風路44に入り、吸熱器14を循環し、冷蔵室41に供給される。   In the above configuration, during the refrigeration operation, the compressor 1 is turned on, the fan 48 is turned on, the on-off valve 91 is opened, and the dampers 45 and 49 are switched to the solid line positions. As a result, the air in the freezer compartment 42 circulates through the heat absorber 14 and is supplied to the freezer compartment 42. During the refrigeration operation, the on-off valve 91 is closed and the dampers 45 and 49 are switched to the broken line positions. As a result, the air in the refrigerator compartment 41 enters the air passage 44 via the back air passage 46, circulates through the heat absorber 14, and is supplied to the refrigerator compartment 41.

図4は、別の構成を示す。図3と比較した場合、風路44の出入口におけるダンパ構成が相違する。入口Aのダンパが、2つのダンパ145A,145Bで構成され、出口Bのダンパが、2つのダンパ149A,149Bで構成される。本構成であっても、略同様の作用効果を得ることができる。   FIG. 4 shows another configuration. When compared with FIG. 3, the damper configuration at the entrance / exit of the air passage 44 is different. The damper at the entrance A is composed of two dampers 145A and 145B, and the damper at the exit B is composed of two dampers 149A and 149B. Even in this configuration, substantially the same effect can be obtained.

図5は、別の冷媒回路の構成を示す。   FIG. 5 shows the configuration of another refrigerant circuit.

本構成では、図1と比較した場合、吸熱手段10の構成が相違している。この吸熱手段10は、三方弁11と、第1キャピラリーチューブ12と、第1キャピラリーチューブ12に直列に設けられた冷蔵用の吸熱器57と、これらと並列に設けられた第2キャピラリーチューブ13と、第2キャピラリーチューブ13に直列に設けられた冷凍用の吸熱器58とを備えて構成される。59は逆止弁である。三方弁11の切り換えによって、第1キャピラリーチューブ12に冷媒が流れると、一つの吸熱器14に流れる流量が増し、冷蔵運転が行われる。また、第2キャピラリーチューブ13に冷媒が流れると、一つの吸熱器14に流れる流量が減り、冷凍運転が行われる。   In this configuration, when compared with FIG. 1, the configuration of the heat absorbing means 10 is different. The heat absorption means 10 includes a three-way valve 11, a first capillary tube 12, a refrigeration heat absorber 57 provided in series with the first capillary tube 12, and a second capillary tube 13 provided in parallel with these. And a refrigeration heat absorber 58 provided in series with the second capillary tube 13. 59 is a check valve. When the refrigerant flows through the first capillary tube 12 by switching the three-way valve 11, the flow rate flowing through one heat absorber 14 increases, and the refrigeration operation is performed. Further, when the refrigerant flows through the second capillary tube 13, the flow rate flowing through one heat absorber 14 is reduced, and the refrigeration operation is performed.

図6は、冷蔵庫への適用例を示す。   FIG. 6 shows an application example to a refrigerator.

この冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。そして、各室41,42の奥部には、夫々庫内仕切り壁61,62が設けられ、この庫内仕切り壁61,62で仕切られた風路44内には、上述した吸熱器57,58、並びにファン63,64が設置されている。本構成では、冷蔵運転、及び冷凍運転のサーモオン、サーモオフに従い、三方弁11を切り換えて、いずれか一方の吸熱器57,58に冷媒を流し、それに対応したファン62,63を駆動する。   The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. And the inner partition walls 61 and 62 are provided in the inner part of each chamber 41 and 42, respectively, and in the air path 44 partitioned by this inner partition wall 61 and 62, the heat absorber 57, 58 and fans 63 and 64 are installed. In this configuration, the three-way valve 11 is switched in accordance with the thermo-on and the thermo-off of the refrigeration operation and the freezing operation, the refrigerant flows through one of the heat absorbers 57 and 58, and the fans 62 and 63 corresponding thereto are driven.

図7は、別の構成を示す。図6と比較した場合、吸熱手段10の構成が相違する。この吸熱手段10は、三方弁が省略される一方で、各キャピラリーチューブ12,13に直列に電動弁65,66が接続される。本構成では、冷蔵運転、及び冷凍運転のサーモオン、サーモオフに従い、上記電動弁65,66をオン、又はオフさせ、いずれか一方の吸熱器57,58に選択的に冷媒を流すと共に、それに対応したファン62,63を駆動する。これら実施形態でも、略同様の作用効果が得られる。   FIG. 7 shows another configuration. Compared with FIG. 6, the configuration of the heat absorbing means 10 is different. In the heat absorbing means 10, motor valves 65 and 66 are connected in series to the capillary tubes 12 and 13, while a three-way valve is omitted. In this configuration, the motor-operated valves 65 and 66 are turned on or off in accordance with the thermo-on and thermo-off of the refrigeration operation and the freezing operation, and the refrigerant is selectively allowed to flow through one of the heat absorbers 57 and 58, and correspondingly. The fans 62 and 63 are driven. In these embodiments, substantially the same operation and effect can be obtained.

