JP2007093105A - Freezing device and gas-liquid separator - Google Patents

Freezing device and gas-liquid separator Download PDF

Info

Publication number
JP2007093105A
JP2007093105A JP2005282902A JP2005282902A JP2007093105A JP 2007093105 A JP2007093105 A JP 2007093105A JP 2005282902 A JP2005282902 A JP 2005282902A JP 2005282902 A JP2005282902 A JP 2005282902A JP 2007093105 A JP2007093105 A JP 2007093105A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
compressor
compression element
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282902A
Other languages
Japanese (ja)
Inventor
Satoru Imai
悟 今井
Hiroyuki Sai
博之 斎
Masahisa Otake
雅久 大竹
Hiroshi Mukoyama
洋 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005282902A priority Critical patent/JP2007093105A/en
Publication of JP2007093105A publication Critical patent/JP2007093105A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing device with a gas-liquid separator for actualizing highly efficient operation when constructed to introduce a gas refrigerant separated by the gas-liquid separator into an intermediate pressure portion of a compressor, and to provide a refrigerator equipped with the device. <P>SOLUTION: The freezing device 30 comprises the compressor for compressing a refrigerant compressed by a first compression element 1A and discharging it, a radiator 2, an expansion valve 31, the air-liquid separator 4, expansion valves 12, 13 in which liquid refrigerants flowing out of the gas-liquid separator 4 circulate, heat absorbers 57, 58, a refrigerant pipe 4C for introducing the gas refrigerant into the intermediate pressure portion, and a first heat exchanger 15. The ratio of the displacement of a second compression element 1B to the displacement of the first compression element 1A of the compressor 1 is within a range of 0.6-0.8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気液分離器で分離されたガス冷媒を圧縮機の中間圧部に導入可能な手段を備える冷凍装置及びこのような冷凍装置を備えた冷蔵庫に関する。   The present invention relates to a refrigeration apparatus including means capable of introducing gas refrigerant separated by a gas-liquid separator into an intermediate pressure portion of a compressor, and a refrigerator including such a refrigeration apparatus.

一般に、圧縮機、放熱器、減圧手段及び気液分離器を備え、この気液分離器で分離されたガス冷媒を圧縮機の中間圧部に導入可能な手段を備える冷凍装置が知られている(特許文献1参照)。この種の冷凍装置では、気液分離器で分離されたガス冷媒を、ガスの状態のまま圧縮機の中間圧部に導入する構成としているため、当該圧縮機における効率を向上させることができる。
特開2003−106693号公報
In general, a refrigeration apparatus including a compressor, a radiator, a decompression unit, and a gas-liquid separator, and a unit capable of introducing gas refrigerant separated by the gas-liquid separator into an intermediate pressure portion of the compressor is known. (See Patent Document 1). In this type of refrigeration apparatus, the gas refrigerant separated by the gas-liquid separator is introduced into the intermediate pressure portion of the compressor in a gas state, so that the efficiency of the compressor can be improved.
JP 2003-106693 A

この種の冷凍装置においては、中間圧部を有する圧縮機、例えば多段圧縮機構を持つ圧縮機を適用し、当該中間圧部の利用に適した冷凍サイクルを構築すると共に、中間圧力の制御を行うことで、更に高効率で運転が可能な冷凍装置を実現できる場合がある。   In this type of refrigeration apparatus, a compressor having an intermediate pressure part, for example, a compressor having a multistage compression mechanism, is applied to construct a refrigeration cycle suitable for use of the intermediate pressure part and to control the intermediate pressure. As a result, a refrigeration apparatus that can be operated with higher efficiency may be realized.

そこで、本発明は、気液分離器を備えると共に、この気液分離器で分離されたガス冷媒を圧縮機の中間圧部に導入可能に構成する場合に、より高効率での運転を実現できる冷凍装置及びこの冷凍装置を備えた冷蔵庫を提供することを目的とする。   Therefore, the present invention can be provided with a gas-liquid separator, and when the gas refrigerant separated by the gas-liquid separator can be introduced into the intermediate pressure portion of the compressor, can be operated with higher efficiency. It aims at providing a freezing apparatus and a refrigerator provided with this freezing apparatus.

本発明の冷凍装置は、少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、前記ガス冷媒を前記中間圧部に導入する冷媒配管と、前記吸熱器から出た冷媒と、前記放熱器と前記第1の減圧手段との間の冷媒と、を熱交換可能に構成した第1の熱交換器と、を備え、前記第1の熱交換器の出口側が前記第1の圧縮要素の吸い込み部に接続されてなり、前記圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.6〜0.8の範囲としたことを特徴とする。   The refrigeration apparatus of the present invention has at least a first compression element and a second compression element, and the refrigerant compressed by the first compression element is compressed by the second compression element and discharged. A compressor configured, a radiator connected to the discharge side of the compressor, a first decompression unit connected to the outlet side of the radiator, and a gas-liquid mixture decompressed by the first decompression unit A gas-liquid separator in which the refrigerant in the state flows and is separated into a gas refrigerant and a liquid refrigerant, a second decompression unit through which the liquid refrigerant exiting the gas-liquid separator flows, and a second decompression unit A heat absorber connected to the outlet side, a refrigerant pipe for introducing the gas refrigerant into the intermediate pressure portion, a refrigerant discharged from the heat absorber, and a refrigerant between the radiator and the first pressure reducing means And a first heat exchanger configured to be capable of exchanging heat, and an outlet side of the first heat exchanger is the first heat exchanger. The ratio of the displacement volume of the second compression element to the displacement volume of the first compression element in the compressor is in the range of 0.6 to 0.8. It is characterized by.

また本発明の冷凍装置は、少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、前記ガス冷媒を前記中間圧部に導入する冷媒配管と、前記吸熱器から出た冷媒と、前記気液分離器から出た前記液冷媒と、を熱交換可能に構成した第2の熱交換器と、を備え、前記第2の熱交換器の出口側が前記第1の圧縮要素の吸い込み部に接続されてなり、前記圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.4〜0.6の範囲としたことを特徴とする。   Further, the refrigeration apparatus of the present invention has at least a first compression element and a second compression element, and the refrigerant compressed by the first compression element is compressed by the second compression element and discharged. , A radiator connected to the discharge side of the compressor, a first decompression unit connected to the outlet side of the radiator, and a gas-liquid reduced in pressure by the first decompression unit A gas-liquid separator into which the refrigerant in the mixed state flows and is separated into a gas refrigerant and a liquid refrigerant, a second decompression unit through which the liquid refrigerant from the gas-liquid separator flows, and the second decompression unit A heat absorber connected to the outlet side of the gas generator, a refrigerant pipe for introducing the gas refrigerant into the intermediate pressure portion, a refrigerant discharged from the heat absorber, and the liquid refrigerant discharged from the gas-liquid separator. A second heat exchanger configured to be replaceable, and an outlet side of the second heat exchanger includes the first compression element. The ratio of the displacement volume of the second compression element to the displacement volume of the first compression element in the compressor is in the range of 0.4 to 0.6. And

また本発明の冷凍装置は、中間圧部を有する圧縮機と、この圧縮機の吐出側に接続される放熱器と、を有し、前記放熱器の出口側の冷媒配管が分岐し、一方の冷媒配管には、第1の減圧手段及び第1の吸熱器が順次接続されると共に、この第1の吸熱器から出た冷媒と、前記第1の減圧手段に入る前の冷媒と、を熱交換可能に構成した第3の熱交換器が設けられ、他方の冷媒配管には、第2の減圧手段と、この第2の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第3の減圧手段と、この第3の減圧手段から出た冷媒が流通する第2の吸熱器と、が順次接続され、前記気液分離器には前記ガス冷媒を前記中間圧部に導入可能な冷媒配管が接続されると共に、前記第2の吸熱器から出た冷媒と前記液冷媒とを熱交換可能に構成した第4の熱交換器と、この第4の熱交換器から出た冷媒と前記第2の減圧手段に入る前の冷媒とを熱交換可能に構成した第5の熱交換器が設けられ、前記第3の熱交換器の出口側及び前記第5の熱交換器の出口側が前期圧縮機の吸い込み部に接続されることを特徴とする。   Further, the refrigeration apparatus of the present invention has a compressor having an intermediate pressure portion, and a radiator connected to the discharge side of the compressor, the refrigerant pipe on the outlet side of the radiator branches off, The refrigerant pipe is sequentially connected to the first pressure reducing means and the first heat absorber, and heats the refrigerant that has come out of the first heat absorber and the refrigerant before entering the first pressure reducing means. A third heat exchanger configured to be replaceable is provided, and the other refrigerant pipe is supplied with second decompression means and a gas-liquid mixed state refrigerant decompressed by the second decompression means. The gas-liquid separator is separated into a liquid refrigerant, the third decompression means through which the liquid refrigerant from the gas-liquid separator flows, and the second through which the refrigerant from the third decompression means flows. A heat absorber, and a refrigerant pipe capable of introducing the gas refrigerant into the intermediate pressure portion is connected to the gas-liquid separator. And a fourth heat exchanger configured to be able to exchange heat between the refrigerant discharged from the second heat absorber and the liquid refrigerant, and the refrigerant discharged from the fourth heat exchanger and the second pressure reducing means. A fifth heat exchanger configured to be capable of exchanging heat with the refrigerant before entering, the outlet side of the third heat exchanger and the outlet side of the fifth heat exchanger being the suction part of the previous compressor It is connected to.

