JP2006266655A - Refrigerating device, refrigerator, and gas-liquid separator - Google Patents

Refrigerating device, refrigerator, and gas-liquid separator Download PDF

Info

Publication number
JP2006266655A
JP2006266655A JP2005100182A JP2005100182A JP2006266655A JP 2006266655 A JP2006266655 A JP 2006266655A JP 2005100182 A JP2005100182 A JP 2005100182A JP 2005100182 A JP2005100182 A JP 2005100182A JP 2006266655 A JP2006266655 A JP 2006266655A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid separator
compressor
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100182A
Other languages
Japanese (ja)
Inventor
Satoru Imai
悟 今井
Hiroyuki Sai
博之 斎
Akira Sugawara
晃 菅原
Hiroshi Mukoyama
洋 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005100182A priority Critical patent/JP2006266655A/en
Priority to EP06001722A priority patent/EP1686330A2/en
Priority to KR1020060008602A priority patent/KR100741241B1/en
Priority to US11/342,882 priority patent/US20060168996A1/en
Publication of JP2006266655A publication Critical patent/JP2006266655A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device capable of restraining a desiccant from being crushed even in the case of using a refrigerant such as carbon dioxide, and to provide a refrigerator, and a gas-liquid separator provided in a refrigerating cycle. <P>SOLUTION: The refrigerating device 30 comprises a compressor 1; a radiator 2 connected to the discharge side of the compressor 1; a pressure reducing means connected to the outlet side of the radiator 2; and a heat sink 14 connected to the outlet side of the pressure reducing means. The refrigerating device 30 is constituted such that the refrigerant flowing out of the heat sink 14 is led into a suction port of the compressor 1. The pressure reducing means comprises a first pressure reducing means 31 and a second pressure reducing means 12 or 13, and the gas-liquid separator 4 is provided between the first pressure reducing means 31 and the second pressure reducing means 12 or 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は冷媒中の水分吸着手段を備えた冷凍装置、冷蔵庫及びこれらの冷凍サイクル中に設けられ気液混合冷媒の気液分離を行う気液分離器に関する。   The present invention relates to a refrigeration apparatus having a moisture adsorbing means in a refrigerant, a refrigerator, and a gas-liquid separator that is provided in these refrigeration cycles and performs gas-liquid separation of a gas-liquid mixed refrigerant.

一般に、圧縮機等を備えた冷凍サイクルを有する冷凍装置において、冷凍サイクル中に混入している水分により配管内部が凍結することがあり、これにより冷凍サイクルの信頼性が低下する場合がある。このような冷凍装置において、上記の如き凍結を防止する手段として、冷凍サイクル中に水分除去手段としてのドライヤを配置することが知られている。   In general, in a refrigeration apparatus having a refrigeration cycle equipped with a compressor or the like, the inside of a pipe may be frozen by moisture mixed in the refrigeration cycle, which may reduce the reliability of the refrigeration cycle. In such a refrigeration apparatus, as a means for preventing freezing as described above, it is known to arrange a dryer as a moisture removing means in the refrigeration cycle.

特許文献1には圧縮機、凝縮器、膨張弁、蒸発器などを備えた冷凍装置において、冷凍サイクルの高圧側である凝縮器出口側と膨張弁入口側との間に、冷媒中に混入した水分を除去するためのゼオライト等を充填したドライヤを配置することが記載されている。
特開平11−21548号公報
In Patent Document 1, in a refrigeration apparatus including a compressor, a condenser, an expansion valve, an evaporator, and the like, the refrigerant is mixed in the refrigerant between the condenser outlet side and the expansion valve inlet side, which are the high pressure side of the refrigeration cycle. It is described that a dryer filled with zeolite or the like for removing moisture is arranged.
Japanese Patent Laid-Open No. 11-21548

ところで、この種の冷凍装置において、例えば高圧側が超臨界圧で運転されることがある二酸化炭素等を冷媒として用いる場合がある。このような二酸化炭素冷媒を用いた冷凍装置においては、冷凍サイクルの高圧側がHFC(ハイドロフルオロカーボン)等の冷媒に比べてより高温、高圧となるため、上記従来の如く冷凍サイクルの高圧側にドライヤを設けた場合には、当該ドライヤ内部に充填された乾燥剤が破砕する恐れがあった。   By the way, in this type of refrigeration apparatus, for example, carbon dioxide or the like whose high pressure side may be operated at a supercritical pressure may be used as a refrigerant. In such a refrigeration apparatus using a carbon dioxide refrigerant, the high pressure side of the refrigeration cycle is higher in temperature and pressure than refrigerants such as HFC (hydrofluorocarbon), and thus a dryer is provided on the high pressure side of the refrigeration cycle as in the conventional case. When provided, the desiccant filled inside the dryer may be crushed.

そこで本発明は、二酸化炭素等の冷媒を用いた場合にも乾燥剤の破砕を抑制することができる冷凍装置、冷蔵庫及びこれらの冷凍サイクル中に設けられる気液分離器を提供することを目的とする。   Therefore, an object of the present invention is to provide a refrigeration apparatus, a refrigerator, and a gas-liquid separator provided in these refrigeration cycles that can suppress crushing of the desiccant even when a refrigerant such as carbon dioxide is used. To do.

本発明の冷凍装置は、圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段と直列に接続される第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、を含む冷凍サイクルを備えた冷凍装置において、前記第1の減圧手段の出口側と前記第2の減圧手段の入口側との間に、冷媒中の水分を吸着するための吸着手段を備えたことを特徴とする。   The refrigeration apparatus of the present invention includes a compressor, a radiator connected to the discharge side of the compressor, a first decompression unit connected to the outlet side of the radiator, and a series of the first decompression unit. In a refrigeration apparatus comprising a refrigeration cycle including a second decompression unit connected to the heat sink, and a heat absorber connected to an outlet side of the second decompression unit, the outlet side of the first decompression unit and the Adsorption means for adsorbing moisture in the refrigerant is provided between the inlet side of the second decompression means.

本発明の気液分離器は、ガスと液体の混合冷媒が導入され内部でガスと液体の分離が行われる容器と、この容器内に前記冷媒を導入するための導入管と、前記容器内で分離されたガス冷媒が流出する第1の出口管と、前記容器内で分離された液冷媒が流出する第2の出口管と、を備え、前記容器内には、冷媒中の水分を吸着するための吸着部を備えたことを特徴とする。   The gas-liquid separator of the present invention includes a container in which a mixed refrigerant of gas and liquid is introduced and gas and liquid are separated inside, an introduction pipe for introducing the refrigerant into the container, A first outlet pipe from which the separated gas refrigerant flows out; and a second outlet pipe from which the liquid refrigerant separated in the container flows out, and adsorbs moisture in the refrigerant in the container. It is characterized by having an adsorption part for the purpose.

請求項3に記載の冷凍装置は、圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段と直列に接続される第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、を含む冷凍サイクルを備えた冷凍装置において、前記第1の減圧手段の出口側と前記第2の減圧手段の入口側との間に、請求項2に記載の気液分離器を備えたことを特徴とする。   The refrigeration apparatus according to claim 3 includes a compressor, a radiator connected to a discharge side of the compressor, a first decompression unit connected to an outlet side of the radiator, and the first decompression. In the refrigeration apparatus comprising a refrigeration cycle including a second decompression means connected in series with the means and a heat absorber connected to the outlet side of the second decompression means, the outlet of the first decompression means The gas-liquid separator according to claim 2 is provided between the side and the inlet side of the second decompression means.

請求項4に記載の発明は、請求項3に記載の冷凍装置において、前記圧縮機は中間圧部を有し、前記気液分離器の第1の出口管を前記中間圧部に接続したことを特徴とする。   According to a fourth aspect of the present invention, in the refrigeration apparatus according to the third aspect, the compressor has an intermediate pressure portion, and the first outlet pipe of the gas-liquid separator is connected to the intermediate pressure portion. It is characterized by.

請求項5に記載の発明は、請求項1、請求項3又は請求項4のいずれか一項に記載の冷凍装置において、前記冷凍サイクルの高圧部が超臨界圧力で運転されることを特徴とする。   The invention according to claim 5 is the refrigeration apparatus according to any one of claims 1, 3, or 4, wherein the high-pressure portion of the refrigeration cycle is operated at a supercritical pressure. To do.