以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではなく、種々の変更実施が可能である。上記実施形態では、禁止手段を開閉弁91で構成したが、これに限定されるものではなく、例えば、冷凍運転時に、ガス分を圧縮機1の中間圧部に導入し、冷蔵運転時には、その導入を禁止することが可能であれば、逆止弁等を組み合わせて形成した回路構成であってもよい。また、上記実施形態では、冷媒回路中に二酸化炭素冷媒を封入しているが、これに限定されるものではなく、それ以外のフロン系冷媒等を封入したものにも適用可能なことは云うまでもない。さらに、上記導入手段5は、その運転状況に応じて、ガス分を圧縮機1の中間圧部に導入できればよく、その具体的構成、並びに、その導入位置は任意である。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this, A various change implementation is possible. In the above embodiment, the prohibiting means is configured by the on-off valve 91, but is not limited thereto. For example, during the refrigeration operation, a gas component is introduced into the intermediate pressure portion of the compressor 1, and during the refrigeration operation, As long as introduction can be prohibited, a circuit configuration formed by combining check valves and the like may be used. In the above embodiment, the carbon dioxide refrigerant is enclosed in the refrigerant circuit, but the present invention is not limited to this, and it can be applied to other refrigerant-filled refrigerants. Nor. Furthermore, the introduction means 5 only needs to be able to introduce a gas component into the intermediate pressure portion of the compressor 1 in accordance with the operation status, and the specific configuration and the introduction position thereof are arbitrary.

本発明に係る冷凍装置の一実施の形態を示す冷媒回路図である。It is a refrigerant circuit figure showing one embodiment of the refrigerating device concerning the present invention. 冷凍サイクルのエンタルピ・圧力線図である。It is an enthalpy and pressure diagram of a refrigeration cycle. 冷蔵庫への適用例を示す図である。It is a figure which shows the example of application to a refrigerator. 冷蔵庫への適用例を示す図である。It is a figure which shows the example of application to a refrigerator. 別の実施の形態を示す冷媒回路図である。It is a refrigerant circuit diagram which shows another embodiment. 冷蔵庫への適用例を示す図である。It is a figure which shows the example of application to a refrigerator. 冷蔵庫への適用例を示す図である。It is a figure which shows the example of application to a refrigerator.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 減圧装置
4 気液分離器
5 導入手段
6 ガス管
10 吸熱手段
14 吸熱器
21 冷蔵室
22 冷凍室
25 切換ダンパ
30 冷凍装置
91 開閉弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing device 4 Gas-liquid separator 5 Introduction means 6 Gas pipe 10 Heat absorption means 14 Heat absorber 21 Refrigeration room 22 Freezing room 25 Switching damper 30 Refrigerating device 91 Opening and closing valve 91

Claims (5)