請求項4に記載の発明は、請求項3に記載の冷凍装置において、前記圧縮機は、少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機であって、この圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.4〜0.6の範囲としたことを特徴とする。   According to a fourth aspect of the present invention, in the refrigeration apparatus according to the third aspect, the compressor includes at least a first compression element and a second compression element, and is compressed by the first compression element. The refrigerant is compressed by the second compression element and discharged, and the displacement volume of the second compression element with respect to the displacement volume of the first compression element in the compressor is The ratio is in the range of 0.4 to 0.6.

請求項5に記載の発明は、請求項4に記載の冷凍装置において、前記第2の吸熱器が前記第1の吸熱器よりも低い温度で機能することを特徴とする。   According to a fifth aspect of the present invention, in the refrigeration apparatus according to the fourth aspect, the second heat absorber functions at a temperature lower than that of the first heat absorber.

請求項6に記載の発明は、請求項1乃至請求項5のいずれか一項に記載の冷凍装置において、冷媒として二酸化炭素を用いたことを特徴とする。   A sixth aspect of the invention is characterized in that in the refrigeration apparatus according to any one of the first to fifth aspects, carbon dioxide is used as a refrigerant.

本発明の冷蔵庫は、請求項1乃至請求項6のいずれか一項に記載の冷凍装置を備えたことを特徴とする。   The refrigerator of this invention was equipped with the freezing apparatus as described in any one of Claim 1 thru | or 6.

本発明によれば、気液分離器を備えると共に、この気液分離器で分離されたガス冷媒を圧縮機の中間圧部に導入可能に構成する場合に、より高効率での運転を実現できる冷凍装置及びこの冷凍装置を備えた冷蔵庫が提供される。   ADVANTAGE OF THE INVENTION According to this invention, when it comprises a gas-liquid separator and it comprises so that the gas refrigerant isolate | separated by this gas-liquid separator can be introduce | transduced into the intermediate pressure part of a compressor, a more efficient driving | operation is realizable. A refrigeration apparatus and a refrigerator provided with the refrigeration apparatus are provided.

以下、本発明の実施の形態を図面に基づき詳細に説明する。
<実施の形態1>
本発明の一実施の形態を図面に基づき詳述する。図1は、本発明の一実施の形態としての冷凍装置の冷媒回路図を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Embodiment 1>
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of a refrigeration apparatus as one embodiment of the present invention.

冷凍装置30は、圧縮機1と、この圧縮機1の吐出側に接続される放熱器2と、この放熱器2の出口側に接続される減圧手段である膨張弁31と、この膨張弁31の出口側に冷媒配管4Aを介して接続される気液分離器4と、この気液分離器4で分離された液冷媒が流通する減圧手段である冷蔵用膨張弁12及び冷凍用膨張弁13と、冷蔵用吸熱器57及び冷凍用吸熱器58と、これら各吸熱器57、58から出た冷媒と、放熱器2と膨張弁31の間との冷媒を熱交換可能に構成される第1熱交換器15と、を備え、気液分離器4で分離されたガス冷媒が冷媒配管4Cを介して圧縮機1の中間圧部に、第1熱交換器15の出口側が圧縮機1の吸い込み部に接続されて冷凍サイクルが構成されている。   The refrigeration apparatus 30 includes a compressor 1, a radiator 2 connected to the discharge side of the compressor 1, an expansion valve 31 that is a decompression unit connected to the outlet side of the radiator 2, and the expansion valve 31. The gas-liquid separator 4 connected to the outlet side of the gas through the refrigerant pipe 4A, the refrigeration expansion valve 12 and the refrigeration expansion valve 13 which are decompression means through which the liquid refrigerant separated by the gas-liquid separator 4 flows. The first heat absorber 57 and the refrigerating heat absorber 58, the refrigerant discharged from the heat absorbers 57 and 58, and the refrigerant between the radiator 2 and the expansion valve 31 are configured to be able to exchange heat. A heat exchanger 15, and the gas refrigerant separated by the gas-liquid separator 4 is sucked into the intermediate pressure portion of the compressor 1 through the refrigerant pipe 4 </ b> C and the outlet side of the first heat exchanger 15 is sucked into the compressor 1. The refrigeration cycle is configured by being connected to the unit.

また、気液分離器4と圧縮機1の中間圧部との間の冷媒配管4Cには逆止弁7が備えられ、冷凍用吸熱器58と第1熱交換器15との間には逆止弁52が、更に第1熱交換器15と圧縮機1の吸い込み部との間には逆止弁53が備えられている。   The refrigerant pipe 4 </ b> C between the gas-liquid separator 4 and the intermediate pressure part of the compressor 1 is provided with a check valve 7, and the reverse is provided between the refrigeration heat absorber 58 and the first heat exchanger 15. A check valve 52 is further provided between the first heat exchanger 15 and the suction portion of the compressor 1.

冷蔵用膨張弁12及び冷蔵用吸熱器57は、冷凍用膨張弁13及び冷凍用吸熱器58に対して、分岐点9Aと合流点9Bとの間に並列に設けられており、各膨張弁12、13のいずれか一方を全閉とすることで、気液分離器4から出た液冷媒が冷媒配管4Bを介して各吸熱器57、58に選択的に流通し、これにより冷蔵運転及び冷凍運転が選択的に実行される。   The refrigeration expansion valve 12 and the refrigeration heat absorber 57 are provided in parallel between the branch point 9A and the junction 9B with respect to the refrigeration expansion valve 13 and the refrigeration heat absorber 58. , 13 is fully closed, the liquid refrigerant from the gas-liquid separator 4 is selectively circulated to the heat absorbers 57, 58 via the refrigerant pipe 4B. Operation is selectively performed.

即ち、分岐点9Aからの冷媒が冷蔵用吸熱器57に流通された場合には、当該冷蔵用吸熱器57で発生する冷気が、図示しないファンによりダクト57Aを介して冷蔵室21に循環されることで、冷蔵運転が実行される。他方、分岐点9Aからの冷媒が冷凍用吸熱器58に流通された場合には、当該冷凍用吸熱器58で発生する冷気が、図示しないファンによりダクト58Aを介して冷凍室22に循環されることで、冷凍運転が実行される。   That is, when the refrigerant from the branch point 9A is circulated to the refrigeration heat absorber 57, the cold air generated in the refrigeration heat absorber 57 is circulated to the refrigeration chamber 21 via the duct 57A by a fan (not shown). Thus, the refrigeration operation is executed. On the other hand, when the refrigerant from the branch point 9A is circulated to the refrigeration heat absorber 58, the cold air generated in the refrigeration heat absorber 58 is circulated to the freezer compartment 22 via the duct 58A by a fan (not shown). Thus, the refrigeration operation is executed.

圧縮機1は2段圧縮機であり、密閉容器内に1段圧縮部1Aと2段圧縮部1Bとを含み、1段圧縮部1Aと2段圧縮部1Bとを接続する前記密閉容器外の冷媒配管上に中間冷却器1Cが備えられる。尚、本実施の形態においては、1段圧縮部1Aの排除容積に対する2段圧縮部1Bの排除容積の比(以下、容積比、と呼ぶ)が、0.6〜0.8に設定されている。即ち、例えば1段圧縮部1Aの排除容積を1ccとする場合には、2段圧縮部1Bの排除容積は0.6〜0.8ccに設定される。   The compressor 1 is a two-stage compressor, includes a first-stage compression unit 1A and a two-stage compression unit 1B in a hermetic container, and connects the first-stage compression unit 1A and the second-stage compression unit 1B. An intercooler 1C is provided on the refrigerant pipe. In the present embodiment, the ratio of the excluded volume of the two-stage compression unit 1B to the excluded volume of the first-stage compression unit 1A (hereinafter referred to as volume ratio) is set to 0.6 to 0.8. Yes. That is, for example, when the excluded volume of the first-stage compression unit 1A is 1 cc, the excluded volume of the second-stage compression unit 1B is set to 0.6 to 0.8 cc.

また、上述したように冷媒配管4Cは、気液分離器4で分離されたガス冷媒を圧縮機1の中間圧部、即ち中間冷却器1Cと2段圧縮部1Bとの間に導入可能に接続される。尚、この分離されたガス冷媒は冷媒配管4C内の差圧により破線矢印で示すように圧縮機1の中間圧部に導入される。尚、圧縮機1は2段圧縮機に限定するものではなく、例えば、1段圧縮機であれば冷媒配管4Cは1段圧縮機の中間圧部にインジェクションすれば良い。また、複数台の圧縮機を接続した構成を採用することも可能である。   Further, as described above, the refrigerant pipe 4C is connected so that the gas refrigerant separated by the gas-liquid separator 4 can be introduced between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B. Is done. The separated gas refrigerant is introduced into the intermediate pressure portion of the compressor 1 as indicated by a broken line arrow due to the differential pressure in the refrigerant pipe 4C. The compressor 1 is not limited to a two-stage compressor. For example, if the compressor 1 is a first-stage compressor, the refrigerant pipe 4C may be injected into an intermediate pressure portion of the first-stage compressor. It is also possible to adopt a configuration in which a plurality of compressors are connected.

そして、本実施の形態の冷凍装置30には冷媒として環境負荷が小さく、可燃性及び毒性等を考慮して自然冷媒である二酸化炭素冷媒(CO2)が封入されている。また圧縮機2の潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)、POE(ポリオールエステル)等が使用される。 The refrigeration apparatus 30 of the present embodiment has a small environmental load as a refrigerant, and is charged with carbon dioxide refrigerant (CO 2 ), which is a natural refrigerant, in consideration of flammability and toxicity. Further, as the oil as the lubricating oil of the compressor 2, for example, mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkylene glycol), POE (polyol ester) and the like are used.

このように冷凍装置30では冷媒として二酸化炭素を用いているため、冷凍サイクルの高圧部が超臨界状態で運転されることがあり、この場合には冷凍装置30は遷臨界サイクルとして運転されることになる。   Thus, since the refrigeration apparatus 30 uses carbon dioxide as a refrigerant, the high-pressure part of the refrigeration cycle may be operated in a supercritical state. In this case, the refrigeration apparatus 30 is operated as a transcritical cycle. become.

尚、本実施の形態の冷凍装置30では、図1中、2段圧縮部1Bの吐出側から放熱器2を経て、膨張弁31の入口までが冷凍サイクルの高圧部として運転され、また1段圧縮部1Aの吐出側から中間冷却器1Cを経て2段圧縮部1Bの吸い込み部まで、及び膨張弁31の出口から気液分離器4を経て2段圧縮部1Bの吸い込み部まで、及び各膨張弁12、13の入口までが冷凍サイクルの中間圧部として運転される。そして、各膨張弁12、13の出口から各吸熱器57、58及び第1熱交換器15を経て1段圧縮部1Aの吸い込み部までが冷凍サイクルの低圧部として運転される。   In the refrigeration apparatus 30 of the present embodiment, in FIG. 1, the operation from the discharge side of the two-stage compression unit 1B through the radiator 2 to the inlet of the expansion valve 31 is operated as a high-pressure part of the refrigeration cycle. From the discharge side of the compression unit 1A through the intermediate cooler 1C to the suction unit of the two-stage compression unit 1B, from the outlet of the expansion valve 31 to the suction unit of the two-stage compression unit 1B through the gas-liquid separator 4, and each expansion Up to the inlets of the valves 12 and 13 are operated as an intermediate pressure part of the refrigeration cycle. Then, the outlets of the expansion valves 12 and 13, the heat absorbers 57 and 58, and the first heat exchanger 15 to the suction portion of the first stage compression unit 1 </ b> A are operated as a low pressure portion of the refrigeration cycle.

次に、本実施の形態における冷凍装置30の動作について、図1を参照して説明する。冷凍装置30は、上述したように冷凍用膨張弁13及び冷凍用吸熱器58を主として使用する冷凍運転と、冷蔵用膨張弁12及び冷蔵用吸熱器57を主として使用する冷蔵運転と、が選択的に実行される。   Next, the operation of the refrigeration apparatus 30 in the present embodiment will be described with reference to FIG. As described above, the refrigeration apparatus 30 is selectively selected from a refrigeration operation mainly using the refrigeration expansion valve 13 and the refrigeration heat absorber 58 and a refrigeration operation mainly using the refrigeration expansion valve 12 and the refrigeration heat absorber 57. To be executed.

まず冷凍運転につき説明する。尚、この冷凍運転とは、冷蔵用膨張弁12を閉じて、冷凍用吸熱器58を所定の温度(例えば、−26℃付近)で機能させる運転である。   First, the freezing operation will be described. The refrigeration operation is an operation in which the refrigeration expansion valve 12 is closed and the refrigeration heat absorber 58 functions at a predetermined temperature (for example, around −26 ° C.).

圧縮機1が運転されると、圧縮機1から吐出された冷媒は、放熱器2で放熱して冷却される。その後、放熱器2から出た冷媒は、膨張弁31に至り、ここで減圧されて気液混合状態(ガス/液体の2相混合体)となり、気液分離器4の冷媒配管4Aから同気液分離器4内に導入される。この気液分離器4にて冷媒はガス冷媒と液冷媒に分離され、ガス冷媒は冷媒配管4Cに流通し、逆止弁7を経た後、圧縮機1の中間圧部に導入される。他方、気液分離器4で分離された液冷媒は冷媒配管4Bに流通され、分岐点9Aから冷凍用膨張弁13に至ることになる。   When the compressor 1 is operated, the refrigerant discharged from the compressor 1 is radiated by the radiator 2 and cooled. Thereafter, the refrigerant discharged from the radiator 2 reaches the expansion valve 31, where the refrigerant is decompressed to be in a gas-liquid mixed state (gas / liquid two-phase mixture), and the same gas is supplied from the refrigerant pipe 4 </ b> A of the gas-liquid separator 4. It is introduced into the liquid separator 4. In the gas-liquid separator 4, the refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant flows through the refrigerant pipe 4 </ b> C, passes through the check valve 7, and is then introduced into the intermediate pressure portion of the compressor 1. On the other hand, the liquid refrigerant separated by the gas-liquid separator 4 is circulated through the refrigerant pipe 4B and reaches the refrigeration expansion valve 13 from the branch point 9A.

尚、冷凍装置30は膨張弁31と、冷蔵用膨張弁12又は冷凍用膨張弁13とで2段膨張を行う構成であるので、上述したように膨張弁31出口側と、各膨張弁12、13入口側との間と、圧縮機1の1段圧縮部1Aの吐出側と2段圧縮部1Bの吸い込み部との間及び冷媒配管4Cにおいては、本冷凍サイクルにおける中間圧力部分となっている。   Since the refrigeration apparatus 30 is configured to perform two-stage expansion with the expansion valve 31 and the refrigeration expansion valve 12 or the refrigeration expansion valve 13, as described above, the expansion valve 31 outlet side, each expansion valve 12, 13 between the inlet side, between the discharge side of the first stage compression unit 1A of the compressor 1 and the suction part of the second stage compression unit 1B, and in the refrigerant pipe 4C, is an intermediate pressure portion in the main refrigeration cycle. .

そして、分岐点9Aから冷凍用膨張弁13に液冷媒が流通され減圧されると、この液冷媒は冷凍用吸熱器58にて蒸発し周囲から熱を吸収した後、第1熱交換器15で膨張弁31と放熱器2との間を流通する冷媒と熱交換して温められて圧縮機1の吸い込み部に戻ることになる。   When the liquid refrigerant is circulated from the branch point 9A to the refrigeration expansion valve 13 and depressurized, the liquid refrigerant evaporates in the refrigeration heat absorber 58 and absorbs heat from the surroundings, and then in the first heat exchanger 15. Heat is exchanged with the refrigerant flowing between the expansion valve 31 and the radiator 2, and the heat is returned to the suction portion of the compressor 1.

次に冷蔵運転につき説明する。尚、この冷蔵運転とは、冷凍用膨張弁13を閉じて、冷蔵用吸熱器57を上記冷凍運転時よりも高い温度(例えば、−5℃付近)で機能させる運転である。   Next, the refrigeration operation will be described. The refrigeration operation is an operation in which the refrigeration expansion valve 13 is closed and the refrigeration heat absorber 57 is made to function at a higher temperature (for example, around −5 ° C.) than during the refrigeration operation.

この場合、圧縮機1が運転されると、圧縮機1から吐出された冷媒は、放熱器2で放熱して冷却される。その後、放熱器2から出た冷媒は、膨張弁31に至り、ここで減圧されて気液混合状態(ガス/液体の2相混合体)となり、気液分離器4の冷媒配管4Aから同気液分離器4内に導入される。この気液分離器4にて冷媒はガス冷媒と液冷媒に分離され、ガス冷媒は冷媒配管4Cに流通し、逆止弁7を経た後、圧縮機1の中間圧部に導入される。他方、気液分離器4で分離された液冷媒は冷媒配管4Bに流通され、分岐点9Aから冷蔵用膨張弁12に至ることになる。   In this case, when the compressor 1 is operated, the refrigerant discharged from the compressor 1 is radiated by the radiator 2 and cooled. Thereafter, the refrigerant discharged from the radiator 2 reaches the expansion valve 31, where the refrigerant is decompressed to be in a gas-liquid mixed state (gas / liquid two-phase mixture), and the same gas is supplied from the refrigerant pipe 4 </ b> A of the gas-liquid separator 4. It is introduced into the liquid separator 4. In the gas-liquid separator 4, the refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant flows through the refrigerant pipe 4 </ b> C, passes through the check valve 7, and is then introduced into the intermediate pressure portion of the compressor 1. On the other hand, the liquid refrigerant separated by the gas-liquid separator 4 is circulated through the refrigerant pipe 4B and reaches the refrigeration expansion valve 12 from the branch point 9A.

そして、分岐点9Aから冷蔵用膨張弁12に液冷媒が流通され減圧されると、この液冷媒は冷蔵用吸熱器57にて蒸発し周囲から熱を吸収した後、第1熱交換器15で膨張弁31と放熱器2との間を流通する冷媒と熱交換して温められて圧縮機1の吸い込み部に戻ることになる。本実施の形態における冷凍装置30では、冷凍運転時、冷蔵運転時共に以上のような冷凍サイクルが形成される。   When the liquid refrigerant is circulated from the branch point 9A to the refrigeration expansion valve 12 and depressurized, the liquid refrigerant evaporates in the refrigeration heat absorber 57 and absorbs heat from the surroundings, and then in the first heat exchanger 15. Heat is exchanged with the refrigerant flowing between the expansion valve 31 and the radiator 2, and the heat is returned to the suction portion of the compressor 1. In the refrigeration apparatus 30 in the present embodiment, the refrigeration cycle as described above is formed during both the refrigeration operation and the refrigeration operation.

また、冷凍装置30では、上記冷凍運転及び冷蔵運転以外に、必要に応じて冷凍冷蔵運転が実行される。この冷凍冷蔵運転とは、各膨張弁12、13を共に全閉とせずに、冷蔵用吸熱器57及び冷凍用吸熱器58を所定の温度(例えば、冷蔵用吸熱器57を−5℃付近、冷凍用吸熱器58を−26℃付近)で機能させる運転であり、特に冷凍装置30の起動時や高負荷時などに実行することができる。   Further, in the refrigeration apparatus 30, in addition to the refrigeration operation and the refrigeration operation, a refrigeration operation is performed as necessary. This refrigeration operation means that the expansion valves 12 and 13 are not fully closed, and the refrigeration heat absorber 57 and the refrigeration heat absorber 58 are set to a predetermined temperature (for example, the refrigeration heat absorber 57 is set to around −5 ° C., This is an operation for causing the refrigeration heat absorber 58 to function at around −26 ° C., and can be performed particularly when the refrigeration apparatus 30 is started up or under a high load.

尚、本冷凍冷蔵運転時は、上記冷凍運転及び冷蔵運転時と、ほぼ同様な動作を行なうため、詳細な説明は省略する。   In addition, since the operation | movement substantially the same as the time of the said freezing operation and the refrigerating operation is performed at the time of this freezing / refrigeration operation, detailed description is abbreviate | omitted.

冷凍装置30において、気液分離器4で分離されたガス冷媒は、これを各膨張弁12、13及び各吸熱器57、58に循環させたとしても、冷却に使用することができず、これを1段圧縮部1Aの吸い込み部に戻すことは、圧縮機1における圧縮効率を低下させる。そこで、本実施の形態では、気液分離器4で分離されたガス冷媒を、圧縮機1の中間圧部、即ち、中間冷却器1Cと2段圧縮部1Bとの間に冷媒配管4Cを介して導入するため、圧縮機1における圧縮効率を向上させることができる。特に、冷凍装置30には、冷媒回路内に二酸化炭素冷媒が封入されているため、気液分離器4で分離されるガス及び液体の比率において、従来用いられているフロン系冷媒等に比べ、ガス分が多くなり、その多くのガス分を、圧縮機1の中間圧部に導入することで、より一層効率が向上する。   In the refrigeration apparatus 30, the gas refrigerant separated by the gas-liquid separator 4 cannot be used for cooling even if it is circulated through the expansion valves 12, 13 and the heat absorbers 57, 58. Is returned to the suction section of the first-stage compression section 1A, the compression efficiency in the compressor 1 is lowered. Therefore, in the present embodiment, the gas refrigerant separated by the gas-liquid separator 4 is passed through the refrigerant pipe 4C between the intermediate pressure portion of the compressor 1, that is, between the intermediate cooler 1C and the two-stage compression portion 1B. Therefore, the compression efficiency in the compressor 1 can be improved. In particular, since carbon dioxide refrigerant is enclosed in the refrigerant circuit in the refrigeration apparatus 30, the ratio of gas and liquid separated by the gas-liquid separator 4 is higher than that of conventionally used fluorocarbon refrigerants, etc. The amount of gas increases, and the efficiency is further improved by introducing the large amount of gas into the intermediate pressure portion of the compressor 1.

そして、本実施の形態における冷凍装置30では、第1熱交換器15を放熱器2と膨張弁31との間に設けると共に、容積比が0.6〜0.8と設定された圧縮機1を用いているので、気液分離器4で分離された適量のガス冷媒を2段圧縮部1Bに吸入させることが可能となり、高効率な2段圧縮2段膨張冷凍サイクルが実現できる。   And in the refrigeration apparatus 30 in this Embodiment, while providing the 1st heat exchanger 15 between the heat radiator 2 and the expansion valve 31, the compressor 1 by which volume ratio was set to 0.6-0.8. Therefore, an appropriate amount of gas refrigerant separated by the gas-liquid separator 4 can be sucked into the two-stage compression unit 1B, and a highly efficient two-stage compression two-stage expansion refrigeration cycle can be realized.

次に本実施の形態の冷凍装置30の冷蔵庫への適用例について図2を参照して説明する。図2は、冷凍装置30を備えた冷蔵庫の概略構成図を示している。   Next, an application example of the refrigeration apparatus 30 of the present embodiment to a refrigerator will be described with reference to FIG. FIG. 2 shows a schematic configuration diagram of a refrigerator provided with the refrigeration apparatus 30.

冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。そして、各室41、42の奥部には、夫々庫内仕切り壁61、62が設けられ、この庫内仕切り壁61、62で仕切られた風路44内には、上述した冷蔵用吸熱器57及び冷凍用吸熱器58、及びファン63、64が設置される。   The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. And the inner partition walls 61 and 62 are provided in the inner part of each chamber 41 and 42, respectively, In the air path 44 partitioned by the inner partition walls 61 and 62, the refrigeration heat absorber mentioned above is provided. 57, the refrigerating heat absorber 58, and the fans 63 and 64 are installed.

そして、上述した各運転時、即ち冷凍運転時にはファン64を運転し、冷凍冷蔵運転時にはファン63、64を運転し、更に冷蔵運転時にはファン63を運転する。これにより、各室41、42を冷却することが可能である。   During each operation described above, that is, during the freezing operation, the fan 64 is operated, during the freezing and refrigerating operation, the fans 63 and 64 are operated, and during the refrigerating operation, the fan 63 is operated. Thereby, each chamber 41 and 42 can be cooled.

本実施の形態の冷蔵庫40は、以上のような構成を備えるため、2段圧縮2段膨張冷凍サイクルによる高い冷却性能と高効率運転が可能となる。
<実施の形態2>
次に図3を参照して、本発明の第2の実施の形態を説明する。図3はこの場合の冷凍装置50の冷媒回路図を示している。本実施の形態において図1及び図2と同符号が付されているものは、同一又は同様の機能、効果を奏するものである。本実施の形態の冷凍装置50は、冷凍装置30と比較した場合、第1熱交換器15の代わりに第2熱交換器19を有し、更に圧縮機1の代わりに圧縮機10を備えている点が相違する。
Since the refrigerator 40 of the present embodiment has the above-described configuration, high cooling performance and high-efficiency operation by a two-stage compression and two-stage expansion refrigeration cycle are possible.
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 shows a refrigerant circuit diagram of the refrigeration apparatus 50 in this case. In this embodiment, the same reference numerals as those in FIGS. 1 and 2 have the same or similar functions and effects. When compared with the refrigeration apparatus 30, the refrigeration apparatus 50 according to the present embodiment includes the second heat exchanger 19 instead of the first heat exchanger 15, and further includes the compressor 10 instead of the compressor 1. Is different.

第2熱交換器19は、気液分離器4の出口側と分岐点9Aとの間の冷媒配管4Bを流れる冷媒と、合流点9Bからの冷媒と、を熱交換可能に構成されている。   The second heat exchanger 19 is configured to exchange heat between the refrigerant flowing through the refrigerant pipe 4B between the outlet side of the gas-liquid separator 4 and the branch point 9A and the refrigerant from the junction 9B.

圧縮機10は、圧縮機1とは容積比が相違する。即ち、圧縮機10は2段圧縮機であり、密閉容器内に1段圧縮部10Aと2段圧縮部10Bとを含み、1段圧縮部10Aと2段圧縮部10Bとを接続する前記密閉容器外の冷媒配管上に中間冷却器10Cが備えられると共に、容積比が0.4〜0.6に設定されている。例えば、1段圧縮部10Aの排除容積を1ccとすると、2段圧縮部10Bの排除容積は0.4〜0.6ccに設定される。   The compressor 10 has a volume ratio different from that of the compressor 1. That is, the compressor 10 is a two-stage compressor, and includes the first-stage compression unit 10A and the second-stage compression unit 10B in the hermetic container, and connects the first-stage compression unit 10A and the second-stage compression unit 10B. The intermediate cooler 10C is provided on the outer refrigerant pipe, and the volume ratio is set to 0.4 to 0.6. For example, if the excluded volume of the first-stage compression unit 10A is 1 cc, the excluded volume of the second-stage compression unit 10B is set to 0.4 to 0.6 cc.

以上のように、本実施の形態における冷凍装置50では、第2熱交換器19を気液分離器4と分岐点9Aとの間に設けると共に、容積比が0.4〜0.6と設定された圧縮機10を用いているので、気液分離器4で分離された適量のガス冷媒を2段圧縮部10Bに吸入させることが可能となり、高効率な2段圧縮2段膨張冷凍サイクルが実現できる。   As described above, in the refrigeration apparatus 50 according to the present embodiment, the second heat exchanger 19 is provided between the gas-liquid separator 4 and the branch point 9A, and the volume ratio is set to 0.4 to 0.6. Since the compressed compressor 10 is used, an appropriate amount of gas refrigerant separated by the gas-liquid separator 4 can be sucked into the two-stage compression unit 10B, and a highly efficient two-stage compression two-stage expansion refrigeration cycle can be achieved. realizable.

また、冷凍装置50は上記実施の形態1の冷凍装置30と同様に、冷蔵庫に適用することが可能である。   Further, the refrigeration apparatus 50 can be applied to a refrigerator, similarly to the refrigeration apparatus 30 of the first embodiment.

尚、第2熱交換器19の配置は、分岐点9Aと各膨張弁12、13との間のそれぞれに設けることも可能であり、この場合には、各吸熱器57、58と合流点9Bとの間と、上記分岐点9Aと各膨張弁12、13との間と、のそれぞれを熱交換可能に構成することで実現できる。
<実施の形態3>
次に、本発明の第3の実施の形態を図面に基づき詳述する。図4は、本実施の形態における冷凍装置の冷媒回路図を示している。冷凍装置70は、圧縮機10と、この圧縮機10の吐出側に接続される放熱器2と、を有する。
The arrangement of the second heat exchanger 19 can be provided between the branch point 9A and each of the expansion valves 12 and 13, and in this case, each of the heat absorbers 57 and 58 and the junction 9B. And between the branch point 9A and each of the expansion valves 12 and 13 can be realized by heat exchange.
<Embodiment 3>
Next, a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 shows a refrigerant circuit diagram of the refrigeration apparatus in the present embodiment. The refrigeration apparatus 70 includes the compressor 10 and the radiator 2 connected to the discharge side of the compressor 10.

放熱器2の出口側冷媒配管は、分岐点9Cにて分岐し、一方の冷媒配管91C側には、減圧手段である冷蔵用膨張弁12と冷蔵用吸熱器57とが順次接続されると共に、冷蔵用吸熱器57の出口側には、この冷蔵用熱交換器57から出た冷媒と、分岐点9Cと冷蔵用膨張弁12との間の冷媒と、を熱交換可能に構成される第3熱交換器16が設けられ、この第3熱交換器16の出口側が合流点9Bに接続されている。   The outlet side refrigerant pipe of the radiator 2 branches at a branch point 9C, and one refrigerant pipe 91C side is connected to the refrigeration expansion valve 12 and the refrigeration heat absorber 57, which are decompression means, sequentially. On the outlet side of the refrigeration heat absorber 57, a third refrigerant configured to be able to exchange heat between the refrigerant discharged from the refrigeration heat exchanger 57 and the refrigerant between the branch point 9C and the refrigeration expansion valve 12. A heat exchanger 16 is provided, and the outlet side of the third heat exchanger 16 is connected to the junction 9B.

他方、冷媒配管92C側には、減圧手段である膨張弁32と、この膨張弁32の出口側に冷媒配管4Aを介して接続される気液分離器4と、この気液分離器4で分離された液冷媒が流通する減圧手段である冷凍用膨張弁13と、冷凍用吸熱器58と、が順次接続される。この冷凍用吸熱器58の出口側には、この冷凍用吸熱器58から出た冷媒と、気液分離器4と冷凍用膨張弁13との間の冷媒と、を熱交換可能に構成される第4熱交換器17が設けられ、更に、この第4熱交換器17の出口側には、第5熱交換器が設けられる。この第5熱交換器18は、分岐点9Cと膨張弁32との間の冷媒と、第4熱交換器17から出た冷媒と、を熱交換可能に構成されてなり、この第5熱交換器18の出口側が合流点9Bに接続されている。   On the other hand, on the refrigerant pipe 92C side, the expansion valve 32 as decompression means, the gas-liquid separator 4 connected to the outlet side of the expansion valve 32 via the refrigerant pipe 4A, and the gas-liquid separator 4 are separated. The refrigeration expansion valve 13, which is a decompression means through which the liquid refrigerant is circulated, and the refrigeration heat absorber 58 are sequentially connected. On the outlet side of the refrigeration endothermic device 58, the refrigerant discharged from the refrigeration endothermic device 58 and the refrigerant between the gas-liquid separator 4 and the refrigeration expansion valve 13 are configured to be able to exchange heat. A fourth heat exchanger 17 is provided, and a fifth heat exchanger is provided on the outlet side of the fourth heat exchanger 17. The fifth heat exchanger 18 is configured to be able to exchange heat between the refrigerant between the branch point 9C and the expansion valve 32 and the refrigerant discharged from the fourth heat exchanger 17, and the fifth heat exchange. The outlet side of the vessel 18 is connected to the junction 9B.

そして、気液分離器4で分離されたガス冷媒が冷媒配管4Cを介して圧縮機10の中間圧部に接続されると共に、合流点9Bからの冷媒配管が圧縮機10の吸い込み部に接続されて冷凍サイクルが構成されている。   The gas refrigerant separated by the gas-liquid separator 4 is connected to the intermediate pressure part of the compressor 10 via the refrigerant pipe 4C, and the refrigerant pipe from the junction 9B is connected to the suction part of the compressor 10. The refrigeration cycle is configured.

また、気液分離器4と圧縮機1の中間圧部との間の冷媒配管4Cには逆止弁7が備えられ、第5熱交換器18と合流点9Bとの間には逆止弁52が、更に合流点9Bと圧縮機10の吸い込み部との間には逆止弁53が備えられている。   The refrigerant pipe 4C between the gas-liquid separator 4 and the intermediate pressure portion of the compressor 1 is provided with a check valve 7, and a check valve is provided between the fifth heat exchanger 18 and the junction 9B. 52, a check valve 53 is further provided between the junction 9B and the suction portion of the compressor 10.

ここで、冷蔵用膨張弁12及び冷蔵用吸熱器57は、冷凍用膨張弁13及び冷凍用吸熱器58に対して、分岐点9Cと合流点9Bとの間に並列に設けられており、各膨張弁12、13のいずれか一方を全閉とすることで、各吸熱器57、58に冷媒が選択的に流通し、これにより冷蔵運転及び冷凍運転が選択的に実行される。   Here, the refrigeration expansion valve 12 and the refrigeration heat absorber 57 are provided in parallel between the branch point 9C and the junction 9B with respect to the refrigeration expansion valve 13 and the refrigeration heat absorber 58, and By fully closing one of the expansion valves 12 and 13, the refrigerant selectively flows through the heat absorbers 57 and 58, whereby the refrigeration operation and the freezing operation are selectively executed.

即ち、分岐点9Cからの冷媒が冷蔵用吸熱器57に流通された場合には、当該冷蔵用吸熱器57で発生する冷気が、図示しないファンによりダクト57Aを介して冷蔵室21に循環されることで、冷蔵運転が実行される。他方、分岐点9Cからの冷媒が冷凍用吸熱器58に流通された場合には、当該冷凍用吸熱器58で発生する冷気が、図示しないファンによりダクト58Aを介して冷凍室22に循環されることで、冷凍運転が実行される。   That is, when the refrigerant from the branch point 9C is circulated to the refrigeration heat absorber 57, the cold air generated in the refrigeration heat absorber 57 is circulated to the refrigeration chamber 21 via the duct 57A by a fan (not shown). Thus, the refrigeration operation is executed. On the other hand, when the refrigerant from the branch point 9C is circulated to the refrigerating heat absorber 58, the cold air generated in the refrigerating heat absorber 58 is circulated to the freezer compartment 22 via the duct 58A by a fan (not shown). Thus, the refrigeration operation is executed.

圧縮機10は2段圧縮機であり、密閉容器内に1段圧縮部10Aと2段圧縮部10Bとを含み、1段圧縮部10Aと2段圧縮部10Bとを接続する前記密閉容器外の冷媒配管上に中間冷却器10Cが備えられる。尚、本実施の形態においては、容積比が、0.4〜0.6に設定されている。即ち、例えば1段圧縮部10Aの排除容積を1ccとする場合には、2段圧縮部10Bの排除容積は0.4〜0.6ccに設定される。   The compressor 10 is a two-stage compressor, and includes a first-stage compression unit 10A and a two-stage compression unit 10B in a hermetic container, and connects the first-stage compression unit 10A and the second-stage compression unit 10B. An intermediate cooler 10C is provided on the refrigerant pipe. In the present embodiment, the volume ratio is set to 0.4 to 0.6. That is, for example, when the excluded volume of the first-stage compression unit 10A is 1 cc, the excluded volume of the second-stage compression unit 10B is set to 0.4 to 0.6 cc.

また、上述したように冷媒配管4Cは、気液分離器4で分離されたガス冷媒を圧縮機10の中間圧部、即ち中間冷却器10Cと2段圧縮部10Bとの間に導入可能に接続される。尚、この分離されたガス冷媒は冷媒配管4C内の差圧により破線矢印で示すように圧縮機10の中間圧部に導入される。尚、圧縮機10は2段圧縮機に限定するものではなく、例えば、1段圧縮機であれば冷媒配管4Cは1段圧縮機の中間圧部にインジェクションすれば良い。また、複数台の圧縮機を接続した構成を採用することも可能である。   Further, as described above, the refrigerant pipe 4C is connected so that the gas refrigerant separated by the gas-liquid separator 4 can be introduced between the intermediate pressure portion of the compressor 10, that is, between the intermediate cooler 10C and the two-stage compression portion 10B. Is done. The separated gas refrigerant is introduced into the intermediate pressure portion of the compressor 10 as indicated by a broken line arrow due to the differential pressure in the refrigerant pipe 4C. The compressor 10 is not limited to a two-stage compressor. For example, if the compressor 10 is a first-stage compressor, the refrigerant pipe 4C may be injected into the intermediate pressure portion of the first-stage compressor. It is also possible to adopt a configuration in which a plurality of compressors are connected.

そして、本実施の形態の冷凍装置70には冷媒として環境負荷が小さく、可燃性及び毒性等を考慮して自然冷媒である二酸化炭素冷媒(CO2)が封入されている。また圧縮機2の潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)、POE(ポリオールエステル)等が使用される。 The refrigeration apparatus 70 of the present embodiment has a small environmental load as a refrigerant, and is filled with carbon dioxide refrigerant (CO 2 ) which is a natural refrigerant in consideration of flammability and toxicity. Further, as the oil as the lubricating oil of the compressor 2, for example, mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkylene glycol), POE (polyol ester) and the like are used.

このように冷凍装置70では冷媒として二酸化炭素を用いているため、冷凍サイクルの高圧部が超臨界状態で運転されることがあり、この場合には冷凍装置70は遷臨界サイクルとして運転されることになる。   Thus, since the refrigeration apparatus 70 uses carbon dioxide as a refrigerant, the high-pressure part of the refrigeration cycle may be operated in a supercritical state. In this case, the refrigeration apparatus 70 is operated as a transcritical cycle. become.

尚、本実施の形態の冷凍装置70では、図4中、2段圧縮部10Bの吐出側から放熱器2を経て、分岐点9Cから膨張弁32の入口及び分岐点9Cから冷蔵用膨張弁12の入口までが冷凍サイクルの高圧部として運転され、また1段圧縮部10Aの吐出側から中間冷却器10Cを経て2段圧縮部10Bの吸い込み部まで、及び膨張弁32の出口から気液分離器4を経て2段圧縮部10Bの吸い込み部まで、及び冷凍用膨張弁13の入口までが冷凍サイクルの中間圧部として運転される。そして、各膨張弁12、13の出口から各吸熱器57、58及び各熱交換器16、17、18を経て1段圧縮部10Aの吸い込み部までが冷凍サイクルの低圧部として運転される。   In the refrigeration apparatus 70 of the present embodiment, in FIG. 4, the discharge side of the two-stage compression unit 10 </ b> B passes through the radiator 2, and enters the expansion valve 32 from the branch point 9 </ b> C and the refrigeration expansion valve 12 from the branch point 9 </ b> C. Up to the inlet of the refrigeration cycle is operated as a high-pressure part of the refrigeration cycle, and from the discharge side of the first stage compression part 10A to the suction part of the second stage compression part 10B via the intermediate cooler 10C, and from the outlet of the expansion valve 32 to the gas-liquid separator 4 to the suction part of the two-stage compression part 10B and the inlet of the refrigeration expansion valve 13 are operated as an intermediate pressure part of the refrigeration cycle. And from the exit of each expansion valve 12 and 13 through each heat absorber 57 and 58 and each heat exchanger 16, 17, and 18 to the suction part of 10 A of 1st stage compression parts, it operate | moves as a low pressure part of a refrigerating cycle.

次に、本実施の形態における冷凍装置70の動作について、図1を参照して説明する。冷凍装置70は、上述したように冷凍用膨張弁13及び冷凍用吸熱器58を主として使用する冷凍運転と、冷蔵用膨張弁12及び冷蔵用吸熱器57を主として使用する冷蔵運転と、が選択的に実行される。   Next, operation | movement of the freezing apparatus 70 in this Embodiment is demonstrated with reference to FIG. As described above, the refrigeration apparatus 70 is selectively selected from a refrigeration operation mainly using the refrigeration expansion valve 13 and the refrigeration heat absorber 58 and a refrigeration operation mainly using the refrigeration expansion valve 12 and the refrigeration heat absorber 57. To be executed.

まず冷凍運転につき説明する。尚、この冷凍運転とは、冷蔵用膨張弁12を閉じて、冷凍用吸熱器58を所定の温度(例えば、−26℃付近)で機能させる運転である。   First, the freezing operation will be described. The refrigeration operation is an operation in which the refrigeration expansion valve 12 is closed and the refrigeration heat absorber 58 functions at a predetermined temperature (for example, around −26 ° C.).

圧縮機10が運転されると、圧縮機10から吐出された冷媒は、放熱器2で放熱して冷却される。その後、放熱器2から出た冷媒は、分岐点9Cを経由して膨張弁32に至り、ここで減圧されて気液混合状態(ガス/液体の2相混合体)となり、気液分離器4の冷媒配管4Aから同気液分離器4内に導入される。この気液分離器4にて冷媒はガス冷媒と液冷媒に分離され、ガス冷媒は冷媒配管4Cに流通し、逆止弁7を経た後、圧縮機10の中間圧部に導入される。他方、気液分離器4で分離された液冷媒は冷媒配管4Bに流通され、分岐点9Aから冷凍用膨張弁13に至ることになる。   When the compressor 10 is operated, the refrigerant discharged from the compressor 10 is radiated by the radiator 2 and cooled. Thereafter, the refrigerant discharged from the radiator 2 reaches the expansion valve 32 via the branch point 9C, where the refrigerant is decompressed to be in a gas-liquid mixed state (gas / liquid two-phase mixture), and the gas-liquid separator 4 The refrigerant pipe 4A is introduced into the same gas-liquid separator 4. In the gas-liquid separator 4, the refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant flows through the refrigerant pipe 4 </ b> C, passes through the check valve 7, and is then introduced into the intermediate pressure portion of the compressor 10. On the other hand, the liquid refrigerant separated by the gas-liquid separator 4 is circulated through the refrigerant pipe 4B and reaches the refrigeration expansion valve 13 from the branch point 9A.

尚、この場合には、膨張弁32と冷凍用膨張弁13とで2段膨張を行う構成であるので、上述したように膨張弁32出口側と冷凍用膨張弁13入口側との間と、圧縮機10の1段圧縮部10Aの吐出側と2段圧縮部10Bの吸い込み部との間、及び冷媒配管4Cにおいては、本冷凍サイクルにおける中間圧力部分となっている。   In this case, since the expansion valve 32 and the freezing expansion valve 13 are configured to perform two-stage expansion, as described above, between the expansion valve 32 outlet side and the freezing expansion valve 13 inlet side, Between the discharge side of the first stage compression unit 10A of the compressor 10 and the suction part of the second stage compression unit 10B, and in the refrigerant pipe 4C, it is an intermediate pressure part in the main refrigeration cycle.

そして、冷凍用膨張弁13に液冷媒が流通され減圧されると、この液冷媒は冷凍用吸熱器58にて蒸発し周囲から熱を吸収した後、第4熱交換器17で気液分離器4と冷凍用膨張弁13との間を流通する冷媒と熱交換して温められ、その後、更に第5熱交換器18で分岐点9Cと膨張弁32との間を流通する冷媒と熱交換して更に温められて圧縮機10の吸い込み部に戻ることになる。   When the liquid refrigerant is circulated through the refrigeration expansion valve 13 and depressurized, the liquid refrigerant evaporates in the refrigeration heat absorber 58 and absorbs heat from the surroundings, and then the fourth heat exchanger 17 performs a gas-liquid separator. 4 and heat exchange with the refrigerant flowing between the freezing expansion valve 13, and then heat exchange with the refrigerant flowing between the branch point 9 </ b> C and the expansion valve 32 in the fifth heat exchanger 18. Then, it is further heated and returned to the suction portion of the compressor 10.

次に冷蔵運転につき説明する。尚、この冷蔵運転とは、膨張弁32及び冷凍用膨張弁13を閉じて、冷蔵用吸熱器57を上記冷凍運転時よりも高い温度(例えば、−5℃付近)で機能させる運転である。   Next, the refrigeration operation will be described. The refrigerating operation is an operation in which the expansion valve 32 and the refrigerating expansion valve 13 are closed and the refrigerating heat absorber 57 is operated at a higher temperature (for example, around −5 ° C.) than that during the refrigerating operation.

この場合、圧縮機10が運転されると、圧縮機10から吐出された冷媒は、放熱器2で放熱して冷却される。その後、放熱器2から出た冷媒は、分岐点9Cを経由して冷蔵用膨張弁12に至ることになる。そして、冷蔵用膨張弁12に冷媒が流通され減圧されると、この冷媒は冷蔵用吸熱器57にて蒸発し周囲から熱を吸収した後、第3熱交換器16で分岐点9Cと冷蔵用膨張弁12との間を流通する冷媒と熱交換して温められて圧縮機10の吸い込み部に戻ることになる。本実施の形態における冷凍装置30では、冷凍運転時、冷蔵運転時共に以上のような冷凍サイクルが形成される。   In this case, when the compressor 10 is operated, the refrigerant discharged from the compressor 10 is radiated by the radiator 2 and cooled. Thereafter, the refrigerant discharged from the radiator 2 reaches the refrigeration expansion valve 12 via the branch point 9C. When the refrigerant is circulated through the refrigeration expansion valve 12 and depressurized, the refrigerant evaporates in the refrigeration heat sink 57 and absorbs heat from the surroundings, and then the branch heat 9C and the refrigeration for the third heat exchanger 16 are absorbed. Heat is exchanged with the refrigerant flowing between the expansion valve 12 and the refrigerant returns to the suction portion of the compressor 10. In the refrigeration apparatus 30 in the present embodiment, the refrigeration cycle as described above is formed during both the refrigeration operation and the refrigeration operation.

また、冷凍装置70では、上記冷凍運転及び冷蔵運転以外に、必要に応じて冷凍冷蔵運転が実行される。この冷凍冷蔵運転とは、各膨張弁32、12、13を共に全閉とせずに、冷蔵用吸熱器57及び冷凍用吸熱器58を所定の温度(例えば、冷蔵用吸熱器57を−5℃付近、冷凍用吸熱器58を−26℃付近)で機能させる運転であり、特に冷凍装置70の起動時や高負荷時などに実行することができる。   Further, in the refrigeration apparatus 70, in addition to the refrigeration operation and the refrigeration operation, a refrigeration operation is performed as necessary. In this refrigeration operation, the expansion valves 32, 12 and 13 are not fully closed, and the refrigeration endothermic device 57 and the refrigeration endothermic device 58 are set to a predetermined temperature (for example, the refrigeration endothermic device 57 is set to −5 ° C.). This is an operation in which the refrigeration heat absorber 58 functions in the vicinity of −26 ° C., and can be executed particularly when the refrigeration apparatus 70 is activated or under a high load.

尚、本冷凍冷蔵運転時は、上記冷凍運転及び冷蔵運転時と、ほぼ同様な動作を行なうため、詳細な説明は省略する。   In addition, since the operation | movement substantially the same as the time of the said freezing operation and the refrigerating operation is performed at the time of this freezing / refrigeration operation, detailed description is abbreviate | omitted.

冷凍装置70において、気液分離器4で分離されたガス冷媒は、これを冷凍用膨張弁13及び冷凍用吸熱器58に循環させたとしても、冷却に使用することができず、これを1段圧縮部10Aの吸い込み部に戻すことは、圧縮機10における圧縮効率を低下させる。そこで、本実施の形態では、気液分離器4で分離されたガス冷媒を、圧縮機10の中間圧部、即ち、中間冷却器10Cと2段圧縮部10Bとの間に冷媒配管4Cを介して導入するため、圧縮機10における圧縮効率を向上させることができる。特に、冷凍装置70には、冷媒回路内に二酸化炭素冷媒が封入されているため、気液分離器4で分離されるガス及び液体の比率において、従来用いられているフロン系冷媒等に比べ、ガス分が多くなり、その多くのガス分を、圧縮機10の中間圧部に導入することで、より一層効率が向上する。   In the refrigeration apparatus 70, the gas refrigerant separated by the gas-liquid separator 4 cannot be used for cooling even if it is circulated through the refrigeration expansion valve 13 and the refrigeration heat absorber 58. Returning to the suction section of the stage compression section 10A reduces the compression efficiency of the compressor 10. Therefore, in the present embodiment, the gas refrigerant separated by the gas-liquid separator 4 is passed through the refrigerant pipe 4C between the intermediate pressure portion of the compressor 10, that is, between the intermediate cooler 10C and the two-stage compression portion 10B. Therefore, the compression efficiency in the compressor 10 can be improved. Particularly, since the carbon dioxide refrigerant is sealed in the refrigerant circuit in the refrigeration apparatus 70, the ratio of gas and liquid separated by the gas-liquid separator 4 is compared with the conventionally used fluorocarbon refrigerant, etc. The gas content increases, and the efficiency is further improved by introducing the large gas content into the intermediate pressure portion of the compressor 10.

尚、上記冷蔵運転時には気液分離器4には冷媒を流通させない構成としたため、気液分離器4で分離されたガス冷媒を、圧縮機10の中間圧部に導入する機能を利用できなくなる。しかしながら、この冷蔵運転時には、冷凍運転時に比較して気液分離器を利用した場合におけるガス冷媒の発生量が少ないため、膨張弁32及び冷媒配管4Cの動作を利用しないとしても、運転効率の低下幅が抑制される。   In addition, since it was set as the structure which does not distribute | circulate a refrigerant | coolant to the gas-liquid separator 4 at the time of the said refrigerating operation, the function which introduces the gas refrigerant isolate | separated by the gas-liquid separator 4 to the intermediate pressure part of the compressor 10 cannot be utilized. However, during this refrigeration operation, the amount of gas refrigerant generated is smaller when the gas-liquid separator is used than during the refrigeration operation. Therefore, even if the operations of the expansion valve 32 and the refrigerant pipe 4C are not used, the operation efficiency is reduced. The width is suppressed.

そして、本実施の形態における冷凍装置70では、第4熱交換器17及び第5熱交換器18を設けると共に、容積比が0.4〜0.6と設定された圧縮機10を用いているので、冷凍運転時、気液分離器4で分離された適量のガス冷媒を2段圧縮部10Bに吸入させることが可能となり、高効率な2段圧縮2段膨張冷凍サイクルが実現できる。   And in the refrigerating apparatus 70 in this Embodiment, while providing the 4th heat exchanger 17 and the 5th heat exchanger 18, the compressor 10 by which volume ratio was set to 0.4-0.6 is used. Therefore, during the refrigeration operation, an appropriate amount of gas refrigerant separated by the gas-liquid separator 4 can be sucked into the two-stage compression unit 10B, and a highly efficient two-stage compression two-stage expansion refrigeration cycle can be realized.

次に本実施の形態の冷凍装置70の冷蔵庫への適用例について図5を参照して説明する。図5は、冷凍装置70を備えた冷蔵庫の概略構成図を示している。   Next, an application example of the refrigeration apparatus 70 of the present embodiment to a refrigerator will be described with reference to FIG. FIG. 5 shows a schematic configuration diagram of a refrigerator provided with the refrigeration apparatus 70.

冷蔵庫40は、上段に冷蔵室41を備え、下段に冷凍室42を備えて構成されている。そして、各室41、42の奥部には、夫々庫内仕切り壁61、62が設けられ、この庫内仕切り壁61、62で仕切られた風路44内には、上述した冷蔵用吸熱器57及び冷凍用吸熱器58、及びファン63、64が設置される。   The refrigerator 40 includes a refrigeration room 41 in the upper stage and a freezing room 42 in the lower stage. And the inner partition walls 61 and 62 are provided in the inner part of each chamber 41 and 42, respectively, In the air path 44 partitioned by the inner partition walls 61 and 62, the refrigeration heat absorber mentioned above is provided. 57, the refrigerating heat absorber 58, and the fans 63 and 64 are installed.

そして、上述した各運転時、即ち冷凍運転時にはファン64を運転し、冷凍冷蔵運転時にはファン63、64を運転し、更に冷蔵運転時にはファン63を運転する。これにより、各室41、42を冷却することが可能である。   During each operation described above, that is, during the freezing operation, the fan 64 is operated, during the freezing and refrigerating operation, the fans 63 and 64 are operated, and during the refrigerating operation, the fan 63 is operated. Thereby, each chamber 41 and 42 can be cooled.

本実施の形態の冷蔵庫40は、以上のような構成を備えるため、特に冷凍運転時、2段圧縮2段膨張冷凍サイクルによる高い冷却性能と高効率運転が可能となる。   Since the refrigerator 40 of the present embodiment has the above-described configuration, high cooling performance and high-efficiency operation by a two-stage compression two-stage expansion refrigeration cycle are possible particularly during refrigeration operation.

以上、上記各実施の形態により本発明を説明したが、本発明はこれに限定されるものではなく、種々の変更実施が可能である。例えば、上記各実施の形態では、冷媒回路中に二酸化炭素冷媒を封入しているが、これに限定されるものではなく、それ以外のフロン系冷媒等を封入したものにも適用可能である。   Although the present invention has been described above by the above embodiments, the present invention is not limited to this, and various modifications can be made. For example, in each of the above embodiments, the carbon dioxide refrigerant is enclosed in the refrigerant circuit, but the present invention is not limited to this, and the present invention can be applied to other refrigerant-filled refrigerants.

また、減圧手段である各膨張弁31、32、12、13は必要に応じてキャピラリチューブに変更することも可能である。尚、冷凍装置30及び冷凍装置50において各膨張弁12、13をキャピラリチューブに変更する場合には、分岐点9Aに三方弁を設けるか、又は各キャピラリチューブ入口前に電磁弁等を設ける必要がある。更に、冷凍装置70において各膨張弁32、12、13をキャピラリチューブに変更する場合には、分岐点9Cに三方弁を設けるか、又は各キャピラリチューブ入口前に電磁弁等を設ける必要がある。   Further, the expansion valves 31, 32, 12, and 13, which are decompression means, can be changed to capillary tubes as necessary. When changing the expansion valves 12 and 13 to capillary tubes in the refrigeration apparatus 30 and the refrigeration apparatus 50, it is necessary to provide a three-way valve at the branch point 9A, or to provide an electromagnetic valve or the like before the entrance of each capillary tube. is there. Furthermore, when the expansion valves 32, 12, and 13 are changed to capillary tubes in the refrigeration apparatus 70, it is necessary to provide a three-way valve at the branch point 9C, or to provide an electromagnetic valve or the like before the entrance of each capillary tube.

本発明の冷凍装置の一実施の形態を示す冷媒回路図である。It is a refrigerant circuit figure showing one embodiment of the freezing device of the present invention. 本発明の一実施の形態の冷凍装置の冷蔵庫への適用例を示す概略構成図である。It is a schematic block diagram which shows the example of application to the refrigerator of the freezing apparatus of one embodiment of this invention. 本発明の第2の実施の形態の冷凍装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the freezing apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の冷凍装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the freezing apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の冷凍装置の冷蔵庫への適用例を示す概略構成図である。It is a schematic block diagram which shows the example of application to the refrigerator of the freezing apparatus of the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1、10 圧縮機
2 放熱器
4 気液分離器
7、52、53 逆止弁
12、13、31、32 膨張弁
15、16、17、18、19 熱交換器
21、41 冷蔵室
22、42 冷凍室
30、50、70 冷凍装置
40 冷蔵庫
63、64 ファン
57、58 吸熱器


DESCRIPTION OF SYMBOLS 1, 10 Compressor 2 Radiator 4 Gas-liquid separator 7, 52, 53 Check valve 12, 13, 31, 32 Expansion valve 15, 16, 17, 18, 19 Heat exchanger 21, 41 Refrigeration chamber 22, 42 Freezer room 30, 50, 70 Refrigeration equipment 40 Refrigerator 63, 64 Fan 57, 58 Heat absorber


Claims (7)

少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、前記ガス冷媒を前記中間圧部に導入する冷媒配管と、
前記吸熱器から出た冷媒と、前記放熱器と前記第1の減圧手段との間の冷媒と、を熱交換可能に構成した第1の熱交換器と、を備え、
前記第1の熱交換器の出口側が前記第1の圧縮要素の吸い込み部に接続されてなり、
前記圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.6〜0.8の範囲としたことを特徴とする冷凍装置。
A compressor having at least a first compression element and a second compression element and configured to compress and discharge the refrigerant compressed by the first compression element by the second compression element; A radiator connected to the discharge side of the compressor, a first decompression unit connected to the outlet side of the radiator, and a refrigerant in a gas-liquid mixed state that is decompressed by the first decompression unit flows into the compressor. A gas-liquid separator that is separated into a gas refrigerant and a liquid refrigerant, a second decompression unit through which the liquid refrigerant exits from the gas-liquid separator, and an endotherm connected to the outlet side of the second decompression unit And a refrigerant pipe for introducing the gas refrigerant into the intermediate pressure part,
A first heat exchanger configured to be capable of exchanging heat between the refrigerant coming out of the heat absorber and the refrigerant between the radiator and the first decompression means,
The outlet side of the first heat exchanger is connected to the suction portion of the first compression element;
The ratio of the excluded volume of the second compression element to the excluded volume of the first compression element in the compressor is in the range of 0.6 to 0.8.
少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機と、この圧縮機の吐出側に接続される放熱器と、この放熱器の出口側に接続される第1の減圧手段と、この第1の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第2の減圧手段と、この第2の減圧手段の出口側に接続される吸熱器と、前記ガス冷媒を前記中間圧部に導入する冷媒配管と、
前記吸熱器から出た冷媒と、前記気液分離器から出た前記液冷媒と、を熱交換可能に構成した第2の熱交換器と、を備え、
前記第2の熱交換器の出口側が前記第1の圧縮要素の吸い込み部に接続されてなり、
前記圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.4〜0.6の範囲としたことを特徴とする冷凍装置。
A compressor having at least a first compression element and a second compression element, and configured to compress and discharge the refrigerant compressed by the first compression element by the second compression element; A radiator connected to the discharge side of the compressor, a first decompression means connected to the outlet side of the radiator, and a refrigerant that is decompressed by the first decompression means flows in a gas-liquid mixed state. A gas-liquid separator that is separated into a gas refrigerant and a liquid refrigerant, a second pressure reducing means through which the liquid refrigerant discharged from the gas-liquid separator flows, and an endothermic connection connected to the outlet side of the second pressure reducing means And a refrigerant pipe for introducing the gas refrigerant into the intermediate pressure part,
A second heat exchanger configured to be capable of exchanging heat between the refrigerant coming out of the heat absorber and the liquid refrigerant coming out of the gas-liquid separator,
The outlet side of the second heat exchanger is connected to the suction portion of the first compression element;
The ratio of the excluded volume of the second compression element to the excluded volume of the first compression element in the compressor is in the range of 0.4 to 0.6.
中間圧部を有する圧縮機と、この圧縮機の吐出側に接続される放熱器と、を有し、前記放熱器の出口側の冷媒配管が分岐し、
一方の冷媒配管には、第1の減圧手段及び第1の吸熱器が順次接続されると共に、この第1の吸熱器から出た冷媒と、前記第1の減圧手段に入る前の冷媒と、を熱交換可能に構成した第3の熱交換器が設けられ、
他方の冷媒配管には、第2の減圧手段と、この第2の減圧手段で減圧され気液混合状態の冷媒が流入してガス冷媒と液冷媒とに分離される気液分離器と、この気液分離器から出た液冷媒が流通する第3の減圧手段と、この第3の減圧手段から出た冷媒が流通する第2の吸熱器と、が順次接続され、前記気液分離器には前記ガス冷媒を前記中間圧部に導入可能な冷媒配管が接続されると共に、
前記第2の吸熱器から出た冷媒と前記液冷媒とを熱交換可能に構成した第4の熱交換器と、この第4の熱交換器から出た冷媒と前記第2の減圧手段に入る前の冷媒とを熱交換可能に構成した第5の熱交換器が設けられ、
前記第3の熱交換器の出口側及び前記第5の熱交換器の出口側が前期圧縮機の吸い込み部に接続されることを特徴とする冷凍装置。
A compressor having an intermediate pressure portion, and a radiator connected to the discharge side of the compressor, the refrigerant pipe on the outlet side of the radiator branches off,
The first pressure reducing means and the first heat absorber are sequentially connected to one refrigerant pipe, the refrigerant that has come out of the first heat absorber, the refrigerant before entering the first pressure reducing means, A third heat exchanger configured to be heat exchangeable is provided,
The other refrigerant pipe has a second decompression unit, a gas-liquid separator that is decompressed by the second decompression unit and into which a refrigerant in a gas-liquid mixed state flows and is separated into a gas refrigerant and a liquid refrigerant, A third pressure reducing means through which the liquid refrigerant discharged from the gas-liquid separator flows and a second heat absorber through which the refrigerant discharged from the third pressure reducing means flows are sequentially connected to the gas-liquid separator. Is connected to a refrigerant pipe capable of introducing the gas refrigerant into the intermediate pressure part,
The fourth heat exchanger configured to be able to exchange heat between the refrigerant discharged from the second heat absorber and the liquid refrigerant, and the refrigerant discharged from the fourth heat exchanger and the second pressure reducing unit. A fifth heat exchanger configured to exchange heat with the previous refrigerant is provided;
The refrigeration apparatus, wherein an outlet side of the third heat exchanger and an outlet side of the fifth heat exchanger are connected to a suction portion of the previous compressor.
前記圧縮機は、少なくとも第1の圧縮要素と第2の圧縮要素とを有し、前記第1の圧縮要素で圧縮された冷媒を前記第2の圧縮要素で圧縮して吐出するように構成された圧縮機であって、
この圧縮機における前記第1の圧縮要素の排除容積に対する前記第2の圧縮要素の排除容積の比を、0.4〜0.6の範囲としたことを特徴とする請求項3に記載の冷凍装置。
The compressor has at least a first compression element and a second compression element, and is configured to compress and discharge the refrigerant compressed by the first compression element by the second compression element. A compressor,
The refrigeration according to claim 3, wherein a ratio of an excluded volume of the second compression element to an excluded volume of the first compression element in the compressor is in a range of 0.4 to 0.6. apparatus.
前記第2の吸熱器が前記第1の吸熱器よりも低い温度で機能することを特徴とする請求項4に記載の冷凍装置。   The refrigeration apparatus according to claim 4, wherein the second heat absorber functions at a temperature lower than that of the first heat absorber. 冷媒として二酸化炭素を用いたことを特徴とする請求項1乃至請求項5のいずれか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 5, wherein carbon dioxide is used as the refrigerant. 請求項1乃至請求項6のいずれか一項に記載の冷凍装置を備えたことを特徴とする冷蔵庫。




A refrigerator comprising the refrigeration apparatus according to any one of claims 1 to 6.




JP2005282902A 2005-09-28 2005-09-28 Freezing device and gas-liquid separator Pending JP2007093105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282902A JP2007093105A (en) 2005-09-28 2005-09-28 Freezing device and gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282902A JP2007093105A (en) 2005-09-28 2005-09-28 Freezing device and gas-liquid separator

Publications (1)

Publication Number Publication Date
JP2007093105A true JP2007093105A (en) 2007-04-12

Family

ID=37979037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282902A Pending JP2007093105A (en) 2005-09-28 2005-09-28 Freezing device and gas-liquid separator

Country Status (1)

Country Link
JP (1) JP2007093105A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858431B1 (en) 2007-06-22 2008-09-16 주식회사 대우일렉트로닉스 Refrigerating system and control method of refrigerator
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2009133584A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
WO2010061624A1 (en) * 2008-11-28 2010-06-03 サンデン株式会社 Refrigeration system
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
JP2015148407A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2018077041A (en) * 2016-11-09 2018-05-17 韓国海洋大学産学連携財団Korea Maritime University Industry−Academic Cooperation Foundation Multistage heat pump having two-stage expansion structure using co2 refrigerant, and circulation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858431B1 (en) 2007-06-22 2008-09-16 주식회사 대우일렉트로닉스 Refrigerating system and control method of refrigerator
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2009133584A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
WO2010061624A1 (en) * 2008-11-28 2010-06-03 サンデン株式会社 Refrigeration system
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
JP2015148407A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2018077041A (en) * 2016-11-09 2018-05-17 韓国海洋大学産学連携財団Korea Maritime University Industry−Academic Cooperation Foundation Multistage heat pump having two-stage expansion structure using co2 refrigerant, and circulation method thereof

Similar Documents

Publication Publication Date Title
US7331196B2 (en) Refrigerating apparatus and refrigerator
JP2006275495A (en) Refrigerating device and refrigerator
US7320228B2 (en) Refrigerant cycle apparatus
KR100585353B1 (en) Refrigerator
JP4101252B2 (en) refrigerator
EP1628088A2 (en) Refrigerant cycle apparatus
US20060218952A1 (en) Refrigerating device and refrigerator
EP1577622A2 (en) Refrigerating machine
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP2007093105A (en) Freezing device and gas-liquid separator
KR20080106311A (en) Freezing apparatus
KR20060041722A (en) Refrigerant cycle apparatus
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP2008249209A (en) Refrigerating device
JP2007178072A (en) Air conditioner for vehicle
KR100695370B1 (en) Refrigerating apparatus and refrigerator
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
US8966933B2 (en) Refrigeration apparatus
JP2006207982A (en) Refrigerating apparatus and refrigerator
JP5895662B2 (en) Refrigeration equipment
JP2006266655A (en) Refrigerating device, refrigerator, and gas-liquid separator
JP2005226913A (en) Transient critical refrigerant cycle device
JP4115414B2 (en) Refrigeration equipment
JP2005265316A (en) Refrigeration device
JP2022181836A (en) Multistage compression refrigeration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818