請求項6に記載の発明は、請求項1、請求項3、請求項4又は請求項5のいずれか一項に記載の冷凍装置において、冷媒として二酸化炭素を用いたことを特徴とする。   A sixth aspect of the present invention is characterized in that in the refrigeration apparatus according to any one of the first, third, fourth, or fifth aspect, carbon dioxide is used as a refrigerant.

本発明の冷蔵庫は、請求項1、請求項3、請求項4、請求項5又は請求項6のいずれか一項に記載の冷凍装置を備えたことを特徴とする。   A refrigerator according to the present invention includes the refrigeration apparatus according to any one of claims 1, 3, 4, 5, and 6.

本発明によれば、二酸化炭素等の冷媒を用いた場合にも乾燥剤の破砕を抑制することができる冷凍装置、冷蔵庫が提供される。更に本発明によれば、吸熱器において熱交換に寄与しない冷媒の気相成分が多い場合でも性能向上できる冷凍装置、冷蔵庫及びこれらの冷凍サイクル中に設ける気液分離器が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even when refrigerant | coolants, such as a carbon dioxide, are used, the freezing apparatus and refrigerator which can suppress crushing of a desiccant are provided. Furthermore, according to the present invention, there are provided a refrigeration apparatus, a refrigerator, and a gas-liquid separator provided in these refrigeration cycles, which can improve performance even when the gas phase component of the refrigerant that does not contribute to heat exchange in the heat absorber is large.

本発明は、二酸化炭素等の冷媒を用いた場合にも乾燥剤の破砕を抑制可能な冷凍装置、冷蔵庫及びこれらの冷凍サイクル中に設けられる気液分離器を提供するものである。以下、本発明の実施の形態を図面に基づき詳細に説明する。   The present invention provides a refrigeration apparatus, a refrigerator, and a gas-liquid separator provided in these refrigeration cycles that can suppress crushing of the desiccant even when a refrigerant such as carbon dioxide is used. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施例を図面に基づき詳述する。図1は、本発明の一実施例としての冷凍装置の冷媒回路図を示している。   An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of a refrigerating apparatus as one embodiment of the present invention.

冷凍装置30は、圧縮機1と、この圧縮機1の吐出側に接続される放熱器2と、この放熱器2の出口側に接続される第3キャピラリチューブ31と、この第3キャピラリチューブ31の出口側に接続される気液分離器4と、この気液分離器で分離された液冷媒が流通する吸熱手段8と、この吸熱手段8から出た冷媒と第3キャピラリチューブ31付近の冷媒とを熱交換可能に構成される第1熱交換器15と、を備え、気液分離器4で分離されたガス冷媒が流れる冷媒導入管6が圧縮機1の中間圧部に、第1熱交換器15の出口側が圧縮機1の吸い込み口に接続されて冷凍サイクルが構成されている。   The refrigeration apparatus 30 includes a compressor 1, a radiator 2 connected to the discharge side of the compressor 1, a third capillary tube 31 connected to the outlet side of the radiator 2, and the third capillary tube 31. The gas-liquid separator 4 connected to the outlet side of the gas, the heat absorption means 8 through which the liquid refrigerant separated by the gas-liquid separator flows, the refrigerant discharged from the heat absorption means 8 and the refrigerant in the vicinity of the third capillary tube 31 And a first heat exchanger 15 configured to be capable of exchanging heat, and a refrigerant introduction pipe 6 through which a gas refrigerant separated by the gas-liquid separator 4 flows is provided in the intermediate pressure portion of the compressor 1 as a first heat. The outlet side of the exchanger 15 is connected to the suction port of the compressor 1 to constitute a refrigeration cycle.

また、気液分離器4と圧縮機1の中間圧部との間の冷媒導入管6には逆止弁7が備えられると共に、第1熱交換器15と圧縮機1の吸い込み口との間には逆止弁53が備えられている。   The refrigerant introduction pipe 6 between the gas-liquid separator 4 and the intermediate pressure portion of the compressor 1 is provided with a check valve 7 and between the first heat exchanger 15 and the suction port of the compressor 1. Is provided with a check valve 53.

吸熱手段8は、三方弁91と、第1キャピラリチューブ12と、この第1キャピラリチューブ12と並列に設けられ第1のキャピラリチューブ12よりも抵抗値の大きい第2キャピラリチューブ13と、これら第1及び第2キャピラリチューブ12、13からの冷媒配管が合流する合流点9Aの後に接続された吸熱器14と、を含む。この吸熱手段8は選択的に異なる温度帯で機能するものであり、気液分離器4から出た液冷媒が三方弁91の切り換えによって、第1キャピラリチューブ12側に冷媒が流れると吸熱器14を流れる冷媒の流量が増加して冷蔵運転が行われる。   The heat absorbing means 8 includes a three-way valve 91, a first capillary tube 12, a second capillary tube 13 provided in parallel with the first capillary tube 12 and having a higher resistance value than the first capillary tube 12, and the first capillary tube 12. And a heat absorber 14 connected after the junction 9A where the refrigerant pipes from the second capillary tubes 12 and 13 merge. The heat absorbing means 8 functions selectively in different temperature zones, and when the liquid refrigerant discharged from the gas-liquid separator 4 flows to the first capillary tube 12 side by switching the three-way valve 91, the heat absorber 14 Refrigeration operation is performed by increasing the flow rate of the refrigerant flowing through.

一方、三方弁91の切り換えによって、第2キャピラリチューブ13側に冷媒が流れると吸熱器14を流れる冷媒の流量が低下して冷凍運転が行われる。   On the other hand, when the refrigerant flows to the second capillary tube 13 side by switching the three-way valve 91, the flow rate of the refrigerant flowing through the heat absorber 14 is reduced and the refrigeration operation is performed.

尚、このような冷蔵運転及び冷凍運転の切り換えは、上記の如く第1及び第2キャピラリチューブ12、13の切り換えによる方法の他に、圧縮機1の回転数を変化させることで、吸熱器14を流れる冷媒の流量を制御することによっても可能であり、更にこれらの方法を組み合わせることで実現しても良い。   In addition to the method of switching the first and second capillary tubes 12 and 13 as described above, the switching between the refrigeration operation and the freezing operation is performed by changing the rotational speed of the compressor 1 to change the heat absorber 14. It is also possible by controlling the flow rate of the refrigerant flowing through, and may be realized by combining these methods.

また冷凍装置30は、吸熱器14で発生する冷気を図示しないファンにより送風し、異なる温度帯で制御される複数の室(冷蔵室21、冷凍室22)に選択的に導く選択手段23を備えて構成される。   The refrigeration apparatus 30 also includes selection means 23 that sends cool air generated in the heat absorber 14 by a fan (not shown) and selectively guides it to a plurality of chambers (the refrigerator compartment 21 and the freezer compartment 22) controlled in different temperature zones. Configured.

この選択手段23は、送風ダクト24と切換ダンパ25とを含み、この切換ダンパ25と、冷蔵室21との間にはダクト57Aが、冷凍室22との間にはダクト58Aが備えられる。また切換ダンパ25には、制御装置26が接続されている。この制御装置26は、上述した三方弁91に接続されており、例えば、冷凍運転時には三方弁91を第2キャピラリチューブ13側に切り換えると共に、切換ダンパ25をダクト58Aに冷風が流れるように切り換えて冷凍室22に冷風を導入し、冷蔵運転時には三方弁91を第1キャピラリチューブ12側に切り換えると共に、切換ダンパ25をダクト57Aに冷風が流れるように切り換えて冷蔵室21に冷風を導入する。   The selection means 23 includes a blower duct 24 and a switching damper 25, and a duct 57 </ b> A is provided between the switching damper 25 and the refrigerator compartment 21, and a duct 58 </ b> A is provided between the freezer compartment 22. A control device 26 is connected to the switching damper 25. The control device 26 is connected to the above-described three-way valve 91. For example, during the refrigeration operation, the three-way valve 91 is switched to the second capillary tube 13 side, and the switching damper 25 is switched so that cold air flows through the duct 58A. Cold air is introduced into the freezer compartment 22 and the three-way valve 91 is switched to the first capillary tube 12 side during refrigeration operation, and the switching damper 25 is switched so that the cold air flows through the duct 57A to introduce cold air into the refrigerator compartment 21.

圧縮機1は2段圧縮機であり、密閉容器内に1段圧縮部1Aと2段圧縮部1Bとを含み、1段圧縮部1Aと2段圧縮部1Bとを接続する前記密閉容器外の冷媒配管上に中間冷却器1Cが備えられる。   The compressor 1 is a two-stage compressor, includes a first-stage compression unit 1A and a two-stage compression unit 1B in a hermetic container, and connects the first-stage compression unit 1A and the second-stage compression unit 1B. An intercooler 1C is provided on the refrigerant pipe.

また、上述したように冷媒導入管6は、気液分離器4で分離されたガス冷媒を圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入可能に接続される。尚、この分離されたガス冷媒は冷媒導入管6内の差圧により破線矢印で示すように圧縮機1の中間圧部に導入される。尚、この圧縮機1は2段圧縮機に限定するものではなく、例えば、1段圧縮機であれば冷媒導入管6は1段圧縮機の中間圧部に戻せばよい。また、複数台の圧縮機を接続した構成でも可能でよい。   Further, as described above, the refrigerant introduction pipe 6 can introduce the gas refrigerant separated by the gas-liquid separator 4 between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B. Connected. The separated gas refrigerant is introduced into the intermediate pressure portion of the compressor 1 by the differential pressure in the refrigerant introduction pipe 6 as indicated by a broken line arrow. The compressor 1 is not limited to a two-stage compressor. For example, if the compressor 1 is a first-stage compressor, the refrigerant introduction pipe 6 may be returned to the intermediate pressure portion of the first-stage compressor. Further, a configuration in which a plurality of compressors are connected may be possible.

ここで、気液分離器4について図2を参照して説明する。図2は気液分離器4の概略断面図である。   Here, the gas-liquid separator 4 will be described with reference to FIG. FIG. 2 is a schematic sectional view of the gas-liquid separator 4.

気液分離器4は、略円柱状の中空体で形成されている容器80と、第1吸着部81Aと、この第1吸着部81Aの上下に設けられ当該吸着部81Aを容器80内で固定するための支持部材81B、81Cと、第2吸着部82Aと、この第2吸着部82Aの上下に設けられ当該吸着部82Aを容器80内で固定するための支持部材82B、82Cと、を含む。そして、容器80は、側面には放熱器2を出た気液混合状態の冷媒を導入するための冷媒配管4Aが、天面には気液分離器4で分離されたガス冷媒が流出し圧縮機1の中間圧部に接続される冷媒導入管6が、底面には気液分離器4で分離された液冷媒が流出し三方弁91に接続される冷媒配管4Bが、取付けされている。尚、分離された液冷媒は、容器80内の下部から、冷媒配管4Bにかけた部分に溜まることになる。   The gas-liquid separator 4 is provided with a container 80 formed of a substantially cylindrical hollow body, a first adsorption part 81A, and upper and lower parts of the first adsorption part 81A, and the adsorption part 81A is fixed in the container 80. Support members 81B and 81C, a second suction part 82A, and support members 82B and 82C provided above and below the second suction part 82A and for fixing the suction part 82A in the container 80. . The container 80 has a refrigerant pipe 4A for introducing the gas-liquid mixed refrigerant that has exited the radiator 2 on the side surface, and a gas refrigerant separated by the gas-liquid separator 4 flows out and compressed on the top surface. The refrigerant introduction pipe 6 connected to the intermediate pressure part of the machine 1 is attached to the bottom face, and the refrigerant pipe 4B from which the liquid refrigerant separated by the gas-liquid separator 4 flows out and connected to the three-way valve 91 is attached. Note that the separated liquid refrigerant is accumulated in a portion that is applied to the refrigerant pipe 4 </ b> B from the lower part in the container 80.

第1及び第2吸着部81A、82Aは、冷媒中に混入した水分を吸着除去するためのものであり、所謂乾燥剤としての活性アルミナ、ゼオライト若しくはモレキュラーシーブなどが充填されている。また、支持部材81B、81C、82B、82Cは、上記吸着部81A、82Aの流出が防止でき且つ冷媒を流通可能に構成されるものであれば良く、例えば金属メッシュや樹脂メッシュなどが用いられる。   The first and second adsorbing portions 81A and 82A are for adsorbing and removing moisture mixed in the refrigerant, and are filled with activated alumina, zeolite, or molecular sieve as a so-called desiccant. Further, the support members 81B, 81C, 82B, and 82C may be configured so that the adsorbing portions 81A and 82A can be prevented from flowing out and the refrigerant can be circulated. For example, a metal mesh or a resin mesh is used.

そして、本実施例の冷凍装置30には冷媒として環境負荷が小さく、可燃性及び毒性等を考慮して自然冷媒である二酸化炭素冷媒(CO2)が封入されている。また圧縮機2の潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)、POE(ポリオールエステル)等が使用される。 The refrigeration apparatus 30 of this embodiment has a small environmental load as a refrigerant, and carbon dioxide refrigerant (CO 2 ), which is a natural refrigerant, is enclosed in consideration of flammability and toxicity. Further, as the oil as the lubricating oil of the compressor 2, for example, mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkylene glycol), POE (polyol ester) and the like are used.

このように冷凍装置30では冷媒として二酸化炭素を用いているため、例えば外気温が二酸化炭素の臨界温度(約+31℃)以上となった場合に、冷凍サイクルの高圧部は超臨界状態となり、これにより冷凍装置30は遷臨界サイクルとして運転される。   Thus, since the refrigeration apparatus 30 uses carbon dioxide as a refrigerant, for example, when the outside air temperature becomes equal to or higher than the critical temperature of carbon dioxide (about + 31 ° C.), the high-pressure portion of the refrigeration cycle becomes a supercritical state. Thus, the refrigeration apparatus 30 is operated as a transcritical cycle.

尚、本実施例では、図1中、2段圧縮部1Bの吐出側から放熱器2を経て、第3キャピラリチューブ31入口までが冷凍装置30の冷凍サイクルの高圧部として運転され、また1段圧縮部1Aの吐出側から中間冷却器1Cを経て2段圧縮部1Bの吸い込み口まで、並びに第3キャピラリチューブ31出口から気液分離器4を経て2段圧縮部1Bの吸い込み口まで、及び三方弁91までが冷凍装置30の冷凍サイクルの中間圧部として運転される。そして、三方弁91出口から吸熱手段8及び第1熱交換器15を経て1段圧縮部1Aの吸い込み口までが冷凍装置30の冷凍サイクルの低圧部として運転されることになる。   In this embodiment, in FIG. 1, the operation from the discharge side of the two-stage compression section 1B through the radiator 2 to the inlet of the third capillary tube 31 is operated as the high-pressure section of the refrigeration cycle of the refrigeration apparatus 30. From the discharge side of the compression unit 1A to the suction port of the two-stage compression unit 1B through the intermediate cooler 1C, from the outlet of the third capillary tube 31 to the suction port of the two-stage compression unit 1B through the gas-liquid separator 4, and three-way Up to the valve 91 is operated as an intermediate pressure part of the refrigeration cycle of the refrigeration apparatus 30. Then, from the outlet of the three-way valve 91 to the suction port of the first stage compression unit 1 </ b> A through the heat absorption means 8 and the first heat exchanger 15 is operated as a low pressure portion of the refrigeration cycle of the refrigeration apparatus 30.

以上の構成により、本実施例の冷凍装置30の動作について、図1及び図2を参照して説明する。冷凍装置30は、第2キャピラリチューブ13を主として使用する冷凍運転と、第1キャピラリチューブ12を主として使用する冷蔵運転と、が必要に応じて選択される。   With the above configuration, the operation of the refrigeration apparatus 30 of the present embodiment will be described with reference to FIGS. 1 and 2. The refrigeration apparatus 30 is selected as necessary between a refrigeration operation mainly using the second capillary tube 13 and a refrigeration operation mainly using the first capillary tube 12.

まず冷凍運転につき説明する。尚、この冷凍運転とは、吸熱器14を所定の温度(例えば、−26℃付近)で機能させて冷凍室22を冷却する運転である。   First, the freezing operation will be described. The freezing operation is an operation for cooling the freezer compartment 22 by causing the heat absorber 14 to function at a predetermined temperature (for example, around −26 ° C.).

本実施例において圧縮機1が運転されると、圧縮機1から吐出された冷媒は、放熱器2で放熱して冷却される。その後、放熱器2から出た冷媒は、第3キャピラリチューブ31に至り、ここで減圧されて気液混合状態(ガス/液体の2相混合体)となり、気液分離器4の冷媒配管4Aから同気液分離器4の容器80内に導入される。この容器80内で冷媒はガス冷媒と液冷媒に分離され、ガス冷媒は図2中破線矢印で示すように第2吸着部82Aを通過して冷媒導入管6に流通し、逆止弁7を経た後、圧縮機1の中間圧部に導入される。他方、気液分離器4で分離された液冷媒は図2中一点鎖線矢印で示すように第1吸着部81Aを通過して冷媒配管4Bに流通され吸熱手段8に至ることになる。   When the compressor 1 is operated in this embodiment, the refrigerant discharged from the compressor 1 is radiated by the radiator 2 and cooled. Thereafter, the refrigerant discharged from the radiator 2 reaches the third capillary tube 31 where it is decompressed to be in a gas-liquid mixed state (gas / liquid two-phase mixture), and from the refrigerant pipe 4A of the gas-liquid separator 4 It is introduced into the container 80 of the gas-liquid separator 4. In this container 80, the refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant passes through the second adsorbing portion 82A and flows through the refrigerant introduction pipe 6 as shown by the broken line arrow in FIG. After that, it is introduced into the intermediate pressure part of the compressor 1. On the other hand, the liquid refrigerant separated by the gas-liquid separator 4 passes through the first adsorbing portion 81A and reaches the heat absorbing means 8 through the first adsorbing portion 81A as indicated by a one-dot chain line arrow in FIG.

尚、冷凍装置30は第3キャピラリチューブ31と第1又は第2キャピラリチューブ12、13とで2段膨張を行う構成であるので、第3キャピラリチューブ31出口側と、第1及び第2キャピラリチューブ12、13入口側との間と、圧縮機1の1段圧縮部1Aの吐出側と2段圧縮部1Bの吸い込み側との間及び冷媒導入管6においては、本冷凍サイクルにおける中間圧力部分となっている。   Note that the refrigeration apparatus 30 is configured to perform two-stage expansion with the third capillary tube 31 and the first or second capillary tube 12, 13, so that the outlet side of the third capillary tube 31 and the first and second capillary tubes 12 and 13 between the inlet side, between the discharge side of the first-stage compression unit 1A of the compressor 1 and the suction side of the second-stage compression unit 1B, and in the refrigerant introduction pipe 6, It has become.

そして、吸熱手段8の三方弁91で第2キャピラリチューブ13側に液冷媒が流通され、この液冷媒は吸熱器14にて蒸発し周囲から熱を吸収した後、第1熱交換器15で第3キャピラリチューブ31付近の冷媒と熱効果して温められて圧縮機1の吸い込み口に戻ることになる。尚、冷凍運転時には、制御装置26により切換ダンパ25はダクト58A側に冷風が流通するように切り換えられているので、冷凍室22が冷却される。   Then, the liquid refrigerant is circulated to the second capillary tube 13 side by the three-way valve 91 of the heat absorption means 8, and this liquid refrigerant evaporates in the heat absorber 14 and absorbs heat from the surroundings, and then the first heat exchanger 15 The refrigerant in the vicinity of the three capillary tubes 31 is heated by the heat effect and returned to the suction port of the compressor 1. In the freezing operation, the control device 26 switches the switching damper 25 so that the cold air flows to the duct 58A side, so that the freezer compartment 22 is cooled.

次に冷蔵運転につき説明する。尚、この冷蔵運転とは、上述した吸熱器14を上記冷凍運転時よりも高い温度(例えば、−5℃付近)で機能させて冷蔵室21を集中的に冷却する運転である。   Next, the refrigeration operation will be described. This refrigeration operation is an operation in which the above-described heat absorber 14 is caused to function at a higher temperature (for example, around −5 ° C.) than during the refrigeration operation to cool the refrigeration chamber 21 intensively.

冷蔵運転時には、上記冷凍運転時とは吸熱手段8での選択温度帯が相違する。即ち、気液分離器4を出た液冷媒は、吸熱手段8の三方弁91で第1キャピラリチューブ12側に流通された後、吸熱器14にて蒸発し周囲から熱を吸収する。尚、本冷蔵運転時には、制御装置26により切換ダンパ25はダクト57A側に冷風が流通するように切り換えられているので、冷蔵室21が冷却されることになる。本実施例の冷凍装置30では、冷凍運転時、冷蔵運転時共に以上の如き冷凍サイクルが形成される。   During the refrigeration operation, the selected temperature zone in the heat absorbing means 8 is different from that during the refrigeration operation. That is, the liquid refrigerant exiting the gas-liquid separator 4 is circulated to the first capillary tube 12 side by the three-way valve 91 of the heat absorbing means 8 and then evaporated by the heat absorber 14 to absorb heat from the surroundings. During the refrigeration operation, the switching damper 25 is switched by the control device 26 so that cold air flows through the duct 57A, so that the refrigeration chamber 21 is cooled. In the refrigeration apparatus 30 of the present embodiment, the refrigeration cycle as described above is formed during the refrigeration operation and during the refrigeration operation.

尚、冷凍装置30において、気液分離器4で分離されたガス冷媒は、これを吸熱手段8に循環させたとしても、冷却に使用することができず、これを1段圧縮部1Aの吸い込み口に戻すことは、圧縮機1における圧縮効率を低下させる。   In the refrigeration apparatus 30, the gas refrigerant separated by the gas-liquid separator 4 cannot be used for cooling even if it is circulated to the heat absorption means 8, and this is sucked into the first stage compression unit 1A. Returning to the mouth reduces the compression efficiency of the compressor 1.

そこで、本実施例では、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部、即ち、中間冷却器1Cと2段圧縮部1Bとの間に導入するため、圧縮機1における圧縮効率を向上させることができる。特に、本実施例では、冷媒回路内に二酸化炭素冷媒が封入されているため、気液分離器4で分離されるガス及び液体の比率において、フロン系冷媒等に比べ、ガス分が多くなり、その多くのガス分を、圧縮機1の中間圧部に導入することで、より高い効率の向上を図ることができるようになる。   Therefore, in this embodiment, the gas refrigerant separated by the gas-liquid separator 4 is introduced between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B. The compression efficiency in 1 can be improved. In particular, in the present embodiment, since the carbon dioxide refrigerant is sealed in the refrigerant circuit, in the ratio of gas and liquid separated by the gas-liquid separator 4, the gas content is larger than that of the fluorocarbon refrigerant, By introducing such a large amount of gas into the intermediate pressure portion of the compressor 1, higher efficiency can be improved.

更に本実施例においては、上述のように気液分離器4の容器80内に乾燥剤としての第1及び第2吸着部81A、82Aを有することにより、気液分離器4がドライヤ一体型の構造とされているので、従来のように冷凍サイクル中に別体にドライヤを設けること無く、冷媒中の水分を気液分離器4において吸着除去できるようになり、配管内の凍結を防止することができると共に、部品点数の削減やコスト低減も可能となる。   Further, in the present embodiment, as described above, the first and second adsorption portions 81A and 82A as the desiccant are provided in the container 80 of the gas-liquid separator 4, so that the gas-liquid separator 4 is a dryer integrated type. Since it is structured, moisture in the refrigerant can be adsorbed and removed by the gas-liquid separator 4 without providing a separate dryer in the refrigeration cycle as in the prior art, and freezing in the piping is prevented. In addition, the number of parts and the cost can be reduced.

また冷凍装置30は冷媒として二酸化炭素を用いているが、このように二酸化炭素を冷媒として用いた場合には、冷凍サイクルの高圧側、本実施例では圧縮機1の吐出側から第3キャピラリチューブ31の入口側までの間が、従来の如きHFC(ハイドロフルオロカーボン)冷媒或いはHC(炭化水素)冷媒と比較して非常に高圧となり、この高圧部にドライヤを配置する場合にはその耐圧性能が要求されるが、本実施例では、ドライヤ一体型の気液分離器4を中間圧部に配置する構成としているため、容器80の耐圧性能を抑えることができると共に、高温且つ高圧な冷媒による乾燥剤(吸着部)の破砕を防止することができる。また、冷凍装置30では、気液分離器4の第1及び第2吸着部81A、82Aをガス冷媒や液冷媒が通過するので、これら吸着部での整流作用により気液分離器4内での液溜まり部分の液面が安定しやすくなる。   The refrigeration apparatus 30 uses carbon dioxide as the refrigerant. When carbon dioxide is used as the refrigerant in this way, the third capillary tube is connected from the high pressure side of the refrigeration cycle, in this embodiment from the discharge side of the compressor 1. The distance up to the inlet side of 31 is very high compared to conventional HFC (hydrofluorocarbon) refrigerant or HC (hydrocarbon) refrigerant. When a dryer is placed in this high pressure section, pressure resistance is required. However, in this embodiment, since the dryer-integrated gas-liquid separator 4 is disposed in the intermediate pressure portion, the pressure resistance of the container 80 can be suppressed, and the desiccant using a high-temperature and high-pressure refrigerant. Crushing of the (adsorption part) can be prevented. Further, in the refrigeration apparatus 30, gas refrigerant and liquid refrigerant pass through the first and second adsorption portions 81A and 82A of the gas-liquid separator 4, so that the rectifying action in these adsorption portions causes the gas / liquid separator 4 The liquid level in the liquid pool portion is easily stabilized.

尚、以上の説明では、気液分離器として、図2に示す気液分離器4について説明したが、図3及び図4に示すような構造も適用可能である。   In the above description, the gas-liquid separator 4 shown in FIG. 2 has been described as the gas-liquid separator. However, the structures shown in FIGS. 3 and 4 are also applicable.

図3は他の構造の気液分離器4−2の概略断面図である。この場合は、上記気液分離器4と比較して、第2吸着部82Aと、支持部材82B、82Cを有していない点が相違する。また図4は更に他の構造の気液分離器4−3の概略断面図である。この場合は、上記気液分離器4と比較して、第1吸着部81Aと、支持部材81B、81Cを有していない点が相違する。これら気液分離器4−2、4−3は、上記気液分離器4と比較して、コスト低減が可能となり、使用状態や使用条件によっては有効となることは云うまでもない。   FIG. 3 is a schematic sectional view of a gas-liquid separator 4-2 having another structure. This case is different from the gas-liquid separator 4 in that the second adsorption portion 82A and the support members 82B and 82C are not provided. FIG. 4 is a schematic cross-sectional view of a gas-liquid separator 4-3 having still another structure. This case is different from the gas-liquid separator 4 in that the first adsorption portion 81A and the support members 81B and 81C are not provided. Needless to say, these gas-liquid separators 4-2 and 4-3 can be reduced in cost as compared with the gas-liquid separator 4 and are effective depending on the use state and use conditions.

次に本実施例の冷凍装置30の冷蔵庫への適用例について図5を参照して説明する。図5は、冷凍装置30を備えた冷蔵庫の概略構成図を示している。   Next, an application example of the refrigeration apparatus 30 of this embodiment to a refrigerator will be described with reference to FIG. FIG. 5 shows a schematic configuration diagram of a refrigerator provided with the refrigeration apparatus 30.

この冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。この冷凍室42の奥部には、庫内仕切り壁43が設けられ、この庫内仕切り壁43で仕切られた風路44内には、上述した吸熱器14が設置されている。上記風路44の入口Aには、第1切換ダンパ45が配置され、この第1切換ダンパ45は、風路44の入口Aを閉じる位置(破線位置)と、開く位置(実線位置)との間において切り換えられる。また、冷蔵庫40の背壁47には、背側風路46が形成され、第1切換ダンパ45が、破線
位置に切り換えられた場合、この背側風路46を介して、風路44の入口Aと冷蔵室41とが連通する。また、上記風路44の出口Bには、ファン48と第2切換ダンパ49が配置され、この第2切換ダンパ49は、風路44の出口Bを閉じる位置(破線位置)と、開く位置(実線位置)との間で切り換えられ、この実線位置では、第2切換ダンパ49が中間仕切り壁50の開口51を塞ぐ。
The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. An interior partition wall 43 is provided at the back of the freezer compartment 42, and the above-described heat absorber 14 is installed in the air passage 44 partitioned by the interior partition wall 43. A first switching damper 45 is disposed at the inlet A of the air passage 44, and the first switching damper 45 is located between a position (broken line position) for closing the inlet A of the air path 44 and a position (solid line position) for opening. Be switched between. Further, when the back side air passage 46 is formed in the back wall 47 of the refrigerator 40 and the first switching damper 45 is switched to the position of the broken line, the entrance of the air passage 44 is connected via the back side air passage 46. A communicates with the refrigerator compartment 41. A fan 48 and a second switching damper 49 are disposed at the outlet B of the air passage 44, and the second switching damper 49 closes the outlet B of the air passage 44 (broken line position) and opens ( The second switching damper 49 closes the opening 51 of the intermediate partition wall 50 at this solid line position.

以上の構成により、冷凍運転時には、第1切換ダンパ45を風路44の入口Aを開く位置(実線位置)にし、第2切換ダンパ49を風路44の出口Bを開く位置(実線位置)にすることにより、冷凍室42内の空気を循環して吸熱器14により冷却する。また、冷蔵運転時には、第1切換ダンパ45を風路44の入口Aを閉じる位置(破線位置)にし、第2切換ダンパ49を風路44の出口Bを閉じる位置(破線位置)にすることにより、冷蔵室41内の空気を背側風路46を介して循環し、吸熱器14により冷却する。   With the above configuration, during the refrigeration operation, the first switching damper 45 is set to a position where the inlet A of the air path 44 is opened (solid line position), and the second switching damper 49 is set to a position where the outlet B of the air path 44 is opened (solid line position). As a result, the air in the freezer compartment 42 is circulated and cooled by the heat absorber 14. Further, during the refrigeration operation, the first switching damper 45 is set to a position (broken line position) where the inlet A of the air passage 44 is closed, and the second switching damper 49 is set to a position (broken line position) where the outlet B of the air path 44 is closed. The air in the refrigerator compartment 41 is circulated through the back side air passage 46 and cooled by the heat absorber 14.

次に図6を参照して、本発明の他の実施例を説明する。図6はこの場合の冷凍装置50の冷媒回路図を示している。本実施例において上記実施例1と同符号が付されているものは、同一若しくは同様の機能又は効果を奏するものである。本実施例では、上記実施例1と比較した場合、吸熱手段8の代わりに、三方弁91の出口側に、第1の吸熱手段10と、これと並列に設けられた第2の吸熱手段11とを備えている点が相違する。   Next, another embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a refrigerant circuit diagram of the refrigeration apparatus 50 in this case. In the present embodiment, the same reference numerals as those in the first embodiment have the same or similar functions or effects. In this embodiment, when compared with the first embodiment, instead of the heat absorption means 8, the first heat absorption means 10 and the second heat absorption means 11 provided in parallel to the outlet side of the three-way valve 91 are provided. Is different.

第1の吸熱手段10は、第1キャピラリチューブ12と、この第1キャピラリチューブ12と直列に備えられた第1吸熱器57と、を含む。また第2の吸熱手段11は、第2キャピラリチューブ13と、この第2キャピラリチューブ13と直列に備えられた第2吸熱器58と、逆止弁52と、を含む。そして、第1及び第2の吸熱手段10、11の出口側の冷媒配管が合流点9Bで合流した後、上記実施例1の冷凍装置30と同様、第1熱交換器15と、逆止弁53とを介して圧縮機1の吸い込み口に接続される。また、第1の吸熱手段10と第2の吸熱手段11とは、互いに選択的に異なる温度帯で機能するものである。   The first heat absorbing means 10 includes a first capillary tube 12 and a first heat absorber 57 provided in series with the first capillary tube 12. The second heat absorbing means 11 includes a second capillary tube 13, a second heat absorber 58 provided in series with the second capillary tube 13, and a check valve 52. And after the refrigerant | coolant piping of the exit side of the 1st and 2nd heat absorption means 10 and 11 merges at the junction 9B, the 1st heat exchanger 15 and the non-return valve like the refrigeration apparatus 30 of the said Example 1 are combined. 53 and connected to the suction port of the compressor 1. Moreover, the 1st heat absorption means 10 and the 2nd heat absorption means 11 function in a mutually different temperature range selectively.

以上、本実施例の冷凍装置50は第1及び第2の吸熱手段10、11を備えているので、各吸熱器57、58にて、夫々ダクト57A、58Aにより冷蔵室21及び冷凍室22を選択的に冷却することができ、温度帯の異なる冷凍運転及び冷蔵運転において、その温度に適した吸熱器を使用することができるようになり、各運転の運転効率の向上が期待できる。   As described above, since the refrigerating apparatus 50 of the present embodiment includes the first and second heat absorbing means 10 and 11, the heat sinks 57 and 58 connect the refrigerator compartment 21 and the freezer compartment 22 with the ducts 57A and 58A, respectively. It is possible to selectively cool, and in a freezing operation and a refrigerating operation having different temperature ranges, a heat absorber suitable for the temperature can be used, and an improvement in operating efficiency of each operation can be expected.

次に本実施例の冷凍装置50の冷蔵庫への適用例について図7を参照して説明する。   Next, an application example of the refrigeration apparatus 50 of this embodiment to a refrigerator will be described with reference to FIG.

図7は本実施例の冷凍装置50を備えた冷蔵庫の概略構成図を示している。この冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。そして、各室41、42の奥部には、夫々庫内仕切り壁61、62が設けられ、この庫内仕切り壁61、62で仕切られた風路44内には、上述した吸熱器57、58、並びにファン63、64が設置される。本構成では、冷蔵運転及び冷凍運転のサーモオン、サーモオフに従い、第1の吸熱手段10及び第2の吸熱手段11を切り換え、いずれか一方の吸熱器57、58に冷媒を流し、それに対応したファン63、64を駆動する。吸熱器57に冷媒が流れる場合には冷蔵室41に冷風が供給され、吸熱器58に冷媒が流れる場合には冷凍室42に冷風が供給される。   FIG. 7 shows a schematic configuration diagram of a refrigerator provided with the refrigeration apparatus 50 of the present embodiment. The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. And the interior partition walls 61 and 62 are provided in the inner part of each chamber 41 and 42, respectively, In the air channel 44 partitioned by this interior partition walls 61 and 62, the heat absorber 57, 58 and fans 63 and 64 are installed. In this configuration, the first heat absorbing means 10 and the second heat absorbing means 11 are switched in accordance with the thermo-ON and the thermo-OFF of the refrigeration operation and the freezing operation, the refrigerant is caused to flow through one of the heat absorbers 57 and 58, and the corresponding fan 63 , 64 are driven. When the refrigerant flows through the heat absorber 57, cold air is supplied to the refrigerating chamber 41, and when the refrigerant flows through the heat absorber 58, cold air is supplied to the freezer chamber 42.

以上から本実施例の冷蔵庫40は、上記の如き冷凍装置50を備えるため高い冷却性能と高効率運転が可能となる。   As described above, since the refrigerator 40 of the present embodiment includes the refrigeration apparatus 50 as described above, high cooling performance and high-efficiency operation are possible.

次に図8を参照して本発明の更に他の実施例を説明する。図8は、この場合の冷凍装置70の冷媒回路図を示している。尚、図8において上記実施例1、2と同符号が付されているものは、同一若しくは同様の機能又は効果を奏するものである。本実施例の冷凍装置70は、上記実施例2と比較した場合、第1及び第2の吸熱手段10、11の代わりに、第3及び第4の吸熱手段10B、11Bを備えている点が相違する。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 8 shows a refrigerant circuit diagram of the refrigeration apparatus 70 in this case. In FIG. 8, the same reference numerals as those in the first and second embodiments have the same or similar functions or effects. The refrigeration apparatus 70 of the present embodiment is provided with third and fourth heat absorption means 10B and 11B instead of the first and second heat absorption means 10 and 11 when compared with the second embodiment. Is different.

第3の吸熱手段10Bは、分岐点9Cからの冷媒が流通する第1キャピラリチューブ12と、第1キャピラリチューブ12に直列に設けられた第1膨張弁65と、冷蔵用の吸熱器57と、この吸熱器57から出た冷媒と第1キャピラリチューブ12付近の冷媒とを熱交換可能に設けられた第1熱交換器17と、を含む。また、第4の吸熱手段11Bは、前記第3の吸熱手段10Bと並列に設けられ、減圧器3と、気液分離器4と、この気液分離器4からの冷媒が流通する第2キャピラリチューブ13と、この第2キャピラリチューブ13に直列に設けられた第2膨張弁66と、冷凍用の吸熱器58と、この吸熱器58から出た冷媒と第2キャピラリチューブ13付近の冷媒とを熱交換可能に設けられた第2熱交換器18と、を含む。そして、吸熱器58の出口側と第2熱交換器18との間には逆止弁52が備えられている。   The third heat absorbing means 10B includes a first capillary tube 12 through which the refrigerant from the branch point 9C flows, a first expansion valve 65 provided in series with the first capillary tube 12, a refrigeration heat absorber 57, And a first heat exchanger 17 provided so that heat can be exchanged between the refrigerant discharged from the heat absorber 57 and the refrigerant in the vicinity of the first capillary tube 12. The fourth heat absorbing means 11B is provided in parallel with the third heat absorbing means 10B, and the decompressor 3, the gas-liquid separator 4, and the second capillary through which the refrigerant from the gas-liquid separator 4 flows. A tube 13, a second expansion valve 66 provided in series with the second capillary tube 13, a refrigeration heat absorber 58, a refrigerant discharged from the heat absorber 58, and a refrigerant in the vicinity of the second capillary tube 13. And a second heat exchanger 18 provided so as to be capable of heat exchange. A check valve 52 is provided between the outlet side of the heat absorber 58 and the second heat exchanger 18.

また第3の吸熱手段10Bと第4の吸熱手段11Bとは、互いに選択的に異なる温度帯で機能するものであり、放熱器2からの冷媒配管が、分岐点9Cにて分岐し、一方が第3の吸熱手段10B、他方が第4の吸熱手段11Bとして夫々が並列に備えられ、圧縮機1の吸い込み口手前の合流点9Dにて再び合流する。   Further, the third heat absorbing means 10B and the fourth heat absorbing means 11B function in different temperature ranges selectively, and the refrigerant pipe from the radiator 2 branches at the branch point 9C, and one of them is The third endothermic means 10B and the other end are provided in parallel as the fourth endothermic means 11B, and are joined again at the junction 9D before the suction port of the compressor 1.

ここで、減圧器3は絞りの程度を可変に構成される。この絞りの程度を変えることで、冷媒が気液分離器4に至るまでに所定の圧力に低下させて気液分離器4に導入することにより、当該気液分離器4でのガス及び液体の比率を変えることが可能になる。尚、第1膨張弁65及び第2膨張弁66も減圧器3と同様に絞りの程度を可変に構成される。   Here, the decompressor 3 is configured so that the degree of throttling is variable. By changing the degree of throttling, the refrigerant is reduced to a predetermined pressure before reaching the gas-liquid separator 4 and introduced into the gas-liquid separator 4, whereby the gas and liquid in the gas-liquid separator 4 are reduced. It becomes possible to change the ratio. The first expansion valve 65 and the second expansion valve 66 are also configured so that the degree of throttling is variable as in the decompressor 3.

そして、第3及び第4の吸熱手段10B、11Bは上述の如き構成を備えるため、例えば減圧器3を全閉して第1膨張弁65を開いた場合には第1キャピラリチューブ12側、即ち第3の吸熱手段10Bにのみ冷媒が流通し、その逆に第1膨張弁65を全閉して減圧器3及び第2膨張弁66とを開いた場合には第2キャピラリチューブ側、即ち第4の吸熱手段11Bのみに冷媒が流通する。   Since the third and fourth heat absorbing means 10B and 11B have the above-described configuration, for example, when the decompressor 3 is fully closed and the first expansion valve 65 is opened, the first capillary tube 12 side, that is, When the refrigerant flows only through the third heat absorbing means 10B, and conversely, the first expansion valve 65 is fully closed and the decompressor 3 and the second expansion valve 66 are opened, the second capillary tube side, that is, the first The refrigerant flows only through the four heat absorbing means 11B.

ここで、吸熱器57を経た冷媒は、上述の第1キャピラリチューブ12の付近に設置された第1熱交換器17を経由し、この第1熱交換器17で第1キャピラリチューブ12付近の冷媒と熱交換した後、圧縮機1の吸い込み口に戻される。また、吸熱器58を経た冷媒は、逆止弁52を経て、上述の第2キャピラリチューブ13の付近に設置された第2熱交換器18を経由し、この第2熱交換器18で第2キャピラリチューブ13付近の冷媒と熱交換した後に、圧縮機1の吸い込み口に戻される。   Here, the refrigerant having passed through the heat absorber 57 passes through the first heat exchanger 17 installed in the vicinity of the first capillary tube 12 described above, and the refrigerant in the vicinity of the first capillary tube 12 in the first heat exchanger 17. After the heat exchange, the air is returned to the suction port of the compressor 1. The refrigerant that has passed through the heat absorber 58 passes through the check valve 52, passes through the second heat exchanger 18 installed in the vicinity of the second capillary tube 13 described above, and then passes through the second heat exchanger 18. After exchanging heat with the refrigerant in the vicinity of the capillary tube 13, the refrigerant is returned to the suction port of the compressor 1.

本実施例においても、気液分離器4で分離されたガス冷媒は、これを第2キャピラリチューブ13等の第4の吸熱手段11Bに循環させたとしても、冷却に使用することができず、これを1段圧縮部1Aの吸い込みに戻すことは、圧縮機1における圧縮効率を低下させる。そこで、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入するため、圧縮機1における圧縮効率を向上させることができる。   Also in this embodiment, the gas refrigerant separated by the gas-liquid separator 4 cannot be used for cooling even if it is circulated through the fourth heat absorbing means 11B such as the second capillary tube 13 or the like. Returning this to the suction of the first-stage compression unit 1A reduces the compression efficiency in the compressor 1. Therefore, since the gas refrigerant separated by the gas-liquid separator 4 is introduced between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B, the compression efficiency in the compressor 1 is improved. Can be made.

ここで、冷凍装置70は、冷蔵運転時には第3の吸熱手段10Bに冷媒を流通させる構成としたため、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部に導入する冷媒導入管6の機能を利用できなくなる。しかしながら、この冷蔵運転時には、冷凍運転時に比較して気液分離器4におけるガス冷媒の発生量が少ないため、減圧器3及び冷媒導入管6等の動作を停止したとしても、運転効率の低下幅が抑制される。   Here, since the refrigeration apparatus 70 is configured to circulate the refrigerant to the third heat absorption means 10B during the refrigeration operation, the refrigerant that introduces the gas refrigerant separated by the gas-liquid separator 4 into the intermediate pressure portion of the compressor 1 The function of the introduction pipe 6 cannot be used. However, during this refrigeration operation, the amount of gas refrigerant generated in the gas-liquid separator 4 is smaller than that during the refrigeration operation. Therefore, even if the operations of the decompressor 3 and the refrigerant introduction pipe 6 are stopped, the reduction in operating efficiency is reduced. Is suppressed.

本実施例の冷凍装置70は上記実施例2の冷凍装置50と同様に、冷蔵庫に適用することが可能である。   The refrigeration apparatus 70 of the present embodiment can be applied to a refrigerator, similarly to the refrigeration apparatus 50 of the second embodiment.

図9を参照して本発明の第4の実施例を説明する。図9は、この場合の冷凍装置90の冷媒回路図を示している。尚、図9において上記各実施例と同符号が付されているものは、同一若しくは同様の機能又は効果を奏するものである。本実施例の冷凍装置90は、上記実施例1と比較した場合、第3キャピラリチューブ31の出口側と、気液分離器4の入口側との間の冷媒配管4Cに、ドライヤ95を備えている点が相違する。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 shows a refrigerant circuit diagram of the refrigeration apparatus 90 in this case. In FIG. 9, the same reference numerals as those in the above-described embodiments denote the same or similar functions or effects. The refrigeration apparatus 90 of the present embodiment includes a dryer 95 in the refrigerant pipe 4C between the outlet side of the third capillary tube 31 and the inlet side of the gas-liquid separator 4 when compared with the first embodiment. Is different.

ドライヤ95は、略円柱状の中空体で形成されている容器の内部に、冷凍サイクル中の水分除去手段としての吸着部を備えるものである。この吸着部としては、上記気液分離器4内に封入される乾燥剤としての活性アルミナ、ゼオライト若しくはモレキュラーシーブなどが用いられる。   The dryer 95 is provided with an adsorbing portion as a moisture removing means in the refrigeration cycle inside a container formed of a substantially cylindrical hollow body. As this adsorbing portion, activated alumina, zeolite, molecular sieve, or the like as a desiccant enclosed in the gas-liquid separator 4 is used.

このように冷凍装置90では、ドライヤ95を備える構成としたため、気液分離器4として図10に示すような構造の気液分離器4−4を適用することが可能である。   As described above, since the refrigeration apparatus 90 includes the dryer 95, it is possible to apply the gas-liquid separator 4-4 having the structure shown in FIG.

図10は、気液分離器4−4の概略断面図である。この気液分離器4−4は、上記気液分離器4、4−1、4−2及び4−3とは比較すると、密閉容器80内に吸着部を有していない点が相違し、これにより、気液分離器のコストを低減することができる。   FIG. 10 is a schematic sectional view of the gas-liquid separator 4-4. This gas-liquid separator 4-4 is different from the gas-liquid separators 4, 4-1, 4-2 and 4-3 in that it does not have an adsorbing portion in the sealed container 80, Thereby, the cost of a gas-liquid separator can be reduced.

以上のように、本実施例によれば冷媒として二酸化炭素を用いる構成であるため、圧縮冷凍サイクルの高圧部が、従来の如きHFC(ハイドロフルオロカーボン)冷媒或いはHC(炭化水素)冷媒と比較して非常に高圧となるが、本実施例の冷凍装置90では、第3キャピラリチューブ31を備えて2段膨張サイクルを形成し、冷凍サイクルの中間圧部にドライヤ95を備える構成としているため、高温且つ高圧な冷媒による乾燥剤の破砕を防止して、冷媒中の水分除去を行うことができる。   As described above, according to the present embodiment, since carbon dioxide is used as the refrigerant, the high-pressure portion of the compression refrigeration cycle is compared with a conventional HFC (hydrofluorocarbon) refrigerant or HC (hydrocarbon) refrigerant. Although the pressure is extremely high, the refrigeration apparatus 90 of the present embodiment is configured to include the third capillary tube 31 to form a two-stage expansion cycle, and to include the dryer 95 in the intermediate pressure portion of the refrigeration cycle. The desiccant can be prevented from being crushed by the high-pressure refrigerant, and moisture in the refrigerant can be removed.

尚、本実施例の冷凍装置90においては、気液分離器4−4の代わりに、上記気液分離器4、4−1、4−2及び4−3を適用可能である。この場合には、コスト上昇等の問題はあるが、冷凍サイクルの水分除去能力が向上し、冷凍装置90の使用状態や使用条件によっては有効となることは云うまでもない。   In the refrigeration apparatus 90 of the present embodiment, the gas-liquid separators 4, 4-1, 4-2 and 4-3 can be applied instead of the gas-liquid separator 4-4. In this case, although there is a problem such as an increase in cost, it goes without saying that the water removal capability of the refrigeration cycle is improved and becomes effective depending on the use state and use conditions of the refrigeration apparatus 90.

また本実施例の冷凍装置90は上記各実施例と同様、冷蔵庫に適用可能である。   Moreover, the freezing apparatus 90 of a present Example is applicable to a refrigerator similarly to the said each Example.

以上、上記各実施例により本発明を説明したが、本発明は、これに限定されるものではなく、種々の変更実施が可能である。例えば、上記各実施例では、冷媒回路中に二酸化炭素冷媒を封入しているが、これに限定されるものではなく、それ以外のフロン系冷媒等を封入したものにも適用可能である。   Although the present invention has been described with the above embodiments, the present invention is not limited to this, and various modifications can be made. For example, in each of the above embodiments, the carbon dioxide refrigerant is enclosed in the refrigerant circuit. However, the present invention is not limited to this, and the present invention can be applied to other refrigerant-filled refrigerants.

また、上記各実施例においては、必要に応じて、キャピラリチューブは膨張弁に、膨張弁はキャピラリチューブに変更することも可能である。   In each of the above embodiments, the capillary tube can be changed to an expansion valve, and the expansion valve can be changed to a capillary tube as necessary.

本発明の冷凍装置の一実施例を示す冷媒回路図である。It is a refrigerant circuit figure which shows one Example of the freezing apparatus of this invention. 本発明の気液分離器の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the gas-liquid separator of this invention. 本発明の気液分離器の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the gas-liquid separator of this invention. 本発明の気液分離器の更に他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the gas-liquid separator of this invention. 本発明の一実施例の冷凍装置の冷蔵庫への適用例を示す概略構成図である。It is a schematic block diagram which shows the example of application to the refrigerator of the freezing apparatus of one Example of this invention. 本発明の他の実施例の冷凍装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the freezing apparatus of the other Example of this invention. 本発明の他の実施例の冷凍装置の冷蔵庫への適用例を示す概略構成図である。It is a schematic block diagram which shows the example of application to the refrigerator of the freezing apparatus of the other Example of this invention. 本発明の更に他の実施例の冷凍装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the freezing apparatus of the further another Example of this invention. 本発明の第4の実施例の冷凍装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the freezing apparatus of the 4th Example of this invention. 本発明の第4の実施例の冷凍装置に適用可能な気液分離器を示す概略断面図である。It is a schematic sectional drawing which shows the gas-liquid separator applicable to the freezing apparatus of the 4th Example of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 減圧器
4 気液分離器
6 冷媒導入管
7、52、53 逆止弁
8、10、10B、11B 吸熱手段
12、13、31 キャピラリチューブ
14、57、58 吸熱器
21、41 冷蔵室
22、42 冷凍室
30、50、70、90 冷凍装置
40 冷蔵庫
48、63、64 ファン
65、66 膨張弁
80 容器
81A、82A 吸着部
91 三方弁
95 ドライヤ


DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducer 4 Gas-liquid separator 6 Refrigerant introduction pipe 7, 52, 53 Check valve 8, 10, 10B, 11B Heat absorption means 12, 13, 31 Capillary tube 14, 57, 58 Heat absorber 21 , 41 Refrigeration room 22, 42 Freezer room 30, 50, 70, 90 Refrigeration device 40 Refrigerator 48, 63, 64 Fan 65, 66 Expansion valve 80 Container 81A, 82A Adsorption part 91 Three-way valve 95 Dryer


Claims (7)

圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段と直列に接続される第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、を含む冷凍サイクルを備えた冷凍装置において、
前記第1の減圧手段の出口側と前記第2の減圧手段の入口側との間に、冷媒中の水分を吸着するための吸着手段を備えたことを特徴とする冷凍装置。
A compressor, a radiator connected to the discharge side of the compressor, a first decompression means connected to the outlet side of the radiator, and a second connected in series with the first decompression means In a refrigeration apparatus including a refrigeration cycle including a decompression unit and a heat absorber connected to an outlet side of the second decompression unit,
A refrigerating apparatus comprising an adsorption means for adsorbing moisture in the refrigerant between an outlet side of the first decompression means and an inlet side of the second decompression means.
ガスと液体の混合冷媒が導入され内部でガスと液体の分離が行われる容器と、この容器内に前記冷媒を導入するための導入管と、前記容器内で分離されたガス冷媒が流出する第1の出口管と、前記容器内で分離された液冷媒が流出する第2の出口管と、を備え、
前記容器内には、冷媒中の水分を吸着するための吸着部を備えたことを特徴とする気液分離器。
A container in which a mixed refrigerant of gas and liquid is introduced and gas and liquid are separated inside, an introduction pipe for introducing the refrigerant into the container, and a gas refrigerant separated in the container flows out. 1 outlet pipe, and a second outlet pipe through which the liquid refrigerant separated in the container flows out,
A gas-liquid separator comprising an adsorption part for adsorbing moisture in the refrigerant in the container.
圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段と直列に接続される第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、を含む冷凍サイクルを備えた冷凍装置において、
前記第1の減圧手段の出口側と前記第2の減圧手段の入口側との間に、請求項2に記載の気液分離器を備えたことを特徴とする冷凍装置。
A compressor, a radiator connected to the discharge side of the compressor, a first decompression means connected to the outlet side of the radiator, and a second connected in series with the first decompression means In a refrigeration apparatus including a refrigeration cycle including a decompression unit and a heat absorber connected to an outlet side of the second decompression unit,
A refrigerating apparatus comprising the gas-liquid separator according to claim 2 between an outlet side of the first pressure reducing means and an inlet side of the second pressure reducing means.
前記圧縮機は中間圧部を有し、
前記気液分離器の第1の出口管を前記中間圧部に接続したことを特徴とする請求項3に記載の冷凍装置。
The compressor has an intermediate pressure section;
The refrigeration apparatus according to claim 3, wherein a first outlet pipe of the gas-liquid separator is connected to the intermediate pressure section.
前記冷凍サイクルの高圧部が超臨界圧力で運転されることを特徴とする請求項1、請求項3又は請求項4のいずれか一項に記載の冷凍装置。   5. The refrigeration apparatus according to claim 1, wherein the high-pressure portion of the refrigeration cycle is operated at a supercritical pressure. 冷媒として二酸化炭素を用いたことを特徴とする請求項1、請求項3、請求項4又は請求項5のいずれか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1, 3, 4 and 5, wherein carbon dioxide is used as the refrigerant. 請求項1、請求項3、請求項4、請求項5又は請求項6のいずれか一項に記載の冷凍装置を備えたことを特徴とする冷蔵庫。



A refrigerator comprising the refrigeration apparatus according to any one of claims 1, 3, 4, 5, and 6.



JP2005100182A 2005-01-31 2005-03-30 Refrigerating device, refrigerator, and gas-liquid separator Pending JP2006266655A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005100182A JP2006266655A (en) 2005-02-28 2005-03-30 Refrigerating device, refrigerator, and gas-liquid separator
EP06001722A EP1686330A2 (en) 2005-01-31 2006-01-27 Refrigerating device, refrigerator, compressor, and gas-liquid separator
KR1020060008602A KR100741241B1 (en) 2005-01-31 2006-01-27 Refrigerating apparatus and refrigerator
US11/342,882 US20060168996A1 (en) 2005-01-31 2006-01-31 Refrigerating device, refrigerator, compressor, and gas-liguid separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005054708 2005-02-28
JP2005100182A JP2006266655A (en) 2005-02-28 2005-03-30 Refrigerating device, refrigerator, and gas-liquid separator

Publications (1)

Publication Number Publication Date
JP2006266655A true JP2006266655A (en) 2006-10-05

Family

ID=37202827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100182A Pending JP2006266655A (en) 2005-01-31 2005-03-30 Refrigerating device, refrigerator, and gas-liquid separator

Country Status (1)

Country Link
JP (1) JP2006266655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008349A (en) * 2007-06-29 2009-01-15 Daikin Ind Ltd Gas-liquid separator
CN114294868A (en) * 2022-01-10 2022-04-08 中国航天空气动力技术研究院 Gas-liquid separation device and gas-liquid separation control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008349A (en) * 2007-06-29 2009-01-15 Daikin Ind Ltd Gas-liquid separator
CN114294868A (en) * 2022-01-10 2022-04-08 中国航天空气动力技术研究院 Gas-liquid separation device and gas-liquid separation control method
CN114294868B (en) * 2022-01-10 2023-06-06 中国航天空气动力技术研究院 Gas-liquid separation device and gas-liquid separation control method

Similar Documents

Publication Publication Date Title
KR100585353B1 (en) Refrigerator
JP4101252B2 (en) refrigerator
JP2006183950A (en) Refrigeration apparatus and refrigerator
EP2833083B1 (en) Refrigeration device
US20050204773A1 (en) Refrigerating machine
JP2006275496A (en) Refrigerating device and refrigerator
JP2006275495A (en) Refrigerating device and refrigerator
KR20060088040A (en) Refrigerating apparatus, refrigerator, compressor and vapor liquid separator
KR100610294B1 (en) Refrigerator
JP2006207980A (en) Refrigerating apparatus and refrigerator
KR100695370B1 (en) Refrigerating apparatus and refrigerator
JP2007093105A (en) Freezing device and gas-liquid separator
JP2008002742A (en) Refrigerating device
JP2006266655A (en) Refrigerating device, refrigerator, and gas-liquid separator
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP4720510B2 (en) Refrigerant cycle equipment
JP4115414B2 (en) Refrigeration equipment
JP5895662B2 (en) Refrigeration equipment
JP2006207982A (en) Refrigerating apparatus and refrigerator
JP2005265316A (en) Refrigeration device
JP2006064256A (en) Refrigerator
JP2006078065A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A02 Decision of refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A02