1段圧縮部と2段圧縮部とを含み、前記1段圧縮部と2段圧縮部との間に中間冷却器を備える圧縮機、放熱器、減圧装置、気液分離器と、この気液分離器で分離された、超臨界圧力となるガス冷媒を前記圧縮機の中間冷却器と2段圧縮部との間に導入可能な手段と、前記気液分離器で分離された液冷媒を循環させる低圧側回路と、この低圧側回路には選択的に異なる温度帯で機能する吸熱手段と、この吸熱手段を高い温度帯で機能させる場合、前記気液分離器で分離された前記ガス冷媒の前記圧縮機の中間冷却器と2段圧縮部との間への導入を禁止する禁止手段を備え
前記吸熱手段が互いに異なる温度帯で機能する複数の吸熱器を備え、夫々の吸熱器が選択的に機能し、当該吸熱器を経た冷風を、夫々対応する温度帯に制御される室に導く手段を備えたことを特徴とする冷凍装置。
And a first-stage compressing section and the second-stage compressing section, a compressor having an intermediate cooler between the first-stage compressing section and the second-stage compressing section, a radiator, a pressure reducing device, a gas-liquid separator, separated by the gas-liquid separator, a unit can be introduced between the intermediate cooler and the second-stage compressing section of the compressor of the gas refrigerant that reaches a supercritical pressure, the liquid separated by the gas-liquid separator a low pressure side circuit for circulating a refrigerant, and a heat absorbing means which function in selected distinct temperature zone in the low pressure side circuit, if to function this endothermic device at a high temperature zone, separated by the gas-liquid separator comprising a prohibiting means for prohibiting the introduction to between the intermediate cooler and the second-stage compressing section of the compressor of the gas refrigerant,
The heat absorption means includes a plurality of heat absorbers that function in different temperature zones, each of the heat absorbers selectively functions, and the cool air that has passed through the heat absorber is guided to a chamber that is controlled to a corresponding temperature zone. A refrigeration apparatus comprising:
前記禁止手段が開閉弁で構成されることを特徴とする請求項1記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the prohibiting means includes an on-off valve. 前記吸熱器が夫々対応する温度帯に制御される室に設置されていることを特徴とする請求項1記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the heat absorber is installed in a room controlled in a corresponding temperature zone. 前記吸熱手段が選択的に異なる温度帯で機能する一つの吸熱器を備え、この吸熱器を経た冷風を、夫々異なる温度帯に制御される複数の室に切換ダンパを介して選択的に導く手段を備えたことを特徴とする請求項1乃至3のいずれか一項記載の冷凍装置。   The heat absorption means includes one heat absorber that selectively functions in different temperature zones, and the cool air that has passed through the heat absorber is selectively guided to a plurality of chambers that are controlled in different temperature zones through switching dampers. The refrigeration apparatus according to any one of claims 1 to 3, further comprising: 前記吸熱器が低い温度帯に制御される室に設置されていることを特徴とする請求項4記載の冷凍装置。   The refrigerating apparatus according to claim 4, wherein the heat absorber is installed in a chamber controlled in a low temperature zone.
JP2004079342A 2004-03-19 2004-03-19 Refrigeration equipment Expired - Fee Related JP4115414B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004079342A JP4115414B2 (en) 2004-03-19 2004-03-19 Refrigeration equipment
KR1020050018959A KR100642709B1 (en) 2004-03-19 2005-03-08 Refrigerator
EP05005611A EP1577622A3 (en) 2004-03-19 2005-03-15 Refrigerating machine
US11/080,422 US20050204773A1 (en) 2004-03-19 2005-03-16 Refrigerating machine
CNB2005100563939A CN100338409C (en) 2004-03-19 2005-03-18 Refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079342A JP4115414B2 (en) 2004-03-19 2004-03-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005265317A JP2005265317A (en) 2005-09-29
JP4115414B2 true JP4115414B2 (en) 2008-07-09

Family

ID=35090061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079342A Expired - Fee Related JP4115414B2 (en) 2004-03-19 2004-03-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4115414B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192433A (en) * 2006-01-17 2007-08-02 Daikin Ind Ltd Gas-liquid separator, and refrigerating device comprising the same
JP5315179B2 (en) * 2009-09-09 2013-10-16 日立アプライアンス株式会社 refrigerator
JP5828131B2 (en) * 2011-06-16 2015-12-02 パナソニックIpマネジメント株式会社 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus

Also Published As

Publication number Publication date
JP2005265317A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
KR100642709B1 (en) Refrigerator
KR100585353B1 (en) Refrigerator
US20060218952A1 (en) Refrigerating device and refrigerator
US7331196B2 (en) Refrigerating apparatus and refrigerator
EP1489367B1 (en) Refrigerating cycle device
JP5195364B2 (en) Ejector refrigeration cycle
KR100610294B1 (en) Refrigerator
JP2009092249A (en) Refrigerant cycle device with ejector
US20060123817A1 (en) Air conditioner
JP4118254B2 (en) Refrigeration equipment
JP5359231B2 (en) Ejector refrigeration cycle
JP2006207980A (en) Refrigerating apparatus and refrigerator
KR100695370B1 (en) Refrigerating apparatus and refrigerator
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP2013203221A (en) Air conditioner for vehicle
JP2002107027A (en) Refrigerator with deep freezer, and method for operating the refrigerator with deep freezer
JP2001235245A (en) Freezer
KR100574717B1 (en) Freezing cycle apparatus
JP2007078349A (en) Ejector cycle
JP2019100644A (en) Refrigeration cycle device
JP4115414B2 (en) Refrigeration equipment
JP2010060181A (en) Refrigeration system
JP2005265316A (en) Refrigeration device
JP2006266655A (en) Refrigerating device, refrigerator, and gas-liquid separator
JP2006207982A (en) Refrigerating apparatus and refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees